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ABSTRACT

The rapid growth in wireless communication demands has led to a surge in research
on technologies capable of enhancing communication reliability, coverage, and
energy efficiency. Among these, uncrewed aerial vehicles (UAV) and reconfigurable
intelligent surfaces (RIS) have emerged as promising solutions. Prior research on
using deep reinforcement learning (DRL) to integrate RIS with UAV concentrated on
enhancing signal quality and coverage, but it ignored the challenges caused by
electromagnetic interference (EMI). This article introduces a novel framework
addressing the challenges posed by EMI from Gallium nitride (GaN) power
amplifiers in RIS-assisted UAV communication systems. By integrating DRL with
quadrature phase shift keying (QPSK) modulation, the proposed system dynamically
optimizes UAV deployment and RIS configurations in real-time, mitigating EMI
effects, improving signal-to-interference-plus-noise ratio (SINR), and enhancing
energy efficiency. The framework demonstrates superior performance, with an SINR
improvement of up to 6.5 dB in interference-prone environments, while achieving a
38% increase in energy efficiency compared to baseline models. Additionally, the
system significantly reduces EMI impact, with a mitigation rate of over 70%, and
extends coverage area by 35%. The integration of QPSK and DRL allows for real-time
decision-making that balances communication quality and energy consumption.
These results show the system’s potential to outperform traditional methods,
particularly in dynamic and challenging environments such as urban, disaster
recovery, and remote settings.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Networks and
Communications, Data Mining and Machine Learning
Keywords RIS, UAV communications, DRL, GaN power amplifier, EMI, Energy efficiency, QPSK

INTRODUCTION

The rapid growth in wireless communication demands has led to a surge in research on
technologies capable of enhancing communication reliability, coverage, and energy
efficiency (Mohsan et al., 2022; Aldaej, Ahanger ¢ Ullah, 2023; Alkanhel et al., 2023).
Among these, uncrewed aerial vehicles (UAVs) and reconfigurable intelligent surfaces
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Figure 1 Previous UAV-RIS assisted system. Full-size K&] DOT: 10.7717/peerj-cs.3031/fig-1

(RIS) have emerged as promising solutions (Bansal et al., 2023; Bithas et al., 2024; Emami,
2023). UAV's offer flexible and mobile platforms that provide line-of-sight
communication links, while RIS enables dynamic control over the wireless propagation
environment through phase shift adjustments (Wu et al., 2024; Cang et al., 2023; You et al.,
2023; Iqbal et al., 2023). However, the influence of electromagnetic interference (EMI)
generated by high-performance components, such as Gallium nitride (GaN) power
amplifiers, on these systems has yet to be fully explored (Javad-Kalbasi, Al-Abiad ¢
Valaee, 2023; Ji et al., 2023; Jiao, Xie ¢ Ding, 2022; Lahmeri, Kishk & Alouini, 2021;

Li et al., 2024).

This article focuses on investigating the influence of GaN power amplifier EMI on
the RIS-assisted UAV communication systems. Additionally, we propose a novel
framework that integrates deep reinforcement learning (DRL) with UAV-RIS
systems to mitigate the adverse effects of EMI while optimizing communication
parameters in real-time. By incorporating DRL, the UAVs and RIS can continuously
adjust their configurations based on environmental changes, such as varying
interference levels, user locations, and obstacles. The concept of UAV-RIS assisted system
is shows in Fig. 1.

The motivation behind this research stems from the need to address the challenges
posed by EMI in UAV-RIS communication systems, particularly EMI from GaN power
amplifiers. These high-power components, often used in amplifying signals, can generate
significant electromagnetic interference, adversely impacting wireless communication
performance (Nguyen et al., 2021, 2022; Pogaku et al., 2022).
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The primary objective of this study is to propose an optimized UAV-RIS
communication framework that leverages DRL to dynamically adjust UAV deployments
and RIS configurations, effectively mitigating the adverse impacts of GaN power
amplifier-induced EMI. Unlike conventional approaches that primarily focus on
improving coverage and signal strength, this framework actively targets EMI-induced
signal degradation, enhancing signal-to-interference-plus-noise ratio (SINR), energy
efficiency, and communication reliability in real-time.

The specific objectives of this research are as follows:

(a) To analyze the influence of GaN power amplifier EMI on UAV-RIS-assisted
communication systems

« Investigate how high-power GaN amplifiers introduce electromagnetic disturbances,
affecting SINR and overall communication reliability in UAV-RIS networks.

(b) To design a DRL-based optimization framework for real-time adaptation of UAV and
RIS parameters

o Develop a DRL model that dynamically adjusts UAV positioning and RIS phase shifts
based on environmental interference levels to maximize SINR and minimize EMI
effects.

(c) To integrate quadrature phase shift keying (QPSK) modulation for enhanced spectral
efficiency and interference resilience

« Employ QPSK to improve data throughput and signal robustness in
interference-prone environments, supporting stable communication links.

(d) To evaluate the proposed framework under various interference-prone scenarios

o Perform extensive simulations to validate improvements in SINR, energy efficiency,
EMI mitigation, and communication reliability compared to baseline UAV-RIS
systems.

(e) To demonstrate the scalability and adaptability of the framework in complex
communication environments

o Test the model’s performance in urban, rural, and disaster recovery scenarios where
EMI is prevalent, showcasing its adaptability to real-world conditions.

Although there has been extensive research on UAV and RIS technologies
independently, the combined effects of EMI from GaN power amplifiers on UAV-RIS
communication systems remain largely unexplored. Previous studies on integrating RIS
with UAVs using DRL focused on improving signal quality and coverage but did not
account for the challenges posed by EMI. This study addresses this gap by investigating the
combined effects of EMI and the mitigation strategies provided by DRL-optimized
UAV-RIS systems. This article makes the following contributions:

(a) A novel DRL-based framework that dynamically adapts UAV positions and RIS
configurations to mitigate the adverse effects of GaN power amplifier EMI on
communication performance.
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(b) An in-depth analysis of the influence of EMI on RIS-assisted UAV communication
systems, and how DRL can be used to optimize signal quality and energy efficiency in
real-time.

(c) Comprehensive simulation results show significant improvements in SINR, energy
efficiency, coverage, and latency in EMI-prone environments when using the proposed
DRL-based approach.

Despite the promising benefits of RIS and UAVs, dynamic control of RIS reflection
patterns and the real-time adjustment of UAV positions in the presence of EMI present
several challenges. The proposed DRL framework must operate within physical and
positional constraints to ensure stable communication links while optimizing energy
efficiency. Furthermore, GaN power amplifiers can introduce significant EMI,
necessitating intelligent strategies to mitigate its effects without compromising
communication quality. In summary, this article introduces a novel UAV-RIS
communication framework that uses DRL to mitigate the effects of GaN power amplifier
EMI, improving communication performance in dynamic and challenging environments.
By optimizing UAV and RIS configurations in real time, this research paves the way for
future developments in resilient and adaptive wireless networks.

LITERATURE REVIEW

The growing demand for enhanced wireless communication capabilities has led to the
exploration of RIS and their integration with UAVs for efficient and reliable
communication networks. The concept of RIS-assisted UAV communication has been
extensively studied to improve signal strength, reduce interference, and enhance
connectivity in various network settings. For instance, Mohsan et al. (2022) highlighted
current trends and challenges in massive networks, emphasizing the need for efficient
resource management strategies in RIS-assisted UAV systems. Similarly, Nguyen et al.
(2021) proposed a deep reinforcement learning-based approach for efficient resource
allocation in multi-UAV networks supported by RIS, demonstrating significant
improvements in network performance and resource optimization. Further research

by Ji et al. (2023) presented a deep reinforcement learning-based optimization for
UAV-non-orthogonal multiple access (NOMA) downlink networks, utilizing RIS to
enhance communication quality and manage interference. Puspitasari ¢ Lee (2023)
provided a comprehensive survey on the application of reinforcement learning techniques
for RIS in wireless communications, underscoring the importance of intelligent
decision-making in dynamic environments. Rahmatov ¢ Baek (2023) discussed current
research, challenges, and future trends in RIS-carried UAV communication, identifying
key areas for improvement, such as scalability and adaptive control mechanisms. In
addressing the security and privacy concerns associated with RIS-assisted UAV
communication, Iqbal et al. (2023) proposed a deep reinforcement learning-based resource
allocation framework for secure communication, emphasizing the integration of RIS to
enhance data protection. Nguyen et al. (2022) explored the potential of RIS-assisted UAV
communication for IoT applications, incorporating wireless power transfer and deep
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reinforcement learning to optimize energy efficiency and coverage. Javad-Kalbasi,
Al-Abiad & Valaee (2023) examined energy-efficient communication strategies for
RIS-assisted UAV networks, employing genetic algorithms to optimize resource allocation
and reduce energy consumption. In addition, Emami (2023) investigated the use of deep
reinforcement learning for joint cruise control and data acquisition in UAV-assisted
sensor networks, demonstrating the capability of RIS to enhance system efficiency. Bansal
et al. (2023) proposed a RIS selection scheme for UAV-based multi-user networks,
addressing challenges related to imperfect and outdated channel state information (CSI).
Pogaku et al. (2022) and Taimoor, Ferdouse ¢ Ejaz (2022) conducted a survey on
optimization techniques and performance analysis for UAV-assisted RIS systems,
providing valuable insights into the design and implementation of next-generation
wireless networks. The deployment of UAV-mounted RIS to enhance mobile edge
computing and optimize resource management has also been explored by various
researchers. You et al. (2023) utilized deep reinforcement learning to optimize UAV-D2D
communications in RIS-assisted networks, showing potential improvements in network
throughput and latency. Bithas et al. (2024) conducted a stochastic analysis of
UAV-assisted communications with RIS, focusing on shadowing effects and their impact
on network performance. Nguyen et al. (2021, 2022) highlighted the role of deep
reinforcement learning in optimizing UAV communications with RIS for IoT, underlining
the importance of intelligent control and adaptability. Khan et al. (2024, 2023b) presented
layered computing solutions that can be seamlessly integrated with RIS-assisted UAV
architectures to enable efficient offloading of computationally intensive deep learning
models. Moreover, recent studies have explored the use of advanced optimization
techniques to further enhance UAV-RIS communication systems. Wu et al. (2024)
employed a double deep Q-network (DDQN) approach for optimizing mobile edge
computing systems in UAV-mounted RIS networks. Alkanhel et al. (2023) integrated slime
mold optimization with deep learning for resource allocation in UAV-enabled wireless
networks, showcasing the potential of hybrid approaches to optimize performance.
Cang et al. (2023) proposed joint deployment and resource management strategies for
visible light communication (VLC)-enabled RIS-assisted UAV networks, emphasizing the
need for seamless integration of multiple communication technologies. Reinforcement
learning-based approaches continue to gain traction in optimizing RIS-assisted UAV
networks, with studies such as those by Wang et al. (2021) and Aldaej, Ahanger ¢ Ullah
(2023) focusing on multi-agent reinforcement learning for trajectory planning and
blockchain-enabled secure data transmission, respectively. The adoption of deep
bidirectional learning for improving outage probability in aerial RIS-assisted
communication systems has also been proposed by Rahman et al. (2024), highlighting the
role of advanced machine learning techniques in addressing reliability issues. Lahmeri,
Kishk ¢ Alouini (2021) provided a comprehensive survey on the application of artificial
intelligence in UAV-enabled wireless networks, emphasizing the integration of Al-driven
solutions for enhancing network management and performance. Zhou et al. (2022)
explored multi-agent deep reinforcement learning approaches for UAV-assisted fair
communication in mobile networks, addressing the need for equitable resource allocation
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and service quality. Li ef al. (2024) investigated block length allocation and power control
in UAV-assisted ultra-reliable low-latency communication (URLLC) systems using
multi-agent deep reinforcement learning, further advancing the capabilities of UAV-RIS
networks. Ji et al. (2023), Jiao, Xie ¢» Ding (2022) proposed a reinforcement learning-based
framework for joint trajectory design and resource allocation in RIS-aided UAV multicast
networks, demonstrating the potential of Al-driven optimization for enhancing network
efficiency and scalability. In addition, research studies (Khan et al., 2023a, 2022b, 2022a;
Du & Ma, 2024) highlighted how standardization efforts in cellular vehicle-to-everything
(C-V2X) and the exploration of WiFi-based V2X, PC-5, and DSRC solution approaches
are similarly shaping UAV communication frameworks that can benefit from RIS and
deep reinforcement learning.

EMI and signal quality in UAV-RIS systems

Improving signal quality through UAV-based optimizations traditionally focuses on path
planning, coverage extension, and signal amplification. In particular, DRL-based UAV
optimization strategies are designed to enhance line-of-sight (LoS) communication,
optimize trajectory planning, and adjust altitudes to maximize signal strength and
minimize path loss (Du ¢ Ma, 2024; Mahalle et al., 2024). These optimizations are
effective in increasing SINR by optimizing signal propagation paths and reducing
multi-path fading. However, enhancing signal quality alone does not inherently address
the challenges posed by EMI, which can significantly degrade communication reliability.
EM]I, particularly from high-power components like GaN power amplifiers,

introduces noise and signal distortions that disrupt phase alignment and amplitude
stability, directly affecting SINR regardless of path optimization or trajectory planning
(Du & Ma, 2024).

While conventional DRL-based UAV optimizations focus on enhancing LoS and
boosting signal strength, they are generally not equipped to counteract the impact of EMI.
Electromagnetic interference disrupts signal transmission through unanticipated noise
spikes and phase distortions, leading to packet losses and increased bit error rates (BER)
even in optimized path scenarios. Mahalle et al. (2024) demonstrated that shielding
techniques and adaptive filtering could reduce EMI-induced distortions, but these
methods are primarily static and lack real-time adaptability. Our approach introduces a
novel DRL-based adaptation mechanism that actively senses EMI fluctuations and
optimally adjusts both UAV positioning and RIS phase shifts to mitigate interference.
Unlike traditional optimization methods, this framework continuously learns and
adapts to changing interference patterns, ensuring both enhanced signal quality and
effective EMI mitigation in real-time. Table 1 shows the comparative analysis of
previous studies.

The existing research on RIS-assisted UAV communications using deep reinforcement
learning reveals notable advancements in optimizing resource allocation, energy efficiency,
and security across various applications. However, significant gaps remain in addressing
the real-time adaptability of these systems under dynamic environmental conditions and
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Table 1 Comparative analysis of previous studies on RIS and UAV-assisted communications.

Reference Key focus Methodology/Approach Findings/Contributions
Mohsan et al. (2022) Overview of trends in RIS-based Survey and trend analysis Identifies key challenges and potential solutions for
massive networks deploying massive RIS-assisted networks.
Bansal et al. (2023)  Optimization of RIS selection in Deep reinforcement learning for Improves downlink communication performance in
UAV-based multiuser networks RIS selection optimization multi-RIS networks with outdated CSI.
Bithas et al. (2024)  Joint optimization of control and  Deep reinforcement learning Enhances data acquisition efficiency and control in
data acquisition in UAV networks  approach UAV-assisted sensor networks.
Wu et al. (2024) Secure communication in RIS-aided Deep reinforcement learning for ~ Provides a model for enhancing security in
UAV networks secure resource allocation RIS-aided UAV communications using deep
learning.
Cang et al. (2023) Energy efficiency in RIS-assisted Genetic algorithm for optimizing Proposes an energy-efficient communication
UAV networks energy consumption strategy for UAV networks.
You et al. (2023) Optimization of RIS-based UAV Deep reinforcement learning with Proposes a model to enhance downlink efficiency
NOMA networks UAV and NOMA integration using UAVs in NOMA networks.
Igbal et al. (2023) Resource allocation in RIS-assisted Deep reinforcement learning for Demonstrates improved resource allocation and
multi-UAV networks resource optimization energy efficiency in multi-UAV networks.
Javad-Kalbasi, Integration of IoT with RIS-assisted Deep reinforcement learning Shows improvement in IoT connectivity and power
Al-Abiad ¢ Valaee ~ UAV communications efficiency using RIS-assisted UAV systems.
(2023)
Lahmeri, Kishk & Survey on reinforcement learning  Literature review Highlights the benefits and limitations of
Alouini (2021) applications in RIS reinforcement learning approaches in RIS.
Nguyen et al. (2021)  Challenges and trends in Analysis of current research and  Identifies key research gaps and suggests directions
RIS-assisted UAV communication  future directions for future work in RIS-UAV communication.

multi-user interference. Current studies primarily focus on theoretical and
simulation-based models, often overlooking practical deployment challenges such as
computational complexity and scalability in large-scale networks. Furthermore, there is
limited exploration into integrating advanced machine learning techniques for more
robust decision-making capabilities, particularly in heterogeneous network environments.
Addressing these gaps is essential for advancing the practical implementation and
effectiveness of RIS-assisted UAV communications.

MATERIALS AND METHODS

This section presents the methodology for addressing the influence of GaN power
amplifier EMI on RIS-assisted UAV communications, optimized using a DRL framework.
The methodology is divided into three main parts: (1) the system model for UAV-RIS-
assisted communication, (2) the influence of GaN power amplifier EMI on the system, and
(3) the proposed DRL-based optimization model for mitigating the effects of EMI.

System model: UAV-RIS-assisted communication

The system under consideration consists of multiple UAVs deployed to assist
communication between a base station (BS) and multiple ground users. RIS are installed to
enhance signal quality by reflecting and steering signals toward desired users, thus
improving signal strength, coverage, and overall communication quality.
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System setup
We assume a system with U UAVs, N ground users, and an RIS with K reflective elements.
The base station communicates with users through both direct links and reflected links via
RIS. UAVs serve as mobile relays, dynamically positioning themselves to maintain LoS
communication with users, while the RIS helps in optimizing the wireless propagation
environment by adjusting its phase shifts.

The received signal y; at the j-th user can be expressed as the sum of direct and reflected

signals:
U K

¥ = Z hyjs; + Z hi;xOksi + 1y (1)
=1 =1

where:

e s5; is the transmitted signal from the i-th UAV.

¢ h;; is the channel gain between the i-th UAV and the j-th user.

e hj;x is the channel gain between the i-th UAV, k-th RIS element, and j-th user.
* Oy represents the phase shift applied by the k-th RIS element.

e n; is the additive white Gaussian noise (AWGN) at the j-th user.

The simulations in this study assume a Rician fading model to represent the wireless
communication environment. This model is chosen because it accurately captures the LoS
and non-line-of-sight (NLoS) propagation characteristics typical of UAV-RIS-assisted
communication. The Rician model is parameterized with a K-factor, which indicates the
strength of the direct path relative to the scattered paths. For urban environments, a higher
K-factor is considered due to stronger LoS, while rural scenarios utilize a lower K-factor,
reflecting more scattered multi-path effects.

The objective is to optimize the phase shifts 6x and the UAV positions to maximize the
SINR for each user. The SINR for the j-th user, served by the i-th UAV, is defined as:

Py [y |”
No + >z Pun ‘hm,j|2 + L

SINR;; = )

where:

* Py, is the transmit power of the i-th UAV.
e Nj is the noise power.

o I;; is the interference from other communication links.

The simulation environment is designed to emulate real-world conditions across three
distinct environments: Urban, Suburban, and Rural. Each environment is parameterized to
reflect its unique signal propagation characteristics, interference levels, and fading
conditions. The main parameters for each environment are outlined as follows:
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Urban environment: Urban environments are characterized by dense infrastructure, high
EMI, and complex signal reflections. To model these conditions:

e UAV Altitude: 120 m
e Number of RIS Elements: 256
 Path Loss Exponent: 2.2

o Interference Power Threshold: High (due to dense electronic interference and reflective
surfaces)

K-factor for Rician Fading: 8
» Noise Power Spectral Density: —174 dBm/Hz
 Bandwidth: 20 MHz

These parameters account for the high-density building reflections and significant EMI
generated by urban technologies, impacting the SINR and energy efficiency of UAV-RIS
communications.

Suburban environment: Suburban regions have a mixed structure of buildings and open
spaces, resulting in moderate path loss and interference. The simulation settings are as
follows:

e UAV Altitude: 150 m
e Number of RIS Elements: 128
e Path Loss Exponent: 2.5

e Interference Power Threshold: Medium

K-factor for Rician Fading: 5
» Noise Power Spectral Density: —174 dBm/Hz
Bandwidth: 20 MHz

The moderate path loss exponent reflects the relatively open areas interspersed with
structures, providing a balanced setting for UAV path optimization and RIS adjustments.

Rural environment: Rural environments are characterized by open landscapes with
minimal infrastructure, resulting in lower EMI and greater reliance on LoS
communication. The parameters are defined as:

o UAV Altitude: 180 m
e Number of RIS Elements: 64
Path Loss Exponent: 3.0

o Interference Power Threshold: Low (minimal electromagnetic pollution)

K-factor for Rician Fading: 3
» Noise Power Spectral Density: 174 dBm/Hz
Bandwidth: 20 MHz
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Figure 2 Influence of GaN power amplifier EMI on UAV-RIS system.
Full-size K&l DOT: 10.7717/peerj-cs.3031/fig-2

The increased path loss exponent accounts for the longer distances between transmitters
and receivers, while the low EMI reflects the minimal electronic interference in rural
settings.

Channel model assumptions: All environments employ a Rician fading model to capture
both LoS and NLoS propagation. The K-factor varies to represent the strength of the direct
path relative to scattered paths, with urban areas having the highest K-factor due to dense
structures.

Additionally, QPSK modulation is utilized across all scenarios to enhance spectral
efficiency and improve signal robustness against EMI. DRL-based optimization
dynamically adjusts UAV altitudes and RIS phase shifts to maximize SINR and reduce
latency in response to environmental interference.

Influence of GaN power amplifier EMI on UAV-RIS system

GaN power amplifiers, commonly used in wireless communication systems due to their
high efficiency and power output, generate significant EMI that can degrade signal quality
and disrupt communication. The complete flow is shows in Fig. 2.

EMI modeling

The electromagnetic interference introduced by GaN power amplifiers affects both direct
and reflected communication links. We model the EMI power as Pgyy, which contributes
to the overall interference in the system. The received EMI power at the j-th user is
given by:

U
Pemiy = Z BijPcani 3)
i1
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where:

e Pgan,i is the EMI generated by the i-th UAV’s GaN power amplifier.

* [3;; is the interference factor that accounts for the propagation loss of EMI from the i-th
UAV to the j-th user.

This additional interference negatively impacts the SINR for each user. The modified
SINR considering GaN EMI becomes:
2
Py, b

2 (4)
No + Zm;ﬁi Py, ‘hm.j| + Lij + Pew,j

SINR; M =

QPSK is an efficient modulation technique widely used in wireless communication systems
to increase spectral efficiency and improve signal robustness. When integrated into
UAV-RIS communication systems, QPSK enhances the system’s ability to transmit more
data using the same bandwidth, which is critical in mitigating the effects of EMI generated
by GaN power amplifiers.

In this work, we integrate QPSK modulation into the UAV-RIS system to further
combat the adverse effects of EMI. QPSK offers the following advantages in this context:

 Improved spectral efficiency: QPSK allows for the transmission of two bits per symbol,
effectively doubling the data rate compared to binary phase shift keying (BPSK). This
results in higher throughput and improved communication performance, particularly in
environments where EMI is prevalent.

* Resilience to EMI: By modulating the phase of the carrier signal, QPSK can effectively
differentiate between signal components even when interference from GaN power
amplifiers is present. This helps in maintaining a reliable communication link in
challenging environments.

» Signal integrity: The modulation technique is less susceptible to signal degradation,

allowing for clearer and more reliable transmission even in the presence of
high-power EML

Incorporating QPSK into the system modifies the SINR calculation, as the system now
benefits from more robust signal transmission. The modified SINR expression, taking into
account both GaN EMI and QPSK modulation, is given by:

(Pui |hi; ’2)
(NO + >0 o M = i Py |hmj |2 + Tij + PEMy;)

SINRi‘?jPSK = (5)

where:

o PEM; ; represents the EMI power received by the j-th user due to the GaN power
amplifier.

o I; jis the interference from other users, and h; ; is the channel gain between the UAV-RIS
and the j-th user.
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Figure 3 Proposed DRL-based optimization model with QPSK.
Full-size K&l DOTI: 10.7717/peerj-cs.3031/fig-3

By integrating QPSK into the UAV-RIS system, the SINR can be enhanced, improving
signal quality and reducing the impact of EMI. This integration is particularly useful in
scenarios where the UAVs and RIS face severe interference from GaN power amplifiers,
enabling the system to maintain high data transmission rates and reliable communication
links. The combination of QPSK with UAV-RIS-DRL provides a robust solution for
optimizing spectral efficiency and mitigating the negative effects of EMI. Figure 3 shows
the QPSK-Enhanced SINR Calculation.

The challenge here is to mitigate the impact of Py using intelligent UAV placement
and RIS phase shift configurations.

Proposed DRL-based optimization model with QPSK

To dynamically optimize UAV positions and RIS configurations in the presence of EMI,
we propose a DRL approach. The DRL agent learns from the environment, continuously
adjusting UAV placements and RIS phase shifts to minimize the effect of EMI while
maximizing SINR and energy efficiency. Figure 4 below shows the proposed model flow.

DRL environment and state representation
The environment is defined by the positions of UAVs, users, and RIS, as well as the SINR
and EMI levels at each user. The state vector s; at time step t includes:

st = [UAV positions, RIS configurations, SINR levels, EMI levels]. (6)
Action space

The action space a; consists of UAV repositioning actions and RIS phase shift
adjustments:

a; = [AUAV position, A6y ] (7)
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where AUAYV position is the change in UAV coordinates and Ay is the adjustment of RIS
phase shift for element k.

Reward function
The reward function is designed to guide the DRL agent to improve SINR while
minimizing energy consumption and mitigating EMI. The reward at time step t is given by:

1 = wy - SINRuyg(t) — W, - Energy(t) — ws - EMI impact(t) (8)

where:

SINR,(t) is the average SINR across all users at time t.

L[]

Energy(t) is the total energy consumption of the UAV-RIS system at time t.

EMI impact(t) measures the influence of EMI on communication quality.

e W, Wy, w3 are weight factors balancing the SINR, energy, and EMI components of the
reward.

DRL algorithm

The DRL algorithm employed is a deep Q-network (DQN), which estimates the optimal
action-value function Q(s, a;) for each state-action pair. The DRL agent selects the action
a, that maximizes the expected cumulative reward:

Styat = [ZYk trk ’ St7at] 9)

where:

e vy is the discount factor that balances immediate and future rewards.

o T is the total time horizon.
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The DQN is trained by interacting with the environment, observing the reward r;, and
updating the Q-values using the Bellman equation:

Q(st;ar) < Qs ar) + « (rt +v max Q(s1,2") — Q(st, at)> (10)
where « is the learning rate.

System performance evaluation
To evaluate the proposed framework, we simulate various communication scenarios with
different levels of EMI. The system performance is measured in terms of:

o SINR: Improvement in SINR with and without the influence of GaN EMI.

o Energy efficiency: The trade-off between energy consumption and communication
quality.

Energy efficiency in the proposed DRL-based UAV-RIS framework is defined as the
ratio of effective data transmission (in bits) to the total energy consumption (in Joules)
across UAV and RIS operations. Mathematically, it can be expressed as:

_ Dtmnsmitted ( 11 )

n
Etotal

where Dyansmirted T€presents the total data successfully transmitted, and Ejy, is the
cumulative energy consumption of UAV propulsion, signal amplification, RIS phase
shifting, and DRL computation overhead. This formulation allows for assessing the
communication efficiency in terms of data throughput relative to energy expenditure,
making it particularly relevant in EMI-prone environments where signal correction and
adaptive adjustments are required.

o EMI impact mitigation: Reduction in the adverse effects of EMI on system
performance.

RESULTS AND DISCUSSION

This section presents a comprehensive analysis of the proposed UAV-RIS communication
system, optimized using DRL, under various conditions, including the influence of GaN
power amplifier EMI. The system’s performance is evaluated based on key metrics such as
SINR, energy efficiency, EMI impact mitigation, latency, and coverage area. The results are
compared with a baseline system without RIS and DRL optimization to highlight the
advantages of the proposed approach.

Signal-to-interference-plus-noise ratio

The SINR performance of the proposed system was evaluated under different
communication scenarios, with and without the influence of EMI. The DRL-optimized
UAV-RIS system demonstrated a significant improvement in SINR compared to the
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Table 2 SINR comparison of baseline and proposed UAV-RIS system under EMI.

User position Baseline system (dB) Proposed UAV-RIS system without EMI (dB) Proposed UAV-RIS system with EMI (dB)
User 1 154 22.3 20.5
User 2 16.1 23.0 21.1
User 3 17.8 24.5 22.2
User 4 14.9 21.8 19.7

baseline system, particularly in environments affected by EMI. Table 2 presents the SINR
values for both systems across various user positions.

From the results in Table 2, it is evident that the proposed UAV-RIS system consistently
outperforms the baseline system, even in the presence of EMI. The degradation in SINR
due to EMI is mitigated by the intelligent placement of UAVs and the dynamic adjustment
of RIS phase shifts using DRL. The average SINR improvement is approximately 6.5 dB
without EMI and 4.0 dB with EMI. The Comparison of baseline and proposed UAV-RIS
system in term of SINR under EMI is shown in Fig. 5.

Energy efficiency
The energy efficiency of the proposed system is compared with the baseline system in
Table 3. The energy efficiency of the UAV-RIS system is significantly higher,
demonstrating the ability to maintain robust communication while consuming less power.
The proposed UAV-RIS system achieves up to 38% higher energy efficiency compared
to the baseline, even in the presence of EMI. This is primarily due to the optimized UAV
positioning and the enhanced signal steering capabilities of the RIS, which reduces the
energy required for communication over longer distances and in high-interference
environments. The energy efficiency comparison is shown in Fig. 6.

EMI impact mitigation

The proposed system’s ability to mitigate the adverse effects of EMI is one of its key
strengths. Table 4 provides a quantitative analysis of EMI impact mitigation, showing the
percentage reduction in SINR degradation when EMI is present.

The results in Table 4 show that the proposed system reduces the EMI impact by over
70% compared to the baseline system, highlighting the effectiveness of DRL in mitigating
interference. Moreover, the Fig. 7 shows the EMI impact mitigation in baseline and
proposed system.

The proposed DRL-optimized UAV-RIS framework demonstrates a significant
capability to mitigate EMI impacts, especially those induced by high-power GaN power
amplifiers. As illustrated in Table 4 and Fig. 7, the system achieves a 70% reduction in
SINR degradation when exposed to interference from GaN power amplifiers. This notable
improvement is attributed to the real-time adaptability of UAV positions and RIS phase
shifts, orchestrated by the DRL agent. By dynamically optimizing signal paths, the system
effectively minimizes electromagnetic disruptions, resulting in enhanced communication
reliability and stability.
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Figure 5 SINR comparison of baseline and proposed UAV-RIS system under EMI.
Full-size k] DOT: 10.7717/peerj-cs.3031/fig-5

Table 3 Energy efficiency comparison in different scenarios.

Scenario Baseline system Proposed UAV-RIS system without Proposed UAV-RIS system with

(bits/Joule) EMI (bits/Joule) EMI (bits/Joule)
Urban 43 6.8 6.2
Suburban 5.1 7.3 6.7
Rural 5.7 7.9 7.4

Comparatively, traditional UAV-RIS systems lack dynamic interference management
capabilities, relying predominantly on static configurations that are ineffective against
fluctuating EMI conditions. Prior studies have focused on shielding and filtering
techniques to reduce EMI, but these methods are often limited by their inability to respond
to real-time changes in signal interference (Du ¢ Ma, 2024; Mahalle et al., 2024). In
contrast, the proposed DRL-based approach enables continuous learning and adaptation,
allowing UAVs and RIS configurations to adjust to interference patterns in real-time. This
advancement is particularly impactful in high-density urban deployments, where EMI
from various electronic sources is prevalent, often leading to severe communication
disruptions. The experimental results indicate that even under intense interference
scenarios, the proposed framework maintains a consistent SINR improvement of 6.5 dB,
while extending coverage area by 35% and increasing energy efficiency by 38%.
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Figure 6 Energy efficiency comparison in different scenarios.
Full-size k4] DOT: 10.7717/peerj-cs.3031/fig-6

Table 4 EMI impact mitigation in baseline and proposed system.

User position Baseline system (EMI impact) Proposed UAV-RIS system (EMI impact)
User 1 32% 9%
User 2 28% 8%
User 3 25% 6%
User 4 30% 10%

Furthermore, the integration of QPSK modulation enhances spectral efficiency,
allowing for robust data transmission despite EMI influences. This modulation technique,
combined with real-time DRL optimization, ensures that communication quality is
preserved, even as environmental interference fluctuates. These results highlight the
effectiveness of the proposed UAV-RIS framework not only in maintaining signal quality
but also in extending communication reliability to regions with high electromagnetic
pollution.

Latency

Latency is a critical metric, particularly for real-time communication applications. Table 5
compares the latency of the baseline system and the proposed UAV-RIS system across
various user positions. The latency comparison is also shows in Fig. 8.
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Figure 7 EMI impact mitigation in baseline and proposed system.
Full-size k] DOT: 10.7717/peerj-cs.3031/fig-7

Table 5 Latency comparison of baseline and proposed UAV-RIS system.

User Baseline system Proposed UAV-RIS system without Proposed UAV-RIS system with
position  (ms) EMI (ms) EMI (ms)

User 1 10.5 7.8 8.3

User 2 11.2 8.0 8.5

User 3 9.8 7.1 7.5

User 4 12.0 8.6 9.0

From Table 5, it can be observed that the proposed UAV-RIS system reduces latency by
an average of 24%, even in the presence of EMI. This is achieved by optimizing the signal
paths and minimizing interference.

Latency in this study is defined as the total time taken for data packets to travel from the
base station to the end-users through the UAV-RIS-assisted communication link. It
includes the propagation delay, processing delay at the RIS, and UAV signal relaying delay.
The expression for latency (L) is given by:

L= Tpropagation + Tprocessing + Trelay (12)
where:

® Tyropagation is the time for the signal to travel through the medium,
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Figure 8 Latency comparison of baseline and proposed UAV-RIS system.
Full-size k] DOT: 10.7717/peerj-cs.3031/fig-8

Table 6 Coverage area comparison of baseline and proposed UAV-RIS system.

Scenario Baseline system (km?) Proposed UAV-RIS system (km?)
Urban 2.1 3.2
Suburban 34 4.7
Rural 4.8 6.5

® Throcessing is the delay introduced by phase adjustments at RIS, and

® Treay is the time taken for UAV to process and forward the signal.

The DRL framework optimizes these paths to minimize latency, ensuring efficient

communication even in high-interference conditions.

Coverage area
The coverage area of the UAV-RIS system is larger compared to the baseline, as shown in
Table 6. This increase in coverage is particularly useful in rural and remote areas where
traditional communication infrastructure is limited.

The results from the Fig. 9 indicate that the UAV-RIS system can extend coverage by up
to 35%, providing more extensive communication reach, especially in environments where
direct line-of-sight is obstructed.
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Figure 9 Coverage area comparison of baseline and proposed UAV-RIS system.
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In addition to the key performance improvements observed in SINR, energy efficiency,
and EMI mitigation, we further analyzed the system’s performance by evaluating the
output power levels (in dBm), error counts, and error rates. Table 7 illustrates the error
count and error rate as the output power of the system increases. The results from Fig. 10
show that for lower output power levels (below 28 dBm), the system maintains zero error
counts with no observable error rates, indicating highly reliable communication. However,
as the output power exceeds 31 dBm, the system begins to experience increased error
counts, with the error rate rising progressively from 2.44 x 10 -42.44x 10 -4t07.36 x 10
—37.36 x 10 —3 as the output power reaches 33.47 dBm. This behavior can be attributed to
the influence of noise and interference, particularly as the system operates at higher power
levels, where nonlinearities and EMI from GaN power amplifiers become more
pronounced. The DRL-optimized framework demonstrated an ability to mitigate these
effects by dynamically adjusting the UAV positions and RIS configurations, but the
observed increase in errors highlights the inherent limitations of the system when
operating at very high power levels. Despite this, the QPSK modulation scheme provided a
notable level of resilience, with the system maintaining a relatively low error rate of up to
33 dBm. This suggests that QPSK, in conjunction with the UAV-RIS-DRL framework, is
effective at maintaining communication integrity in most operational power ranges.
Further refinement of the DRL algorithm and additional interference mitigation
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Table 7 The error count and error rate alongside the corresponding output power levels.

Output power (dBm) Error count Total count Error rate

15.92 0 12,285 0.0

17.93 0 12,285 0.0

19.89 0 12,285 0.0

21.82 0 12,285 0.0

23.71 0 12,285 0.0

25.53 0 12,285 0.0

27.24 0 12,285 0.0

28.77 0 12,285 0.0

30.08 0 12,285 0.0

31.03 2 12,285 0.000162874620901
31.98 6 12,285 0.000487234042553
32.95 23 12,285 0.0018722018722019
33.14 36 12,285 0.0029304029304029
33.33 53 12,285 0.004314606741573
33.44 65 12,285 0.0052910052910053
33.47 90 12,285 0.007326073260073

techniques could potentially reduce the error rates at higher power levels, making the
system even more robust.

Table 7 presents the error count and error rate alongside the corresponding output
power levels.

Comparison with previous studies

To contextualize the performance of our proposed DRL-based UAV-RIS integration, we
compare the results with those from previous studies. The comparison is summarized in
Table 8.

The comparison in Table 8 shows that our proposed DRL-based UAV-RIS integration
outperforms previous studies across all key metrics. Specifically, our study demonstrates a
20.0% improvement in SINR in urban scenarios, a 16.7% improvement in energy efficiency
in suburban environments, and a 9.2% reduction in latency in rural areas. These results
validate the effectiveness of our proposed system and underscore the advantages of
integrating DRL for dynamic optimization in complex communication networks. The
results presented in this section highlight the substantial improvements in system
performance achieved through the integration of DRL with UAV-RIS and QPSK
simulation. The DRL-based model consistently outperforms non-DRL approaches across
all key metrics, including SINR, energy efficiency, latency, and coverage area. Furthermore,
our proposed system demonstrates significant gains compared to previous studies,
confirming its potential to enhance communication quality and efficiency in diverse
environments.
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Table 8 Comparison of proposed study with previous studies.

Study Metric Value Scenario Improvement over previous studies (%)
Bansal et al. (2023) SINR (dB) 20.0 Urban 20.0
Wu et al. (2024) Energy Efficiency (bits/Joule) 6.0 Suburban 16.7
Ji et al. (2023) Latency (ms) 13.0 Rural 9.2
Proposed study SINR (dB) 24.0 Urban 20.0
Proposed study Energy Efficiency (bits/Joule) 7.0 Suburban 16.7
Proposed study Latency (ms) 11.8 Rural 9.2

Validation of results with theoretical analysis

To validate the simulation results presented in the preceding Results and Discussions
sections about the key metrics, comparisons were conducted with theoretical models for
both SINR and latency. These theoretical values were derived from standard path loss
models, Rician fading assumptions, and EMI interference calculations, providing a
benchmark for evaluating the accuracy of the proposed DRL-based UAV-RIS optimization
framework.

Theoretical SINR calculation
The theoretical SINR for the UAV-RIS communication system was computed using the
standard path loss model combined with Rician fading effects, represented as follows:

P..|h[?
I+N

SINR — (13)
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where:

e P, is the transmitted signal power,
o |h|* is the channel gain modeled with Rician fading,
o I is the interference power, including EMI from GaN amplifiers, and

e N is the noise power.

For urban environments, the Rician K-factor was set to 8, reflecting stronger line-of-
sight (LoS) components. Suburban environments assumed a K-factor of 5, and rural
environments used 3 to account for lower LoS dominance. These configurations ensured
the theoretical SINR calculations were consistent with realistic signal propagation
conditions.

Table 9 presents the comparison of the simulated SINR and latency values against the
theoretical calculations. The results demonstrate a 5-7% deviation, indicating high
reliability and robustness of the DRL-based optimization framework in managing
interference, maintaining communication quality, and reducing latency. The minimal
deviation highlights the system’s accuracy in dynamically adjusting UAV positioning and
RIS phase shifts to counteract the effects of EMI, validating the simulation outcomes with
strong theoretical alignment.

The close alignment of theoretical and simulated results validates the effectiveness of
the DRL-based UAV-RIS framework, particularly in optimizing SINR and reducing
latency in real-time. This theoretical comparison supports the robustness of the
proposed system in managing EMI while maintaining energy-efficient, high-quality
communication links.

Influence of RIS reflective elements on system performance

The number of reflective elements in a RIS significantly impacts the performance of the
UAV-RIS-assisted communication system. To investigate this, simulations were
conducted to analyze how varying the number of RIS elements influences key performance
metrics, including SINR, Coverage Area, and Energy Efficiency. The analysis was
performed for three distinct environments: urban, suburban, and rural, reflecting different
interference levels and path loss characteristics.

Simulation setup and parameter configuration

The study evaluated RIS configurations ranging from 64 elements to 512 elements. The
UAYV altitude and base station placement remained consistent across scenarios to isolate
the effects of RIS element changes. The key simulation parameters included:

e Modulation scheme: Quadrature Phase Shift Keying (QPSK)
¢ Path loss exponent: Urban (2.2), Suburban (2.5), Rural (3.0)
» Fading model: Rician with K-factors of 8 (Urban), 5 (Suburban), and 3 (Rural)

o EMI influence: GaN power amplifiers modeled as interference sources
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Table 9 Simulation vs. Theoretical comparison.

Environment Theoretical SINR (dB) Simulated SINR (dB) Theoretical latency (ms) Simulated latency (ms)
Urban 12.5 12.1 8.5 8.2
Suburban 9.8 9.4 6.2 5.9
Rural 7.2 6.8 4.7 4.4

Performance analysis
The results indicate that increasing the number of RIS elements has a substantial effect on
SINR and coverage area. Specifically:

e From 64 to 128 elements: SINR improved by approximately 1.8 dB, and coverage
expanded by 5% due to enhanced phase alignment and better signal reflection.

» From 128 to 256 elements: The SINR gain increased to 3.5 dB, with a 12% boost in
coverage area. This growth is attributed to more efficient multi-path signal steering and
improved interference cancellation.

e From 256 to 512 elements: The improvement became marginal, with only a 0.8 dB
increase in SINR and a 3% rise in coverage. The diminishing returns are due to
saturation in phase alignment optimization and increased mutual coupling effects
between RIS elements.

Saturation point analysis
The analysis reveals that performance improvements begin to plateau beyond 256
elements. This behavior is attributed to two primary factors:

(1) Physical constraints: The effectiveness of RIS in manipulating electromagnetic waves
diminishes as element density increases, leading to reduced spatial diversity.

(2) Interference complexity: Higher element configurations introduce more internal
reflections and mutual interference, which counteract the benefits of enhanced phase
control.

Thus, the optimal configuration for most scenarios is around 256 reflective elements,
balancing SINR, coverage, and energy efficiency without introducing excess interference.
This finding underscores the need for strategic RIS deployment in UAV-RIS-assisted
networks to achieve maximum efficiency without excessive element usage.

CONCLUSIONS

In this article, we presented a comprehensive framework to address the challenges posed
by GaN power amplifier EMI in UAV-RIS communication systems. By integrating DRL
and QPSK modulation, the system dynamically optimizes UAV deployment and RIS
configurations, enabling real-time adjustments to mitigate the impact of EMI. Our
simulation results demonstrate significant improvements in key performance metrics,
including up to 6.5 dB enhancement in SINR, a 38% increase in energy efficiency, and a
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35% expansion in coverage area. Moreover, the proposed system achieves over 70% EMI
impact mitigation, showcasing its effectiveness in interference-prone environments. These
improvements highlight the potential of DRL and QPSK in enabling resilient and
adaptive communication systems, especially in challenging scenarios such as urban
areas, disaster recovery, and remote regions. The combination of UAV, RIS, and DRL
presents a robust and scalable solution, paving the way for future advancements in
intelligent wireless networks. Future research could explore the integration of

additional technologies and real-world deployment scenarios to further enhance system
performance.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The APC for this article was funded by national funds through FCT-Fundag¢ao para a
Ciéncia e a Tecnologia, I.P., under the support UID/05105: REMIT-Investigagdo em
Economia, Gestdo e Tecnologias da Informagao. There was no additional external funding
received for this study. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

FCT-Fundagdo para a Ciéncia e a Tecnologia, I.P., under the support UID/05105:
REMIT-Investigacao em Economia, Gestdo e Tecnologias da Informagéo.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

¢ Wasim Ahmad conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, authored or reviewed drafts of the
article, and approved the final draft.

e Umar Islam conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, authored or reviewed drafts of the
article, and approved the final draft.

e Abdulkadhem A. Abdulkadhem conceived and designed the experiments, prepared
figures and/or tables, and approved the final draft.

« Babar Shah performed the experiments, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.

e Fernando Moreira performed the experiments, analyzed the data, authored or reviewed
drafts of the article, supervision and Funding, and approved the final draft.

o Ali Abbas analyzed the data, authored or reviewed drafts of the article, and approved the
final draft.

Ahmad et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3031 25/28


http://dx.doi.org/10.7717/peerj-cs.3031
https://peerj.com/computer-science/

PeerJ Computer Science

Data Availability
The following information was supplied regarding data availability:
The simulation codes are available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.3031#supplemental-information.

REFERENCES

Aldaej A, Ahanger TA, Ullah I. 2023. Blockchain-enabled M2M communications for
UAV-assisted data transmission. Mathematics 11(10):2262 DOT 10.3390/math11102262.

Alkanhel R, Rafiq A, Mokrov E, Khakimov A, Muthanna MSA, Muthanna A. 2023. Enhanced
slime mould optimization with deep-learning-based resource allocation in UAV-enabled
wireless networks. Sensors 23(16):7083 DOI 10.3390/s23167083.

Bansal A, Agrawal N, Singh K, Li CP, Mumtaz S. 2023. Ris selection scheme for UAV-based
multi-RIS-aided multiuser downlink network with imperfect and outdated CSI. IEEE
Transactions on Communications 71(8):4650-4664 DOI 10.1109/tcomm.2023.3277540.

Bithas PS, Ropokis GA, Karagiannidis GK, Nistazakis HE. 2024. UAV-assisted communications
with RIS: a shadowing-based stochastic analysis. IEEE Transactions on Vehicular Technology
73(7):1000-10010 DOT 10.1109/tvt.2024.3364383.

Cang Y, Chen M, Zhao J, Yang Z, Hu Y, Huang C, Wong KK. 2023. Joint deployment and
resource management for VLC-enabled riss-assisted UAV networks. IEEE Transactions on
Wireless Communications 22(2):746-760 DOI 10.1109/twc.2022.3165853.

Du L, Ma DB. 2024. A 2.2 MHz GaN switching power IC with auto-phase-aligned EMI adaptive
self-cancellation and BER-conscious adaptive SSM for autonomous driving applications.
In: 2024 36th International Symposium on Power Semiconductor Devices and ICs (ISPSD).
Piscataway: IEEE, 458-461.

Emami Y. 2023. Deep reinforcement learning for joint cruise control and intelligent data
acquisition in UAVs-assisted sensor networks. ArXiv DOI 10.48550/arXiv.2312.09953.

Igbal A, Al-Habashna A, Wainer G, Bouali F, Boudreau G, Wali K. 2023. Deep reinforcement
learning-based resource allocation for secure RIS-aided UAV communication. In: IEEE
Vehicular Technology Conference. Piscataway: IEEE, 1-6.

Javad-Kalbasi M, Al-Abiad MS, Valaee S. 2023. Energy efficient communications in RIS-assisted
UAYV networks based on genetic algorithm. In: Proceedings of IEEE Global Communications
Conference (GLOBECOM). Piscataway: IEEE, 5901-5906.

Ji P, Jia J, Chen J, Guo L, Du A, Wang X. 2023. Reinforcement learning based joint trajectory
design and resource allocation for RIS-aided UAV multicast networks. Computer Networks
227:109697 DOI 10.1016/j.comnet.2023.109697.

Jiao S, Xie X, Ding Z. 2022. Deep reinforcement learning-based optimization for RIS-based
UAV-NOMA downlink networks (invited paper). Frontiers in Signal Processing 2:915567
DOI 10.3389/frsip.2022.915567.

Khan MJ, Khan MA, Beg A, Malik S, El-Sayed H. 2022a. An overview of the 3GPP identified use
cases for V2X services. Procedia Computer Science 198(2022):750-756
DOI 10.1016/j.procs.2021.12.317.

Ahmad et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3031 26/28


http://dx.doi.org/10.7717/peerj-cs.3031#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3031#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3031#supplemental-information
http://dx.doi.org/10.3390/math11102262
http://dx.doi.org/10.3390/s23167083
http://dx.doi.org/10.1109/tcomm.2023.3277540
http://dx.doi.org/10.1109/tvt.2024.3364383
http://dx.doi.org/10.1109/twc.2022.3165853
http://dx.doi.org/10.48550/arXiv.2312.09953
http://dx.doi.org/10.1016/j.comnet.2023.109697
http://dx.doi.org/10.3389/frsip.2022.915567
http://dx.doi.org/10.1016/j.procs.2021.12.317
http://dx.doi.org/10.7717/peerj-cs.3031
https://peerj.com/computer-science/

PeerJ Computer Science

Khan MJ, Khan MA, Malik S, Kulkarni P, Alkaabi N, Ullah O, El-Sayed H, Ahmed A, Turaev S.
2023a. Advancing C-V2X for level 5 autonomous driving from the perspective of 3GPP
standards. Sensors 23(4):2261 DOI 10.3390/s23042261.

Khan MJ, Khan MA, Turaev S, Malik S, El-Sayed H, Ullah F. 2024. A vehicle-edge-cloud
framework for computational analysis of a fine-tuned deep learning model. Sensors 24(7):2080
DOI 10.3390/524072080.

Khan MJ, Khan MA, Ullah O, Malik S, El-Sayed H. 2022b. Communication in autonomous
vehicles through 5G onboard units-understanding the experimental setup. In: 2022 IEEE 22nd
International Conference on Communication Technology (ICCT). Piscataway: IEEE, 804-811.

Khan MJ, Khan MA, Ullah O, Malik S, Igbal F, El-Sayed H, Turaev S. 2023b. Augmenting
CCAM infrastructure for creating smart roads and enabling autonomous driving. Remote
Sensing 15(4):922 DOI 10.3390/rs15040922.

Lahmeri MA, Kishk MA, Alouini MS. 2021. Artificial intelligence for UAV-enabled wireless
networks: a survey. IEEE Open Journal of the Communications Society 2:1015-1040
DOI 10.1109/0jcoms.2021.3075201.

Li X, Zhang X, Li J, Luo F, Huang Y, Zhang X. 2024. Blocklength allocation and power control in
UAV-assisted URLLC system via multi-agent deep reinforcement learning. International
Journal of Computational Intelligence Systems 17(1):138 DOI 10.1007/s44196-024-00530-8.

Mahalle PN, Hemelatha S, Mishra M, Kalanandhini G, Samrat B, Ramachandran T. 2024.
Optimizing shielding techniques for high-frequency EMC applications in aerospace systems.
In: 2024 15th International Conference on Computing Communication and Networking
Technologies (ICCCNT). Piscataway: IEEE, 1-6.

Mohsan SAH, Khan MA, Alsharif MH, Uthansakul P, Solyman AA. 2022. Intelligent reflecting
surfaces assisted UAV communications for massive networks: current trends, challenges, and
research directions. Sensors 22(14):5278 DOI 10.3390/s22145278.

Nguyen K, Khosravirad S, Costa DB, Long N, Duong T. 2021. Reconfigurable intelligent
surface-assisted multi-UAV networks: efficient resource allocation with deep reinforcement
learning. IEEE Journal of Selected Topics in Signal Processing 16(3):358-368
DOI 10.1109/jstsp.2021.3134162.

Nguyen KK, Masaracchia A, Sharma V, Poor HV, Duong TQ. 2022. RIS-assisted UAV
communications for IoT with wireless power transfer using deep reinforcement learning. IEEE
Journal of Selected Topics in Signal Processing 16(5):1086-1096
DOI 10.1109/jstsp.2022.3172587.

Pogaku AC, Do DT, Lee BM, Nguyen ND. 2022. UAV-assisted RIS for future wireless
communications: a survey on optimization and performance analysis. IEEE Access
10:16320-16336 DOI 10.1109/access.2022.3149054.

Puspitasari AA, Lee BM. 2023. A survey on reinforcement learning for reconfigurable intelligent
surfaces in wireless communications. Sensors 23(5):2554 DOI 10.3390/s23052554.

Rahman MH, Sejan MAS, Aziz MA, Tabassum R, Song HK. 2024. Deep bidirectional learning
based enhanced outage probability for aerial reconfigurable intelligent surface assisted
communication systems. Mathematics 12(11):1615 DOI 10.3390/math12111615.

Rahmatov N, Baek H. 2023. RIS-carried UAV communication: current research, challenges, and
future trends. ICT Express 9(5):961-973 DOI 10.1016/j.icte.2023.03.004.

Ahmad et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3031 27/28


http://dx.doi.org/10.3390/s23042261
http://dx.doi.org/10.3390/s24072080
http://dx.doi.org/10.3390/rs15040922
http://dx.doi.org/10.1109/ojcoms.2021.3075201
http://dx.doi.org/10.1007/s44196-024-00530-8
http://dx.doi.org/10.3390/s22145278
http://dx.doi.org/10.1109/jstsp.2021.3134162
http://dx.doi.org/10.1109/jstsp.2022.3172587
http://dx.doi.org/10.1109/access.2022.3149054
http://dx.doi.org/10.3390/s23052554
http://dx.doi.org/10.3390/math12111615
http://dx.doi.org/10.1016/j.icte.2023.03.004
http://dx.doi.org/10.7717/peerj-cs.3031
https://peerj.com/computer-science/

PeerJ Computer Science

Taimoor S, Ferdouse L, Ejaz W. 2022. Holistic resource management in UAV-assisted wireless
networks: an optimization perspective. Journal of Network and Computer Applications
205:103439 DOI 10.1016/j.jnca.2022.103439.

Wang L, Wang K, Pan C, Xu W, Aslam N, Hanzo L. 2021. Multi-agent deep reinforcement
learning-based trajectory planning for multi-UAV assisted mobile edge computing. IEEE
Transactions on Cognitive Communications and Networking 7(1):73-84
DOI 10.1109/tccn.2020.3027695.

Wu M, Zhu S, Li C, Zhu ], Chen Y, Liu X, Liu R. 2024. UAV-mounted ris-aided mobile edge
computing system: a ddqn-based optimization approach. Drones 8(5):184
DOI 10.3390/drones8050184.

You Q, Xu Q, Yang X, Zhang T, Chen M. 2023. RIS-assisted UAV-D2D communications
exploiting deep reinforcement learning. ZTE Communications 21(2):61-69
DOI 10.12142/ZTECOM.202302009.

Zhou Y, Jin Z, Shi H, Wang Z, Lu N, Liu F. 2022. UAV-assisted fair communication for mobile
networks: a multi-agent deep reinforcement learning approach. Remote Sensing 14(22):5662
DOI 10.3390/rs14225662.

Ahmad et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3031 28/28


http://dx.doi.org/10.1016/j.jnca.2022.103439
http://dx.doi.org/10.1109/tccn.2020.3027695
http://dx.doi.org/10.3390/drones8050184
http://dx.doi.org/10.12142/ZTECOM.202302009
http://dx.doi.org/10.3390/rs14225662
http://dx.doi.org/10.7717/peerj-cs.3031
https://peerj.com/computer-science/

	Enhancing reliable and energy-efficient UAV communications with RIS and deep reinforcement learning
	Introduction
	Literature review
	Materials and Methods
	Results and Discussion
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


