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ABSTRACT

Synchronized electrocardiogram (ECG) and phonocardiogram (PCG) signals
provide complementary diagnostic insights crucial for improving the accuracy of
cardiovascular disease (CVD) detection. However, existing deep learning methods
often utilize single-modal data or employ simplistic early or late fusion strategies,
which inadequately capture the complex, hierarchical interdependencies between
these modalities, thereby limiting detection performance. This study introduces
PACEFNet, a novel progressive attention-based cross-modal feature fusion network,
for end-to-end CVD detection. PACFNet features a three-branch architecture: two
modality-specific encoders for ECG and PCG, and a progressive selective
attention-based cross-modal fusion encoder. A key innovation is its four-layer
progressive fusion mechanism, which integrates multi-modal information from
low-level morphological details to high-level semantic representations. This is
achieved by selective attention-based cross-modal fusion (SACMF) modules at each
progressive level, employing cascaded spatial and channel attention to dynamically
emphasize salient feature contributions across modalities, thus significantly
enhancing feature learning. Signals are pre-processed using a beat-to-beat
segmentation approach to analyze individual cardiac cycles. Experimental validation
on the public PhysioNet 2016 dataset demonstrates PACFNet’s state-of-the-art
performance, with an accuracy of 97.7%, sensitivity of 98%, specificity of 97.3%, and
an F1-score of 99.7%. Notably, PACFNet not only excels in multi-modal settings but
also maintains robust diagnostic capabilities even with missing modalities,
underscoring its practical effectiveness and reliability. The source code is publicly
available on Zenodo (https://zenodo.org/records/15450169).
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INTRODUCTION

Cardiovascular diseases (CVDs) are a major concern for global health. They encompass
conditions affecting the heart and blood vessels, such as coronary heart disease, heart
failure, arrhythmias, and hypertension (Townsend et al., 2022). CVDs are a leading cause
of mortality worldwide. The World Health Organization (WHO) reported approximately
17.9 million deaths from CVDs in 2019, representing 32% of all global deaths (World
Health Organization, 2021).

Current CVD diagnosis relies on several methods. These include phonocardiography
(PCQ), electrocardiography (ECG), echocardiography, and coronary angiography. Among
these, ECG and PCG are frequently used for initial CVD diagnosis. Their advantages
include non-invasiveness, rapid results, and cost-effectiveness. ECG records the heart’s
electrical activity, identifying waveform pattern changes to diagnose various heart diseases
(Jahmunah et al., 2019; Li et al., 2022a). PCG records heart sounds, detecting abnormal
valve function or structural cardiac issues (Zhu et al., 2024). Combined ECG and PCG
signals provide comprehensive information which could capture both the electrical and
mechanical aspects of cardiac function. Consequently, diagnostic accuracy for CVDs is
improved. This is particularly beneficial in identifying at-risk patients who may not exhibit
obvious symptoms.

The conventional clinical diagnosis of CVDs relies significantly on the interpretation of
ECG and PCG signals by physicians. However, this approach has inherent limitations: it is
time-consuming (Xu, Mak ¢ Chang, 2022), potentially delaying critical interventions, and
its accuracy is heavily dependent on extensive physician experience and specialized skills
(Jiang & Choi, 2006), introducing subjectivity and inter-observer variability. Furthermore,
the resource-intensive nature of training proficient cardiologists, both temporally and
economically, exacerbates the scarcity of expert personnel, an issue particularly acute in
less developed regions (Hu et al., 2024). The recent proliferation of portable and wearable
devices for out-of-hospital ECG and PCG monitoring, while promising for continuous
health surveillance, introduces a new challenge, as the sheer volume of data often
overwhelms the capacity for real-time physician review (Emmett et al., 2023). Combined,
these limitations underscore an urgent and unmet clinical need for an automated,
objective, and accurate methodology capable of diagnosing CVDs. Therefore, the primary
objective of this research is to develop and validate a novel computational framework that
leverages the complementary diagnostic information of multimodal signals from ECG and
PCG. This framework aims to provide a robust, efficient, and reliable diagnostic tool,
thereby reducing the burden on healthcare professionals, and improving accessibility to
cardiovascular diagnostics. The development of such intelligent algorithms for processing
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and interpreting ECG and PCG signals has consequently become a significant focus of
current research.

Literature review

Recent research has explored automated diagnosis of CVD and other diseases using ECG
and PCG signals (Ameen et al., 2024; Huang et al., 2022; Allegra et al., 2023; Tasci et al.,
2024). These studies can be broadly categorized into two approaches: manual feature
extraction and end-to-end feature extraction using deep learning. The manual feature
extraction approach typically involves two steps. First, morphological and time-frequency
domain features are extracted from the input signals. Second, these features are classified
using machine learning or deep learning methods (Chakir et al., 2020). For instance, Singh
et al. (2021) extracted over ten time-frequency domain statistical features from
synchronized ECG and PCG signals. The authors compared the performance of multiple
classifiers. A support vector machine (SVM) classifier achieved the highest accuracy of
93.1%. Li et al. (2022b) used separate SVM classifiers for ECG and PCG signal branches. A
Dempster-Shafer (D-S) theory-based strategy fused the classification results from both
modalities, achieving a final accuracy of 86.4%. Jyothi ¢ Pradeepini (2024) decomposed
ECG and PCG signals using the improved empirical mode decomposition (IEMD)
algorithm, extracting morphological and time-frequency domain features. Following
optimization and feature selection with the I-CSOA algorithm, these features were
concatenated pairwise and classified using the Gaussian Kaiming variance-based deep
learning neural network (GKVDLNN), categorizing signals into Normal, Arrhythmia,
Mitral Valve Prolapse, Ischemia, and Valvular Heart Disease. Nevertheless, methods
relying on manual feature extraction and classification often face limitations. These include
insufficient learning of modal features, potential omission of important features, and
limited generalizability and robustness.

In contrast to manual feature extraction, deep learning models offer several advantages.
They eliminate the need for hand-designed features, can also discover complex patterns
that are difficult for humans to discern (Liu et al., 2023; Bhardwaj, Singh ¢ Joshi, 2023).
Consequently, they are increasingly employed for automatic classification of multimodal
ECG and PCG signals. Existing deep learning multimodal feature fusion strategies are
typically categorized as early fusion, late fusion, or intermediate fusion (Stahlschmidt,
Ulfenborg & Synnergren, 2022; Boulahia et al., 2021). Early fusion commonly employs a
single-branch structure. In this approach, multimodal data are concatenated directly at the
input stage. For example, [brahim et al. (2024) concatenated downsampled ECG and PCG
signals. They then used a MobileNetV2 model for classification, achieving an accuracy of
97%. Despite this, this study trained the model five times on the same dataset without
cross-validation. Therefore, the model’s robustness requires further evaluation. Li ef al.
(2019) combined features from concatenated ECG and PCG signals with manually
extracted multi-domain features, which were then used for classification. Hangaragi et al.
(2025) concatenated ECG and PCG signals, then applied the Pan-Tompkins algorithm for
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waveform extraction and peak detection. Subsequently, they employed the Heming Wayed
Polar Bear Optimization algorithm for feature extraction and a C squared Pool Sign
BI-power-activated deep convolutional neural network (DCNN) network for classification,
which enabled effective multiclass classification of cardiovascular diseases.

Late fusion involves independent feature extraction for each modality. The extracted
features, or the decision results from each modality, are subsequently fused. For instance,
Li et al. (2022¢) used a three-branch convolutional neural network (CNN) model. The
inputs were the concatenated original ECG and PCG signals, the time-frequency maps of
the ECG signals, and the time-frequency maps of the PCG signals. Decision-level fusion,
using D-S theory, was performed after obtaining classification results from each branch.
This achieved an accuracy of 96.1% and a specificity of 90.8%. Li, Hu ¢ Liu (2021) used
CNN models for separate feature extraction of ECG and PCG signals. A genetic algorithm
fused the features from both branches, and an SVM classifier performed the final
classification, achieving an accuracy of 94.4%. Zhu et al. (2025) proposed DDR-Net,
training separate DDR-ECG-Net and DDR-PCG-Net versions for dedicated ECG and
PCG feature extraction, respectively. The extracted modal features were then
concatenated, and important features were selected using recursive feature elimination
(RFE). An SVM classifier then processed these selected features, achieving 91.6% accuracy.
In a different approach, Kalatehjari et al. (2025) employed a convolutional neural network-
bidirectional long short-term memory (CNN-BiLSTM) model for independent feature
extraction from ECG and PCG signals. The features from these two branches were then
fused and classified using a fully connected layer incorporating a bilinear layer, obtaining
97% accuracy.

While some methods demonstrate good performance, both early and late fusion have
remarkable limitations. Early fusion and late fusion may not fully utilize complementary
information by only fusing low-level morphological features or high-level semantic
teatures. Furthermore, these approaches often do not fully consider the relative
contributions of feature vectors from different modalities. Fusion of multimodal branch
decision results using D-S theory offers limited performance improvement (Hao, Luo &
Pan, 2021).

Intermediate feature fusion utilizes a multi-branch structure, performing feature
extraction on each modality separately. Crucially, it fuses the features from each branch
during the feature extraction process. The fused features are then input into subsequent
network layers for learning and classification. For example, Qi ef al. (2023) employed the
GADF algorithm to convert ECG and PCG signals into two-dimensional (2D) images. A
Transformer model performed feature extraction and fusion of the two modalities. The
fused features were then input into a down-sampling residual network for classification.
Their study was able to achieve an accuracy of 94.3%. Zhang et al. (2024) proposed a
multi-level feature extraction method for ECG and PCG signals. Feature fusion occurred
concurrently with feature extraction at each level. A decision-level fusion strategy
subsequently combined the decision results from two feature extraction branches and one
feature fusion branch. This method achieved an accuracy of 94.4%. While the approach is
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effective, it has a complex structure, a large number of parameters, and high computational
resource demands.

Motivation and contribution

Building upon the aforementioned research, we propose a progressive attention-based
fusion network (PACFNet) for end-to-end CVD detection using synchronized ECG and
PCG signals. This model employs an intermediate feature fusion strategy. Importantly, it is
designed for both multimodal scenarios and maintains robust performance even with
single-modality input. By segmenting ECG and PCG signals based on the cardiac cycle,
PACFNet can accurately identify abnormal waveform characteristics, providing an
effective approach for real-time cardiac anomaly detection. The salient contributions of
this work are summarized below:

» We propose a novel cardiac state discrimination model that utilizes synchronized ECG
and PCG signals as input. This model employs an intermediate fusion strategy to
progressively extract features from superficial to deep levels and fuse them.

» Within the feature fusion module, we innovatively integrate features extracted from ECG
and PCG signals with the fused features from the previous level using spatial and
temporal attention mechanisms. This effectively evaluates the importance of each region
within the cross-modal feature vectors.

o Synchronized ECG and PCG signals are segmented based on the cardiac cycle. This not
only augments the dataset but also enables the model to more acutely identify the
waveform characteristics of abnormal signals, facilitating real-time patient monitoring.

o The proposed model was evaluated on the PhysioNet/CinC Challenge 2016 dataset and
compared with state-of-the-art methods. The results demonstrate that our proposed
model outperforms existing models in terms of classification accuracy, sensitivity,
specificity, and F1-score.

METHODOLOGY

Figure 1 illustrates the overall framework for diagnosing cardiac status using synchronized
ECG and PCG signals. The process begins with data preprocessing. ECG and PCG
recordings are segmented into synchronized cardiac cycle segments based on provided
annotations. These segments are then fed into PACFNet for features extraction and
classification. Within PACFENet, ECG and PCG signal features undergo progressive fusion.
Ultimately, the model outputs the predicted cardiac state category.

The overall architecture of PACFNet

Figure 2 illustrates the overall architecture of our proposed PACFNet model, which
employs a three-branch design comprising two identical modality-specific encoders (one
for ECG, one for PCG) and a progressive feature fusion encoder. The ECG and PCG
encoders receive synchronized ECG and PCG segments as input. They extract features at
multiple levels, from superficial to deep, within each respective modality. Subsequently, the
progressive feature fusion encoder systematically integrates these multi-level features
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Figure 1 Overall pipeline of the proposed multi-modality diagnosing framework for CVDs.
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AveragePooling

derived from both ECG and PCG. This integration is achieved through a series of selective
attention-based cross-modal fusion (SACMF) modules that operate sequentially,
progressing from shallower to deeper feature levels, with each SACMF module combining
corresponding ECG and PCG features at its specific level. The resultant feature vector from
the final SACMF module, representing the most deeply fused information, is then passed
to the classification layer to produce the final cardiac state classification. By fusing ECG
and PCG signals at multiple feature levels, the model leverages the complementary
information present in both the electrical (ECG) and mechanical (PCG) activity of the
heart. This approach enhances the accuracy and sensitivity of cardiac state recognition.

The modal encoders for ECG and PCG signals

As shown in the Fig. 3, the proposed modal feature extraction module is inspired by the
U-Net encoder architecture (Ronneberger, Fischer ¢ Brox, 2015). The whole process
comprises four identical feature extraction modules. Each module consists of an initial
convolution-batch normalization-ReLU (CBR) block followed by two ResNet blocks
connected in series.

Each feature extraction module progressively decreases the spatial dimensions of the
input while concurrently enhancing the number of channels. This architectural strategy is
designed to effectively capture increasingly abstract and contextual information from the
signal. In the final two feature extraction modules, the original signal undergoes
downsampling via average pooling (AP). This downsampled signal is then input into the
feature extraction module, which enhances the representation of the original input signal’s
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Figure 3 Architecture of the proposed modality-specific feature extraction module. Conv,
Convolutional layer; ReLU, rectified linear unit; GAP, global average pooling; BN, batch normalization.
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features. The feature extraction module within the modal encoder can be mathematically
represented in Eq. (1).

M {RESiz (RES;, (CBR(X))) i€ {1,2} M € {ECG, PCG) (1)

AP(X;,) + RES;, (RES; (CBR(X))) i€ {3,4}
where:

i denotes the layer number of the feature extraction module.
X is the input to the feature extraction module.

Xy denotes the modal signal input at the very beginning.
CBR(.) represents the CBR block operation.

RES(.) represents the ResNet block operation.

AP(.) represents the average pooling operation.

The CBR block performs an initial extraction of local signal features through a sequence
of operations: convolution, batch normalization, and a ReLU activation function, where
the ReLU activation enhances the model’s capacity to learn complex, non-linear features.
The ResNet block incorporates a residual connection (He et al., 2016), which facilitates the
training of deeper networks. Importantly, the ResNet block in our model integrates a
squeeze-and-excitation (SE) module (Hu et al., 2020). The SE module is a lightweight
attention mechanism. It establishes interdependencies between feature channels and
selectively enhances important feature channels while suppressing less relevant ones,
which could improve the model’s classification performance (Jin et al., 2022). The SE
module primarily comprises two operations: squeeze and excitation. The output of the
Excitation operation is then used to re-scale the input features of the SE block, performing
channel-wise weighting. The SE module can be represented in Eq. (2).

X = X ® a(W10(W,Fsq(X))) (2)
where:

X represents the input feature map.

Wy, W, are the weight matrix of the fully connected layer.
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Table 1 Detailed structural parameters of the modality-specific encoder.

Levels Layers Parameters Layers Parameters

1 Conv-1 C-64, K-7, S-1 Conv-4 C-64, K-7, S-1
Conv-2 C-64, K-7, S-1 Conv-5 C-64, K-7, S-1
Conv-3 C-64, K-7, S-1

2 Conv-1 C-128, K-7, S§-5 Conv-4 C-128, K-7, S-5
Conv-2 C-128, K-7, §-5 Conv-5 C-128,K-7, S-5
Conv-3 C-128, K-7, S-5

3 AP 5
Conv-1 C-192, K-7, S§-5 Conv-4 C-192, K-7, S-5
Conv-2 C-192, K-7, S-5 Conv-5 C-192, K-7, S-5
Conv-3 C-192, K-7, S-5

4 AP 25
Conv-1 C-256, K-7, S§-5 Conv-4 C-256, K-7, S-5
Conv-2 C-256, K-7, S-5 Conv-5 C-256, K-7, S-5
Conv-3 C-256, K-7, S-5

Note:

AP represents an average pooling layer. C, K, S denote number of output channels, the kernel size, stride, respectively.

0(.) and o(.) denote the ReLU and Sigmoid activation functions.
Fsq(.) is the channel-wise global feature descriptor obtained via global average pooling
(GAP).

© represents element-wise multiplication along the channel dimension.

The structural parameters of the modality-specific encoders for ECG and PCG are
detailed in Table 1. As the depth of feature extraction increases, the number of channels in
the feature vectors also increases starting from 64. This allows the model to learn
progressively higher-dimensional semantic features. The raw input signals are
downsampled using average pooling layers and then fed into the third and fourth feature
extraction modules. The pooling windows for these average pooling layers are 5 and 25,
respectively.

Selective attention-based cross-modal fusion module (SACMF)

The SACMF module is a critical component of PACFNet, designed to dynamically and
adaptively determine the significance of information originating from different spatial
locations and feature channels within the distinct ECG and PCG modal signals. This
adaptive weighting allows the model to prioritize and select more discriminative features
crucial for accurate cardiac state classification. Inspired by established attention
mechanisms like the convolutional block attention module (CBAM) (Woo et al., 2018) and
the method in Zhang et al. (2024) and Roy, Navab ¢ Wachinger (2019), the SACMF
module sequentially computes attention maps along two independent dimensions: spatial
and channel. These computed attention maps then act as modulators, being element-wise
multiplied by the input feature vectors to perform adaptive feature modification, effectively
recalibrating the feature representations. Figure 4 provides a detailed illustration of this
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cross-modal feature fusion process. As depicted, the operation of each SACMF module
comprises three primary stages.

Spatial attention: At each progressive fusion level, feature vectors extracted from the
corresponding ECG and PCG encoder layers are first concatenated. This combined
multimodal feature map serves as input to a spatial attention module (SAM), whose
objective is to identify ‘where’ the most salient information resides across the spatial
dimensions by generating a attention weight map (Woo et al., 2018). This spatially-aware
weight map is then element-wise multiplied by the concatenated feature vector, yielding a
spatially-refined feature vector, denoted as V. This is accomplished through a sequence
within the spatial attention weighting block: initially, a 1 x 1 convolution reduces channels
in the concatenated multimodal feature vector to focus the subsequent spatial analysis;
subsequently, a 16 x 1 convolution processes this reduced-channel map to explicitly learn
spatial feature importance; and finally, to specifically address the potentially differing
diagnostic regions of interest in ECG and PCG signals, a 1 x 1 convolution with two output
channels, followed by a sigmoid activation function, generates two distinct,
modality-specific spatial weight maps: one for ECG and one for PCG features. These maps
highlight the critical spatial regions within each modality independently before they are
applied to refine their respective feature contributions.

Channel attention: Following spatial refinement, the feature vector V; is passed to a
channel attention module (CAM). Analogous to spatial attention identifying ‘what’ is
important spatially, the CAM aims to determine ‘which’ feature channels are most
informative (Woo et al., 2018). Structurally similar to the SE module, the CAM first applies
global average pooling (GAP) to the input V. This operation aggregates spatial
information to produce a channel descriptor, effectively summarizing the global context
for each channel. Subsequently, this descriptor is fed through two fully connected (FC)
layers—the first with a ReLU activation and the second with a sigmoid activation. These
FC layers learn the non-linear interdependencies between channels and generate a
channel-wise attention weight vector. This vector assigns an important score to each
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channel, which is then multiplied element-wise with V; to produce a channel-refined
feature vector. This process selectively amplifies informative channels while attenuating
less useful ones.

Fusion with Previous Level: The feature vector that has been adaptively refined by both
spatial and channel attention mechanisms is fused with the multimodal fusion feature
(fiast) propagated from the SACMF module of the preceding (shallower) fusion level. This
integration is performed using a learnable convolution operation, allowing the model to
combine the newly refined current-level features with the accumulated fused knowledge
from earlier stages.

The cross-modal feature fusion module can be mathematically represented in Eq. (3).

{ fi = Co(f*sr, CAM(VY))

Ve = SAM(C, (fF°C,£7€C)) 1€ {1,2,3,4} ®

where:

flECG, fF CG are the feature vectors of each level.

last

%Y represents the output from the previous SACMF module.

SAM(.) and CAM(.) denote the SAM operation and Channel Attention Module
operation.

Ci(.) is the Concatenation operation.

C,(.) represents the fusion using batch normalization and convolution operations.

The classification module

The structure of the classification module is illustrated in Fig. 5 and Table 2 details its
structural parameters. The fused ECG and PCG features undergo downsampling via a
convolutional operation. This reduces computational complexity and memory usage.
Following downsampling, global average pooling (GAP) compresses the L x C feature
vector to a 1 x C vector. This approach provides two key advantages: it significantly
reduces the parameter count in the subsequent fully connected layers and expands the
global receptive field of the features, thereby enhancing the effective capture of contextual
information within each feature channel. A fully connected layer then classifies the features
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Table 2 Detailed structural parameters of classification module.

Layers Parameters
Conv C-256, K-3, S-2
Dense 128

Dropout 0.5

Dense 64

Dropout 0.5

Dense 32

Dropout 0.5

Dense 2

extracted by the preceding modules. To mitigate overfitting during training, a dropout rate
of 0.5 is applied.

EXPERIMENTAL SETUP

Dataset and preprocessing

The synchronized ECG and PCG data used in this study were sourced from the PhysioNet/
CinC Challenge 2016 dataset (PhysioNet2016) (Liu et al., 2016; Goldberger et al., 2000).
This dataset comprises data collected from multiple institutions worldwide, categorized
into subsets training-a through training-f based on their origin. This study utilized the
training-a subset, which contains 409 records, including 405 pairs of synchronized ECG
and PCG signals. These signals were recorded using a Welch Allyn Meditron electronic
stethoscope (frequency response: 20 Hz-20 kHz) and resampled to 2,000 Hz. Of the 405
pairs, 117 were obtained from healthy subjects, and 288 were from subjects with
cardiovascular diseases, including mitral valve prolapse, aortic disease, and other
pathological conditions. A total of 17 pairs of records were manually excluded due to noise
interference, which is inherent in data collection. Table 3 provides details of the training—
a subset.

Because cardiac physiological state can vary between individual heartbeats, beat-to-beat
segmentation was employed to capture the characteristics of each cardiac cycle accurately.
Specifically, each record underwent Z-score normalization. Following normalization, the
data were segmented and expanded based on the S1-to-S1 interval, using the provided
individual heart sound annotations within the PCG signals. The S1 heart sound marks the
closure of the mitral and tricuspid valves. It signifies the beginning of ventricular
contraction’s mechanical activity, occurring shortly after the R-wave in the synchronized
ECG signal (Li et al., 2020; Stodieck & Luttges, 1984). Therefore, the S1-to-S1 interval
represents a complete cardiac cycle, as illustrated in Fig. 6.

To ensure consistent input length for the deep learning model, segmented signal
fragments were resampled on the time axis to a duration of 1 s. Table 4 provides details of
the segmented dataset. The dataset does not provide information to determine whether
different records originate from the same subject. Therefore, subject-specific division into
training and testing sets was not feasible. Instead, the segmented data were divided into five
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Table 3 Train—a subset profile.

Type Noisy Clean Sample rate Mean duration (s)
Negative 1 116 2,000 32.53
Positive 16 272 2,000 32.57
$1 S2 S1
: SRS

PCG

ECG

0.0 0.5 10 15 2.0 25
Time (seconds)

Figure 6 Synchronized PCG and ECG signal waveforms. T-wave and P-wave represent ventricular
repolarization and atrial depolarization of ECG signals. S1 and S2 are the first and the second heart
sounds of PCG signals. Full-size K&l DOT: 10.7717/peerj-cs.3038/fig-6

Table 4 Dataset profile after segmentation.

Type Segments Time duration (s)
Negative 4,303 1
Positive 9,734 1

subsets for five-fold cross-validation. All experiments were conducted using this same data
partitioning for training and testing.

Model training environment
The experiments were conducted using the system equipped with an Intel 8255C CPU and
two NVIDIA RTX 2080Ti GPUs. The software environment consisted of Python 3.8 and
TensorFlow 2.9.0. Each model was trained for 100 epochs, utilizing the Adam optimizer
and the cross-entropy loss function. The initial learning rate was set to 0.01. L2
regularization and dropout were employed to enhance generalization and prevent
overfitting. A learning rate decay schedule was implemented: the learning rate was reduced
by a factor of 0.1 if the training loss did not decrease for five consecutive epochs. Training
was terminated if the training loss did not decrease for 20 consecutive epochs. Batch sizes
of 32 and 128 were used during training and testing, respectively.

To address the class imbalance in the dataset, weight coefficients were applied to the
positive and negative classes within the loss function. These coefficients were inversely
proportional to the number of samples in each class. Furthermore, He initialization
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(He et al., 2015) was applied to each layer of the model to accelerate training convergence
and improve performance.

Evaluation metrics

Five widely used evaluation metrics were employed to assess model performance: accuracy,
sensitivity, specificity, area under the receiver operating characteristic curve (AUC-ROC),
and F1-score. They are defined in Egs. (4)-(8).

A TP+ TN @
ccuracy =
Y= TP+ TN + FP+ FN
Sensitivity = P (5)
ensitivi y = TP + FN
TN
Specificity = ————— 6
pecificity TN+ FP (6)
FPR = P (7)
"~ FP+ TN
2TP
_ (8)
2TP + FP + FN

where:

TP stands for true positive.
FP stands for false positive.
TN stands for true negative.
FN stands for false negative.

FPR denotes false positive rate.

RESULTS AND DISCUSSION

To validate the effectiveness of the proposed PACFNet framework for classifying cardiac
states using synchronized ECG and PCG signals, several experiments were conducted.
These experiments compared the performance of different model configurations and
analyzed the PACFNet approach against existing methods.

Performance evaluation in missing modalities
To demonstrate the effectiveness of synchronized ECG and PCG multimodal signals for
cardiac state classification, and to evaluate the PACFNet model’s robustness in practical
scenarios with missing modalities, the following experiments were conducted. The
performance of single-modality branches (ECG-only and PCG-only) was compared to the
performance of the full multimodal model. Additionally, the multimodal model’s
performance was assessed when either the ECG or PCG modality was absent. Table 5,
Figs. 7 and 8 present the experimental results. For scenarios with a missing modality, the
corresponding input values were set to zero, while the present modality remained
unchanged.

The experimental results demonstrated several key findings. First, the proposed
multimodal PACFNet model exhibited superior performance compared to single-modality
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Table 5 Performance comparisons between our proposed single-modality branch model and
multimodal model methods. Bold entries indicate the best performance for each metric.

Model type Accuracy  Specificity  Sensitivity = Precision  Fl-score =~ AUC

Single_modal_ECG 0.9615 0.9442 0.9691 0.9752 0.9721 0.9920
Single_modal_PCG 0.8179 0.7576 0.8446 0.8874 0.8655 0.8938
Multi_modal_ECG 0.9626 0.9421 0.9716 0.9743 0.9730 0.9928
Multi_modal_PCG 0.8312 0.8496 0.8231 0.9253 0.8712 0.9158
Multi_modal ECG_PCG  0.9777 0.9728 0.9799 0.9879 0.9839 0.9967
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Figure 7 Confusion matrices of our proposed single-modality branch model and multimodal model

methods for the cardiovascular abnormality. (A) ECG single-modality model. (B) PCG single-modality

model. (C) ECG-only multi-modality model. (D) PCG-only multi-modality model. (E) Full model.
Full-size Ka] DOT: 10.7717/peerj-cs.3038/fig-7

models when handling cases of missing modalities. Second, the highest performance was
achieved when both ECG and PCG modalities were present. Specifically, for ECG signal
classification, when the PCG modality was absent, the multimodal model achieved an
average accuracy and AUC improvement of at least 0.11% and 0.08%, respectively,
compared to the ECG-only model. With both ECG and PCG modalities present, the
multimodal model showed improvements of at least 1.62%, 2.86%, 1.08%, and 0.47% in
average accuracy, specificity, sensitivity, and AUC, respectively, compared to the
ECG-only model. For PCG signal classification, when the ECG modality was absent, the
multimodal model demonstrated an average accuracy and AUC improvement of at least
1.33% and 2.2%, respectively, compared to the PCG-only model.
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Figure 8 ROC curves of our proposed single-modality branch model and multimodal model.
Full-size 4] DOT: 10.7717/peerj-cs.3038/fig-8

These findings suggest that synchronized multimodal ECG and PCG signals provide
complementary and richer pathological information for cardiac state classification, leading
to improved accuracy. Furthermore, the proposed multimodal PACFNet model
demonstrated superior performance compared to single-modality models even when one
modality was absent. This is primarily attributed to the progressive multi-level feature
fusion module within PACFNet. This module enhances important features and suppresses
less relevant ones based on attention weights computed for each element of the feature
vector. Consequently, the model maintains robust classification performance even with
missing modality data.

Performance evaluation of different feature fusion strategies
Comparison of feature integration strategies in different stages

To further investigate the effectiveness of the proposed progressive feature fusion
strategy, we compared PACFNet’s performance with that of existing common fusion
strategies in a multimodal setting. Additionally, to specifically evaluate the impact

of the progressive feature fusion structure, we conducted comparative experiments
using a single SACMF module applied after feature extraction from the individual ECG
and PCG modality encoders. Table 6, Figs. 9 and 10 present the results of these
comparisons.

Analysis of the comparison experiment results reveals that the proposed cross-modal
fusion strategy, based on spatial and channel attention weights, outperforms existing
common multimodal fusion approaches. Furthermore, the late fusion strategy exhibits
superior performance compared to early fusion, with improvements of 0.62% and 0.4% in
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Table 6 Performance comparisons between our proposed SACMF module and common fusion
strategies. Bold entries indicate the best performance for each metric.

Model type Accuracy Specificity Sensitivity Precision F1-score AUC

Early fusion 0.9515 0.9328 0.9597 0.9700 0.9648 0.9882
Late fusion 0.9577 0.9551 0.9588 0.9797 0.9692 0.9922
Only last SACMF 0.9688 0.9668 0.9697 0.9851 0.9773 0.9936
Full model 0.9777 0.9728 0.9799 0.9879 0.9839 0.9967
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Figure 9 Confusion matrices of our proposed SACMF module and common fusion strategies.
(A) Early fusion. (B) Late fusion. (C) Only last SACMF. (D) Full model.
Full-size K&l DOT: 10.7717/peerj-cs.3038/fig-9

average accuracy and AUGC, respectively. Notably, specificity increased by 2.23% with late
fusion, suggesting improved identification of negative samples.

Comparing the complete PACFNet model (with progressive fusion) to the model
using only a single SACMF module at the late stage, we observe that progressive
feature fusion achieves superior performance. Specifically, average accuracy increased
by 0.89% with the progressive approach. This indicates that continuous multimodal
feature fusion, progressing from shallower to deeper feature extraction levels, allows the
model to learn more comprehensive information, thereby enhancing classification
performance.
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Figure 10 ROC curves of SACMF module and common fusion strategies.
Full-size Kl DOI: 10.7717/peerj-cs.3038/fig-10

Comparison of different fusion strategies in identical backbone structures
To evaluate the effectiveness of the designed SACMF within the context of the PACFNet
architecture, we conducted comparative experiments with different fusion module designs.
These designs included: direct concatenation of features from the two modalities; only
spatial attention weights; only channel attention weights; and our proposed complete
SACMF module, incorporating both spatial and channel attention. Table 7, Figs. 11 and 12
present the results of these comparisons.

By analyzing the results of the comparison experiments, we can draw the following
conclusions. Our proposed feature fusion strategy using both spatial and channel attention
weights achieves better performance, outperforming other module designs in all evaluation
metrics. This performance improvement primarily arises from the simultaneous utilization
of channel and spatial attention mechanisms, which assess the significance of each
positional element within the input feature vector. This mechanism enhances the model’s
sensitivity to critical information, thereby improving classification performance.

Comparison with state-of-the-art methods

Table 8 compares the performance of our PACFNet model with that of state-of-the-art
methods. The results demonstrate that PACFNet achieves superior classification
performance.

Li et al. (2022c) considered both early and late fusion strategies in their multimodal
approach. However, the resulting specificity was low. This observation aligns with our
earlier findings, which indicated that direct concatenation of ECG and PCG signals at an
early stage does not yield optimal classification performance, and that decision-level
fusion in later stages offers limited improvement. Studies by Li, Hu ¢ Liu (2021) and
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Table 7 Performance comparisons of different fusion module designs. Bold entries indicate the best
performance for each metric.

Model type Accuracy Specificity Sensitivity Precision F1-score AUC

Concatenation 0.9689 0.9626 0.9717 0.9833 0.9775 0.9941
Only SA 0.9631 0.9698 0.9601 0.9863 0.9730 0.9937
Only CA 0.9645 0.9628 0.9652 0.9833 0.9741 0.9940
Full model 0.9777 0.9728 0.9799 0.9879 0.9839 0.9967
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Figure 11 Confusion matrices for different fusion module designs within the PACFNet architecture.
SA represents spatial attention, while CA denotes channel attention. (A) Simple concatenation. (B) Only
SA. (C) Only CA. (D) Full model. Full-size (4] DOL: 10.7717/peerj-cs.3038/fig-11

Morshed & Fattah (2023) utilized late fusion, extracting features from the ECG and PCG
branches independently before fusing them for classification. The experimental results
presented in the table suggest that this approach may not be sufficient to fully exploit the
complementary information between the different modalities. In contrast, the approaches
proposed by Qi et al. (2023), Zhang et al. (2024), and our PACFNet model perform
cross-modal feature fusion during the feature extraction process. The work of Qi et al.
(2023) transformed the signals into 2D images and input them into a Transformer model
and a downsampling residual network for feature extraction and classification. Zhang et al.
(2024) performed feature fusion during the progressive feature extraction process.
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Figure 12 ROC curves of different fusion module designs.
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Table 8 Performance comparisons between our PACFNet and state-of-the-art methods. Bold entries
indicate the best performance for each metric.

Method Model Accuracy Specificity Sensitivity Precision F1-score

Li, Hu & Liu (2021) CNN+SVM  0.936 0.845 0.903 0.874 0.873

Li et al. (2022c) BiLSTM+ 0.961 0.908 0.985 - -
GoogleNet

Morshed ¢» Fattah (2023) DNN 0.951 0.909 0.951 0.95 0.99

Qi et al. (2023) Transformer 0.943 0.909 0.977 - -

Zhang et al. (2024) CNN 0.944 0.939 0.948 - 0.973

Proposed method CNN 0.977 0.973 0.98 0.984 0.997

The experimental results in Table 8 highlight the effectiveness of PACFNet’s designed
feature extraction and cross-modal fusion. Our modality-specific feature extraction, based

on a powerful encoder, is capable of extracting multi-level features, progressing from

superficial to deep representations of the input signal. Besides, our progressive cross-model

feature fusion module, combining both spatial and channel attention mechanisms, can

comprehensively analyze the contribution of each region across different levels of modal

features. The PACFNet architecture effectively improves classification performance while

maintaining a relatively small number of model parameters.

However, our proposed approach also has the following limitations:

(1) Due to the limitation of the dataset, the current study was conducted using a publicly

available dataset (PhysioNet2016), and subsequent experiments in other private

datasets are needed to further validate the classification performance of the model.
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(2) The model’s performance is contingent upon precise beat-to-beat segmentation of
ECG and PCG signals, demanding highly accurate cardiac cycle annotations.
Furthermore, the use of short data segments currently limits the model’s capacity to
account for inter-patient variability.

(3) Limitations in publicly available model architecture details and the lack of
implementation code precluded a fair comparison of computational complexity. This
aspect will be more thoroughly investigated in future work.

CONCLUSION

In this study, we introduced PACFNet, an end-to-end deep learning model that
significantly advances cardiac state detection by innovatively employing a progressive
multi-level fusion strategy for synchronized ECG and PCG signals, which are
pre-processed using a beat-to-beat segmentation approach to capture individual cardiac
cycle dynamics. Our key contribution lies in the development of this novel architecture,
featuring dedicated four-layer modality-specific encoders and, critically, the selective
attention-based cross-modal fusion (SACMF) module. Unlike direct early fusion and late
fusion approaches, SACMF utilizes cascaded spatial and channel attention mechanisms to
dynamically weigh and select the most salient features from each modality at multiple
hierarchical levels, enabling a comprehensive evaluation of feature importance. Evaluation
on the PhysioNet 2016 dataset conclusively demonstrated PACFNet’s superiority, as it not
only outperformed current state-of-the-art multimodal methods in multimodal scenarios
but also maintained remarkable robustness even with missing modalities. Therefore,
PACEFNet, leveraging beat-to-beat signal analysis and sophisticated attention-based
multi-level fusion, offers a potent and effective solution for cardiac state determination,
highlighting its significant potential in enhancing the accuracy and reliability of automated
multimodal diagnostic systems.

In future work, we will focus on collecting a larger dataset of synchronized ECG and
PCG signals from patients with diverse subtypes of heart disease and utilizing generative
models to address the issue of class imbalance within the dataset. Building upon this
enriched and balanced data foundation, we will develop more advanced models,
emphasizing not only enhanced diagnostic accuracy for precise identification of
different heart disease subtypes but also improved computational efficiency and
reduced resource requirements. To rigorously evaluate the practical applicability of these
models, we will conduct a comprehensive analysis and standardized benchmark
comparing their computational complexity against relevant baseline and state-of-the-art
methods.
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