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ABSTRACT

Polygenic risk scores (PRSs) are emerging as powerful tools for predicting individual
susceptibility to various diseases and traits based on genetic variants. These scores
integrate information from multiple genetic markers associated with the trait or
disease of interest, offering personalized risk assessment and enhancing disease
management strategies. PRS is an active area of research and is being studied in
various fields, such as disease prediction. This review explores the advancement of
PRS research, focusing on methodological approaches, software tools, and
applications across diverse disciplines. A systematic literature review identified 40
relevant articles classified based on PRS methods and software. Key methods for PRS
computation, including penalized regression and threshold-based approaches,
Bayesian approaches, and machine learning approaches, are discussed, along with
notable software and their features. Applications of PRS in disease prevention are
highlighted. Challenges and future directions, such as increasing diversity in genetic
data, integrating environmental factors, and evaluating clinical implications, are also
discussed to guide future research and implementation efforts.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and Machine
Learning, Software Engineering, Neural Networks

Keywords Polygenic risk score (PRS), Polygenic risk scores (PRSs), PRS prediction, PRS software,
PRS tools, Systematic literature review

INTRODUCTION

The ability to predict complicated traits and illnesses, such as cancer from an individual’s
genetic variations is important for effective illness prevention (Wray et al., 2013;
Chatterjee, Shi & Garcia-Closas, 2016; Yang et al., 2017; Mufioz et al., 2016; Wang et al.,
2017; Visscher et al., 2017). Polygenic risk scores (PRSs) are calculated by the effect sizes of
multiple genetic variants known to be associated with the disease or trait of interest.
Researchers are improving risk prediction for common diseases using genetic data. Risk
scores that incorporate both clinical risk indicators and PRSs for a specific illness would
significantly improve the accuracy of lifetime risk prediction and the intuitiveness of
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disease risk management (Slunecka et al., 2021). Additionally, PRS’s research has been
expanded to include many diseases using many methods, such as machine learning (ML)
today. The PRS has the potential to predict individual disease risks and potentially offer a
more effective predictor with improved discrimination properties compared to one based
solely on established markers (Dudbridge, 2013). Over the last fifteen years, the escalating
presence of PRS research groups, the proliferation of peer-reviewed journals, and the surge
in conference abstracts all serve as indicators of the rapidly expanding interest in this field.
Researchers have been investigating PRS to understand disease risk, predict outcomes, and
potentially inform clinical decisions. These studies received a high number of citations in
recorded time (Dudbridge, 2013; Lewis ¢ Vassos, 2020; Mavaddat et al., 2019). Moreover,
several companies have joined forces with research groups to advance PRS-related
technologies, delineating clear roadmaps for their development (Slunecka et al., 2021). This
remarkable growth in PRS’s research is closely tied to an influx of researchers from diverse
disciplines, which fostering an interdisciplinary approach that has led to the creation of
PRS systems tailored for various target applications. Since 2018, there has been a growing
interest in using PRSs to predict the risk of developing multiple diseases; numerous
research studies have demonstrated that PRSs are capable of predicting disease status
(Mavaddat et al., 2019; Wray et al., 2018; Khera et al., 2018). Researchers have also been
exploring ways to improve the accuracy of PRSs by incorporating additional data, such as
environmental factors (Musliner et al., 2019; Lewis ¢ Hagenaars, 2019). PRSs have been
used in various applications such as predicting disease risk (Haas et al., 2018), patient
stratification (Mavaddat et al., 2019), investigating treatment response (Shi et al., 2020;
Mega et al., 2015; Natarajan et al., 2017) and experimental perturbation informed by
genetics (Dobrindt et al., 2021; Hoekstra et al., 2017). Most prominent PRS techniques,
including those integrating functional annotation (Mdrquez-Luna et al., 2021; Hu et al.,
2017), are based on the classical polygenic disease model. Recently, there has been a
marked rise in the volume of studies, investigations, and articles centered on PRS tools.
The diversity in research methodologies employed across these studies has yielded a wide
spectrum of outcomes, influenced by numerous variables, such as the dataset’s methods of
calculation of the PRSs.

This study aims to grasp PRS software trends and examine previous studies to equip
researchers with knowledge for forthcoming PRS software advancements. In this review,
we found that PRS publications span a range of fields such as genetics, epidemiology,
computer science, biostatistics, and mathematics. This diversity presents a challenge for
comparative analysis due to the wide array of research focuses and methodologies across
different journals and scientific areas.

The primary goal of this review is to evaluate the methods, including tools and software.
We aim to establish a conceptual structure for the categorization of PRS-related studies,
which will aid in the systematic review of PRS research literature. The subsequent sections
will detail the proposed framework for categorizing PRS research. Initially, we will define
the research approach. Subsequently, we will expound on the suggested categorization
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framework for PRS research reviews. The findings are presented, offering insights for
forthcoming research and deliberate the trends and challenges in PRS prediction tools. We
conclude by summarizing the review’s contributions to the body of knowledge in PRS
prediction.

METHODS AND MATERIALS

We conducted a systematic review of techniques by the PRISMA guidelines. The
subsequent sections detail the methods for article extraction, including the criteria for
article selection and the filtering methodologies employed.

Data sources and procedures for the extraction of articles

Articles concerning PRS can be found dispersed throughout various academic journals
that span multiple disciplines. We performed an initial search using online databases such
as Web of Science, PubMed, Google Scholar, and Scopus. We used the Publish or Perish
software to obtain an extensive bibliography of the academic literature on PRS. This tool
collects and analyzes citation data from multiple sources, including Google Scholar,
Microsoft Academic Search, PubMed, Scopus, ScienceDirect (Elsevier), ACM Digital
Library, Springer Link, IEEE/IEE Library, and Francis. It provides various citation metrics,
such as article counts, and total citations (Harzing, 2010).

Based on the plot of the number of publications on PRS topics in Fig. 1, there has been a
steady growth in related PRS publications since 2013. Therefore, the first search focused on
the time frame between 2013 and 2023, utilizing fundamental search parameters, including
the phrases and search terms, such as “polygenic risk score” or “polygenic risk scores tool”,
“predictive polygenic risk score”, and “polygenic risk score software”. Most of the studies
are found in the databases of PubMed, Google Scholar, Semantic Scholar, arXiv,
ScienceDirect, and IEEE Xplore. The subsequent section demonstrates the criteria we have
chosen.

Selection criteria
Three criteria were established for the inclusion and subsequent analysis of PRS articles.
Any articles failing to adhere to these criteria were omitted:

o The review ensured articles that cover methods, or software for generating polygenic risk
scores.

» Articles must be relatively current. In this regard, we chose articles that were published
between 2013 and 2023. This 10-year period could correspond to the main research
period of interest for the PRS topics. Articles are required to be of recent publication.
Consequently, we selected articles released within the timeframe of 2013 to 2023. This
decade may align with the principal era of research significance for PRS subjects.

* Exclusion of book chapters, meeting abstracts, conference proceedings, workshop
descriptions, non-English articles, and master and doctoral dissertations.
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Number of Publications

Figure 1 Temporal trends in PRS publications from 2010 to 2023.
Full-size K] DOI: 10.7717/peerj-cs.3039/fig-1

Inclusion Criteria Ex'clu‘s fon Output
Criteria
w?:::w ‘ Keywords | Content Category

Polygenic Risk Score OR
PRS Calculation OR
PRS Prediction OR PRS software

PRS-Based Risk Stratification OR | NOT
AND PRS Analysis OR
PRS Tools OR Papers that do not
/ PRS Software \ utilize software or

methodologies for
2010-2023 PRS calculation
Artificial Intelligence in PRS OR
Automated PRS Interpretation PRS method
OR
AND PRS Computational Frameworks NOT
OR
PRS in Disease Risk Prediction
Initial search resulted in 870 articles 1" round review resulted 319 articles 2" round review resulted in 40 articles
Figure 2 Procedure to extract and filter articles. Full-size &l DOTI: 10.7717/peerj-cs.3039/fig-2

Filtering/reviewing process
The goal is to find articles that focus on the software and methods for generating PRS. We
manually screened each article in three rounds and classified them.

We initially had 870 articles that matched the criteria. However, some of them were
duplicates from different databases. We eliminated 91 duplicate articles and proceeded to
the manual screening rounds. We only kept the articles that discussed the methods, tools,
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or software for generating PRS. We then sorted them into categories. We conducted the
review as following:

» First round: We reviewed the titles, abstracts, keywords, and conclusions of each article
and discarded those that did not meet the selection criteria. This left us with 319 articles
for the next round of review.

* Second round: The full texts of the remaining articles were reviewed to ensure they met
the criteria, narrowing the selection to 40 articles for the final round. In this round, we
conducted an in-depth analysis of each article, focusing on the main theme, and journal
rank. Ultimately, we selected and analyzed the most relevant articles. Figure 2 shows the
process of filtering and extracting academic articles from the initial search results.

CLASSIFICATION METHOD

We categorized the literature on PRS by their research topics, selecting and filtering 40
articles. These were divided into two main groups: PRS software and PRS methods. The
PRS methods were further subdivided into four categories: threshold-based methods,
penalized regression methods, Bayesian methods, and machine learning methods. The PRS
software was classified into three categories: Command-line, Web Application, and
Library. Some methods have dedicated software, which are categorized under both PRS
methods and PRS software.

METHODS TO GENERATE PRS

The basic stepwise process for calculating PRS adds up the effects of many genetic
variants that are linked to the trait or disease (Chung, 2021). Each variation has a weight
that shows how much it influences the trait or disease. The formula to calculate the PRS for
a person is:

N
PRS; = Z i * dosage;;
i=1
where N represents the count of SNPs in the score, f3; is the effect size (or beta) of variant i
and dosage refers to the number of copies of SNP i present in the genotype of individual j
(Chung, 2021).

The coefficients are usually derived from a large study that compares the genomes of
people with and without the trait or disease (Collister, Liu ¢ Clifton, 2022). Only the
variants that have a meaningful effect on the trait or disease are selected for the score based
on a statistical test (p-value cutoff). The main well-known methods found in the articles are
cited in the following sub-sections.

Threshold-based methods

C+T

The Clumping and Thresholding (C+T) method is a widely used approach for calculating
PRS. It identifies genome-wide significant variants and groups them based on linkage
disequilibrium (LD), excluding those in strong LD with an index variant that has the
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lowest p-value in each group, this process helps to identify independent genetic variants
associated with a trait (Wray, Goddard ¢ Visscher, 2007; Euesden, Lewis & O’reilly, 2015).
The method operates on the premise that only a few single nucleotide polymorphisms
(SNPs) have non-zero effects on the trait. Genetic variants are first clumped based on LD
and then filtered based on their p-values to derive polygenic scores (Kim et al., 2023; Mak
et al., 2017).

Breast cancer polygenic risk scores for non-European populations, underrepresented in
genetics studies, were developed using the C+T method (Ho et al., 2022). It was also used to
compare different polygenic profiling methods for Alzheimer’s disease risk (Leornenko
et al., 2021). This method was utilized to assess the race-specific susceptibility of SNPs to
AS in the Taiwanese population, as well as to examine the connection between SNPs
associated and HLA-B27 with ankylosing spondylitis (AS) susceptibility (Ko et al., 2022). A
meta-analysis used this method to determine the influence of PRS on the risk of coronary
artery disease (Agbaedeng et al., 2021). A PRS for autoimmune Addison’s disease was
constructed and evaluated using the C+T method (Aranda-Guillé et al., 2023). Using
the UK Biobank dataset, polygenic risk scores for elevated intraocular pressure, a risk
factor for glaucoma, were constructed with the C+T method as described in Gao, Huang ¢
Kim (2019).

SCT

The Stacked Clumping and Thresholding (SCT) is an extension of C+T that allows more
flexibility in selecting SNPs based on four criteria: p-value threshold, LD window size, LD
correlation threshold, and imputation accuracy (Privé et al., 2019). SCT generates PRSs for
different settings of these criteria and then selects the optimal ones using a penalized
regression approach on the validation data (Privé et al., 2019).

Penalized regression methods

LASSO

The Least Absolute Shrinkage and Selection Operator (LASSO) is a method used in
regression analysis that performs both variable selection and regularization. The goal of
LASSO is to achieve the smallest possible sum of squared errors, with the condition that
the total absolute value of the coefficients does not exceed a predetermined threshold
(Ribbing et al., 2007). It is used in machine learning and statistics to select variables in a
model by shrinking some of the coefficients to zero. This method helps to prevent
overfitting by decreasing the number of variables included in the model. LASSO can be
used for PRS development. In this context, LASSO is used as a variable selection technique
to select the most important genetic variants for inclusion in the PRSs. Addressing the
insufficient representation of non-European communities in genetics studies to

develop breast cancer polygenic risk scores utilizing the LASSO method as indicated in
Ho et al. (2022).

Lassosum
Similar to LASSO, and it applies a LASSO penalty to nullify the effect sizes of genetic
variants. It further prunes genetic variants exhibiting linkage disequilibrium and applies a
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threshold to the remaining variants based on their p-values (Mak et al., 2017). The
Lassosum approach was reported in several PRS studies. An assessment was made on the
race-specific susceptibility of single nucleotide polymorphisms to ankylosing spondylitis
(AS) in the Taiwanese population. The association between human leukocyte antigen
(HLA)-B27 and susceptibility SNPs for AS in Taiwan was explored. Polygenic risk scores
were used to analyze genetic variations in predicting the development of AS using
LassoSum as indicated in Ko et al. (2022). A meta-analysis investigated how PRSs affect the
likelihood of developing coronary artery disease by employing the Lassosum method
(Agbaedeng et al., 2021). A reference-standardized framework assessed the predictive value
of several polygenic risk score methodologies, including Lassosum (Pain et al., 2021).

SBLUP

The Super Genomic Best Linear Unbiased Prediction (SBLUP) technique adjusts SNP
effect magnitudes by utilizing an external LD reference panel. This process transforms the
ordinary least squares estimates of SNP into nearly optimal linear unbiased predictions
(Ren et al., 2021). The SBLUP utilizes a Bayesian framework to calculate the magnitude of
genetic variants effects. This method presumes that the distribution of these effects is
normal, centering around zero, with their variance inversely proportional to the number of
variants in the score. The SBLUP technique provides greater precision in the construction
of PRS compared to other methods (Slunecka et al., 2021; Robinson et al., 2017).

DBSLMM

The Deterministic Bayesian Sparse Linear Mixed Model (DBSLMM) is a technique used to
compute polygenic risk scores. This method utilizes a versatile approach to modeling the
distribution of effect sizes. This allows for strong and precise predictions over various
genetic structures. Additionally, DBSLMM employs a straightforward deterministic search
method to produce an estimated analytical solution based solely on summary statistics.
Through simulation tests, DBSLMM has demonstrated its ability to provide scalable and
precise predictions for a wide array of genuine genetic structures (Yang & Zhou, 2020).

Bayesian methods
LDpred
The linkage disequilibrium pred (LDprep) method is widely utilized for the calculation of
PRS. It operates by using summary statistics alongside a matrix that measures the
correlation among genetic variants. It’s a Bayesian approach that accounts for LD among
genetic variants, assuming that each variant independently affects the trait. LDpred is a
two-step method: it first estimates the LD structure from a reference panel and then uses
this structure to adjust Genome-373 Wide Association Study (GWAS) summary statistics
for the effects of LD. This method requires defining a tuning parameter (p), which is an
estimate of the genetic variants assumed to be causal (Immam, Noguera ¢ Donohue, 2014;
Vilhjalmsson et al., 2015).

An evaluation was conducted on the race-specific SNP susceptibility of AS in Taiwanese
people, as well as the relationship between HLA-B27 and AS susceptibility SNPs in
Taiwan. A PRS technique was also used to examine genetic variations in predicting the
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development of AS using LDpred (Ko et al., 2022). A meta-analysis investigated how PRSs
affect the likelihood of developing coronary artery disease, utilizing the method described
by Agbaedeng et al. (2021). Additionally, LDpred was utilized to construct PRS to analyze
the contribution of common genetic variations to suicide attempts. The aim was to
demonstrate the genetic overlap and correlation between measures of suicide attempts and
to explore the genetic associations of suicide attempts with other traits, such as insomnia
and psychiatric disorders (Ruderfer et al., 2020).

JAMPred

The Joint Analysis of Marginal Summary Statistics Prediction (JAMPred) is a technique
for computing polygenic risk scores based on summary data from GWAS and a reference
genotyping panel (Newcombe et al., 2019). JAMPred considers linkage disequilibrium
among genetic variations and uses a Bayesian framework to estimate impact sizes and
posterior probability of inclusion for each variant, furthermore, JAMPred employs variable
selection and model averaging techniques to enhance the accuracy and stability of
polygenic risk scores (Newcombe et al., 2019). An example of how PRS was utilized as a
predictive tool for identifying high-risk patients with Parkinson’s disease. Various
methods, including JAMPred as described in Shan et al. (2021).

SBayesR
The SBayesR method is a Bayesian approach, which often used to compute polygenic risk
scores, It incorporates a spike-and-slab technique to model the effects of genetic variants
on the phenotype of interest (Pham et al., 2022). Efforts have been made to elucidate the
most effective methodologies for polygenic profiling when screening individuals for
Alzheimer’s disease risk. Various methods, including the SBayesR approach, are employed
utilizing datasets sourced from prominent institutions such as the UK Biobank and
National Institute on Aging Genetics of Alzheimer’s Disease Data Storage Site
(NIAGADS) (Leonenko et al., 2021).

A reference-standardized framework was applied to assess the predictive value of several
PRS methods. SBayesR was among the best methods found to assess the predictive value of
several PRS as indicated in Pain et al. (2021).

EB-PRS

The emperical Bayes polygenic risk score (EB-PRS) is a method to generate PRS from
summary statistics of GWAS and employs a statistical approach known as empirical Bayes
to estimate the impact sizes of genetic markers throughout the whole genome, EB-PRS
does not need parameter tuning or the use of external data (Song et al., 2020). The EB-PRS
method has proven to be effective in producing outstanding outcomes independently,
without the need for parameter tuning or external datasets. However, research indicates
that its performance can be enhanced further when a reference panel is utilized (Adam
et al., 2022).

BridgePRS
The BridgePRS technique is a Bayesian polygenic risk score strategy that combines the PRS
of two populations with differing ancestry. The goal is to address the PRS Portability
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Problem by utilizing common genetic effects across ancestries to improve PRS accuracy in
non-European communities. In other words, it seeks to increase the accuracy of PRS
estimations for people from different and underrepresented heritage groups (Hoggart

et al, 2023).

Machine learning methods

The computation of PRS often relies on simple linear models which might not fully
encompass the intricate interdependencies involved between phenotypes and genotypes
(DeWan, 2018; Aschard, 2016). Therefore, machine learning methods that can account for
non-linearities and interactions among genetic variants are of interest for improving the
accuracy and interpretability of PRS.

A proposed approach combines an ensemble method for selecting SNPs with Gradient-
Boosted Trees (GBT) to account for the non-linear and interactive influences of SNPs on
phenotypes. When a PRS is included as a feature within an extreme gradient boosting
model, there is a notable enhancement in the explained variance percentage relative to the
conventional linear PRS model, as observed across nine complex phenotypes within a
diverse ancestral group from the UK Biobank (Elgart et al., 2022).

The utilization of machine learning and deep learning techniques was thoroughly
explored to compute polygenic risk scores from GWAS data. Random forest (RF) and
support vector machines (SVM), and deep learning methods were employed to calculate
weight vectors, which play a pivotal role in PRS computation (Oztornaci et al., 2023).
Additionally, variable importance measurements obtained from the RF method serve as
weight vectors. In all these methods, individual risk scores are derived by multiplying each
SNP with its corresponding weight vector.

Peng et al. (2024) introduced a DL framework that captures intricate genetic interactions
beyond additive effects. In contrast to traditional PRS models, which often assume linear
relationships, DeepRisk leverages neural networks to model non-linear associations among
single-nucleotide polymorphisms (SNPs). The approach described in Peng et al. (2024) has
demonstrated superior performance in predicting disease risk, particularly in scenarios
involving complex genetic architectures. The study (Zhou et al., 2023) introduced a neural
network model that captures non-linear interactions among genetic variants, offering
enhanced predictive accuracy and deeper insights into disease mechanisms. The PRS-Net,
as described in Li et al. (2024), demonstrated that incorporating a lightweight geometric
layer into gene-level PRSs yields reproducible and biologically interpretable improvements
over both linear and black-box non-linear baselines, particularly for immune-mediated
diseases and heterogeneous ancestries.

RESULTS

We extracted a collection of articles on polygenic risk scores (PRS) from online databases.
Each article was thoroughly reviewed and classified according to the established
categorization method. Figure 3 presents the PRISMA flow diagram outlining the selection
process.
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Figure 3 The PRISMA flow diagram-based study selection for the review.
Full-size K&l DOT: 10.7717/peerj-cs.3039/fig-3

Table 1 highlights a range of software tools commonly utilized in PRS analysis,
grouped into three main types: command-line tools, web-based applications, and
programming libraries. The table also outlines the diverse analytical methods employed
in PRS studies.

DISCUSSION

The benefits and limitations of the techniques used

Threshold-based methods

These methods use a predefined threshold to identify variants by utilizing their p-values or
the magnitude of their effects derived from GWAS summary data. Research has suggested
that threshold-based methods are simple and relatively easy to implement, and widely used
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Table 1 Summary of PRS software and methods.

Category Software/ Programming Availability Description Ref
method  language
Command-line Plink2 C++ Free GWAS analysis and research in ~ Chang et al. (2015)
population genetics
PRSice C++, R Free Computing, implementing, Euesden, Lewis & O’reilly (2015)
assessing, and graphically
representing PRS results with R
PRSice2  C++, R Free Automating and simplifying the = Choi & O’Reilly (2019)
analysis of PRS on extensive
datasets
PRS-CS  Python Free Infers posterior SNP effects using Ge et al. (2019)
continuous shrinkage priors
and LD panels
PRS-on-  Python, Spark Free Computes PRS handling various Chen et al. (2018)
Spark inputs and ambiguous SNPs
(PRSo0S)
EraSOR  Python Free Eliminates bias from overlapping Choi et al. (2023)
samples in GWAS/PRS data
BridgePRS R, Python Free Bridges PRS across populations  Hoggart et al. (2023)
to address portability issues
AnnoPred Python Free Predicts disease risk integrating  Hu et al. (2017)
GWAS statistics and
annotations
Web Cancer - Free Online repository hosting PRS for Fritsche et al. (2020)
application PRSweb major cancer traits
CanRisk - Free Estimates breast/ovarian cancer  Carver et al. (2021)
risks and mutation probabilities
Library bigsnpr R Free Calculates PRS using GWAS Privé, Arbel & Vilhjdlmsson (2020)
statistics; supports LDpred2
EB-PRS R Free Uses effect size distribution Song et al. (2020)
without tuning or external data
Lassosum R Free Penalized regression on GWAS  Mak et al. (2017)
summary statistics via Lasso
PolyFun  Python Free Fine-mapping and prediction Weissbrod et al. (2022)
including PolyFun, PolyLoc,
PolyPred
XPXP Python Free Enhances PRS prediction using ~ Xiao et al. (2022)
cross-population/phenotype
analysis
LDpred  Python Free Estimates posterior effect sizes  Vilhjalmsson et al. (2015)
using LD and prior models
Threshold- C+T - - Selects SNPs by p-values and LD, Ho et al. (2022), Leonenko et al. (2021), Ko et al.
based sums risk alleles (2022), Agbaedeng et al. (2021), Aranda-Guillé et al.
(2023), Gao, Huang ¢ Kim (2019)
SCT - - Combines multiple C+T scores  Privé et al. (2019)
with stacking classifier
Penalized Lasso R (Lassosum) - Selects SNPs and estimates effects Ho et al. (2022)
regression via Lasso
(Continued)
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Table 1 (continued)

Category Software/ Programming Availability Description Ref
method  language
Lassosum R - Lasso penalty on GWAS Ko et al., (2022), Agbaedeng et al., (2021),
statistics; handles overfitting Pain et al. (2021)
SBLUP - - Bayesian method accounting for Robinson et al. (2017), Slunecka et al. (2021)
LD and SNP interactions
DBSLMM - - Sparse mixed model Yang & Zhou, (2020)
approximation using
heritability tuning
Bayesian LDpred  Python Free Gibbs sampling with LD to Imam, Noguera & Donohue (2014), Vilhjalmsson
estimate PRS et al. (2015), Ko et al. (2022), Agbaedeng et al. (2021)
Jampred - - Joint analysis across GWAS to ~ Newcombe et al. (2019), Shan et al. (2021)
improve power and accuracy
EB-PRS R Free Uses effect size distribution Song et al. (2020)
without external info
SBayesR - - Bayesian regression with spike-  Pham et al. (2022), Leonenko et al. (2021),
and-slab prior Pain et al. (2021)
BridgePRS R, Python Free Combines Bayesian PRS from Hoggart et al. (2023)
distinct ancestries
Machine RF - - Uses random forest to weight Oztornaci et al. (2023)
learning SNPs for PRS
SVM - - Uses support vector machines to Oztornaci et al. (2023)
improve classification
GBT - - Gradient boosting trees + Elgart et al. (2022)

XGBoost for non-linear SNP
effects

in practice (Privé et al., 2019; Lewis & Vassos, 2020). They can provide a straight forward
interpretation of the PRS as a weighted sum of selected variants. However, research has
shown that threshold-based methods may ignore variants with small effects that can
collectively contribute to the PRS, they are sensitive to the choice of threshold, which can
affect the predictive performance and the number of variants included (Lewis ¢» Vassos,
2020).

Penalized regression methods

These methods use a regularization term to penalize the coefficients of the PRS, which can
handle high-dimensional data effectively, they have been shown to reduce overfitting by
shrinking coefficients, especially for correlated or weakly associated variants (Prive,
Aschard ¢ Blum, 2019). They also provide variable selection by shrinking less informative
variables towards zero, which can improve interpretability and reduce collinearity.
However, the choice of penalty parameters can be subjective and depend on the data and
the trait (Pattee ¢ Pan, 2020). The interpretation of the resulting coefficients may be
challenging, especially when using non-linear penalties or complex models, they also
assume a linear relationship between predictors and outcomes, which may not hold for
some traits or diseases (Pattee ¢ Pan, 2020).
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Bayesian techniques

These methods use a probabilistic framework to estimate the posterior distribution of the
PRS given the prior information and the data. They can incorporate various sources of
information such as functional annotations and biological pathways. Also they account for
uncertainty and provide credible intervals for the PRS (Ge et al., 2019; Zhou, Qie & Zhao,
2023). They have the flexibility to incorporate prior knowledge and choose the prior
distribution (Ge et al., 2019). However, they can be computationally intensive, they may
also require expertise in Bayesian statistics for proper implementation and interpretation
of results (Song et al., 2020).

Machine learning methods

These methods use various algorithms to learn the optimal PRS from the data, such as
random forests, support vector machines, neural networks, etc (Oztornaci et al., 2023).
Studies have shown that they can capture complex and nonlinear relationships between
variants and outcomes, which linear models may not capture, they optimize predictive
performance by using cross-validation, grid search, or other techniques to tune the
hyperparameters, and have flexibility in feature engineering, such as using interactions,
transformations, or embeddings of variants (Squires, Weedon & Oram, 2023; Mamani,
2020). However, they may overfit the data if not properly regularized, which can reduce
generalizability and robustness. Also, they can be challenging to interpret, particularly in
the case of intricate models such as neural networks, which are often perceived as black
boxes. They have been shown to have high computational complexity, which can limit
their scalability and applicability (Mamani, 2020).

The applications of PRS

Polygenic risk scores are a versatile tool for healthcare applications (Slunecka et al., 2021).
PRS can estimate the probability of an individual having or developing a specific disease or
trait, facilitating risk stratification and early intervention that consider both genetic and
environmental factors (Lewis &> Green, 2021; Corpas ¢ Fatumo, 2023). These interventions
can range from lifestyle changes to preventive surgeries, depending on the condition and
the individual’s preferences (Lewis ¢ Green, 2021). PRS can provide healthcare providers
with valuable information for risk assessment, disease management, and preventive care,
and help them deliver tailored advice and interventions to their patients (Chapman, 2023).
Additionally, PRS can inform the design of screening programs and research studies, by
dividing populations into different risk groups and adjusting screening criteria and
intervention effects accordingly (Slunecka et al., 2021). However, the implementation of
PRS-based approaches in healthcare requires careful attention to ethical, social, and
practical issues, to ensure fair and respectful practices that protect patient autonomy and
privacy while maximizing benefits for individuals and society (Chapman, 2023; Aragam ¢
Natarajan, 2020; Lewis ¢ Vassos, 2020).

Benoumhani et al. (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.3039 13/27


http://dx.doi.org/10.7717/peerj-cs.3039
https://peerj.com/computer-science/

PeerJ Computer Science

Challenges and future directions

Increasing diversity and representation of data

PRS methods predominantly rely on data from individuals of European ancestry, leading
to limitations in their applicability and generalizability to other ethnic groups. This lack of
diversity can result in biased risk predictions and may exacerbate existing health
disparities. There is a growing recognition of the importance of including diverse and
representative genetic data from different populations. Initiatives are underway to collect
and analyze genomic information from historically underrepresented populations, such as
the Human Heredity and Health Africa (H3Africa) initiative. Developing methods that
account for genetic diversity and mixed ancestry within varied groups is essential for
improving the precision and reliability of PRS across all ethnic backgrounds (Zhang et al,
2023; Lam et al., 2019).

To enhance multi-ancestry prediction models, it is necessary to leverage genetic data
from diverse populations to improve PRS performance. For example, the PROSPER
method demonstrates improved precision and reliability showing a 70% increase in
accuracy for individuals of African ancestry compared to traditional models (Zhang et al.,
2024). Such approaches help correct biases inherent in European-centric models by
accounting for differences in genetic architecture, including linkage disequilibrium
patterns and allele frequencies (Cavazos ¢» Witte, 2021). Incorporating ancestry-specific
data into PRS algorithms is essential for improving their applicability across diverse
populations (Lerga-Jaso et al., 2024).

A major driver of improved accuracy and generalizability in PRS development is the
increasing availability of large-scale biobank databases. Due to the complexity of the
human genome, large datasets are critical for identifying associations between genetic
variants and complex traits (Raben et al., 2023). Biobank resources support the
development, validation, and application of PRS by providing extensive training data and,
crucially, multi-ancestry samples for cross-population evaluation (Tsuo et al., 2024;
Thompson et al., 2022). Major global initiatives including the UK Biobank, All of Us
(AoU), China Kadoorie Biobank, Biobank Japan, deCODE Genetics, the Estonian
Biobank, and Lifelines in the Netherlands are helping to address the historical
underrepresentation of non-European populations in genetic research (Ju et al., 2022).
These resources provide the statistical power needed to reduce false positives, identify
novel variants, and refine estimates of single nucleotide polymorphism (SNP) effect sizes
(Raben et al., 2023; Ju et al., 2022). With advancements in analytic tools and machine
learning algorithms, biobank databases are making PRS construction increasingly
accessible to a broader range of researchers (Sakaue et al., 2020; Du et al., 2023).

Using explainable Al for improving the interpretability of PRS

ML-based methods can be used to learn the optimal PRS from the data. However, the lack
of transparency of ML'’s prediction could lead to a poor generalization on datasets when a
model learns to predict on irrelevant features. The explainability of MLs is crucial in
healthcare as the consequences of a wrong prediction in diagnostics may cause
life-changing decisions for a patient (Elgart et al., 2022). Recently, explainable artificial
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intelligence (XAI) has been widely used in the literature to overcome the lack of insight of
ML-based models in healthcare and medical diagnosis systems (Zhang, Weng ¢» Lund,
2022). XAl reveals the decision patterns of ML-based models, which helps medical
practitioners understand the logical reasoning for the model’s prediction (Zhang, Weng ¢
Lund, 2022). XAl is a promising research direction that requires more attention from the
PRS research community.

Incorporating environmental and lifestyle factors

PRS methods typically focus solely on genetic components and may not fully capture the
multifactorial nature of complex traits and diseases. However, lifestyle and environmental
factors—such as exercise, diet, and exposure to toxins—play significant roles in disease risk
but are often overlooked in traditional PRS analyses. Integrating these non-genetic
variables into PRS models can enhance their predictive power and relevance. For instance,
including data on smoking behavior, socioeconomic status, and geographic location can
improve risk stratification and facilitate more personalized interventions. Advanced
statistical approaches, such as gene-environment interaction modeling, are being
developed to better capture the interplay between genetic and environmental influences on
health outcomes (Wang et al., 2021; Koch et al., 2023).

Recent advances demonstrate the potential of integrating such factors. For example,
incorporating 109 exposome variables—including tobacco use, education, and others—
into cardiovascular disease risk prediction using machine learning increased the area
under the curve (AUC) to 0.82 (Shahbazi & Nowaczyk, 2025). Additionally, the use of
Internet of Things (IoT) devices enables real-time integration of lifestyle and
environmental data such as diet and air quality, supporting adaptive health interventions
for hyper-personalized medicine (Tan et al., 2025). Moreover, social determinants of
health (SDoH) have shown significant associations with disease outcomes, particularly in
high-risk environments, further highlighting the importance of integrating
socio-environmental context into PRS applications (Guare et al., 2024).

Evaluating clinical and public health implications

PRSs show great potential for predicting health risks, but their implementation also raises
important ethical, societal, and legal concerns. The integration of PRS into clinical practice
requires a thoughtful approach to issues such as informed consent, data privacy,
protection, and equitable access to genetic services and interventions. It is essential to
rigorously evaluate both the effectiveness and broader implications of PRS across diverse
populations and clinical settings. Studies assessing the utility of PRS in guiding preventive
strategies, screening programs, and therapeutic decisions are vital for shaping
evidence-based healthcare policies.

Public understanding and health literacy around genetic risk are equally important.
Enhancing awareness can help ensure informed decision making and reduce the risk of
misinterpretation or misuse of genetic information in clinical and personal contexts.

Ethical considerations must be addressed, particularly when individuals are assigned
high-risk scores, which may lead to psychological distress or stigmatization. In addition,
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disparities in access to genetic testing, risk assessment tools, and personalized
interventions can exacerbate existing health inequalities (Andreoli et al., 2024). Clear
communication of genetic findings and proper implementation supported by robust
informed consent processes are essential for integrating PRS into personalized medicine
and improving shared decision-making between patients and healthcare providers (King ¢
Bishop, 2017).

In summary, addressing these challenges and leveraging the opportunities presented by
advancements in genomics, data science, and healthcare delivery will be essential for
realizing the complete promise of PRS in enhancing health outcomes and minimizing
health inequities among different groups (Koch et al., 2023; Simona et al., 2023; Lewis ¢
Vassos, 2017). The criticality of generating precise PRS for various complex traits and
illnesses is paramount. PRS offers a gauge of an individual’s genetic susceptibility to a
complex trait or illness, indicating the probability of manifesting a specific trait or illness
grounded on one’s genetic makeup. PRS analysis aims to pinpoint individuals at
heightened disease risk by analyzing genetic variations alongside clinical factors. Thus, the
more precise the PRS, the more effectively we can pinpoint disease risks and devise
preventative measures.

CONCLUSION

Polygenic risk scores hold immense promise for predicting disease. The extensive literature
on PRS research reflects the growing interest and investment in this field, with significant
advancements in methods, tools, and applications. By integrating genetic information with
clinical data, PRSs contribute to predicting disease risk and guiding preventive
interventions. However, challenges remain in ensuring data diversity, incorporating
environmental factors, and addressing ethical considerations. Future research efforts
should focus on overcoming these challenges to unlock the full potential of PRSs in
improving clinical outcomes and public health interventions.

LIST OF ABBREVIATIONS

PRSs Polygenic risk scores

PRS Polygenic risk score

ML Machine learning

PRISMA  Preferred Reporting Items for Systematic Reviews and Meta-Analyses
SNPs Single Nucleotide Polymorphisms

C+T Clumping and Thresholding

LD Linkage Disequilibrium

AS Ankylosing Spondylitis

HLA Human Leukocyte Antigen

SCT Stacked Clumping and Thresholding

Lasso Least Absolute Shrinkage Selection Operator

SBLUP Super Genomic Best Linear Unbiased Prediction
DBSLMM Deterministic Bayesian Sparse Linear Mixed Model
LDpred  Linkage Disequilibrium pred
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GWAS Genome-373 Wide Association Study
JAMPred Joint Analysis of Marginal Summary Statistics Prediction
EB-PRS  Empirical Bayes-PRS

SVM Support vector machines
RF Random Forests
GBT Gradient-Boosted Trees
CS Continuous Shrinkage
H3Africa Human Heredity and Health in Africa
XAI Explainable AI
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