
Submitted 16 July 2020
Accepted 29 September 2020
Published 2 November 2020

Corresponding author
Morten Lind, morten.lind@sintef.no

Academic editor
Marcin Woźniak

Additional Information and
Declarations can be found on
page 12

DOI 10.7717/peerj-cs.304

Copyright
2020 Lind

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Real-time quintic Hermite interpolation
for robot trajectory execution
Morten Lind
Production Technology, SINTEF Manufacturing, Trondheim, Trøndelag, Norway

ABSTRACT
This paper presents a real-time joint trajectory interpolation system for the purpose of
frequency scaling the low cycle time of a robot controller, allowing a Python application
to real-time control the robot at amoderate cycle time. Interpolation is based on quintic
Hermite piece-wise splines. The splines are calculated in real-time, in a piecewise
manner between the high-level, long cycle time trajectory points, while sampling of
these splines at an appropriate, shorter cycle time for the real-time requirement of the
lower-level system. The principle is usable in general, and the specific implementation
presented is for control of the Panda robot from Franka Emika. Tracking delay
analysis is presented based on a cosine trajectory. A simple test application has been
implemented, demonstrating real-time feeding of a pre-calculated trajectory for cutting
with a knife. Estimated forces on the robot wrist are recorded during cutting and
presented in the paper.

Subjects Real-Time and Embedded Systems, Robotics
Keywords Interpolation, Robotics, Real-time, Python, Joint control, Trajectory

INTRODUCTION
Reacting instantaneously to perceived changes in the environment is an important feature
of modern robotics, recently for safe human-robot cooperation, but also more traditionally
for force-based control and visual servoing applications. The setup for this includes a sensor
system for perceiving the environment, a control model for deciding how to react, and
a control interface to the mechanical system. This must all be real-time integrated into a
sensor-based robot control application.

A real-time interface to the robot arm, through the robot controller, is a necessity.
Newer robot controllers are getting increasingly open towards real-time trajectory feeding.
An early example of a supported mechanism was realized in the KUKA controllers with
the Robot Sensor Interface (RSI) software package, which used a cycle time of 12 ms in
version 2 and 4 ms in version 3; version 3 maintained the legacy 12 ms cycle time as an
option. Results were presented by Lind, Schrimpf & Ulleberg (2010).

The Universal Robots controllers can be controlled in various, official ways through the
standard controller process. Methods and results are reported by Andersen (2015). Older
versions of the Universal Robots controllers provided an unofficial C API, with very low
tracking delay, as presented by Lind, Schrimpf & Ulleberg (2010). More accurate methods
for measuring and classifying types of delays was presented by Andersen et al. (2015).

How to cite this article Lind M. 2020. Real-time quintic Hermite interpolation for robot trajectory execution. PeerJ Comput. Sci. 6:e304
http://doi.org/10.7717/peerj-cs.304

https://peerj.com/computer-science
mailto:morten.lind@sintef.no
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.304
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.304

Besides standard interfaces to robot controllers, some controllers can be hacked for
gaining access at the lower controller levels. Kröger & Wahl (2010) directly accessed the
frequency inverters of a Stäubli RX60 controller and was able to perform servo-level
control in 10 kHZ. Schrimpf (2013) injected a single-board computer in the USB-link
between the higher and lower level controller components in a Nachi AX10 controller,
enabling joint-level control in 100 Hz.

Developing sensor-based, real-time robot control applications is challenging. More so
when the target programming platforms, in general, are exclusively available in compiled
languages such as C++. For those situations where the real-time performance is not
too critical, also called soft real-time requirements, it will increase the development
efficiency, if a higher level, general programming language, such as Python, can work as
the target platform. The main motivation for the presented work is to enable such a high
level, general, soft real-time programming platform, in this case Python, for developing
advanced control application; such as theDeepMPC framework for cutting of food products
described by Lenz, Knepper & Saxena (2015) and the real-time grasping control described
by Morrison, Leitner & Corke (2018).

From experiments and experience, a pure Python-based framework, exploiting NumPy
for numerical calculations, manages to calculate kinematics for a typical industrial robot
systemwith six to nine joints in 10ms, with room for also doing some sensor processing and
general data accounting, using a contemporary PC (Lind, Tingelstad & Schrimpf, 2012).
This calculation time strongly depends on the amount for sensor processing and data
accounting, and on the computing power on the CPU and computer system on which the
software is deployed. On a modern, high-end PC of today the results presented by Lind,
Tingelstad & Schrimpf (2012)maywell be possiblewith a 5ms cycle time.Due to the ‘‘Global
Interpreter Lock’’ in the Python interpreter, multi-threading in a single Python process is
not utilizing the multiple cores of modern CPUs, and computationally heavy applications
should be distributed over several processes. Eggen & Eggen (2019) presents experiments
and results aimed at determining when it is advantageous to process-distribute a Python
application. Schrimpf, Lind & Mathisen (2013) presented a time analysis for various data
paths in a distributed, real-time, sensor-based robot application implemented and deployed
with Python and ROS.

The seven-axis Panda robot from Franka Emika can be controlled in real-time through
an Ethernet UDP connection. The real-time control interface requires a cycle time of
1 ms. Several other robot controllers provide real-time interfaces for trajectory feeding at
rates higher than 100 Hz. Mihelj et al. (2012) mentions official and research interfaces for
real-time control through available controllers for KUKA, Stäubli, Yaskawa Motoman,
and Comau robots. These examples may indicate a slow but general tendency for such
joint-level, low-latency interfaces to become of more general availability among robot
controllers in the future.

The cycle time requirement of 1 ms of the Franka controller, and even the 4 ms interface
to newer KUKA controllers with RSI version 3, poses a computational and real-time
challenge for Python-based real-time trajectory feeding application. It is a computation
time challenge, since pure Python computations in general is slower than C++ code by an

Lind (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.304 2/13

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.304

order of magnitude or more. This, however, is mitigated somewhat when using efficient
scientific computation packages such as NumPy and SciPy. It is a real-time challenge,
since the wake-up latency on the PC gets an additional contribution through the Python
interpreter.

This paper shortly sketches a prototype solution addressing these challenges by
presenting a joint-level intermediary motion service over Ethernet that respects the
1 ms real-time obligation towards the Franka controller, while providing an interface to
the Python motion application requiring a more moderate cycle time; e.g., 10 ms. The
motion service requires a cyclic real-time response from the motion application while
obeying the similar requirement from the Franka controller. This allows for the motion
application to make instantaneous changes and correction to the generated trajectory it
emits. A positive side effect of this motion service is that it is re-connectable, since it detects
the disconnection from, or a failure to comply in, the Python application, whereby it takes
over the real-time obligation towards the Franka controller; and thus the low-level control
loop is maintained.

The implementation of the presented solution is based on piece-wise quintic Hermite
splines with an option to limit velocity, acceleration and jerk. The current implementation
was developed for being fed a position trajectory from the motion application. However,
velocities and accelerations are derived over the position trajectory and used in the
interpolation, and can also be fed from the motion application. The presented solution can
be classified as Type V in the scheme by Kröger & Wahl (2010).

The choice of piece-wise Hermite spline as the fundamental computational object for
trajectory representation was made due to its adequate parameterization and domain:
Piece-wise Hermite splines are parameterized by clamping the direct motion quantities,
such as position, velocity, acceleration, and jerk, at the end-points of each segment.

SYSTEM AND METHODS
The minimal system that have been set up for experimentation and testing is based on the
seven-axis Panda robot from Franka Emika (https://franka.de/). An intermediate motion
service is performing the interpolation from a lower frequency loop to the required rate
of the high frequency loop for positions, and optionally velocities and accelerations, for
all joints. A motion application may then connect to the low-frequency interface of this
motion service, and thus control the robot arm in a moderate real-time frequency. This
section gives an overview of the active entities in the experiment system and the Hermite
spline calculus.

The Panda Robot and the Franka Controller
At the lowest level the robot arm servos are controlled via a proprietary interface by the
‘‘Franka Controller’’ (FC). The ‘‘Franka Control Interface’’ (https://frankaemika.github.
io/docs/libfranka.html) (FCI) is a software addon for the FC which enables real-time
trajectory feeding, synchronized with reading the state of the robot; including joint torques
and estimated external forces.

Lind (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.304 3/13

https://peerj.com
https://franka.de/
https://frankaemika.github.io/docs/libfranka.html
https://frankaemika.github.io/docs/libfranka.html
http://dx.doi.org/10.7717/peerj-cs.304

Figure 1 Interaction and sequence diagrams for the proposed system. (A) Rough structure of processes
and entities with their connections. [Image credit: Morten Lind, 2020]. (B) Sequence diagram for the syn-
chronization among the three threads in MS, the FA and the MA. Image credit: Morten Lind, 2020.

Full-size DOI: 10.7717/peerjcs.304/fig-1

When the FCI is installed on the FC, the freely available C++ library ‘‘libfranka’’(https:
//github.com/frankaemika/libfranka) can be used to operate the robot arm at a cycle time
of 1 ms. The mechanism is to hand a callback function to libfranka when starting the
control loop. This callback is then invoked every 1 ms with the status of the robot arm,
expecting to be returned within less than one cycle. This cycle time is dubbed the micro
cycle time.

In Figure 1A FC is modelled as a process controlling the Panda arm, running on the
Franka Controller PC, i.e., it is born with its own node. The FCI is exposed over an
Ethernet UDP socket, on an IP address configured in the FC. Thus the trajectory feeding
is performed from a different node; e.g., a user-supplied PC. libfranka provides various
methods of control, ranging from operation (Cartesian) space control of the tool flange to
joint torque control. This paper does not go into detail with libfranka and the presented
work only uses the joint position control mode.

Lind (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.304 4/13

https://peerj.com
https://doi.org/10.7717/peerjcs.304/fig-1
https://github.com/frankaemika/libfranka
https://github.com/frankaemika/libfranka
http://dx.doi.org/10.7717/peerj-cs.304

Motion service and application
For the purpose of obeying the micro cycle real-time requirement the ‘‘Motion Service’’
(MS) has been developed and implemented. As illustrated in Fig. 1A, MS links with
libfranka for setting up the callback communicating with the FC over FCI, and starting the
control loop.

The MS is running in its own process, on its own node, separate from the FC. The
‘‘Motion Application’’ (MA) process may run on the same computational node as MS. For
connection responsiveness, it is better to have the MS and the MA run on the same node.
However, for dedicating more computing power to the MA, leaving more computational
resources for sensor analysis and control algorithms, it could be running on a dedicated
node. The presented architecture, where the MS is exposing its interface via an Ethernet
UDP socket, is flexible in this regard.

Figure 1A illustrates how an optional force-torque sensor may be added. Such a force-
torque sensor would typically be mechanically mounted between the wrist of the robot arm
and the robot tool for measuring the wrench,W , on the tool. A force-torque sensor is not
used in the presented setup and experiments. Instead the estimated wrench, Ŵ from the
robot dynamics is used. This estimate is obtained as a feature from libfranka and provided
by the MS to the MA.

Software mechanisms
For understanding the general workings of the MS, this section gives a brief overview of
the central mechanistic design.

Figure 1B shows a sequence diagram illustrating the central, operative synchronization
and responsibility of the three threads of the MS code. In addition the network-remote
entities FC and MA are modelled as threads with remote message interaction to the MS
threads.

In addition to this central, operative interaction the connection thread in the MS has
a complex logic for maintaining control of the connection from an MA. This will not
be treated here. Even though the connection management, which enables the FC-MS
interaction to be kept alive over repeated MA-sessions, the main focus of this paper is to
describe the interpolation in the MS.

Also not illustrated in Fig. 1B is the setup and initialization procedures of the MS, which
establishes the real-time loop with the FC and prepares for receiving connections from an
MA. Like the connection maintenance, this is also important, but the details are not in the
focus of this paper.

A micro cycle is initiated by the callback from the FC to the Responder thread in the MS,
conveying the robot arm status. The Responder thread is only responsible for conveying
this trigger and status data to the Updater thread, and for returning the prepared next
micro setpoint to the FC obtained from the Updater thread in response. Upon receiving
the new micro state and returning the next micro setpoint, Updater thread is triggering
itself to calculate the micro setpoint for the next micro cycle.

When the Updater thread is triggered to prepare the micro setpoint for the next micro
cycle, it first updates its micro and macro cycle accounting, which determines whether a

Lind (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.304 5/13

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.304

new macro cycle is to be started. The current macro cycle is valid for the next micro cycle
if the current spline domain is valid for the time of the next micro cycle. In that case, the
current spline is used to prepare the next micro setpoint.

If a new macro cycle is to be started, the Updater triggers the Connection thread, and
the next macro setpoint is retrieved from it. If a valid new macro pose is retrieved, a new
spline based on this is set up, and used for micro setpoint calculation. If not, due to late
response or disconnect from the MA, a braking spline is generated. The severity of this
braking spline depends on whether the missing macro setpoint was due to lateness or a
broken connection. In the former case, only light braking will be generated, since it is
expected that the MA will resume its responsiveness. In the latter case full deceleration
braking is generated since the robot arm then must come to a full stop as fast as possible.

The Connection thread is, during operation in an MA-session, responsible for the
interaction with the MA. It is triggered by the Updater thread when a new macro cycle is
started, which it propagates on to the MA. After triggering the MA, it expects to receive a
newmacro setpoint some time later, before the end of the newly started macro cycle. When
a macro setpoint is received from the MA, a flag is set to tell that a new macro setpoint
is received. This flag is checked by the Updater thread, and is used to determine, if the
MA was within its deadline. The Updater clears the flag, preparing it for receiving the next
macro setpoint from the MA.

Timing-wise, when the macro cycle is between macro setpoint i and i+1, a received
macro setpoint is stored for use as the i+3’th macro setpoint; i.e., one extra macro setpoint
in the stream is retained. This delay is introduced to be able to correctly estimation the
acceleration to target when splining toward i+2, calculated using the central acceleration
estimator over the macro setpoints i+1, i+2, and i+3. The same principle is used for
the velocity at macro setpoint i+2, which results in the average velocity on the segments
i+1→ i+2 and i+2→ i+3.

The calculus of motion quantities at the macro trajectory points is based on the stream
of joint positions received from the MA, which are assumed to arrive at regular times
separated by the macro cycle time, δtmac. This stream of macro joint position vectors, {pi}i,
is the fundamental input data from the MA to the MS. Over these, the central discrete
estimators of velocities and accelerations may be concisely expressed as

p(1)i+2= 0.5
[
pi+2−pi+1
δtmac

+
pi+3−pi+2
δtmac

]
(1)

p(2)i+2=
pi+3−2pi+2+pi+1

δt 2mac
(2)

These estimated first and second derivatives of the macro joint trajectory are used for
calculating the splines, which are then sampled to generate the micro trajectory positions.

Hermite splines
Hermite spline and Hermite interpolation are named in honour of the 19th century French
mathematician Charles Hermite. General treatment on multi-node Hermite splines of
arbitrary order may be found in several publications and textbooks. E.g., Spitzbart (1960)

Lind (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.304 6/13

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.304

focused on a general formulation for arbitrary order, whileKrogh (1970) focused on efficient
computation of interpolation and numerical differentiation with continuous derivative.
However, course notes by Finn (2004) introduces an elegant formulation for the basis
polynomials for cubic and quintic Hermite interpolation. Both have been implemented in
the MS. The formalism can be concisely written, with the same enumeration of the basis
functions, as

p̃n(u)=
(n−1)/2∑
i=0

p(i)0 Hn
i (u)+p

(i)
1 Hn

n−i(u) for u∈ [0;1] (3)

In Eq. (3) we assume an underlying trajectory p(u) of which we know p(i)τ = p(i)(τ) for
i∈ {0..n−1} and τ ∈ {0,1}, where p(i) is the i’th derivative of p. The basis functions for
Hermite interpolation to order n are denoted {Hn

i }i∈{0..n}. For cubic (n= 3) and quintic
(n= 5) Hermite interpolation the basis functions can be found listed in Finn (2004). For
completenes the coefficients are listed in matrix notation in Eqs. (4) and (5).

H3
=

1 0 −3 2
0 1 −2 1
0 0 −1 1
0 0 3 −2

 (4)

H5
=

1 0 0 −10 15 −6
0 1 0 −6 8 −3

0 0
1
2
−
3
2

3
2
−
1
2

0 0 0
1
2

−1
1
2

0 0 0 −4 7 −3
0 0 0 10 −15 6

(5)

In an online or real-time system a change of variable is necessary for Eq. (3) to be
applicable. When the system at run-time establishes a new interpolation segment it takes
the form [t0;t1]with δtmac= t1−t0. Introducing the substitution on the interval u(t)= t−t0

δtmac
,

and letting p(i)τ = p(i)(τ) for i∈ {0..n−1} and τ ∈ {t0,t1}, the directly applicable version of
Eq. (3) is

p̃n(t)=
(n−1)/2∑
i=0

(δtmac)i
(
p(i)t0 H

n
i (u(t))+p

(i)
t1 H

n
n−i(u(t))

)
for t ∈ [t0;t1] (6)

Equation (6) has been implemented in the MS code base for both cubic and quintic
Hermite splines, and can be used based on joint velocities and accelerations from the
macroscopic trajectory which is fed from the MA.

It is noteworthy that a piece-wise cubic Hermite spline is a C1-smooth function and
a piece-wise quintic Hermite spline is a C2-smooth function. With respect to generating
motion trajectories, the great difference between these is the jerk; the third derivative of the
position trajectory. Many motion controllers require being fed a limited-jerk trajectory,
which is fulfilled by a C2-trajectory, whereas a C1-trajectory exhibits infinite jerk.

Lind (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.304 7/13

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.304

EXPERIMENTS AND RESULTS
During development a cosine position trajectory generator have been used extensively.
This section presents some results from such cosine trajectories. A cosine trajectory is used
for testing, since it starts at zero speed, is cyclic, and is infinitely smooth (C∞). In addition
to the testing by a cosine position trajectory, preliminary experiments have been performed
using the force-torque estimation from the FC with a Python-based framework, aimed at
integrating force-feedback in a knife-cutting application. The cutting experiment does not
utilize the real-time possibility of the Motion Service, but only serves to demonstrate its
soundness from a simple application perspective.

Cosine joint motion
A simple cosine motion is generated and the motion of a single joint is observed. This will
first and foremost give insight into the tracking delay in the system. The presented results
defines the tracking delay from the MC perspective as the time passed from receiving a
macro setpoint from the MA until a status packet from the FC shows that the joint position
have been achieved.

Figure 2B show a selected time range for the position trajectory of the moving joint. The
time range have been selected to easily inspect the delays from the MA over the ‘‘Franka
MS’’ (FMS), and to the report back from the FC. The observed delay between the MA and
the FMS is approximately 20 ms with the delay from the FMS to the reported FC position
is another approximate 20 ms. In total, for the trajectory execution we can estimate a 40 ms
delay.

It is evident that there is an inherent tracking delay of approximately 20 ms in the
FC. This is affected by various filters and compliance parameters which are set at the
initialization of the control loop through the FCI. Thus a lower inherent tracking delay
may possible with more tight control parameters. Particularly the experiments presented
here have been using a value of 10.0 Hz for the parameter cutoff_frequency in libfranka.
This parameter controls, according to the documentation of libfranka, a first order low-pass
filter. The reason for choosing a low cutoff frequency is observable as a ‘‘blackout’’ of two to
three micro cycles near t = 3.185s in Fig. 2. Such blackouts occurs generally every second,
but not regularly. The reason for these blackouts have not been clarified, but they probably
arise from running the system on a full desktop PC; i.e., there have been no stripping of
services or other running processes on the PC to increase the real-time responsiveness.

Execution of a simple cosine motion in one joint also allows the observation of the
difference between using cubic and quintic Hermite splines. To this end, classes have been
implemented in the FMS code base for both of these. Figure 3 shows accelerations obtained
by discrete derivation of the MA and FMS trajectories for the observed joint. Figure 3A
shows the acceleration in a trajectory in a session where the FMS runs with cubic Hermite
interpolation and Fig. 3B shows the same type of cosine trajectory from a session using
quintic Hermite interpolation.

The cubic Hermite interpolation acceleration curve in Fig. 3A is clearly discontinuous,
which is consistentwith itsC1-property. Correspondingly the quinticHermite interpolation
acceleration curve in Fig. 3B is clearly continuous, which is consistent with its C2-property.

Lind (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.304 8/13

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.304

Figure 2 A selected time range of the positions in a cosine trajectory. Image credit: Morten Lind, 2020.
Full-size DOI: 10.7717/peerjcs.304/fig-2

Figure 3 Comparison of accelerations in the generated trajectories from a cosine motion using cubic
and quintic Hermite interpolation. (A) Acceleration for cubic interpolation. Image credit: Morten Lind,
2020. (B) Acceleration for quintic interpolation. Image credit: Morten Lind, 2020.

Full-size DOI: 10.7717/peerjcs.304/fig-3

Simple cutting
A simple application for a cutting experiment has been set up. This is an application where
the robot tool is a knife and the task is to cut through a presented object. By simple cutting is
meant moving the tool according to a pre-calculated trajectory; in contrast to sensor-based
adaptive cutting where sensor input is used in the motion generation loop.

The application in this experiment does not exploit the ability to make real-time
generation of, or corrections to, the commanded trajectory. The purpose of the experiment
is to do a simple demonstration of the robustness of the MS implementation and to get
an indication of the reliability and stability of the wrist wrench estimation obtained from
libfranka.

The minimalistic setup used in the experiment is illustrated in Fig. 4. Figure 4A shows
a photo of the knife held in the robot gripper and a test object; in this case a stick of EPS
strapped to a bracket.

Figure 4B illustrates the geometric setup of the knife. The knife shaft is held clamped
in the gripper, and thus defines the commanded knife directions for cutting ĉc , which is
perpendicular to the edge, and shearing ŝc , which is parallel to the edge. The actual cutting
and shearing directions are defined by the knife edge at the point of interaction. These are
illustrated as ĉa and ŝa, respectively. Interpretation of the data for the recorded forces in a

Lind (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.304 9/13

https://peerj.com
https://doi.org/10.7717/peerjcs.304/fig-2
https://doi.org/10.7717/peerjcs.304/fig-3
http://dx.doi.org/10.7717/peerj-cs.304

Figure 4 The setup of the knife and object. The cutting and shearing directions used for commanding
the motion is aligned with the knife, whereas the actual cutting and shearing directions depend on the an-
gle of the knife blade in the region of interaction.(A) Photo of the setup of robot, knife, and object. Photo
credit: Morten Lind, 2020. (B) Illustration of controlled and actual cutting and shearing directions. Image
credit: Morten Lind, 2020.

Full-size DOI: 10.7717/peerjcs.304/fig-4

Figure 5 Position and force recording sampled through a cutting process. Image credit: Morten Lind,
2020. (A) Commanded trajectory of the knife along the ĉc and ŝc directions. Image credit: Morten Lind,
2020. (B) Forces acting on the knife along the ĉc and ŝc directions. Image credit: Morten Lind, 2020.

Full-size DOI: 10.7717/peerjcs.304/fig-5

cutting experiment is deeply dependent of the recognition of the relation between these
commanded and actual directions.

A cutting experiment is executed bymoving the knife in a cyclic series of strokes, forward
strokes in the positive ŝc direction and backward strokes in the negative ŝc direction, while
progressing steadily in the positive ĉc direction. The motion of the knife happens thus in a
plane spanned by the ĉc and ŝc . The commanded position trajectory is shown in Fig. 5A.
The origin of the positions is where the knife is held at the start of the cutting process.

The corresponding forces on the knife along the ĉc and ŝc directions, based on the
estimated wrench obtained from libfranka in the FMS, is seen in Fig. 5B. In an ideal
experiment one would expect a constant, negative cutting force in the ĉc direction and a
square wave shearing force, symmetric around zero, in the ŝc direction. Both of these would
be smoothly modulated in size by the initially increasing, and later decreasing, interaction
of the knife with the object as it passes through it.

There are a couple of deviations from this ideal, qualitative behaviour. Most noteworthy
is the non-smoothness of the direct cutting force. Next is the asymmetry around zero of
the shear force. Both of these are easily understood by the illustration of the actual cutting
and shearing directions observed in Fig. 4B.

Lind (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.304 10/13

https://peerj.com
https://doi.org/10.7717/peerjcs.304/fig-4
https://doi.org/10.7717/peerjcs.304/fig-5
http://dx.doi.org/10.7717/peerj-cs.304

DISCUSSION
The current major challenge regards the blackouts in the communication between MA,
FMS, and FCI. For a reliable and stable system, this must be addressed by real-time
hardening of the computing environment on which the application runs. However, this is
fairly unrelated to the soundness of the presented approach and reference implementation.

Particularly for knife-cutting applications, the discussion about a negative bias on the
cutting and shearing forces, observed in Fig. 5B, due to the deviation from the commanded
directions, is interesting for future development. It shows that an edge-object-interaction
observer should be developed, which will certainly be important for correct execution of
the cutting process. The presented implementation will be used for future experiments in
two directions involving real-time force feedback to the trajectory generation. Firstly in the
direction of explicitly modelling the cutting process, based on such work as that of Reyssat
et al. (2012). Secondly, on the more implicit learning approach to cutting presented by
Lenz, Knepper & Saxena (2015).

Another application area, for which the presented implementation is intended, is that
of grasping of unknown or variable objects. The vision-based servo control involved
with ‘‘closed-loop grasping’’ is executing at a fairly low frequency; in the order of 5
Hz according to Morrison, Leitner & Corke (2018). Thus, whereas it is expected that the
required frequency and tracking delay will be a challenge for a Python-based application
when it comes to real-time control of cutting, this is not expected to be a challenge for
real-time grasping applications.

It was originally under consideration to use the Reflexxes (http://reflexxes.ws) library
developed by Torsten Kröger for the underlying interpolationmathematics in the presented
Motion Service process. However, the Reflexxes version under a free software license,
LGPL V3.0, only provides C1-smooth trajectories. For generating C2-smooth trajectories,
a commercial license of Reflexxes must be purchased. The presented software is intended
to be free (GPL), and thus the Reflexxes library was not chosen.

CONCLUSION
In summary, this work has

• established a re-connectable real-time motion service via the Franka Control Interface
for the Panda robot;
• characterized the real-time trajectory execution performance by illustrating the tracking
delay;
• demonstrated that real-time motion application from Python is possible;
• indicated the feasibility of using the external force-torque estimator provided by
libfranka at the real-time application level.

ACKNOWLEDGEMENTS
Thanks to Ekrem Misimi at SINTEF Ocean for general guidance and for supporting the
work.

Lind (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.304 11/13

https://peerj.com
http://reflexxes.ws
http://dx.doi.org/10.7717/peerj-cs.304

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The underlying work and the writing of this paper was funded by the Norwegian
Research Council (https://www.forskningsradet.no/en/) in the project ‘‘Innovative
and Flexible Food Processing Technology in Norway’’ with project number 255596
(https://prosjektbanken.forskningsradet.no/#/project/NFR/255596). The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the author:
Norwegian Research Council.
Innovative and Flexible Food Processing Technology in Norway: 255596.

Competing Interests
Morten Lind is an employee of SINTEF Manufacturing AS. The author declares that he
has no competing interests.

Author Contributions
• Morten Lind conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Code is publicly available in the ‘‘Franka Motion Service" repository at GitLab: https:
//gitlab.com/SINTEFManufacturing/franka_motion_service.git. Data are publicly available
in the ‘‘FMS Test Data" repository at https://gitlab.com/SINTEFManufacturing/fms-test-
data.git.

REFERENCES
Andersen TT. 2015. Optimizing the Universal Robots ROS driver. Technical report.

Technical University of Denmark, Department of Electrical Engineering. Available
at https:// orbit.dtu.dk/ en/publications/ optimizing-the-universal-robots-ros-driver .

Andersen TT, Amor HB, Andersen NA, Ravn O. 2015.Measuring and modelling delays
in robot manipulators for temporally precise control using machine learning.
In: 2015 IEEE 14th international conference on machine learning and applications
(ICMLA). Piscataway: IEEE, 168–175.

Eggen R, EggenM. 2019. Thread and process efficiency in python. In: Proceedings of
the international conference on parallel and distributed processing techniques and
applications. 32–36.

Lind (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.304 12/13

https://peerj.com
https://www.forskningsradet.no/en/
https://prosjektbanken.forskningsradet.no/#/project/NFR/255596
https://gitlab.com/SINTEFManufacturing/franka_motion_service.git
https://gitlab.com/SINTEFManufacturing/franka_motion_service.git
https://gitlab.com/SINTEFManufacturing/fms-test-data.git
https://gitlab.com/SINTEFManufacturing/fms-test-data.git
https://orbit.dtu.dk/en/publications/optimizing-the-universal-robots-ros-driver
http://dx.doi.org/10.7717/peerj-cs.304

Finn DL. 2004. Quintic hermite interpolation. Course notes. Available at https:// studylib.
net/doc/11701439/ma-323-geometric-modelling-course-notes--day-09-quintic-h....

Krogh FT. 1970. Efficient algorithms for polynomial interpolation and numerical
differentiation.Mathematics of Computation 24(109):185–190
DOI 10.1090/S0025-5718-1970-0258240-X.

Kröger T,Wahl FM. 2010. Online trajectory generation: basic concepts for instantaneous
reactions to unforeseen events. IEEE Transactions on Robotics 26(1):94–111
DOI 10.1109/TRO.2009.2035744.

Lenz I, Knepper RA, Saxena A. 2015. DeepMPC: learning deep latent features for model
predictive control. In: Kavraki LE, Hsu D, Buchli J, eds. Proceedings of Robotics:
Science and Systems XI. Sapienza University of Rome, Rome: RSS Foundation.
Available at https:// cs.stanford.edu/people/asaxena/papers/deepmpc_rss2015.pdf .

LindM, Schrimpf J, Ulleberg T. 2010. Open real-time robot controller framework.
In: Lien TK, ed. CIRP conference on assembly technologies and systems. NO-7005,
Trondheim: Tapir Academic Press, 13–18.

LindM, Tingelstad L, Schrimpf J. 2012. Real-time robot trajectory generation with
python. In:Workshop on robot motion planning: online, reactive, and in real-time.
IEEE/RJS.

Mihelj M, Šlajpah S, Čepon P, MunihM. 2012. yControl - open architecture controller
for Yaskawa Motoman MH5 robot. In: 2012 IEEE international conference on control
applications. Piscataway: IEEE, 1051–1056.

Morrison D, Leitner J, Corke P. 2018. Closing the loop for robotic grasping: a real-time,
generative grasp synthesis approach. In: Kress-Gazit H, Srinivasa SS, Howard T,
Atanasov N, eds. Proceedings of Robotics: Science and Systems XIV, Carnegie Mellon
University. Pittsburgh: RSS Foundation DOI 10.15607/RSS.2018.XIV.021.

Reyssat E, Tallinen T, Merrer ML, Mahadevan L. 2012. Slicing softly with shear. Physical
Review Letters 109(24):244301 DOI 10.1103/physrevlett.109.244301.

Schrimpf J. 2013. Sensor-based real-time control of industrial robots. PhD thesis, Norwe-
gian University of Science and Technology, Trondheim, Norway.

Schrimpf J, LindM,Mathisen G.. 2013. Real-time analysis of a multi-robot sewing cell.
In: 2013 IEEE international conference on industrial technology (ICIT). Piscataway:
IEEE, 163–168.

Spitzbart A. 1960. A generalization of Hermite’s interpolation formula. The American
Mathematical Monthly 67(1):42–46 DOI 10.1080/00029890.1960.11990316.

Lind (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.304 13/13

https://peerj.com
https://studylib.net/doc/11701439/ma-323-geometric-modelling-course-notes--day-09-quintic-h...
https://studylib.net/doc/11701439/ma-323-geometric-modelling-course-notes--day-09-quintic-h...
http://dx.doi.org/10.1090/S0025-5718-1970-0258240-X
http://dx.doi.org/10.1109/TRO.2009.2035744
 https://cs.stanford.edu/people/asaxena/papers/deepmpc_rss2015.pdf
http://dx.doi.org/10.15607/RSS.2018.XIV.021
http://dx.doi.org/10.1103/physrevlett.109.244301
http://dx.doi.org/10.1080/00029890.1960.11990316
http://dx.doi.org/10.7717/peerj-cs.304

