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ABSTRACT
Traditional methods for reliability and lifetime testing of digital microfluidic systems
heavily rely on real-time monitoring data. This often leads to evaluation lag and
limits their application, especially for complex droplets. To address these issues, this
study proposes a novel prediction model for digital microfluidic (DMF) devices. The
model combines an attention-based bidirectional long short-term memory
(BiLSTM) with eXtreme Gradient Boosting (XGBoost) using a Stacking approach.
This integrated model efficiently identifies the health state and predicts the failure
time of digital microfluidic devices. This approach overcomes the limitations of
traditional methods, such as over-reliance on sensor feedback and detection
hysteresis. Experimental results demonstrate high prediction accuracy. The model
achieved a mean absolute percentage error (MAPE) of 1.6464, Root mean squared
error (RMSE) of 0.3667, mean absolute error (MAE) of 0.2557, and a coefficient of
determination (R-squared) of 0.9949. Compared to baseline methods, the proposed
BiLSTM-XGBoost model achieves the highest prediction accuracy, enabling effective
health monitoring, problem identification, and failure prediction. Ultimately, this
improves system reliability and lifetime with greater timeliness and accuracy.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Neural Networks
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INTRODUCTION
Digital microfluidic (DMF) systems based on electrowetting-on-dielectric (EWOD) have
emerged as a promising platform in biomedical research, laboratory automation, and
medical diagnostics. With these devices, researchers can manipulate micro-scale droplets
and biological samples efficiently and precisely. This enables a wide range of experimental
applications in disciplines such as biology, chemistry, and medicine.

In recent years, significant advances have been made in both the theoretical modeling
and practical implementation of DMF systems. Tong et al. (2023) proposed a DMF device
with integrated sensors and actuators designed for biomedical applications. Torabinia et al.
(2021) developed an efficient EWOD platform for synthetic organic chemistry, while
Sagar, Bansal & Sen (2022) introduced an open-type EWOD device with enhanced
operational flexibility.
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Despite recent advancements, assessing DMF device reliability and predicting their
lifetime remain significant challenges. Current global studies largely focus on real-time or
offline detection of driving electrode states (Ghosh, Roy & Giri, 2021; Howladar, Roy &
Rahaman, 2020). However, systematic long-term research on DMF system reliability and
degradation mechanisms is still lacking. As DMF is sensitive and used in safety-critical
point-of-care diagnostics, ensuring robustness and enabling predictive maintenance is
essential. Traditional monitoring fails to capture complex temporal dynamics and
nonlinear dependencies. Thus, advanced data-driven models are necessary.

It is worth noting that some relatively mature reliability assessments (Li et al., 2021;
Bian et al., 2023; Li & Wang, 2022) and remaining life prediction methods already exist in
other fields (Xiao et al., 2023;Wei, Wu & Terpenny, 2024; Sekhar, Domathoti & Santibanez
Gonzalez, 2023). Deep learning has been increasingly applied to reliability evaluation and
remaining life prediction in other domains, leading to various techniques that have drawn
attention (Zhang et al., 2019; Pan et al., 2025; Kumar, Khalid & Kim, 2023). However, the
direct applicability of these methods to DMF systems remains uncertain. Unlike
mechanical or large-scale systems, DMF devices operate on a microscale. This introduces
different physical constraints, including unique droplet actuation mechanisms and
sensitivity to contamination. Furthermore, fault observability is often limited. Therefore,
direct adoption of such methods without domain-specific validation may not yield reliable
results.

Recognizing the need for a domain-specific solution, this study proposes a reliability
and lifetime prediction framework for DMF systems. A hybrid Attention-based
bidirectional long short-term memory with eXtreme Gradient Boosting (BiLSTM-
XGBoost) model is used for this purpose. The method is designed to capture the long-term
trends of the equivalent capacitance values of the driving electrodes. This enables real-time
health monitoring and facilitates proactive adjustment of control strategies based on
predictive insights. The proposed approach leverages bidirectional long short-term
memory’s (BiLSTM) temporal modeling, an attention mechanism, and eXtreme Gradient
Boosting’s (XGBoost) classification strength. This enhances the accuracy and
interpretability of system state assessments. This research offers a novel pathway for
improving DMF system operational reliability. Its insights could also be extended to fault
prediction in other complex microsystems.

DRIVING AND DETECTION MECHANISM OF DMF SYSTEM
BASED ON EWOD
At this stage, two main chip structures exist for DMF systems based on EWOD: closed and
open. In the open structure, the droplet is directly placed on a single substrate integrating
both drive and ground electrodes. This design can simplify integration and fabrication.
However, open systems present challenges: droplets are more vulnerable to environmental
influences during operation, and complex multi-droplet manipulation, such as splitting
and generation, is harder to achieve (Wang & Jones, 2015). Therefore, more research teams
focus on the closed structure, which generally offers enhanced control and functionality for
complex droplet operations (Abdelgawad, 2020; Xing et al., 2021).
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Figure 1 shows a schematic of a bipolar plate-enclosed DMF chip. In this structure, the
top substrate is a continuous transparent conductive indium tin oxide (ITO) layer that acts
as the ground electrode. The bottom substrate contains patterned drive electrodes
fabricated by photolithography, typically in a square shape. Both the upper and lower
substrates are coated with a dielectric layer and a hydrophobic layer. After device
fabrication, droplets are injected into the space between the two substrates. While air is
usually used as the surrounding medium, some teams fill this space with a liquid
immiscible with the droplet as a lubricant to reduce the required driving voltage.

When the drive electrode is not activated, the droplet remains at rest in an ellipsoid
shape. Once a neighboring electrode is activated, the solid–liquid interfacial energy
decreases. This leads to a smaller contact angle and an asymmetric droplet shape, creating
a pressure difference that drives the droplet toward the activated electrode.

According to the principle of electrowetting, capacitance is a key property in EWOD
systems (Luo et al., 2018). The bipolar plate DMF chip can be modeled as an equivalent
capacitive system. For a basic driving unit, the equivalent circuit includes three main
parallel capacitance components. First, the dielectric and hydrophobic layers on the
bottom plate form one equivalent capacitance. Second, the hydrophobic layers on both
plates in contact with the droplet form another, but with higher capacitance. In a series
configuration, the voltage drop across the upper layer’s hydrophobic capacitance is
minimal. Most of the voltage drops across the lower layer. Thus, in the equivalent model,
the droplet serves as the ground, and the surrounding medium forms a capacitor.

As the electrode surface degrades, the equivalent capacitance decreases. Severely
damaged may cause capacitance to drop sharply. By monitoring the capacitance at both
ends of a drive electrode, the electrode’s health status can be assessed.

Based on more than 100,000 droplet-driving operations across 20+ EWOD devices, we
classify the degradation into three stages. When the equivalent capacitance remains at
80–100% of its original value, the droplet can usually be transported successfully in a single
attempt, with only 2–3 V above the initial driving threshold. This is the normal
degradation period. When the capacitance drops to 50–80%, the droplet often requires 3–5
repeated driving attempts or an increase of 3–5 V to move successfully. This is the
recession period. When the capacitance is below 50%, a much higher voltage is needed. In
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Microdroplets

ITO ground electrode

Hydrophobic layer

Dielectric layer
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driving electrode

Driving voltage

V

Figure 1 Schematic diagram of the application mechanism of DMF system with bipolar plate
closure. Full-size DOI: 10.7717/peerj-cs.3037/fig-1
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many cases, the droplet becomes stuck on the electrode and fails to move. This stage is
defined as the damage period.

RELIABILITY ASSESSMENT AND FAILURE TIME
PREDICTION MODEL BASED ON BILSTM-XGBOOST
MODEL
Modelling composition
The reliability assessment and failure time prediction model in this study is based on a
BiLSTM-XGBoost architecture. It combines BiLSTM networks (Zhang et al., 2015) with
the XGBoost algorithm (Chen & Guestrin, 2016). The goal is to leverage the bidirectional
sequence modeling capability of BiLSTM and the efficient learning performance of
XGBoost to improve the overall accuracy and robustness of predictions. Specifically, the
time-series features extracted by the BiLSTM are further processed by XGBoost to enhance
the model’s ability to analyze temporal patterns.

Long short-term memory (LSTM) is a specialized type of recurrent neural network
(RNN) designed to address the vanishing and exploding gradient problems. It can
effectively capture long-term dependencies in time-series data (Hochreiter & Schmidhuber,
1997). In the context of health state recognition and failure time prediction, LSTM
networks are widely used to extract time-dependent features from operational data and to
track temporal changes (Nguyen et al., 2021; Zhang et al., 2020; Yang & Kim, 2018).

An LSTM architecture can be represented as the architecture in Fig. 2, where Hn is the
output value or hidden state, Cn is the current value of the storage unit and Xn is the input
value.

The input sequence of an LSTM can be shown as x1; x2; . . . ; xtf g, where the subsequent
xt ∈ RK is a k-dimensional vector associated with the t-th time interval. In LSTM, the
equation for the gate is

ft ¼ r Wf ht�1; xt½ � þ bf
� �

(1)

it ¼ r Wi ht�1; xt½ � þ bið Þ (2)

Ot ¼ r Wo ht�1; xt½ � þ boð Þ: (3)

Here, the forgetting gate ft , it and Ot are the forget, input, and output gates, respectively.
These gates regulate the flow of information into and out of the memory cell. The forget
gate decides which information from the previous state should be discarded. The input
gate determines which new information to store. The output gate controls what
information to pass on to the next layer or output. The parameters (weights and biases)
governing these gates are learned automatically during the model training process.

The cell state is updated using a candidate value ~Ct computed as:

~Ct ¼ tanh Wc ht�1; xt½ � þ bcð Þ (4)

Ct ¼ ftCt�1 þ it ~Ct (5)

ht ¼ Ottanh C0
tð Þ (6)

where Wc is a candidate vector weight; bc is a candidate vector deviation; Ct is a current
candidate vector is the updated value of the candidate vector at time t.
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Meanwhile, the candidate vector (Ct) plays a crucial role in capturing and updating
information. It is computed by combining the current input (Ct) and the previous hidden
state (ht�1) using the candidate vector weights (Wc) and a deviation term (bc). The
candidate vectors represent information that can be merged into the cell state. By applying
an activation function to the candidate vector, an updated value of the candidate vector is
obtained, denoted as ~Ct . This updated value helps to compute the new cell state and affects
the flow of information within the LSTM cell. The candidate vector weights (Wc) and the
bias term (bc) provide parameters for the model to learn how to integrate the new input
information with the existing state.

However, traditional RNNs, including standard LSTMs, process information only in the
forward direction. However, in many prediction tasks, future context is also valuable.
Allowing the model to learn the prediction task through both future and past information
can get more powerful features to improve the model’s generalization in the prediction
task. To incorporate both past and future information, Schuster & Paliwal (1997) proposed
the bidirectional RNN. Graves & Schmidhuber (2005) extended this idea to LSTM,
resulting in the BiLSTM architecture (see Fig. 3), which combines forward and backward
LSTM outputs to generate a richer representation of the input sequence.

To further enhance the model’s ability to capture contextual relationships, we introduce
an attention mechanism. The attention layer allows the model to selectively focus on
important parts of the sequence. Originally proposed for computer vision (Mnih et al.,
2014), the attention mechanism has since been widely adopted in natural language
processing (Bahdanau, Cho & Bengio, 2014; Luong, Pham & Manning, 2015) and
time-series forecasting tasks (Lu et al., 2024; Che et al., 2024). As illustrated in Fig. 4, the
attention layer assigns dynamic weights to different input elements, enabling the model to
prioritize relevant temporal features.

XGBoost is a powerful decision-tree-based algorithm designed for classification and
regression tasks. Its fast learning speed and strong generalization make it an effective
complement to neural networks. XGBoost enhances the overall prediction performance
without significantly increasing computational cost, and has demonstrated strong results
across various domains (Zhang, Jia & Shang, 2022; Yang et al., 2023).

Figure 2 LSTM neural network structure. Full-size DOI: 10.7717/peerj-cs.3037/fig-2
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Many recent studies (Lou et al., 2024; Javeed et al., 2023; Chang et al., 2023) have shown
that BiLSTM-XGBoost models consistently outperform single-model approaches in both
accuracy and robustness. Therefore, in this work, we adopt the BiLSTM-XGBoost
architecture to analyze the time-series capacitance data of EWOD-based DMF devices,
aiming to evaluate reliability and predict remaining useful life (RUL).

Forecasting process
The state evaluation process of the DMF device is shown in Fig. 5.

The following steps are mainly included in the evaluation process:

1. Data preprocessing: firstly, real-time capacitance values of DMF devices are collected,
and the data are subjected to preprocessing operations such as data cleaning, denoising,
and normalization to ensure the quality and consistency of the data.

We first use the weighted moving average filtering method to remove the high and
low-frequency noise in the original time domain data to improve the smoothness and

Figure 3 Bi-LSTM neural network structure. Full-size DOI: 10.7717/peerj-cs.3037/fig-3

Figure 4 Attention mechanism. Full-size DOI: 10.7717/peerj-cs.3037/fig-4
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accuracy of the data, thus accelerating the speed of model convergence. The weighted
sliding average filtering method is shown in Eq. (7).

yi ¼
PN

k¼1 wky iþkð Þ
� �

PN
k¼1 wk

� � : (7)

In Eq. (7), yi is the original time-domain data, yi is the filtered data; wk is the linear
weight coefficient, whose expression is shown in Eq. (8).

wk ¼ N þ 1� K: (8)

In order to eliminate the interference of magnitude and order of magnitude on the
model training results, and at the same time speed up the model convergence, we need to
normalize the filtered data. The normalization process is shown in Eq. (9).

Figure 5 Health state assessment process for DMF devices.
Full-size DOI: 10.7717/peerj-cs.3037/fig-5
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x̂ ¼ x � xmin

xmax � xmin
: (9)

In Eq. (9), x̂ is the normalized data, while x is the original monitoring data, xmax and xmin

are the maximum and minimum values of the monitoring data, respectively.
To cope with the demand of predicting long-step time series and avoid the model using

shortcut learning to fit the curve, a more challenging pre-training task needs to be
constructed. As shown in Fig. 6, a shifted-window approach is used to construct the RNN

Figure 6 Shifted-window methods for constructing RNN data structures.
Full-size DOI: 10.7717/peerj-cs.3037/fig-6

Figure 7 Pre-train vs. predict process. Full-size DOI: 10.7717/peerj-cs.3037/fig-7
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data structure, which slices the time series into a set of 50 data points as input, and this is
used to predict the latter set of time series with a step size of 25.

2. Model training: as shown in Fig. 7 after inputting the training set to the BiLSTM model
in the pre-training stage, key time series features are extracted to derive the short-term
and long-term dependence of the capacitance values of the DMF devices at different
times and the extracted features are transformed into the time series to be predicted by
the multilayer perceptron (MLP). After pre-training the BiLSTM model, the fully
connected layer used to fit the time series is removed and the data features learned by
the BiLSTM in the training set are fed into the XGBoost model for further fitting and the
output of the XGBoost model is used as the final prediction result.

3. Time series prediction: Use the BiLSTM-XGBoost model to predict the future trend of
the capacitor.

4. Reliability assessment and remaining life prediction: Based on the results predicted by
the BiLSTM-XGBoost model, the DMF devices are assessed for reliability and predicted
for failure time. The current health status of the device is judged by analyzing the
sequence characteristics of the predicted values and combining them with the definition
of the device’s operating state. If the device is in the decline phase of its life cycle, the
remaining life of the device is predicted.

EXPERIMENTS AND ANALYSES
DMF device fabrication for experiments
In this study, we fabricated the EWOD-based DMF devices required for this research in a
clean laboratory using micromechanical technology processes. To simplify the process and
time for fabricating the chip, we spin-coated 1,200 nm thick Teflon AF1600 material on the
surface of the ITO layer of the upper and lower pole plates of the device, which serves as
both the dielectric and hydrophobic layers of the device. We used SU-8 photoresist as a
support wall for the top and bottom polar plates of the EWOD device to keep enough space
for droplet movement between the top and bottom polar plates of the EWOD device. The
structural parameters of the EWOD device used for the experiments in this study are
shown in Table 1. The droplet volume is about six µL, and the horizontal diameter of the
droplet on the EWOD device is about 3.5 mm. The DMF device and the external drive
control system are connected and communicated through a piece of PCB copper foil. Each
drive electrode can be controlled by a separate drive control port (which can output
30–60 V).

Data set description and analysis
In this study, experimental data comprising capacitance values from the EWOD
device were collected using the equivalent capacitance acquisition system previously
proposed by the research team (Luo et al., 2018). This dataset is publicly available on
Figshare at https://doi.org/10.6084/m9.figshare.28941695. To collect this data and
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investigate the model’s performance under various operating conditions, different driving
voltages (45, 70, 90 V) were applied to actuate the droplets back and forth between the two
driving electrodes on the EWOD device shown in Fig. 8.

The system collects and records the current capacitance value after each drive. Each
driving voltage drove the droplet 2,000 times (1,000 times for each of the two electrodes)
on three completely independent EWOD devices, and a total of 1,000 capacitance value
data were obtained for each group, for a total of 6 groups. The equivalent capacitance
values of 18 groups (45, 70, 90 V) of driving electrodes were finally obtained as
experimental data input to the proposed prediction model, as shown in Fig. 9, and for the
six groups of data for each voltage, the number of driving times as the x-axis and the
capacitance values as the y-axis is labeled as data1–data6, respectively.

Figure 9 shows that the capacitance value of the drive electrode decreases overall with
the increase of the number of drives in multiple experiments, and the multiple drives lead
to the aging and depletion of the capacitance of the drive electrode, and the decrease of the
capacitance value reflects the gradual decrease of the reliability of the DMF system with the
increase of the operation time. For different driving voltages, due to the inconsistent trend
of device performance degradation, it is necessary to conduct independent experiments for
different driving voltages separately and examine the prediction performance of different
prediction models under different driving voltages, to determine the optimal prediction
scheme.

Figure 8 The droplet travels back and forth between the two driving electrodes.
Full-size DOI: 10.7717/peerj-cs.3037/fig-8

Table 1 Parameters of DMF devices for experiments.

Device parameters Value

Drive electrode shape Square

Drive electrode size 3 mm

Drive electrode pitch 50 µm

Distance between the upper and lower plates of the device 1.5 mm

Diameter of vertical surface of droplet in static state 3.5 mm
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Figure 9 Six sets of full-life capacitance variation data at three driving voltages: (A) 45 V driving
voltage; (B) 70 V driving voltage; (C) 90 V drive voltage. Full-size DOI: 10.7717/peerj-cs.3037/fig-9
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In the time series prediction stage, we select the time series data of the capacitance value
as the sample input to predict the future trend of the capacitance value of the device.

Model training
For each driving voltage, we select the first four of the six experimentally measured full-life
data (data1–data4) as the training set, the fifth data (data5) as the cross-validation set, and
the sixth data (data6) as the test set. After dividing the training, cross-validation, and test
sets, the original time-domain signals are denoised and normalized according to the
method in “Data Set Description and Analysis”. The RNN model data structure is
constructed. Then, the processed training set is input into the BiLSTM model for training,
where the hyperparameters of the BiLSTM model are iterated by the cross-validation set
using the grid search method to find the optimal combination.

In the model training phase, three commonly used model weight optimization
algorithms are Adaptive Moment Estimation (ADAM) (Kingma & Ba, 2014), stochastic
gradient descent with momentum (SGDM), and root mean square propagation
(RMSprop), in this study, we use these three optimization algorithms to conduct five
experiments respectively, and the results of the root mean square error (RMSE) of the three
optimization algorithms are shown in Table 2. Among the three optimization algorithms
tested (SGDM, Adam, and RMSprop), Adam generally yielded the smallest RMSE across
our experiments. Therefore, we used the Adam optimizer for gradient optimization to
obtain the optimal model parameters in this experiment. Therefore, in this experiment, we
use the Adam optimizer for gradient optimization to obtain the optimal model parameters
it can be seen that among the three optimization algorithms, the RMSE of Adam and
RMSprop is significantly smaller than that of SGDM. Although Adam and RMSprop have
their own advantages and disadvantages in many experiments, in general, Adam has the
smallest RMSE when it is used as an adaptive optimization algorithm. Therefore, in this
experiment we use the Adam Optimizer for gradient optimization to obtain the optimal
model parameters.

After training the BiLSTM model, we input the feature values extracted from the
BiLSTM model into the XGBoost model. Similarly, the hyperparameters of the XGBoost
model are iterated from the cross-validation set using the grid search method, and the final
iterated parameter settings are shown in Table 3.

Table 2 RMSE of the three optimization algorithms.

Optimizer Adam SGDM RMSprop

First experiment 0.5027 1.2362 0.5285

Second experiment 0.5192 1.2329 0.5317

Third experiment 0.4936 1.2196 0.5178

Fourth experiment 0.5560 1.2667 0.5238

Fifth experiment 0.4399 1.2631 0.5050

Note:
Adaptive Moment Estimation (Adam); stochastic gradient descent with momentum (SGDM); root mean square
propagation (RMSprop).
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In the model testing phase, the processed data6 is input into the already trained
BiLSTM-XGBoost model to predict the time series with a step size of 50, and the predicted
value is compared with the target value, and the fitting results of the three experiments are
shown in Fig. 10, where the red curve represents the target value of the model, and the blue
curve represents the predicted value of the model.

It can be seen that the prediction results of the BiLSTM-XGBoost model for the trend of
future changes in capacitance values are somewhat interpretable and successfully predict a
portion of the future trend of capacitance changes, e.g., in the curves of Fig. 10A, where the
number of driving times is about 590 times or so and about 780 times or so, and in the
curve of Fig. 10B where the number of driving times is about 420 times or so. The
prediction models both predict that the driving voltage will steeply drop in the future.
Although the actual steep drop in voltage occurs later than predicted, this phenomenon
still has a positive significance for correctly evaluating the state of the device compared to
conventional reliability assessment methods.

Therefore, we can assume that the model has successfully captured the key features in
the data in this dataset, rather than just simply fitting a curve. Furthermore, model
interpretability, enhanced by the attention mechanism, provides valuable insight into the
model’s focus, a crucial aspect in applying AI for engineering predictions (Hu et al., 2024;
Xie et al., 2024) shown in Fig. 11, visualizing the attention weights reveals that the model
tends to assign higher attention scores to earlier time steps, especially those with sudden
fluctuations or significant changes. These regions often correspond to early signs of system
degradation. In addition, the BiLSTM-XGBoost model fits the trend of the sample
parameters better, and its output results are more consistent with the target values.
Therefore, the model calculation results are highly credible as predictive values, providing
valuable reference data for the later stages of reliability and life testing and evaluation
(Hu et al., 2024).

According to the output of the BiLSTM-XGBoost model, we can make a reliability
assessment of the device, following the previous definition of the operating state of the
DMF device, if the device is judged to be in the normal wear and tear period, it means that
the device is in the early part of its life cycle, the performance of the device is slowly
declining, but does not affect the normal use of the device, so we do not need to take
corresponding measures, we only need to continue to monitor the device Therefore, we do

Table 3 XGBoost parameter settings.

Parameter name Setting result

learning_rate 0.05

n_estimators 700

max_depth 6

min_child_weight 1

Subsample 0.8

colsample_bytree 0.8
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Figure 10 Model fitting results for three driving voltages: (A) 45 V driving voltage; (B) 70 V driving
voltage; (C) 90 V drive voltage. Full-size DOI: 10.7717/peerj-cs.3037/fig-10
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not need to take corresponding measures, just need to continuously monitor the device
status; if the device is judged to be in the decline period, when the device performance
decreases at an increased rate, then we need to pay closer attention to the status of the
device and take some measures, such as lowering the voltage or changing the droplet
movement path to prevent it from getting stuck on specific electrodes. At the same time,
we need to predict the remaining lifetime of the device in conjunction with the damage
period threshold, to replace the device promptly, to minimize the loss caused by the
sudden failure of the device.

Comparative analysis of LSTM-XGBoost model with commonly used
timing prediction methods
To further validate the effectiveness and superiority of the BiLSTM-XGBoost combined
prediction model proposed in this study, we set up other schemes for comparative analysis
with the method proposed in this study. In this experiment, the BiLSTM model,
XGBoost model, BiGRU model, and BiGRU-XGBoost model were used for comparison.
Among them, the comparison using the BiLSTM model, XGBoost model, and
BiLSTM-XGBoost model can prove whether the combined model has a better
performance relative to a single model in this experiment. Gated recurrent unit (GRU) is a
recurrent neural network that invokes an update gate and reset gate to control the
information update and is simpler than the LSTM model (Chung et al., 2014). To
investigate whether the BiLSTM model has better performance than the BiGRU model in
this experiment, we use the same idea to construct the BiGRU model and use the same
attention-based architecture for fair comparison.

Figure 11 Visualization of attention weights feature map with the corresponding input sequence. Full-size DOI: 10.7717/peerj-cs.3037/fig-11
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To accurately assess the predictive performance of the model, we use four key metrics to
make a comprehensive assessment of the reliability of the model, and these assessments are
as follows:

Mean absolute percentage error (MAPE):

eMAPE ¼ 100%
m

Xn
i¼1

x ið Þ � y ið Þ
y ið Þ

����
���� (10)

Root mean square error (RMSE):

eRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xn
i¼1

x ið Þ � y ið Þð Þ2
s

(11)

Mean absolute error (MAE):

eMAE ¼ 1
m

Xn
i¼1

y ið Þ � x ið Þj j (12)

R-squared factor (R-squared):

R2 ¼ 1�
Pn

i¼1 x ið Þ � y ið Þð Þ2Pn
i¼1 y ið Þ � �y ið Þð Þ2 (13)

Equations (10), (11), (12), and (13) represent the training set size, the first prediction
value in the training set, and the label of the first data in the training set. Based on the
above formulas, the results of the comparative analysis of the comprehensive evaluation of
BiLSTM, BiLSTM-XGBoost, XGBoost, BiGRU, and BiGRU-XGBoost models are shown in
Tables 4, 5, and 6.

Evaluation results across the tested driving voltages (Tables 4, 5, and 6) reveal distinct
model performances. At the higher voltages of 70 V and 90 V, the BiLSTM-XGBoost
model consistently demonstrates superior overall prediction performance. However, the
scenario at 45 V presents a more complex picture. At this voltage, both the BiGRU and
BiLSTM-XGBoost models exhibit competitive performance, each showing respective
advantages in different evaluation metrics. Notably, at this same 45 V, the
BiGRU-XGBoost model’s performance is unexpectedly poorer than that of the standalone
BiGRU model, indicating a specific degradation for the hybrid approach under this

Table 4 Comparison of test set model evaluation at 45 V drive voltage.

Model MAPE RMSE MAE R-squared

BiLSTM 1.6087 0.4147 0.2422 0.9934

BiLSTM-XGBoost 1.6464 0.3667 0.2557 0.9949

XGBoost 1.8783 0.5055 0.2957 0.9903

BiGRU 1.5426 0.3685 0.2303 0.9948

BiGRU-XGBoost 1.7197 0.4172 0.2651 0.9933

Note:
Mean absolute percentage error (MAPE); root mean square error (RMSE); mean absolute error (MAE); R-squared factor
(R-squared).
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condition. Despite the particular characteristics observed at 45 V, the BiLSTM-XGBoost
model generally achieves the most favorable prediction results across the full range of
tested voltages.

For the experimental results, the overall test accuracy at 45 V driving voltage is higher
compared to 70 V, 90 V driving voltage, and it can be assumed that the difficulty of
predicting 45 V driving voltage is lower, but the BiGRU model performs better under the
prediction task for this driving voltage, which we believe is mainly due to its architectural
simplification, which allows it to have higher accuracy in simple prediction tasks. However,
this also means that the BiGRU model has a relatively weak feature extraction capability,
which does not allow XGBoost to learn deeper features from the extracted ones. As a result,
the prediction metrics of the BiGRU model are lower than those of the BiLSTM-XGBoost
model in both the 70 and 90 V driving voltage prediction tasks. Comprehensively
comparing the evaluation results of the BiLSTM model, the XGBoost model and the
BiLSTM-XGBoost model, it can be seen that the predictive indexes of the
BiLSTM-XGBoost model are better than the single model as a whole under the Stacking’s
methodology, which provides more informative data for the device’s subsequent reliability
evaluation and lifetime prediction.

To verify the effectiveness of each part of the BiLSTM pre-trained model, a series of
ablation experiments were conducted, and the specific results are shown in Tables 7, 8, and
9. The experiments show that the prediction model using both the two-layer BiLSTM
model and the Attention layer achieves the best results in the prediction tasks for all three
driving voltages. This indicates that with sufficient data, the models can extract more

Table 5 Comparison of test set model evaluation at 70 V drive voltage.

Model MAPE RMSE MAE R-squared

BiLSTM 6.7371 1.0729 0.6963 0.9724

BiLSTM-XGBoost 4.5398 0.6897 0.4833 0.9864

XGBoost 5.0226 0.8664 0.6070 0.9820

BiGRU 5.7105 1.0623 0.6401 0.9730

BiGRU-XGBoost 6.2097 1.0173 0.6376 0.9752

Note:
Mean absolute percentage error (MAPE); root mean square error (RMSE); mean absolute error (MAE); R-squared factor
(R-squared).

Table 6 Comparison of test set model evaluation at 90 V drive voltage.

Model MAPE RMSE MAE R-squared

BiLSTM 4.4718 0.6996 0.4740 0.9860

BiLSTM-XGBoost 4.1003 0.6181 0.4424 0.9891

XGBoost 4.2479 0.6711 0.4638 0.9871

BiGRU 4.5398 0.6897 0.4833 0.9864

BiGRU-XGBoost 4.3944 0.6781 0.4690 0.9868

Note:
Mean absolute percentage error (MAPE); root mean square error (RMSE); mean absolute error (MAE); R-squared factor
(R-squared).
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Table 7 Evaluation of ablation experiment results at 45 V driving voltage.

Model MAPE RMSE MAE R-squared

Attention+BiLSTM (3-layer) 2.0548 0.4843 0.3111 0.9910

Attention+BiLSTM (2-layer) 1.6464 0.3667 0.2557 0.9949

Attention+BiLSTM (1-layer) 2.0464 0.4932 0.3276 0.9907

BiLSTM (2-layer) 1.7825 0.4617 0.2834 0.9919

BiLSTM (1-layer) 2.0077 0.4676 0.3205 0.9917

Attention (2-layer) 1.9823 0.4514 0.3172 0.9922

Attention (1-layer) 1.9777 0.4330 0.2978 0.9928

LSTM (2-layer) 2.3824 0.5456 0.3700 0.9886

LSTM (1-layer) 2.3244 0.5829 0.3748 0.9870

Note:
Mean absolute percentage error (MAPE); root mean square error (RMSE); mean absolute error (MAE); R-squared factor
(R-squared).

Table 8 Evaluation of ablation experiment results at 70 V driving voltage.

Model MAPE RMSE MAE R-squared

Attention+BiLSTM (3-layer) 6.0085 1.0204 0.6387 0.9751

Attention+BiLSTM (2-layer) 4.5398 0.6897 0.4833 0.9864

Attention+BiLSTM (1-layer) 6.9253 1.1823 0.7266 0.9665

BiLSTM (2-layer) 5.6568 1.0486 0.6103 0.9737

BiLSTM (1-layer) 5.0226 0.8664 0.6070 0.9820

Attention (2-layer) 7.3565 1.0842 0.7621 0.9718

Attention (1-layer) 7.1298 1.2212 0.7776 0.9643

LSTM (2-layer) 6.6678 1.0655 0.6818 0.9728

LSTM (1-layer) 6.6789 1.0847 0.6591 0.9718

Note:
Mean absolute percentage error (MAPE); root mean square error (RMSE); mean absolute error (MAE); R-squared factor
(R-squared).

Table 9 Evaluation of ablation experiment results at 90 V driving voltage.

Model MAPE RMSE MAE R-squared

Attention+BiLSTM (3-layer) 4.5885 0.6549 0.4842 0.9877

Attention+BiLSTM (2-layer) 4.1003 0.6181 0.4424 0.9891

Attention+BiLSTM (1-layer) 4.8613 0.7314 0.5315 0.9847

BiLSTM (2-layer) 4.7629 0.7369 0.5186 0.9845

BiLSTM (1-layer) 4.1646 0.6532 0.4515 0.9878

Attention (2-layer) 5.6472 0.8201 0.5993 0.9808

Attention (1-layer) 5.6194 0.8279 0.6040 0.9804

LSTM (2-layer) 4.6063 0.6988 0.5002 0.9860

LSTM (1-layer) 4.7337 0.7509 0.5246 0.9839

Note:
Mean absolute percentage error (MAPE); root mean square error (RMSE); mean absolute error (MAE); R-squared factor
(R-squared).
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generalized features as the complexity of the pre-trained model architecture increases.
These features allow XGBoost to predict curves with higher accuracy and reduce the risk of
overfitting. Thus, the features extracted by our proposed attention-based BiLSTM
architecture enable the XGBoost model to have better performance in the prediction task.

Failure time prediction
According to our defined prediction flow, the remaining lifetime of the EWOD device
is predicted when it is in its decline period. This prediction uses the trend of the
device capacitance predicted by the BiLSTM-XGBoost model. It is combined with the
DMF device damage-period thresholds defined in the previous section. We define the
first time that the device capacitance value falls below the defined damage period threshold
as a sign of device damage. The predicted and actual results are shown in Table 10.

From the table, it can be seen that the prediction results using the BiLSTM-XGBoost
model are able to predict the occurrence of failures in advance. The model can make
predictions of possible future failure times even when the device is operating in the
recession period. Regardless of the driving voltage used, there is a small relative error
between the prediction results and the actual values, showing high prediction accuracy.

REACH A VERDICT
The attention-based BiLSTM-XGBoost model constitutes a highly advanced analysis tool
for DMF systems. It combines the neural network structure of Attention-based BiLSTM
with advanced machine learning techniques from XGBoost. This combination provides a
new methodology for reliability assessment and lifetime prediction of DMF systems. It
leverages BiLSTM’s ability to deeply mine complex patterns and long-term dependencies
in time series data. Simultaneously, it utilizes XGBoost’s powerful data processing and
efficient learning mechanisms. The model not only accurately predicts possible failure time
points and types, but also provides an accurate estimation of the system’s overall lifetime.

The model’s application holds significant value. It provides a scientific platform for
research teams and enterprises. This platform can significantly improve the efficiency of
operation and maintenance management and enhance prediction accuracy for DMF
systems. By predicting device reliability and lifetime, operators can schedule usage more
scientifically. This helps reduce unnecessary wear and tear. The study’s results can assist
research teams in making more accurate decisions during droplet manipulation. This will
reduce the occurrence of failures in complex DMF applications (e.g., droplets stuck in a
certain path) and improve overall operational efficiency and productivity. Additionally, the

Table 10 Remaining life prediction of DMF devices at three driving voltages.

Voltage Predicted number of damaged drives Actual number of damaged drives Error

45 V 754 775 2.785%

75 V 610 665 8.271%

90 V 602 595 1.163%
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predicted results can serve as input parameters for the control system’s droplet path
planning algorithm, improving its fault tolerance.

The model’s development and application provide valuable theoretical support and
practical experience for DMF system research and development. With continuous
technological progress and accumulation of data, the model’s predictive capability and
application range are expected to expand. This will enable it to better meet the demand for
reliability and life detection in complex industrial environments.

Future research will continue to explore model optimization. This includes parameter
tuning, improving feature selection, and evaluating a wider range of application scenarios.
These efforts aim to enhance the model’s generalization capability and practicality.
Additionally, more types of data inputs will be considered, such as image and sound
data. Incorporating these will further enhance the accuracy and efficiency of fault
detection.
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