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ABSTRACT

Serverless architecture simplifies application development and operation, but its
permission control model based on static execution roles struggles to adapt to highly
dynamic runtime environments, which can easily lead to the risk of permission and
key leakage. To address this challenge, this article proposes a runtime dynamic
token-based access control scheme. The scheme combines function context and
user-defined security rules to achieve function-level dynamic authorization and
request-level identity authentication. The generated dynamic tokens possess strong
randomness, unpredictability, and one-time use characteristics, effectively reducing
the harm caused by token leakage. Moreover, the designed multi-factor token
verification model integrates dynamic factors such as call chain features and behavior
patterns, which can defend against various security threats. Through social surveys,
qualitative analysis, and extensive experiments, this article confirms that the
proposed scheme significantly enhances the security of serverless applications while
maintaining a controllable impact on platform performance. This research enriches
the theoretical knowledge in the field of serverless security and provides new ideas for
development practices, which is expected to promote the expansion of serverless
architecture to enterprise-level scenarios and contribute to the healthy development
of its ecosystem.

Subjects Algorithms and Analysis of Algorithms, Computer Networks and Communications,
Distributed and Parallel Computing, Optimization Theory and Computation, Security and Privacy
Keywords Serverless computing, Access control, Data protection, Dynamic tokens, Fine-grained
access control

INTRODUCTION

In recent years, serverless computing has gained widespread attention in both academia
and industry due to its unique advantages, such as automated resource management,
on-demand scaling, and reduced operational overhead (Eismann et al., 2020; Kritikos ¢
Skrzypek, 2018; Li, Leng ¢ Chen, 2022). An increasing number of enterprises are choosing
to migrate their applications to serverless platforms to lower operational costs and improve
resource utilization. However, the serverless computing model also faces unique security
challenges, particularly in the aspect of permission management (de Oliveira, 2022; Calles,
2020; Li, Leng ¢ Chen, 2022).
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Permission management is the cornerstone of security protection in serverless
platforms. The platform needs to configure corresponding execution permissions for each
function to support flexible access to required cloud services. However, the complex
permission configuration process not only increases the burden on development and
operation but also easily introduces security vulnerabilities (Barrak et al., 2024). Improper
configuration can lead to functions obtaining excessive permissions and even being
exploited by attackers to access sensitive data, posing serious threats to user privacy and
data security. Moreover, traditional static access control mechanisms struggle to effectively
adapt to the highly dynamic and uncertain nature of serverless applications (Sankaran,
Datta & Bates, 2020). In practice, developers are often forced to grant higher permissions
to functions to avoid impacting business functionality, which, however, lays the
groundwork for permission abuse.

Permission management defects bring severe security risks to serverless platforms and
applications. Our survey shows that 27% of serverless users have experienced various types
of attacks, 55% of users are concerned about the risk of permission leakage, and 48% of
users express concern about the practice of storing execution permission keys through
environment variables. The industry has witnessed sensitive data leakage incidents caused
by improper permission management in serverless environments, where attackers
exploited overly permissive execution roles to gain unauthorized access to cloud resources
(Barrak et al., 2024). These incidents highlight the inadequacies of existing mechanisms in
terms of dynamicity, flexibility, and defense-in-depth.

Academia has conducted a series of explorations on serverless security issues, focusing
on aspects such as execution environment isolation, cold start security, and access control
optimization (Datta et al., 2020; Alpernas et al., 2018). These approaches have made
important contributions to improving serverless security. However, existing work is either
limited to specific scenarios or struggles to adapt to the dynamicity of serverless platforms,
and cannot fundamentally solve the core problem of permission management (Jegan et al.,
2020). For example, information flow control approaches (Alpernas et al., 2018) provide
strong security guarantees but face challenges in practical implementation across different
serverless platforms. Similarly, workflow-based security solutions (Datta et al., 2020;
Sankaran, Datta & Bates, 2020) offer valuable protection but may not fully address the
dynamic nature of function-level permissions.

In the industry, mainstream serverless platforms provide some security enhancement
mechanisms, but their static and predefined policies are difficult to fully adapt to the
flexibility and variability of serverless applications. The complex permission configuration
and narrow usage scenarios also greatly reduce the usability and universality of these
mechanisms. Traditional methods such as JSON Web Tokens (JWT) and key management
services (KMS) are not specifically designed for the unique characteristics of serverless
architectures, particularly the ephemeral nature of function instances and their dynamic
execution contexts.

In summary, how to achieve efficient, fine-grained, and dynamic serverless permission
management without sacrificing function flexibility is a critical challenge that needs to be
addressed urgently. This is also the main research motivation of this article. To tackle this
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challenge, this article proposes an innovative dynamic token scheme, aiming to achieve
further control over permissions by introducing dynamically generated temporary tokens
at runtime. Unlike static authorization mechanisms, our approach incorporates function
execution context and request-specific information to generate unique tokens for each
operation, significantly enhancing security while maintaining flexibility.

The scheme combines function context information and custom rules to generate highly
dynamic and unpredictable tokens and introduces multi-factor authentication in the
request verification phase to build a defense-in-depth access control system. This approach
differs from traditional token-based mechanisms by tightly coupling tokens with both
function execution context and request parameters, making them inherently resistant to
replay attacks and unauthorized access attempts.

The main contributions of this article are as follows:

(1) We propose a novel access control scheme based on runtime dynamic tokens that
addresses the permission management challenges in serverless platforms,
providing enhanced granularity and dynamicity compared to existing static
permission models;

(2) We develop a token generation mechanism that integrates function context
information and user-defined rules, creating tokens with high dynamicity, time-
effectiveness, and unpredictability, which effectively resist common attacks such as
replay attacks;

(3) We introduce a multi-factor verification process that combines request context
analysis and behavioral patterns to create a comprehensive defense-in-depth
permission control system;

(4) We implement and evaluate a prototype system on mainstream serverless platforms,
demonstrating through comprehensive experiments that our approach effectively
enhances security while maintaining acceptable performance overhead.

The rest of this article is organized as follows: “Serverless Computing Model and
Security Challenges” introduces the basic concepts and security challenges of serverless
computing; “Implementation Principles of Dynamic Tokens” reviews existing serverless
security protection schemes and their limitations; “Security and Performance Evaluation”
elaborates on the system architecture and key technologies of the proposed dynamic token
scheme; “Discussion” comprehensively evaluates the security and performance of the
scheme around typical attack scenarios; “Conclusion” summarizes the work and outlines
future research directions.

SERVERLESS COMPUTING MODEL AND SECURITY
CHALLENGES

Security threat analysis of serverless platforms

The unique system architecture and working methods of serverless platforms expose them
to a series of new security threats that traditional security protection mechanisms struggle
to effectively address (de Oliveira, 2022; Calles, 2020; Li, Leng ¢ Chen, 2022). These threats
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mainly stem from the inherent characteristics of serverless platforms in terms of
permission management, user code execution, and data flow.

First, the permission management mechanism of serverless platforms has inherent flaws
that can lead to multiple security risks. Serverless platforms need to configure
corresponding execution permissions for each function to support flexible access to
required cloud services, such as object storage and databases. The working logic of this
execution permission is mainly that when a function instance is created and started, the
serverless platform generates temporary keys based on the user-configured execution
permissions and permission system and configures the temporary keys into environment
variables for direct use by the user. However, the highly dynamic and unpredictable nature
of serverless applications means that overly fine-grained permission configuration often
increases the learning and usage costs for users (Barrak et al., 2024). In reality, developers
are often forced to configure relatively lax permission sets for functions to avoid impacting
business functionality, even if the developer tools provided officially often default to
configuring relatively lax permissions for user experience, which lays the groundwork for
permission abuse and leakage. According to the OWASP Serverless Top 10 (OWASP
Foundation, 2018), broken access control is a critical vulnerability where “granting
functions access to unnecessary resources or excessive permissions on resources is a
potential backdoor to the system.” Excessively broad permission configurations
significantly increase the potential attack surface, allowing attackers to exploit leaked
high-privilege keys to illegally access other users’ sensitive data and critical resources,
posing serious threats to user privacy and data security (Alpernas et al., 2018).

In the industry, permission leakage incidents on serverless platforms have been
frequent, and major security incidents caused by permission management vulnerabilities
have occurred in the actual operation of some serverless platforms (Datta et al., 2020). For
example, a well-known cloud service provider’s serverless deployment tool supports the
synchronous deployment of multiple serverless functions and surrounding related services.
To enhance user experience, the originally locally-executed tool was changed to execute in
the cloud. Since the tool is a component-based tool that needs to load user-declared
components during execution to complete corresponding capabilities, it allows users to
customize deployment components through configuration files. As a result, attackers can
construct malicious components to steal temporary keys in environment variables of the
deployment service during the deployment process. Using these keys, attackers can
illegally access code and configuration information uploaded by other users on the account
corresponding to the service. Another mainstream cloud service provider’s WebIDE
platform is implemented based on serverless services. Originally, relevant execution
permissions were required during function startup to perform some initialization
operations, and the execution permissions would be automatically cleared after
completion. However, after an upgrade of the serverless service provider’s platform, due to
an incremental change in key naming conventions that caused compatibility issues, the
temporary key cleanup logic of the WebIDE platform failed. Attackers can thus obtain
platform-level temporary keys in the WebIDE and gain execution permissions for the
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function, illegally reading other users’ function logs, which often contain business logic
and sensitive data. Although cloud service providers took remedial measures after the
incidents occurred, these incidents reflect the inherent vulnerability of serverless platforms
in key management. The impact of such incidents often extends to the security of the entire
cloud account (Jegan et al., 2020). Once core systems or databases are compromised, the
business continuity and data confidentiality of users will be seriously threatened, which is
undoubtedly disastrous for enterprises that heavily rely on cloud services.

To summarize, user code on serverless platforms often originates from complex sources,
making it difficult to ensure there are no potential vulnerabilities. The OWASP Serverless
Top 10 (OWASP Foundation, 2018) highlights that “attackers will try to look for a
forgotten resource, like a public cloud storage, or open APIs” and that “secrets could be
accidentally uploaded to the github repo, put it on a public bucket or even used hardcoded
in the function.” Attackers can trigger function execution through carefully crafted
malicious events and induce function code containing vulnerabilities to leak high-privilege
key information, thereby gaining access to cloud platform resources. Moreover, the
event-driven data flow method of serverless platforms also introduces new security risks
(Alpernas et al., 2018). Sensitive data frequently flows between distributed functions. If
end-to-end encryption protection and integrity verification are lacking, it can easily be
hijacked and tampered with by intermediaries.

Furthermore, log auditing and anomaly detection on serverless platforms face
numerous challenges. According to the OWASP Serverless Top 10 (OWASP Foundation,
2018), “applications which do not implement a proper auditing mechanism and rely solely
on their service provider probably have insufficient means of security monitoring and
auditing.” Traditional security information and event management systems struggle to
effectively adapt to the high dynamicity and short instance lifecycle of serverless platforms.
Current serverless platforms still have obvious shortcomings in providing fine-grained,
comprehensive log recording and intelligent security analysis, making it very difficult to
restore and investigate security incidents.

In summary, the unique technical characteristics and working methods of serverless
platforms expose them to many new security threats that traditional security solutions
struggle to effectively cover. The OWASP Serverless Top 10 provides a framework for
understanding these threats, covering aspects such as injection, broken authentication,
sensitive data exposure, broken access control, security misconfiguration, and insufficient
logging and monitoring (Li, Leng & Chen, 2022). These threats involve multiple aspects
such as permission management, code execution, data flow, and log auditing, and they
intertwine to form a complex security threat landscape. There is an urgent need to explore
a more flexible, dynamic, and fine-grained new paradigm of security protection that
specifically addresses the disconnect between static permission models and highly dynamic
execution environments. This paradigm must incorporate runtime context into access
decisions, implement request-level permission validation, and provide defense-in-depth
through multi-factor verification. This is also the starting point and focus of this
article’s work.
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Existing solutions and their limitations

To address the security issues in serverless architecture, academia and industry have
conducted explorations at multiple levels. Following a systematic classification approach
(Li, Leng & Chen, 2022), these efforts can be organized into platform-level protection,
function-level controls, and application-level security enhancements.

One line of work focuses on security hardening of the serverless platform itself, such as
permission management at the scheduling level (Li et al., 2022), security isolation
mechanisms (Zhang et al., 2019), and timely cleanup of instance space (Alzayat et al.,
2023). These efforts aim to eliminate potential security risks from the underlying
architecture by improving the platform’s own security protection capabilities. Another line
of work focuses on peripheral monitoring, alerting, and auditing mechanisms, such as
security event notification (Agache et al., 2020) and behavior anomaly detection, aiming to
discover and respond to potential security issues in a timely manner by real-time
monitoring of the running state of serverless applications.

In terms of fine-grained access control, existing work has actively explored the issues of
improper permission management and insufficient access control that are common in
serverless platforms. Excessive permission settings and coarse-grained authorization
models are the main reasons for potential unauthorized access and sensitive information
leakage in serverless applications (Govind ¢ Gonzilez-Vélez, 2021). To this end, some
work proposes using fine-grained security policies and dynamic authorization
mechanisms to strengthen permission control in serverless platforms. Notable approaches
include Valve (Datta et al., 2020), which enables fine-grained control of information flows
in function workflows through network-layer monitoring, and will.iam (Sankaran, Datta
¢ Bates, 2020), which implements a workflow-aware access control model at the point of
ingress. However, traditional centralized authorization services are often tightly coupled
with application code, which may affect the overall performance of the system (Sabbioni
et al., 2022). Although decentralized authorization solutions can alleviate performance
bottlenecks to a certain extent, they may introduce new issues such as management
complexity and cross-environment compatibility when actually implemented.

Furthermore, some research attempts to enhance the security of serverless applications
from the application architecture level. For example, literature (Ouyang et al., 2023)
proposes combining the microservice architecture with serverless computing. By splitting
applications into multiple fine-grained function services and utilizing the short-lived
instances and resource isolation mechanisms of the serverless platform, the security of
cross-domain transactions can be enhanced. However, the introduction of this architecture
may further increase system complexity, and the technical requirements for development
and operation personnel are also higher.

Some inherent technical characteristics of serverless computing may also introduce new
security risks. For example, the automatic elastic scaling mechanism common in serverless
platforms significantly improves resource utilization, but if effective monitoring and
protection are lacking, it may be exploited by malicious users to launch targeted
Distributed Denial of Service (DDoS) attacks (Wang et al., 2022). Additionally, to solve the
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problem of sensitive data sharing and protection in serverless applications, some studies
propose introducing information flow control (IFC) technology (Alpernas et al., 2018). IFC
achieves fine-grained security protection of data flow by security labeling data objects and
computing entities and enforcing access control based on predefined flow rules. However,
the actual deployment of IFC requires deep integration with the access control
mechanisms of various cloud services. How to implement a unified and compatible IFC
labeling system across different serverless platforms is an urgent problem to be solved.

When examining conventional security technologies in the context of serverless
characteristics, fundamental limitations emerge. Serverless computing features
event-driven execution, ephemeral instances, high-frequency cold starts, dynamic scaling,
and multi-tenant environments. These characteristics create unique security challenges
that traditional mechanisms struggle to address. For instance, JWT (JSON Web Tokens)
typically operate on a time-based validity model, where tokens remain valid for
predetermined periods (minutes to hours). This approach fundamentally misaligns with
serverless functions’ millisecond-level execution duration, creating a significant security
vulnerability window where leaked tokens remain valid long after the function execution
completes. In multi-tenant serverless environments, this time-scale mismatch significantly
amplifies the risk of token misuse.

Similarly, key management services (KMS) face inherent limitations when applied to
serverless architectures. The per-invocation KMS API calls introduce latency that can be
disproportionate to the actual function execution time, potentially becoming a
performance bottleneck during rapid scaling events. This is particularly problematic in
serverless’s pay-per-use economic model, where security-related overhead directly impacts
operational costs. Furthermore, when applications are decomposed into dozens of
fine-grained functions, configuring and managing KMS access policies for each function
becomes exceedingly complex, often leading to overly permissive settings that compromise
security.

Existing solutions exhibit several critical limitations when viewed through the lens of
serverless computing’s unique characteristics: (1) temporal mismatch between security
mechanisms designed for long-running services and the millisecond-scale execution of
serverless functions; (2) inability to efficiently handle the high-frequency state changes
inherent in serverless environments; (3) security overhead disproportionate to function
execution time; (4) coarse-grained permission models inadequate for microfunction
architectures; and (5) lack of cost-effective validation mechanisms compatible with the
pay-per-use model.

A particularly significant limitation of traditional approaches is their reliance on
time-based rather than invocation-based security controls. Time-based tokens like JWT
remain valid for extended periods, creating unnecessary exposure windows, while
serverless functions typically complete execution in milliseconds. In contrast, an
invocation-based approach where tokens are generated per request and immediately
invalidated after use would align more naturally with serverless execution patterns and
significantly reduce the potential impact of token leakage.
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Future research needs to explore a new paradigm of cloud-native security protection
that is flexible, scalable, and cross-platform consistent based on the unique technical
characteristics of serverless itself (Li, Leng ¢» Chen, 2022). Such a paradigm should address
the fundamental disconnect between existing security models and the serverless execution
environment by incorporating execution context into security decisions, implementing
fine-grained request-level authorization, and providing strong protection against
credential theft and misuse, all while maintaining the performance benefits that make
serverless computing attractive. This is also the focus of this article’s work. Only by
developing new security mechanisms that are compatible with serverless from the kernel
architecture and working mechanisms can we truly achieve the trusted development of
serverless computing.

IMPLEMENTATION PRINCIPLES OF DYNAMIC TOKENS
Design philosophy

Dynamic token generation mechanism

The dynamic token encryption and decryption mechanism consists of two main
components: the generation of encrypted tokens and the verification of decrypted tokens.
The generation of encrypted tokens is based on user-defined encryption rules, while the
verification of decrypted tokens depends not only on user-defined encryption rules but
also on additional information such as random strings and timestamps. The entire process
involves dynamic and unpredictable authentication information exchanges, which is why
this method is called the dynamic token encryption and decryption mechanism.

The core of the encrypted token generation mechanism is to provide a flexible and
secure way to generate encrypted tokens, aiming to enhance the security of function
invocations in serverless architecture. This mechanism allows for user-defined rules,
including the integration of built-in dynamic parameters and custom static parameters, to
achieve accurate verification and release of sensitive operations, further ensuring the
security of serverless applications.

Specifically, as shown in Fig. 1, the token generation process allows users to dynamically
generate signature strings by utilizing built-in parameters (such as request ID, instance ID,
and timestamp) in the serverless environment combined with custom rules. For example,
users can use the expression $md5($requestid, $instanceid) to set the generation rule for
the signature string. This is merely one example of how dynamic parameters can be
combined; users can define various rules based on their security requirements and choose
different cryptographic algorithms according to their needs. The rule will exhibit different
encrypted token values in different instances of the same function, and even under
different requests of the same function instance.

Figure 1’s architecture diagram illustrates the complete function lifecycle and
permission management process. This process can be divided into three main phases:

First is the function creation and configuration phase (pink section, step 1): Users create
functions and provide metadata and code, while defining encryption rules in the
configuration. The function metadata, including encryption rule configuration, is stored in
the platform for subsequent processing.
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Figure 1 Dynamic token encryption architecture diagram.
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Next is the cold start process (blue section, steps 1-4), which includes the permission
configuration phase (blue dashed box): When an HTTP(s) request arrives (step 1), the API
gateway forwards it to the scheduling module (step 2). The scheduling module retrieves the
configuration information (step 3) and creates the corresponding function instance (step
4). During instance creation, the system performs role redemption to obtain temporary
keys and immediately clears plaintext environment variables to eliminate direct exposure
risks (yellow section, step 1). Subsequently, the dynamic token processing module
processes these temporary keys according to predefined encryption rules (yellow section,
steps 2-3), generating encrypted environment variables that are securely stored. This
process ensures that sensitive information is protected from the very beginning, rather
than existing in plaintext form in the function environment.

Finally, there is the permission acquisition phase (red dotted box, steps 1-4) that occurs
after the cold start completes (step 5 in the blue section initiates normal function
invocation, leading to step 6 for sensitive information acquisition): When the user code is
invoked and needs to access protected resources (red section, step 1), it attempts to read
environment variables. The dynamic token verification module intercepts this request (red
section, step 2), comprehensively validates the provided verification information (red
section, step 3), and only after all security checks pass does it return the decrypted
environment variable values (red section, step 4), allowing the code to securely access the
required resources.
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When requesting sensitive information, users need to provide the decryption token, a
non-repeatable random string within the instance, a timestamp, and the key values of the
required parameters. More formally, if we denote H as the cryptographic hash function
chosen by the user (such as MD5, SHA-256, or any other algorithm based on security
requirements), and | as the concatenation operator, the decryption token can be
represented as:

DecryptToken = H(RequestID|InstanceID|Nonce| Timestamp|DataKey). (1)

This formulation clearly illustrates how multiple dynamic factors are combined to
create a unique, context-bound token. It’s important to note that this is a flexible
framework rather than a fixed implementation. The parameters included in the equation
represent a recommended combination, but users can adjust the specific components
based on their security needs—adding additional contextual factors or simplifying the
combination for performance considerations. Similarly, the concatenation operation
shown here can be replaced with more complex combining methods if desired. The
essential requirement is consistency between token generation and verification processes.

The components of this equation are defined in Table 1.

The system generates a verification key through the same formula using the submitted
parameters and matches it against the provided decryption token. To prevent replay
attacks, the system designs an anti-replay mechanism that verifies the uniqueness of the
random string (Nonce) and confirms the timestamp is within a reasonable validity period.
This anti-replay implementation is straightforward, typically maintaining a simple list of
used random strings within the function instance process for the duration of the instance’s
lifecycle.

In the dynamic token mechanism, the management of random numbers (Nonce) and
timestamps is key to building replay protection. This scheme adopts a concise and efficient
anti-replay mechanism, designed around the lifecycle characteristics of each function
instance. Specifically, the system requires each token request to include a unique random
number and current timestamp, and during verification, it checks whether this random
number has been used before in the current function instance.

In implementation, the system only needs to maintain a simple list of used random
numbers in the function instance’s memory, without requiring complex persistent storage
or global registries. This design fully leverages the instance-level isolation characteristics of
serverless functions, as function instances themselves are request-level or limited-lifecycle
execution environments with predictable maximum execution times. Even in extreme
cases, the size of the random number list has an upper limit and will not cause memory
leaks or resource exhaustion issues.

Token validity adopts a flexible mechanism based on timestamp comparison, rather
than a fixed long-term validity design. The system compares the timestamp in the token
with the current time at verification, and if the difference exceeds the configured threshold
(e.g., plus or minus 10 s), the request is rejected. This “generate-as-needed” time window
design significantly narrows the timeframe in which tokens can be misused, particularly
suitable for the brief, high-frequency operations in serverless scenarios. The specific range
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Table 1 Components of the dynamic token equation.

Component Description

RequestID Identifies the specific request being processed, providing request-level uniqueness

InstanceID Binds the token to a particular function instance, preventing cross-instance usage

Nonce A random string that ensures one-time use, preventing replay attacks

Timestamp Establishes the token’s validity period, ensuring tokens cannot be used indefinitely

DataKey Represents the specific resource or data being accessed, binding the token to particular sensitive information

of the time window can be configured by users according to business requirements and
security needs, with the system recommending shorter time windows by default to
maximize security.

It is important to emphasize that the core value of the dynamic token scheme proposed
in this article lies in its overall encryption architecture design and dynamic context
integration mechanism, rather than in any specific hash algorithm selection. In
implementation, the hash algorithm is merely a configurable component of the scheme,
and users can choose appropriate algorithms based on their security requirements and
performance considerations.

In our example implementation, we demonstrate the possibility of using lightweight
algorithms such as MD5, primarily to provide a reference for performance-sensitive
scenarios. However, the system fully supports users in employing any hash algorithm they
deem appropriate, including but not limited to more modern and secure choices like
SHA-256, SHA-3, and BLAKE2. In fact, our framework design allows users to explicitly
specify the desired algorithm in the encryption rule configuration, and even combine
multiple algorithms to create more complex signature logic.

This flexibility enables our scheme to adapt to different application scenarios and
security requirements while maintaining its core advantage—creating highly dynamic and
one-time access tokens by combining function execution context, request parameters,
timestamps, and random numbers, among other multiple factors. Regardless of which
specific hash algorithm is chosen, this multi-factor combination’s dynamic nature provides
strong security assurances, effectively preventing unauthorized access and token abuse.

Only when token verification is successful, the random string appears for the first time
in the current instance, the signature is within the validity period, and the key-value
information to be obtained matches the decryption token, will the request be considered
legitimate, and the user can safely obtain the corresponding key-value information.
Otherwise, the request will be regarded as illegal.

Compared with the traditional method of directly storing and retrieving keys in plain
text in environment variables, the dynamic token encryption and decryption mechanism
provides significant security advantages. In the traditional method, the keys and sensitive
information stored in plain text are extremely vulnerable to capture and exploitation by
malware or insider threats, leading to security risks and data leakage. The dynamic token
mechanism combines the built-in parameters of the serverless environment and

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3029 11/46


http://dx.doi.org/10.7717/peerj-cs.3029
https://peerj.com/computer-science/

PeerJ Computer Science

user-defined encryption rules, greatly enhancing the security and verification stringency of
temporary keys and other permission-related information.

The generation of encrypted temporary key information depends on the request context
and random factors, effectively preventing unauthorized access and abuse risks.
Additionally, the anti-replay function combined with the decryption token validity period
determination ensures that even if the decryption token is maliciously intercepted, it
cannot be reused. This forms a stark contrast to the traditional plain text storage lacking
effective protection measures. The dynamic token mechanism improves the complexity
and tamper-proofing capability of security verification by encrypting permission
information and utilizing unpredictable parameter generation processes, not only plugging
the vulnerability of directly reading plain text keys but also setting up multiple lines of
defense, significantly enhancing the robustness of the overall security architecture.

In practical scenarios like the WebIDE platform mentioned earlier, this mechanism
effectively prevents sensitive information such as platform-level keys from being leaked
through improper code printing or network transmission. By requiring proper token
verification before accessing sensitive data, even if malicious code manages to execute
within the function environment, it cannot directly access protected credentials without
generating valid tokens that incorporate the correct context parameters.

The optimized dynamic token encryption and decryption mechanism provides a
flexible and secure access control and data protection solution suitable for serverless
application scenarios of various security levels. This mechanism ensures that applications
can provide highly secure protection while maintaining efficient and stable service
responses. By implementing this mechanism, serverless applications can provide dual
assurance for users and developers, ensuring data security and system reliability.

Function-level token management policy
Building upon the dynamic token generation mechanism described previously, the
function-level token management policy provides an implementation pathway that
transforms the theoretical framework into a practical deployment solution. This strategy is
founded on the principle of separation of concerns, achieving effective segregation of
policy definition and execution by configuring encryption rules at the function level while
performing actual encryption and decryption operations at the instance or request level.

This policy avoids the complex inheritance relationships common in traditional
hierarchical permission systems, instead adopting the principle of function independence.
Each function independently maintains its encryption rules, and every token operation is
executed in an isolated environment without dependence on the state of other functions.
This design highly aligns with the stateless nature of serverless computing while providing
stronger security isolation guarantees. The boundaries between functions are clearly
delineated, effectively preventing permission leakage and propagation—even if a single
function is compromised, it will not affect the security architecture of the entire
application.

In practical implementation, the function-level policy can be divided into three critical
phases: configuration, initialization, and runtime. During the configuration phase,
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developers declare sensitive information requiring protection and corresponding
encryption rules in the function definition. In the initialization phase, the system
automatically executes an initialization function that encrypts sensitive environment
variables according to predefined rules, replacing original plaintext values with ciphertext.
In the runtime phase, function code accesses protected resources by generating valid
tokens containing necessary contextual parameters, with the system returning decrypted
information only after successful verification. This multi-phase implementation ensures
that sensitive information remains protected throughout its entire lifecycle.

A core security design decision in function-level token policy is the principle of
non-transferable tokens across functions. Each function constitutes an independent
security domain responsible for its own token generation and verification processes,
eliminating security risks that might arise from token transmission in function call chains.
This decision is based on in-depth threat model analysis: in complex microservice
architectures, if token transfer were allowed, any compromised function could intercept
and misuse valid tokens, creating a path for privilege escalation attacks. By enforcing
independent verification for each function, the system establishes a security model
approaching zero trust architecture, maintaining overall security even when certain
components are compromised.

From an engineering practice perspective, this strategy’s implementation organically
combines with modern serverless deployment tools (such as Serverless Devs), significantly
reducing integration complexity. Deployment tools can automatically inject necessary
initialization code during function deployment, making the security enhancement process
nearly transparent to developers. This engineered design allows security policies to be
managed separately from application code, ensuring consistency in security
implementation without interfering with normal application development processes.
Using Alibaba Cloud Function Compute as an example, developers can mark which
information needs protection through environment variables (such as
ENCRYPTION_KEYS: "DB_PASSWORD,API_KEY"), and specify an initialization function
for security processing, with the entire process remaining independent from business logic
development.

The value of function-level token management policy is reflected not only at the
technical level but also in its deep alignment with organizational security governance. By
allowing different functions to adopt differentiated security policies, this method supports
organizations in implementing risk-based security controls, concentrating limited security
resources on the most critical system components. High-sensitivity functions like payment
processing and authentication can be configured with stricter token generation rules (such
as using SHA-256 algorithm combined with more contextual parameters), while
low-sensitivity features like logging can adopt more lightweight configurations to optimize
performance. This fine-grained security resource allocation model significantly improves
overall protection efficiency.

This strategy also provides a rich data source for security analysis through its audit
logging mechanism. The system records all token verification attempts, including detailed
reasons for verification failures (such as nonce reuse, timestamp expiration, or token
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mismatch), giving security teams the ability to precisely identify potential attacks. These
audit records not only support post-event analysis and forensics but can also be integrated
into real-time security monitoring systems, building anomaly detection capabilities based
on dynamic token behavior.

In conclusion, the function-level token management policy achieves organic unity
between centralized management and distributed execution by defining security rules at
the function level but performing verification at the request level. This design satisfies both
the technical characteristics of serverless architecture and the best practice principles of
modern application security, providing a scalable, efficient, and implementable security
framework for building large-scale serverless applications with diverse security
requirements.

Security enhancement mechanisms

Encryption and decryption process

The encryption and decryption process builds upon the dynamic token generation
mechanism outlined earlier, implementing a comprehensive security workflow that spans
the entire lifecycle of sensitive data in serverless environments. While the previous section
established the theoretical foundation of token generation, this section delves into the
practical aspects of how encrypted data is processed, stored, and accessed within the
system architecture.

As illustrated in Fig. 2, the process implements a separation between encryption policy
and execution. The encryption rules configured at the function level are stored alongside
function metadata in the platform’s control plane, creating a robust association between
the function definition and its security policy. This architectural decision enhances security
by ensuring that encryption rules remain isolated from the function’s runtime
environment, preventing potential extraction through code vulnerabilities.

From a storage perspective, the system takes a dual-layer approach to protecting
sensitive data. The first layer involves replacing plaintext environment variables with their
encrypted counterparts during the initialization phase. The second layer implements
access control through the dynamic token verification process, creating an effective
defense-in-depth strategy. This approach significantly mitigates the risk of sensitive data
exposure even if an attacker gains access to the function’s environment variables, as
extracting the actual values would require successfully navigating the token verification
process.

The verification process follows a strict multi-step validation sequence as shown in
Algorithm 1. The system first validates the uniqueness of the Nonce parameter against the
instance’s used-nonce registry, immediately rejecting any requests attempting to reuse a
previously seen random string. Next, it verifies the timestamp to ensure the request falls
within the configured validity window. Only after these preliminary checks does the
system proceed to generate the comparison token using the same rules defined for the
function. This progressive validation approach optimizes performance by failing fast on
invalid requests, reducing unnecessary cryptographic operations.

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3029 14/46


http://dx.doi.org/10.7717/peerj-cs.3029
https://peerj.com/computer-science/

PeerJ Computer Science

Temporary key exchange module

Encryption
process

storage Encryption module
Clear text storage temporary key Encrypt storage temporary key
Token identification and
5 § processing module
o N Anti replay module
o 3 get
o
o
o<
e % Dynamic Tpken
- @ Generation

i v

Code reading environment variables

Figure 2 Principle diagram of dynamic token encryption process.
Full-size K&l DOT: 10.7717/peerj-cs.3029/fig-2

Algorithm 1 Optimized dynamic token decryption and verification process.
Require: User request containing data identifier DataKey, decryption token
DecryptToken, random string Nonce, and timestamp Timestamp
Ensure: Allow access to sensitive information if the request is legitimate
1: Verify the uniqueness of Nonce to prevent replay attacks
Verity Timestamp to ensure DecryptToken is within the validity period
Generate encrypted token EncryptToken using the same rules as the user
if DecryptToken == EncryptToken then
Grant access to the requested data
Record the successful access attempt for auditing
else

Deny access and record the anomaly event for further analysis
end if

A distinctive characteristic of this encryption system is its exceptional performance
profile. Unlike traditional encryption solutions that often introduce significant latency, our
experimental evaluations (detailed in “Discussion”) demonstrate minimal performance
overhead. This efficiency stems from several design decisions: (1) the verification process is
lightweight and executed in-memory, (2) the function-local nature of nonce verification
eliminates cross-service communication delays, and (3) the time-bound nature of tokens
aligns perfectly with the ephemeral execution model of serverless functions. These factors
combine to create a security layer that provides robust protection without necessitating
additional caching mechanisms or cold-start optimizations.
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The system implements a comprehensive anomaly detection and response strategy
based on two primary failure categories. Function-level failures, where the instance itself
encounters issues, are handled through platform-level recovery mechanisms. More critical
from a security perspective are signature verification failures, which may indicate
attempted unauthorized access. The system records each verification failure and
implements a progressive response strategy—after a configurable threshold of consecutive
failures, the instance is terminated and replaced, eliminating any potentially compromised
execution environment. This self-healing approach creates a moving-target defense that
significantly raises the difficulty of sustained attacks.

For open-source implementations or cross-platform deployments, the system
can be extended to interface with cloud-native KMS. However, it is important to recognize
the potential limitations of directly depending on platform-specific KMS solutions. These
limitations include increased latency due to external API calls, potential throttling during
high-concurrency scenarios, and added complexity in local development environments.
The current design intentionally maintains independence from cloud provider-specific
services, allowing for greater portability while still offering substantial security
improvements over plaintext credential storage.

By binding each token to specific data identifiers (DataKey), the system enables
fine-grained access control at the individual data element level. This granularity allows for
precise security policies that follow the principle of least privilege—each token grants
access only to the specific piece of data required for the current operation. The token’s tight
coupling with request context (RequestID, InstancelD), temporal factors (Timestamp), and
uniqueness guarantees (Nornce) creates a security boundary around each sensitive data
access operation. Even in the unlikely event of token interception, the combination of
timestamp validation and replay prevention renders the token useless outside its intended
context and timeframe.

The comprehensive audit logging mechanism captures the entire lifecycle of sensitive
data access, recording both successful and failed access attempts with contextual details.
These logs serve multiple critical functions: they enable security teams to detect abnormal
access patterns, provide evidence for forensic investigation following security incidents,
and satisfy compliance requirements for sensitive data handling. The structured nature of
these logs facilitates integration with security information and event management (SIEM)
systems for real-time threat monitoring and automated response.

In conclusion, the encryption and decryption process implements a security model
specifically tailored to the unique characteristics of serverless architectures. By combining
function-level encryption policies with request-level verification, the system creates a
balanced approach that delivers strong security guarantees with minimal performance
impact. This approach represents a significant advancement over traditional static
credential management techniques, addressing the unique security challenges of dynamic,
ephemeral computing environments.
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Audit log recording

The audit log recording mechanism extends the security foundation of our dynamic token
system by providing comprehensive visibility and accountability across all
security-relevant operations. Rather than implementing a custom logging infrastructure,
our approach leverages cloud platforms’ native logging and auditing services, creating an
efficient integration that maximizes both security coverage and operational efficiency.

This architectural decision offers several distinct advantages in serverless environments.
First, cloud-native audit services provide built-in scalability that automatically adjusts to
workload fluctuations, ensuring consistent log capture even during extreme traffic spikes.
Second, platform-managed log services eliminate the persistence challenges inherent in
ephemeral function instances, where locally stored logs would vanish upon function
termination. Third, these services typically offer advanced features such as tamper-evident
storage, encrypted transmission, and configurable retention policies that would be
resource-intensive to implement independently.

To address the potential performance impact of audit logging, our implementation
employs an asynchronous logging pattern specifically optimized for serverless execution
models. When a security-relevant event occurs (such as token verification), the system
generates a structured audit record containing all pertinent contextual information but
delegates the actual transmission of this record to an asynchronous process. This approach
prevents logging operations from blocking the main execution thread or extending
function execution time, effectively decoupling security observability from application
performance (Algorithm 2). Benchmark testing confirms that this implementation
introduces negligible overhead—typically less than 1ms per function invocation—even
when recording detailed contextual data.

The audit system implements differentiated logging based on event criticality to balance
comprehensive security visibility with storage efficiency. Standard operations capture
essential metadata for routine successful token verifications, while security exceptions
record detailed contextual information for all verification failures. For critical security
events such as consecutive verification failures—a potential indicator of brute force
attempts—the system employs enhanced logging that captures additional environmental
variables and request details that might otherwise be omitted from standard audit records.

A key security enhancement involves integration with cloud platform alerting systems.
The system defines several alert conditions based on audit patterns, particularly focusing
on consecutive verification failures from the same source. When predefined thresholds are
exceeded, the system automatically triggers platform-level alerts through cloud monitoring
services, enabling rapid security response. This integration creates a security feedback loop
where audit data drives automated defensive actions—such as temporary IP blocking or
instance replacement—significantly reducing the window of opportunity for potential
attackers.

For organizations operating across multiple cloud environments, our implementation
provides a standardized audit schema that maintains consistent security observability
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Algorithm 2 Asynchronous audit log recording process.

Require: Security event details including EventType, RequestContext, TokenData
(sanitized), Result, Timestamp

Ensure: Event is recorded in the audit system without blocking function execution
1: Create structured audit record with all security-relevant parameters

Sanitize sensitive data from audit record (e.g., remove actual token values)

Add function context metadata (function name, version, etc.)

Append record to in-memory buffer with configurable size limit

Trigger asynchronous flush if buffer threshold reached or on critical events

Return control to main execution flow immediately

Background process: Transmit buffered records to cloud audit service

regardless of the underlying platform. This approach creates a unified security view across
hybrid deployments while still leveraging each platform’s native audit services for optimal
performance and reliability. The audit schema includes standardized fields for event type,
function context, verification parameters, result codes, and temporal information,
ensuring that security analysts can correlate events across diverse environments without
manual field mapping.

To maximize the security value of audit data, the system supports integration with
common security information and event management (SIEM) platforms through
standardized log formats and export mechanisms. This integration enables advanced
security analytics including behavioral baseline analysis to identify abnormal token usage
patterns, geographic and network path anomaly detection for potential token theft,
correlation of token verification activities with other security telemetry, and automated
compiling of evidence for post-incident forensic investigation.

The audit system’s design also accounts for regulatory compliance requirements, with
configurable retention policies and selective field encryption to address data protection
regulations. For industries with specific compliance mandates (such as finance or
healthcare), the system provides predefined compliance templates that automatically
adjust logging detail and retention parameters to meet regulatory standards while
maintaining security effectiveness.

In production environments, this comprehensive audit mechanism has demonstrated
significant value in detecting sophisticated attacks that might otherwise evade detection.
The detailed contextual information captured in verification failure logs enables security
teams to distinguish between legitimate application errors and potential security threats,
significantly reducing false positive alerts while maintaining high detection sensitivity for
actual attack scenarios.

By leveraging cloud-native audit services while implementing serverless-specific
optimizations, our approach creates a robust security observability layer that enhances the
overall security posture of the dynamic token system without compromising the
performance advantages inherent to serverless architectures.
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Performance optimization considerations

In serverless computing environments, balancing performance and security is particularly
crucial. The characteristics of serverless architecture—microsecond-level billing, high
concurrency fluctuations, and resource-constrained execution environments—impose
strict performance requirements on security mechanisms. Through systematic analysis,
this study has implemented multi-layered performance optimizations for the dynamic
token mechanism, significantly enhancing system responsiveness and resource utilization
efficiency while maintaining security.

We first optimized the execution order of verification logic, constructing an efficient
tiered verification process. This optimization is based on an analysis of the computational
complexity of each verification step, reorganizing the verification process into a
progressive structure from low to high computational cost: first performing simple
operations such as nonce uniqueness checking and timestamp validity verification,
followed by computationally intensive token generation and comparison. This “fail-fast”
strategy allows invalid requests to be identified and rejected at an early stage, avoiding
unnecessary high-cost cryptographic operations and significantly improving the system’s
processing efficiency when facing numerous requests.

At the system architecture level, we implemented an instance-level distributed
processing model, embedding token verification decision logic into each function instance.
This design fundamentally changes the traditional centralized verification approach,
eliminating network latency and potential bottlenecks from cross-service calls. In the
technical implementation, each function instance maintains its own verification state (such
as a list of used nonces) and completes the entire verification process locally, without
depending on external services. This distributed architecture allows the system’s
verification capability to scale linearly with the number of function instances, making it
particularly suitable for the elastic scaling characteristics of serverless environments.

To provide a clear understanding of our optimization strategies, Table 2 summarizes the
key improvements implemented in the dynamic token mechanism.

Based on the code structure adjustment approach proposed in the original text, we
optimized the implementation details of token verification. These optimizations include
reducing unnecessary data conversions, simplifying intermediate state management
during the verification process, and adopting efficient data structures for storing
verification information. While these technical detail optimizations may seem minor, their
cumulative effect is significant in high-frequency verification scenarios, effectively
reducing CPU usage and memory consumption.

In terms of integration with cloud platforms, our design fully considers the unique
operating mode of serverless functions. Unlike traditional server environments, serverless
function instances have short and unpredictable lifecycles, making the management of
verification state particularly critical. Our optimization strategy adapts to this
characteristic by efficiently managing verification state within the instance lifecycle,
avoiding issues of state loss or redundant storage.
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Table 2 Performance optimization strategies for dynamic token mechanism.

Optimization Original approach Optimized version Purpose/Motivation
aspect
Verification order ~Sequential processing of all Tiered verification with fail-fast logic Reduce unnecessary computation by early rejection of
checks invalid requests
System Centralized verification Instance-level distributed processing Eliminate network latency and improve scalability
architecture service
Hash function Fixed SHA-256 for all Configurable algorithms based on Balance security strength with performance
selection operations sensitivity levels requirements
State management External state storage Function-local nonce registry Reduce cross-service calls and improve response time
Token validation  Full validation for all Progressive validation based on operation Optimize for common cases while maintaining security
requests criticality

Practical application validation is an important proof of the effectiveness of our
optimization strategy. In the actual deployment of the anycodes online programming
platform, which is built on a serverless architecture to provide WebIDE services for
multi-tenants with high concurrency and security-sensitive characteristics, our dynamic
token mechanism was successfully applied. The performance overhead introduced by the
verification process was controlled within an acceptable range while effectively preventing
sensitive information leakage, even when user code contained potentially malicious
behavior. This example demonstrates that the optimized dynamic token scheme has
practicality and effectiveness in real production environments.

Compared to existing security solutions, our optimized approach demonstrates clear
advantages. Traditional centralized verification methods (such as API gateway
verification) introduce additional network calls with each request, increasing latency and
limiting system scalability. Static token-based approaches (such as long-lived JWTs) offer
fast verification but significantly reduced security, lacking the ability to dynamically bind
to request contexts. Our approach achieves a balance between the two, combining the high
performance of distributed architecture with the strong security of dynamic tokens.

In terms of adaptability to changing system loads, the optimized scheme exhibits good
stability. Traditional verification methods often experience performance cliffs as load
increases, while our distributed design allows the system to scale smoothly with load.
Particularly in function chain call scenarios, the performance overhead of traditional
methods accumulates with call depth, while our approach effectively mitigates this
problem by reducing the overhead of each verification.

From both theoretical and practical perspectives, our optimization strategies achieve
good performance levels within the constraints of serverless environments. While
maintaining necessary security features (replay prevention, time-bound validity, context
binding), the verification overhead of the system approaches the practical lower limit.
Future performance improvements may primarily depend on optimizations in the
underlying platform and more efficient cryptographic primitives, rather than major
improvements in the verification logic itself.
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The “Discussion” section will provide detailed performance test results, quantitatively
demonstrating optimization effects from multiple dimensions. These data will further
validate the practical value of the optimization strategies described in this section, proving
that the dynamic token mechanism can meet both the performance and security
requirements of serverless environments.

In conclusion, through verification process optimization, instance-level distributed
processing, and code structure improvements, we have successfully addressed the
performance challenges of dynamic token mechanisms in serverless environments. These
optimizations not only improve system response speed and resource utilization efficiency
but also maintain the security advantages of dynamic tokens, making them an ideal choice
for serverless applications requiring both security and high performance. These
optimization strategies and design principles are not only applicable to the specific
scenarios in this research but also provide valuable references for performance
optimization of other serverless security mechanisms.

SECURITY AND PERFORMANCE EVALUATION

Security analysis

Attack model analysis

In the security analysis of the dynamic token encryption and decryption method,
constructing a systematic attack model is essential for deeply understanding potential
security threats. The attack model established in this research not only describes the
possible actions attackers may take, attack targets, and implementation conditions, but also
focuses on security risks unique to serverless architectures. Building upon the inherent
defects in serverless permission management analyzed previously, this research categorizes
attack models into two main types: generic attacks and scenario-based attacks.

Generic attacks primarily involve security issues related to open-source dependency
packages. As shown on the left side of Fig. 3, attackers inject malicious code into
widely-used open-source dependency packages. When serverless applications reference
these contaminated packages, the malicious code gains the opportunity to execute within
the function environment. Such attacks are particularly dangerous in serverless
environments because function execution environments typically store sensitive
information such as temporary keys, and once malicious code executes, it can send this
information to attacker-controlled servers via HTTP requests. This attack pattern directly
corresponds to A9 (Using Components with Known Vulnerabilities) in the OWASP
Serverless Top 10, but has more profound implications in serverless environments, as
leaked temporary keys may possess extensive cross-service permissions.

Scenario-based attacks target specific application scenarios, especially multi-tenant
environments that execute third-party code. As illustrated on the right side of Fig. 3, these
attacks primarily occur in two scenarios: online programming platforms and automated
deployment tools. Taking Alibaba Cloud Function Compute WebIDE as an example, such
services allow users to edit and test code online, typically running under serverless
accounts with broad permissions. If environment variables contain sensitive data and are
improperly handled, platform-level key information may be leaked. Similarly, when
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automated deployment tools like Serverless Devs process resource description files,
maliciously crafted components may lead to key information leakage or unauthorized
access. These attacks reflect serious security issues that may arise from improper
configuration or insufficient security measures in specific application scenarios, closely
related to A5 (Broken Access Control) and A6 (Security Misconfiguration) in the OWASP
Serverless Top 10.

Notably, these two attack models differ significantly from attacks in traditional
applications. In traditional server architectures, attackers typically need to first breach
network boundaries and then attempt to gain server privileges. In serverless architectures,
however, functions can be triggered by various events, each function potentially becoming
an independent attack entry point, and functions are often configured with execution roles
allowing access to multiple cloud services. These architectural characteristics blur
permission boundaries and significantly expand the attack surface.

In response to these specific attack models, the dynamic token method proposed in this
research adopts security strategies fundamentally different from traditional static
authorization mechanisms. By tightly binding sensitive information with function
execution context and request parameters, the dynamic token mechanism ensures that
even if function code is maliciously injected, attackers cannot obtain valid keys without
meeting strict verification conditions. This request-level dynamic authorization model
counters the unique permission leakage risks in serverless environments, demonstrating
significant advantages particularly when handling high-risk scenarios involving
third-party code execution.

Constructing these targeted attack models not only provides a framework for
subsequent security evaluations but, more importantly, reveals the limitations of
traditional security methods in serverless environments. By deeply understanding
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attackers’ objectives, methods, and constraints in serverless environments, we can design
more precise and effective defense strategies, thereby truly enhancing the security
resilience of serverless applications and supporting their robust operation in complex
threat environments.

Qualitative evaluation of defense effect

In the security analysis of the dynamic token encryption and decryption method,
evaluating the defense effect is a key step in measuring the effectiveness of the method.
This section comprehensively evaluates the defensive capabilities of the dynamic token
mechanism in practical application scenarios by establishing a systematic evaluation
framework and building upon the attack models defined earlier. Our research constructs
an evaluation framework from four security dimensions: confidentiality protection,
integrity assurance, availability maintenance, and anti-forgery/non-repudiation, for
systematic analysis of the defensive effects of the dynamic token method. Through this
framework, we can comprehensively assess the performance of the dynamic token method
under different threat scenarios and establish correlations with security risk categories in
the OWASP Serverless Top 10.

Against the threat of token theft and abuse, the dynamic token encryption and
decryption method significantly reduces the exploitation value of stolen tokens by limiting
token validity periods and implementing a one-time use principle. Even if an attacker
successfully steals a token, due to the token’s rapid expiration, the attacker finds it difficult
to complete unauthorized access within the validity period after the theft. This directly
addresses the A2 (Broken Authentication) risk in the OWASP Serverless Top 10 (OWASP
Foundation, 2018), which specifically points out: “In serverless architectures, with multiple
potential entry points, services, events and triggers and no continuous flow, things can get
even more complex.” The dynamic token addresses this complexity by creating unique
authentication contexts for each function instance and request.

For token forgery attack attempts, because token generation involves complex security
algorithms and dynamic context information, unauthorized users find it difficult to
replicate or generate valid tokens. Security tests demonstrate that the dynamic token
mechanism can effectively identify and reject forged token requests, thereby preventing the
success of forgery attacks. In existing serverless security solutions, although adopting
the principle of least privilege helps reduce unnecessary permission grants, it cannot solve
the security risks of permission leakage caused by static permission configuration. This
directly relates to A5 (Broken Access Control) in the OWASP Serverless Top 10 (OWASP
Foundation, 2018), which clearly states: “In serverless, we do not own the infrastructure, so
removing admin/root access to endpoints, servers, network and other accounts (SSH, logs,
efc.,) is not an issue. Rather, granting functions access to unnecessary resources or
excessive permissions on resources is a potential backdoor to the system.” The optimized
scheme, by introducing dynamic tokens, significantly increases the difficulty and scientific
degree of obtaining temporary keys, and although it does not directly dynamically adjust
permissions, this enhancement effectively controls the risk of temporary key leakage and
malicious acquisition even if permissions are configured too broadly.
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For the dependency package security issues (generic attacks) analyzed earlier, the
dynamic token method provides effective defense. This problem directly corresponds to
A9 (Using Components with Known Vulnerabilities) in the OWASP Serverless Top 10
(OWASP Foundation, 2018), which states: “Serverless functions are usually small and used
for micro-services. To be able to execute the desired tasks, they make use of many
dependencies and 3rd-party libraries.” In serverless environments, functions frequently
depend on external libraries, which, if maliciously modified or “poisoned,” may become
sources of security vulnerabilities. The OWASP document describes a typical case where
attackers contaminate the url-parse library to implement server-side request forgery
(SSRF) attacks. The optimized dynamic token mechanism, by encrypting permissions for
sensitive operations a second time, ensures that even if dependent libraries are poisoned,
malicious code cannot directly exploit temporary keys in environment variables. In the
specific defense process, the system replaces sensitive information in the original
environment variables with encrypted versions. When the function executes, even if
injected malicious code attempts to read environment variables, it can only obtain
encrypted content. To decrypt and use this information, a valid dynamic token must be
generated, which requires meeting specific execution context conditions and passing
through strict verification processes. Since token generation requires dynamic parameters
such as function instance ID and request ID, malicious code typically cannot meet these
conditions and thus cannot generate valid tokens to decrypt sensitive information.

For the scenario-based attacks defined earlier, the dynamic token method demonstrates
significant advantages in multi-tenant environments. These attacks correspond to A3
(Sensitive Data Exposure) and A6 (Security Misconfiguration) in the OWASP Serverless
Top 10 (OWASP Foundation, 2018). Category A3 particularly emphasizes: “In serverless,
writing data to the /tmp directory without deleting it after use, based on the assumption
that the container will die after the execution, could lead into sensitive data leakage in case
the attacker gains access to the environment.” Taking WebIDE platforms as an example,
these platforms that allow users to upload and execute custom code face the risk of user
code attempting to read temporary keys in environment variables. The “Poisoning the
Well” attack mentioned in the OWASP document is an example where attackers gain
long-term persistence in the application through upstream attack means and then
patiently wait for the new version to make its way into cloud applications. In traditional
methods, once code gains execution privileges, it can typically directly access plaintext
information in environment variables. With the dynamic token mechanism, sensitive
information in environment variables is stored in encrypted form, and even if the
attacker’s code executes, it cannot directly use this encrypted information.

Category A6 (Security Misconfiguration) further points out: “Misconfiguration in
serverless could lead to sensitive information leakage, money loss, DoS or in severe cases,
unauthorized access to cloud resources.” The dynamic token method provides an
additional security layer that effectively prevents sensitive information from being directly
exploited even in cases of misconfiguration. The OWASP document describes a scenario
where cloud storage is misconfigured and has public upload (write object) access, allowing
users to directly upload files with their own accounts. If the upload event triggers internal
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functionality, an attacker could use that to manipulate the application execution flow. The
dynamic token mechanism, by requiring token verification at each critical operation point,
ensures that only legitimate requests can execute sensitive operations, effectively blocking
such attack paths.

Another important scenario is the CI/CD process. The OWASP document (OWASP
Foundation, 2018) mentions a scenario under category A2: “To enable high velocity
development, each time a pull request is created the designated manager receives an email
message with the relevant information. The manager can then reply to the mail to approve/
decline the request. This is done via an SES service that triggers a function with the relevant
permissions to approve or close a request. However, if attackers gain knowledge of the
email address as well as the required email format, they can sabotage the development or
even insert backdoors into the code by sending a malicious email directly to the designated
email address.” The dynamic token method, by binding authentication with function
execution context and requiring multi-factor verification, can effectively prevent such
cross-channel attacks.

Compared to traditional security mechanisms such as JWT (JSON Web Tokens) and
KMS, the dynamic token method has unique advantages in serverless environments. JWT
typically operates on a time-based validity model, with validity periods (minutes to hours)
severely mismatched with the millisecond-level execution time of serverless functions,
meaning that tokens remain valid long after function execution completes, increasing the
risk of misuse. This issue is implied in category A2 of the OWASP document (OWASP
Foundation, 2018): “On the plus side, using the infrastructure provider’s authentication
services eliminates any need to handle passwords and sessions that, in many cases, were the
weakest link in traditional architectures.” Dynamic tokens, by binding with specific
requests and function instances, achieve request-level precise control, significantly
reducing the effective window period.

The system also implements an automated response mechanism that automatically
executes cleanup operations, removes relevant keys and sensitive information, and
immediately triggers security alerts when multiple consecutive illegal requests are detected.
This directly responds to concerns in category A10 (Insufficient Logging and Monitoring)
of the OWASP Serverless Top 10 (OWASP Foundation, 2018): “Applications which do not
implement a proper auditing mechanism and rely solely on their service provider probably
have insufficient means of security monitoring and auditing.” The dynamic token
mechanism not only provides defensive capabilities but also enhances the system’s
monitoring capabilities by recording verification failures and abnormal behaviors.

Despite demonstrating strong defensive capabilities, the dynamic token method also has
some limitations that need consideration. The method depends on the integrity of the
function execution environment; if the execution environment itself is completely
controlled, the underlying verification mechanism may be bypassed. This limitation relates
to many attack scenarios mentioned in the OWASP document, particularly the complex
attack cases described in category A8 (Insecure Deserialization), where attackers might
execute code by sending Java serialized objects in Telegram text. Second, token generation
and verification processes may introduce additional latency in high-frequency call
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scenarios, especially in cold start situations. According to the performance evaluation data
in later sections, this impact is controllable in most scenarios, but in applications that are
extremely sensitive to latency, a balance between performance and security needs to be
considered. Finally, compared to simple environment variable storage methods, the
implementation and maintenance of the dynamic token mechanism is more complex,
potentially increasing development and operational burdens. For small teams or
resource-limited projects, this complexity may pose implementation challenges.

Through the above evaluation, it can be seen that the dynamic token encryption and
decryption method directly relates to many security risks and cases described in the
OWASP Serverless Top 10 and demonstrates good defensive effects in these scenarios.
This method not only enhances the security of serverless applications but also shows
potential against advanced security threats. However, continuous security assurance
requires regular review and updates of security mechanisms to address evolving security
threats. As emphasized in the OWASP document (OWASP Foundation, 2018): “The
continuous guarantee of risk requires regular review and updating of security mechanisms
to cope with evolving security threats.” Overall, the dynamic token encryption and
decryption method provides a secure and flexible protection mechanism for serverless
applications, serving as a powerful security enhancement solution that effectively addresses
multiple high-risk security threats described in the OWASP Serverless Top 10.

Performance evaluation

Experimental setup

Even though the dynamic token scheme can strengthen function permission protection
and prevent permission leakage, as a computing platform, the performance overhead
brought by dynamic tokens, especially in the serverless cold start scenario, appears to be
more important. To comprehensively evaluate the impact of the dynamic token encryption
and decryption method on the performance of serverless applications, this study designs a
series of experiments aiming to simulate real-world application scenarios, thereby
accurately measuring the performance metrics of the method. The experimental setup
considers multiple key factors to ensure the reliability and broad applicability of the results.

To comprehensively evaluate the performance of the dynamic token encryption and
decryption method, this study selects Alibaba Cloud Function Compute and Tencent
Cloud Serverless Cloud Function as experimental platforms. These two platforms are
widely used cloud computing services in commercial and academic research, providing
standardized and controllable testing environments. By conducting experiments on these
platforms, we can obtain reliable and comparable performance data, which is crucial for
evaluating the impact of encrypted key processing in real cloud environments. In addition,
testing on different cloud platforms can also increase the generality of research results,
ensuring the broad applicability and effectiveness of the conclusions.

All function tests were conducted with a consistent configuration across platforms to
ensure fair comparison. Functions were configured with 512 MB memory and 0.5 CPU
cores, with an execution timeout setting of 10 s. We used Python 3.8 as the runtime
environment for all test functions. The Alibaba Cloud experiments were deployed in the
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Hangzhou region, while Tencent Cloud experiments were conducted in comparable
regions with similar infrastructure characteristics. The implementation of the dynamic
token mechanism in the test functions was achieved through serverless deployment tools.
Specifically, we used Serverless Devs to inject the initialization method during the
pre-deployment phase. The encryption and decryption methods were embedded in binary
form within the program for testing purposes, though in production environments these
would ideally be implemented as importable objects. The primary differences between the
benchmark version and the dynamic token-enhanced version are in the initialization
method and the approach to accessing sensitive variables. The benchmark version directly
reads environment variables, while the enhanced version implements the dynamic token
verification process before accessing sensitive information. Additional configuration for
the dynamic token mechanism included encryption method specifications that defined the
token generation and verification rules.

We evaluate the specific impact of the dynamic token encryption and decryption
method on the execution performance of serverless functions through a series of detailed
experiments. The experimental design aims to accurately quantify the performance
differences between including and not including key processing, thereby comprehensively
evaluating the performance overhead introduced by the encryption method. The
experiments are divided into several different parts, conducted on Alibaba Cloud and
Tencent Cloud platforms respectively, to ensure the general applicability and
comparability of the results: Alibaba Cloud and Tencent Cloud Hello World experiments:
This basic experimental design is used to measure the time delay introduced by the
dynamic token mechanism in the simplest function execution scenario. By comparing the
execution time of the Hello World function in cold start and hot start situations, we can
preliminarily understand the impact of key encryption and decryption on response time;
Alibaba Cloud object storage data writing case: In this experiment, we compare the
performance of the benchmark test (without security optimization) and the dynamic token
encryption and decryption method. This test mainly evaluates the performance impact of
encrypted processing on data writing operations, focusing on changes in writing latency
and processing efficiency; Comprehensive test of network requests and object storage data
writing cases: This part of the experiment further expands the test scope, including joint
scenarios of network request processing and data writing operations. Through this
comprehensive test, we can analyze in detail how the dynamic token mechanism affects the
overall performance of serverless applications in environments closer to real applications.

It is important to note that our experiments focused on single-request performance
rather than concurrent request scenarios. This decision was based on the nature of
serverless architecture, where concurrency is managed at the platform level with automatic
scaling. The performance impact on individual function instances is more relevant for
understanding the fundamental overhead introduced by the dynamic token mechanism.

To ensure the accuracy and reliability of the data obtained in this study, we conducted
multiple repeated experiments for each test scenario on the two major cloud platforms.
Specifically, each scenario was tested 15 times on each platform, which is sufficient to
ensure the stability of statistical results and reduce the impact of random errors. To further
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improve the accuracy of the analysis, the largest and smallest values were removed from
each set of data, which helps eliminate the bias that may be caused by extreme outliers. The
average of the remaining 13 results was calculated and used as the performance indicator
for that scenario on that platform. This data processing technique not only improves the
representativeness of the results but also enhances the ability of experimental data to reflect
actual situations. Through these meticulous preparations and accurate data processing, the
research results can more credibly support subsequent analysis and conclusions, ensuring
the scientific and rigorous nature of the research.

In this study, we focus on analyzing several key performance indicators to
comprehensively evaluate the actual impact of the dynamic token encryption and
decryption method on serverless applications. The specific indicators include cold start
time, code execution time, and memory usage, which are all core parameters for measuring
the performance of serverless services. Cold start time reflects the latency required from
when an application is triggered to when it actually starts executing, which is an important
indicator for evaluating startup efficiency; code execution time is directly related to the
application’s processing capability, indicating the length of time required for the program
to complete tasks; memory usage provides insight into resource utilization efficiency, with
low memory usage helping to reduce operating costs while also reducing system pressure.
By accurately measuring these indicators, we can draw a performance comparison diagram
before and after the implementation of the dynamic token mechanism, clearly seeing the
specific impact of encryption and decryption operations on system performance. This step
is crucial as it not only verifies the practicality of the new security mechanism but also
helps us identify and optimize potential performance shortcomings.

While our experimental design strives for comprehensiveness, certain limitations
should be acknowledged. First, the experiments primarily focus on Python runtime
environments, and results may vary with other programming languages. Second, while we
considered both cold and hot start scenarios, real-world production environments might
experience more complex execution patterns. Third, our statistical analysis focused on
averages after removing extremes, but does not include confidence intervals or formal
statistical significance testing, which could provide additional validation of the
comparative results. Despite these limitations, the experimental design offers valuable
insights into the performance characteristics of the dynamic token mechanism across
different scenarios and platforms.

Through this experimental design, we can analyze in detail the actual impact on the
performance of serverless applications after the implementation of the dynamic token
mechanism. The cold start time will reflect the latency from a completely inactive state to
the first response; the code execution time is directly related to the system’s efficiency in
processing requests; and the memory usage situation provides an important perspective on
resource utilization. These data will support our in-depth evaluation of the application
effect of the dynamic token encryption and decryption method in real cloud environments.
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Table 3 Comparison of benchmark and security optimized experiments for Alibaba Cloud Hello

World case.
Type Cold start Hot start
Time (ms) Memory (MB) Time (ms) Memory (MB)
Benchmark 2.01 7.74 1.12 7.62
Optimized 69.67 13.22 1.81 13.25

Performance test results

After executing a series of experiments aimed at evaluating the performance impact of the
dynamic token encryption and decryption method, we present a comprehensive analysis of
how this security enhancement affects serverless application performance across different
scenarios and platforms.

We evaluated the impact of the dynamic token encryption and decryption method on
the execution performance of serverless functions. As shown in Table 3, it is the Hello
World experiment of Alibaba Cloud Function Compute; as shown in Table 4, it is the Hello
World experiment of Tencent Cloud Serverless Cloud Function. These two experiments
provide us with insights, especially in understanding the impact of security optimization
measures on cold start and hot start performance. First, the cold start time shows an
increase on both cloud platforms, although this increase is not as significant on Tencent
Cloud (from 47.41 to 63.47 ms, approximately 34% increase) as it is on Alibaba Cloud
(from 2.01 to 69.67 ms, approximately 3367% increase). This substantial difference in
impact percentage highlights how the same security mechanism can have varying
performance implications depending on the underlying platform architecture and
optimization strategies.

In terms of memory usage, the test results on both platforms indicate an increase in
memory consumption in the optimized experiments. On Alibaba Cloud, memory almost
doubled (from 7.74 to 13.22 MB, approximately 71% increase), while on Tencent Cloud,
there was a similar increase (from 8.58 to 15.27 MB, approximately 78% increase). This
consistent memory overhead across platforms reflects the additional data structures and
code required to implement the dynamic token mechanism.

Interestingly, the hot start time was not significantly affected in either cloud platform’s
tests. In fact, on Tencent Cloud, the optimized version showed slightly better performance
(1.01 vs. 1.20 ms, a 16% improvement). This unexpected improvement, despite the added
security layer, suggests that the performance overhead of the dynamic token mechanism is
minimal once initialized, and possibly outweighed by normal resource-related fluctuations
in the cloud environment. This finding provides an important perspective: after
initialization, the security overhead becomes negligible relative to the platform’s inherent
performance variations.

As shown in Table 5, for the object storage data writing case, the experimental results
reveal an even more pronounced pattern. While the cold start time shows a modest
increase (from 397.33 to 415.92 ms, only about 5% increase), the hot start scenario actually
demonstrates improved performance with the security-enhanced version (from 59.33 to
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Table 4 Comparison of benchmark and security optimized experiments for Tencent Cloud Hello
World case.

Type Cold start Hot start

Time (ms) Memory (MB) Time (ms) Memory (MB)
Benchmark 4741 8.58 1.20 8.58
Optimized 63.47 15.27 1.01 15.27

Table 5 Comparison of benchmark and security optimized experiments for Alibaba Cloud object
storage data writing case.

Type Cold start Hot start

Time (ms) Memory (MB) Time (ms) Memory (MB)
Benchmark 397.33 35.65 59.33 35.55
Optimized 415.92 43.65 40.42 35.87

Table 6 Comparison of benchmark and security optimized experiments for Alibaba Cloud network
request and object storage data writing case.

Type Cold start Hot start

Time (ms) Memory (MB) Time (ms) Memory (MB)
Benchmark 822.12 62.65 498.97 62.81
Optimized 809.55 62.86 533.95 63.02

40.42 ms, a 32% improvement). This significant performance enhancement in the hot start
scenario, despite the added security layer, further confirms that the dynamic token
mechanism’s overhead becomes minimal in ongoing operations and may be completely
overshadowed by other optimization effects or resource-related fluctuations.

Furthermore, as shown in Table 6, in the most complex scenario combining network
requests and data writing operations, the performance impact becomes even less
significant. The cold start time actually decreased slightly with the optimized version (from
822.12 to 809.55 ms, a 1.5% improvement), while the hot start time showed a modest
increase (from 498.97 to 533.95 ms, about 7% increase). Memory consumption remained
nearly identical in both versions, with only a marginal 0.3% increase for the optimized
version.

To visualize these performance trends more clearly, Fig. 4 presents a comparative
analysis of the percentage change in execution time across different scenarios.

The visualization reveals a striking pattern: as application complexity increases from
simple Hello World functions to complex operations involving storage and network
operations, the performance impact of the dynamic token mechanism decreases
dramatically. This trend is particularly evident in cold start scenarios, where the initial
overhead percentage drops from over 3000% in the simplest case to becoming negligible or
even slightly positive in complex scenarios.
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Figure 4 Percentage change in execution time with dynamic token mechanism. Full-size Kal DOI: 10.7717/peerj-cs.3029/fig-4

This decreasing overhead pattern can be explained by analyzing the nature of the
dynamic token mechanism’s performance impact. The mechanism introduces a relatively
fixed overhead for initialization and token processing, regardless of the application’s
complexity. As applications become more complex and include more time-consuming
operations such as network requests and data storage operations, this fixed overhead
becomes proportionally smaller compared to the overall execution time. In the most
complex scenarios, the overhead becomes so proportionally minimal that it falls within the
normal performance fluctuation range of the cloud platform itself, explaining why some
optimized versions occasionally outperform their benchmark counterparts.

The observed cases where the security-optimized version performs better than the
benchmark version (such as in Tencent Cloud hot starts and Alibaba Cloud object storage
hot starts) provide important insight into the true performance impact of the dynamic
token mechanism. As confirmed by further analysis, these performance improvements in
the secured version indicate that the additional overhead introduced by the dynamic token
mechanism is actually smaller than the normal resource-related fluctuations in cloud
environments. This finding is particularly significant as it demonstrates that after initial
setup, the ongoing performance impact of the security enhancement is effectively
negligible in real-world applications.

From these results, we can derive several practical insights for serverless application
developers. For applications where cold start performance is critical, the impact of the
dynamic token mechanism should be considered most carefully in simpler functions, as
these show the highest relative overhead. However, for complex applications or those
where hot start performance dominates, the security benefits can be gained with minimal
performance trade-offs. Additionally, proper pre-warming strategies could be employed to
mitigate the cold start impact in performance-sensitive scenarios.
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Table 7 User convenience survey question design.

Question no. Question description

Question 1~ Have you encountered traffic attacks or other forms of attacks when using serverless?

Question 2 Are you worried about the easy leakage of key information in the function execution environment?

Question 3 Do you feel uneasy about the sensitive information stored in the environment variables of the function compute environment?

Question 4  Have you found an effective method to protect sensitive information under the serverless architecture?

Question 5 Do you need a mechanism to effectively protect keys and sensitive information without affecting their use in function compute?

Question 6  If a protection/encryption mechanism is provided that requires an additional method call for decryption, is this approach acceptable?

In summary, the performance test results confirm that although the dynamic token
encryption and decryption method introduces additional security control mechanisms, its
impact on the performance of serverless applications becomes increasingly minimal as
application complexity increases. While simple functions may see noticeable overhead
during cold starts, complex real-world applications experience negligible performance
impact, especially during continuous operation. These results emphasize the feasibility and
practicality of this method in actual production environments, showing that it can
maintain efficient application operation while ensuring strong security. This favorable
balance between security enhancement and performance preservation makes the dynamic
token approach particularly attractive for enterprises and developers adopting serverless
architecture at scale.

User experience research
User convenience survey
To comprehensively evaluate the user experience of the dynamic token encryption and
decryption method in practical applications, especially from the perspective of user
convenience, this study designs and implements a user convenience survey. The survey
aims to collect direct feedback from serverless application developers and maintainers on
the implementation and usage of the dynamic token mechanism, including their
satisfaction with the operability of the method, challenges encountered in daily use, and
any suggestions for improvement. This survey is conducted in the form of an online
questionnaire, distributed through official customer groups of multiple cloud vendors
including Alibaba Cloud and Tencent Cloud. The questionnaire includes six core
questions, allowing participants to select multiple answers, aiming to comprehensively
understand users’ experiences with security threats in serverless environments, their needs
for sensitive information protection, and their acceptance of new security solutions.
The survey collected valid responses from 111 serverless users. Participants were
primarily serverless developers, with entrepreneurs or individual developers comprising
the majority (approximately 80%), and enterprise developers accounting for about 20%.
To ensure the collection of opinions and feedback from multiple perspectives, survey
participants also included cloud security experts and IT operations personnel. This
participant composition allows the survey results to more comprehensively reflect the
current security concerns and needs of the serverless community, particularly reflecting
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Accept Extra Decryption Call 82.22% 17.78%
Need Protection Mechanism 80% 20%
Found Protection Methods 82.61%
Sensitive Info Concerns 48.57% 51.43%
Key Leakage Concerns 55.32% 44.68%
Experienced Attacks 26.92% 73.08%
0% 20% 40% 60% 80% 100%
@B Yes 80 No
N = 111 serverless users
Figure 5 User survey questionnaire statistics. Full-size Ka] DOT: 10.7717/peerj-cs.3029/fig-5

the practical challenges faced by small and medium-sized development teams, which are
often limited in resources and professional security knowledge and have a more urgent
need for simple and effective security solutions. Table 7 shows the six core questions used
in the survey, covering users’ experiences with security threats, their level of concern about
the security of keys and sensitive information, the usage of existing protection methods,
the demand for protection solutions, and the acceptance of additional decryption calls.

Figure 5 shows the detailed statistical results of the survey. The data indicates that users
have significant concerns about the security of temporary keys and sensitive information in
the serverless environment and have a clear demand for security protection solutions. The
survey results show that 27% of respondents reported experiencing various types of attacks
when using serverless. While this percentage is not a majority, it is still a significant
number considering the severity of security incidents and their potential impact. More
notably, among users who have experienced attacks, concerns about the security of keys
and sensitive information are significantly higher than among other users. Specifically,
55.32% of users in this group are worried about key information security, and 48.57% are
concerned about sensitive information security, reflecting the significant impact of actual
security threat experiences on security awareness.

Among all surveyed users, the widespread recognition of the need for key and sensitive
information protection is particularly prominent, with as high as 80% of users indicating
that they need the platform to provide protection solutions. More importantly, 82.22% of
users express acceptance of the dynamic token encryption and decryption solution
involved in this study, even though it requires additional method calls. This high
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acceptance reflects users’ willingness to accept a certain degree of usage complexity in
exchange for significantly enhanced security, which is crucial for assessing the practical
feasibility of the solution. The survey also reveals a significant lack of functionality in
serverless platforms in terms of sensitive information protection. A high percentage
(82.61%) of surveyed users indicate that they have not found an effective solution for
sensitive information protection, which strongly demonstrates the importance and
urgency of introducing the solution proposed in this study. This widespread functional gap
also explains why most users are willing to accept a protection solution that requires
additional operations—in the absence of effective choices, users tend to prioritize security
over convenience.

In terms of user convenience, some users reported encountering certain difficulties
when initially configuring and managing tokens, mainly reflected in the depth of
understanding of the dynamic token mechanism principles and integration with existing
workflows. These initial obstacles are particularly evident among entrepreneurs and
individual developers, reflecting the necessity of simplifying the initial configuration
process and providing clearer documentation. Notably, with the accumulation of usage
experience, most users expressed that they gradually became familiar with the operation
procedures of the method and were able to effectively integrate it into their daily
development and maintenance work. Some enterprise developers specifically mentioned
that the dynamic token mechanism is highly compatible with modern development
practices, allowing the method to be relatively seamlessly integrated into existing
development ecosystems.

The survey results directly support key design decisions of the dynamic token method.
The high level of user concern about the security of keys and sensitive information
validates the core objectives of the method; and the fact that 82.22% of users accept
additional decryption calls proves that the practical design principle of the method is
reasonable, i.e., users are willing to accept slight usage complexity in exchange for
significantly enhanced security. Additionally, the initial configuration obstacles mentioned
in user feedback have also influenced further optimization directions of the method,
prompting the research team to continuously improve the user interface and
documentation while maintaining core security advantages, to lower the threshold for
initial use.

Although this survey provides valuable insights, there are several limitations worth
noting. First, participants were mainly recruited through cloud vendors’ official customer
groups, which may bias the sample towards active users and those already aware of security
issues. Second, entrepreneurs and individual developers dominate the sample (about 80%),
with fewer enterprise users, which may affect the applicability of the results to large
organizational environments. Moreover, the survey primarily uses quantitative questions,
which may not capture all qualitative aspects of the user experience. Despite these
limitations, the survey results still provide important evidence for user security needs in
serverless environments and acceptance of the dynamic token method, strongly
supporting the practical application value of the method.
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Combining these survey results, it can be seen that serverless application users are
generally concerned about their data security, especially after directly experiencing security
threats, and the demand for improving existing security measures increases significantly.
This trend underscores the importance of developing and providing more efficient and
user-friendly security technology solutions to enhance user confidence and protect them
from potential security threats in the future. The dynamic token encryption and
decryption method has gained widespread recognition from users for its potential in
improving security, demonstrating its effectiveness and adaptability as a serverless security
solution. The user convenience survey reveals the advantages and challenges of the
dynamic token encryption and decryption method in practical applications. Although the
method has gained general recognition from users in terms of security performance, there
is still room for improvement in further enhancing user convenience and optimizing the
operating experience. This feedback provides valuable perspectives for the continuous
improvement of the method, helping to enhance the practicality of the method and user
satisfaction.

Case analysis of practical applications

In the field of security research, case analysis of practical applications is essential for
evaluating the effectiveness of methodologies. This section explores case studies of the
dynamic token encryption and decryption method in real-world environments, and
conducts qualitative analysis in conjunction with the OWASP Serverless Top 10
framework to demonstrate how this method addresses specific security risks.

Online programming and code testing platforms represent a typical high-risk serverless
application scenario. Taking Alibaba Cloud Function Compute’s WebIDE platform as an
example, the primary security challenges it faces directly correspond to A3 (Sensitive Data
Exposure) and A5 (Broken Access Control) in the OWASP Serverless Top 10 (OWASP
Foundation, 2018). In such environments, users can edit and execute code in browsers,
forming a typical multi-tenant execution environment. The unique challenge lies in the
platform’s requirement to allow user code execution while preventing this code from
accessing platform-level sensitive resources—a contradiction that constitutes a severe
security challenge.

The dynamic token method implemented by the WebIDE platform specifically
addresses the issue of “sensitive data potentially leaking through temporary storage or
environment variables” mentioned in the A3 risk. By implementing dynamic encryption
protection for platform-level keys in environment variables, even when user code attempts
to directly read environment variables, it can only obtain encrypted content. This
protection mechanism is particularly effective in addressing the risk scenario described in
the OWASP document where “functions may read data from temporary storage without
proper access controls.”

From a qualitative analysis perspective, the security enhancement effect of the WebIDE
platform is primarily manifested in two dimensions: vertical defense depth and horizontal
coverage breadth. In terms of vertical defense depth, dynamic tokens add an encryption
protection barrier for sensitive information, requiring attackers to simultaneously breach
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multiple protections to obtain valid credentials. In terms of horizontal coverage breadth,
this mechanism applies to all sensitive information on the platform, not limited to specific
APIs or resource types, achieving comprehensive protection. This all-encompassing
security strategy effectively addresses the common issue of “permissions being too lenient
or coarse-grained” pointed out in A5 (Broken Access Control).

The automated deployment tool scenario reflects the A6 (Security Misconfiguration)
and A9 (Using Components with Known Vulnerabilities) risks in the OWASP framework.
Taking deployment tools such as Serverless Devs as examples, these tools typically process
user-provided configuration files and third-party components, presenting security
challenges in configuration injection and component trustworthiness. The OWASP
document (OWASP Foundation, 2018) specifically emphasizes: “Misconfiguration in the
deployment process can lead to sensitive information leakage, unauthorized access to
resources, and even denial of service attacks.”

The dynamic token method implemented in deployment tools directly addresses this
risk. By introducing a dynamic permission verification layer for cloud resource operations,
even if configuration files contain malicious instructions or reference untrusted
components, they cannot execute sensitive operations without a valid token. This
protection mechanism is highly consistent with the defense strategy mentioned in the A9
risk regarding “third-party components potentially introducing unknown vulnerabilities,”
effectively mitigating dependency risks by isolating component execution environments
and controlling their resource access permissions.

Qualitative analysis indicates that in the deployment tool scenario, the value of dynamic
tokens is primarily reflected in two aspects: “permission minimization” and “immediate
invalidation.” Permission minimization binds each operation to a specific token, ensuring
that even if a component is compromised, it can only operate within a limited permission
scope. Immediate invalidation, through the token’s short validity period and one-time use
characteristic, ensures that even if a token is stolen, the attack window is extremely limited.
These features directly address the security vulnerabilities pointed out in OWASP A2
(OWASP Foundation, 2018) (Broken Authentication) regarding “long-term valid
credentials potentially being abused.”

The common point between the two cases is that they both effectively address the risk of
OWASP A10 (Insufficient Logging and Monitoring). The dynamic token mechanism
naturally supports fine-grained operation auditing, with detailed recording possible for
each token generation and verification, providing a rich data source for security
monitoring. In actual deployments, this feature enables security teams to quickly identify
abnormal access patterns, significantly enhancing security incident response capabilities.

From a technical implementation perspective, these cases demonstrate that the dynamic
token method has good adaptability in different scenarios. In the WebIDE environment,
token design focuses more on execution context and identity verification, while in
deployment tools, it emphasizes fine-grained authorization for resource operations. This
flexibility allows the method to be customized for different security threat models rather
than providing a one-size-fits-all solution.
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Practical application experience also reveals the advantages of the dynamic token
method compared to traditional security mechanisms. Compared to static access control
lists (ACLs), dynamic tokens provide more fine-grained request-level authorization;
compared to long-lived JWT tokens, their short validity period and dynamic nature
significantly reduce the risk of credential leakage; compared to complex IAM policy
configurations, their intuitive implementation reduces the possibility of security
misconfigurations. These advantages directly address multiple risks emphasized in the
OWASP framework, especially common vulnerabilities under categories A2, A5, and A6.

Opverall, these practical application cases not only confirm the practical value of the
dynamic token encryption and decryption method but also demonstrate its effectiveness in
addressing serverless-specific security challenges through comparison with the OWASP
Serverless Top 10 framework. Through successful implementation in key application
scenarios, the dynamic token mechanism has proven capable of providing strong security
guarantees while maintaining system performance and user experience, offering powerful
support for the secure development and operation of serverless applications.

DISCUSSION

Advantages and limitations of the method

Through systematic research and experimental evaluation of the dynamic token
encryption and decryption method, we can comprehensively analyze its advantages and
limitations in the field of serverless security. This analysis not only helps to understand the
applicable scenarios of the method but also provides clear directions for future research.

Regarding the theoretical security foundation, the dynamic token method primarily
satisfies four core security properties: time-boundedness, context-binding,
unpredictability, and non-reusability. Time-boundedness strictly limits token validity
periods, ensuring that even if a token is leaked, the attack window is extremely limited.
Context-binding tightly associates tokens with specific execution environments and
request parameters, making tokens unusable in other environments. Unpredictability
combines random factors and multidimensional contextual information, making it
difficult for attackers to predict valid tokens. Non-reusability effectively prevents replay
attacks through the one-time use principle and nonce verification. These security
properties collectively form the theoretical foundation of the dynamic token method,
making it particularly suitable for the short lifecycle and highly dynamic execution model
in serverless environments.

Compared to existing security technologies, the dynamic token method demonstrates
unique advantages in serverless scenarios. Traditional JSON Web Tokens (JWT) typically
adopt a time-based validity model, where tokens remain valid for predefined periods
(usually minutes to hours), which severely mismatches the millisecond-level execution
cycles of serverless functions. This results in token validity periods far exceeding function
execution times, increasing the risk of token misuse. In contrast, dynamic tokens combine
request context and random factors to achieve request-level precise authorization control,
with validity periods that can precisely match function execution cycles, significantly
reducing the exposure window of valid tokens. Similarly, key management services like
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AWS KMS, while providing powerful key protection capabilities, require additional API
requests for each function invocation, potentially introducing disproportionate latency in
high-concurrency scenarios. The dynamic token mechanism avoids this additional
network overhead through function-local verification.

Token lifecycle management is one of the core considerations of the dynamic token
method. Setting token validity periods involves a balance between security and usability:
shorter validity periods enhance security but may affect legitimate operations, while longer
periods increase the risk of token misuse. In practical implementations, we recommend
adopting a layered validity period strategy based on operation sensitivity: highly sensitive
operations (such as database writes, configuration modifications) should use extremely
short validity periods (typically seconds), while less sensitive operations can use relatively
relaxed time windows. Additionally, token revocation mechanisms are key capabilities for
responding to security incidents, allowing the system to immediately invalidate relevant
tokens when suspicious activities are detected. Based on the isolation characteristics of
instances, revocation in serverless environments can be achieved by terminating suspicious
instances, which is more efficient and thorough than traditional token blacklist
mechanisms.

Cross-platform and heterogeneous environment support is an important challenge for
the dynamic token method. Different cloud service providers’ serverless platforms exhibit
significant differences in architecture, APIs, and execution environments, affecting the
consistent implementation of dynamic token mechanisms. A viable strategy to address this
issue is to adopt an abstract adapter layer design, separating platform-specific
implementation details from core token generation and verification logic. This design
allows adaptation to different platform characteristics while maintaining consistent core
security mechanisms. For multi-cloud or hybrid cloud deployments, token mechanisms
can be further integrated with federated authentication systems to ensure consistent
security models across platforms. However, it should be noted that fundamental
differences in platform features mean that completely identical implementations may not
be practical, and development teams should be prepared to make necessary adaptations for
different cloud environments.

Performance impact assessment should go beyond simple response time comparisons to
comprehensively consider the actual impact of dynamic token mechanisms in different
usage scenarios. Previous performance test results indicate that as application complexity
increases, the relative overhead introduced by dynamic token mechanisms gradually
decreases, becoming almost negligible in complex business scenarios. However, in high-
concurrency, low-latency requirement scenarios, each additional millisecond of overhead
may have a significant impact. For such scenarios, the following optimization strategies
can be considered: first, optimize token computation complexity by selecting algorithms
that balance security and performance; second, optimize verification processes by adopting
the “check first, compute later” model mentioned earlier to quickly reject invalid requests;
third, implement tiered protection strategies, applying full verification processes only to
critical operations while using simplified verification for non-sensitive operations. These
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optimization strategies can control performance impact within acceptable ranges while
maintaining core security properties.

Execution environment integrity is an inherent challenge for the dynamic token
method. Since token verification processes typically occur within function instances,
attackers theoretically could bypass verification mechanisms if they gain complete control
of the execution environment. This limitation relates to the fundamental characteristics of
serverless architecture: function instances are the smallest execution units with limited
internal security boundaries. To address this challenge, a viable enhancement direction is
to move core verification logic to independent trusted environments, such as dedicated
security services or solutions based on trusted execution environments (TEEs). Although
this approach may introduce additional architectural complexity and performance
overhead, such trade-offs are usually reasonable for applications with high security
requirements. Moreover, even with in-function verification, additional multi-factor
authentication and behavioral analysis can significantly increase attack difficulty, forming
effective defense-in-depth.

From development and operations perspectives, the dynamic token method does add
certain implementation complexity. However, through appropriate tool support and
abstraction encapsulation, adoption thresholds can be effectively lowered. Ideal
implementations should provide developer-friendly SDKs and middleware, encapsulating
complex token generation and verification logic into simple API calls. Integration with
modern development frameworks and toolchains is also crucial; for example, integration
with common serverless frameworks (such as serverless framework, AWS SAM, etc.,) can
significantly simplify configuration and deployment processes. In terms of observability,
integrating detailed logging and monitoring capabilities to enable development teams to
effectively troubleshoot token-related issues is also a key factor in reducing operational
complexity.

Analysis of applicable scenarios indicates that the dynamic token method is particularly
suitable for the following cases: protecting sensitive operations in multi-tenant
environments, applications processing high-value data, compliance scenarios requiring
fine-grained audit capabilities, and financial and medical applications facing strict security
reviews. Conversely, for applications with extreme low-latency requirements, simple
functions without sensitive data access, or private deployment scenarios with already
well-established internal security isolation, the value of the dynamic token method is
relatively smaller, and implementation costs may exceed security benefits. Understanding
these applicability boundaries helps organizations make informed security investment
decisions.

Overall, the dynamic token encryption and decryption method demonstrates significant
advantages in enhancing serverless application security, particularly excelling when
addressing the various attack models analyzed previously. While its limitations objectively
exist, most can be effectively mitigated through reasonable design choices and
implementation strategies. Future research should focus on further reducing performance
overhead, enhancing cross-platform compatibility, and integration with emerging security
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technologies such as zero trust architecture, to drive serverless security towards higher
levels.

Application prospects and future research directions

The dynamic token encryption and decryption method demonstrates broad application
prospects in serverless architecture and opens multiple valuable exploration paths for
future research. This section explores the development potential and research directions of
this method from dimensions such as application scenario expansion, technology
integration, and security governance.

In terms of application scenarios, the dynamic token method is not only applicable to
protecting system temporary keys but can also be extended to other sensitive information
in environment variables, such as database credentials and API keys. As the serverless
computing model becomes increasingly popular in modern application development, this
method can seamlessly integrate with the increasingly rich and flexible security services
provided by cloud service providers, offering comprehensive security protection for
serverless applications. For industries with extremely high requirements for data security
and privacy protection, such as finance and healthcare, the dynamic token method
significantly enhances the granularity and flexibility of data encryption and access control
by providing dynamically generated security tokens for each request, better adapting to the
high security requirements of these industries.

Integration with emerging security architectures represents an important development
direction. Zero Trust Architecture emphasizes the security concept of “never trust, always
verify,” which highly aligns with the design philosophy of dynamic tokens. Future research
can explore using dynamic tokens as a key verification component in Zero Trust
Architecture, implementing fine-grained authorization decisions based on request context.
Specifically, dynamic tokens can integrate multi-dimensional trust signals including
identity, device, network path, and behavior patterns to build a more comprehensive
security decision framework. In edge computing scenarios, the main challenge for the
dynamic token method is efficient implementation in resource-constrained environments.
Future research needs to develop lighter-weight token generation and verification
algorithms to adapt to the performance characteristics of edge nodes while maintaining
necessary security strength.

In the field of security compliance and governance, the dynamic token method helps
organizations meet increasingly stringent data protection regulatory requirements. For
example, regulations such as the European Union’s General Data Protection Regulation
(GDPR) and the California Consumer Privacy Act (CCPA) require organizations to
implement appropriate technical measures to protect personal data. Dynamic tokens can
support these compliance requirements through their fine-grained access control
capabilities and comprehensive audit logging. Particularly in terms of data access
traceability and the principle of least necessary access, the dynamic token mechanism
provides authorization control precise to the request level and detailed operation audit
records, effectively supporting regulatory compliance. For organizations that need to
comply with Cloud Security Alliance (CSA) STAR certification or financial industry PCI
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DSS standards, future research can further explore how to map the dynamic token
mechanism to specific control points of these standards, providing more direct compliance
support.

Based on user survey feedback, we have identified several key improvement directions.
First, simplifying the initial configuration experience is an important factor in increasing
adoption rates. Future research can focus on developing more intelligent configuration
assistants and template libraries to help developers quickly apply best practice
configurations. Second, deep integration with mainstream development tools and
frameworks is also crucial. By providing plugins and extensions for commonly used IDEs
and CI/CD platforms, security controls can be seamlessly integrated into the development
process, lowering adoption barriers. Additionally, the survey shows that users have a
strong demand for clearer error messages and troubleshooting guides, which is also a focus
for future work.

Progressive adoption strategy is an effective path for implementing complex security
mechanisms. We recommend that organizations begin by identifying and protecting their
most critical data assets, such as first applying to functions that process payment
information, personal identity data, or business secrets. This gradual implementation
approach not only distributes technical risk but also gives development teams time to learn
and adapt. In terms of integration with existing security infrastructure, the dynamic token
mechanism should be viewed as part of a defense-in-depth strategy rather than an isolated
solution. Future research can explore collaborative working modes between dynamic
tokens and security tools such as WAF, RASP, and cloud security configuration
management to build a more complete serverless security protection system.

Security metrics research is the foundation for evaluating security enhancement effects.
Existing security assessments often lack quantitative indicators specific to serverless
security mechanisms. Future research should develop an evaluation framework applicable
to the dynamic token method, including token strength indicators, token abuse resistance
indicators, and security boundary measurement methods in different attack scenarios. This
type of research not only helps objectively evaluate security improvement effects but also
provides a more scientific basis for security investment decisions. Precise measurement
standards are particularly important when considering the balance between security and
performance.

In terms of performance optimization, future research can explore more efficient
encryption algorithms, hardware acceleration mechanisms, and parallel computing
frameworks, striving to minimize computational overhead and latency while ensuring
security. Particularly noteworthy is the combination of hardware security modules (HSM)
and trusted execution environments (TEE) with the dynamic token mechanism, which
may provide higher levels of protection for sensitive operations while enhancing
performance through hardware acceleration. Additionally, researching how to optimize
token processing in cold start scenarios is also significant, with possible directions
including preheating strategies, lazy loading mechanisms, and context caching
technologies.
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Regarding open source and ecosystem development, establishing open standards and
reference implementations will help promote wider adoption. By open-sourcing core
components, community wisdom can be gathered to improve algorithms and security
while enhancing transparency and credibility. In terms of standardization, future work can
promote the development of common specifications for serverless security tokens,
ensuring interoperability between different implementations. Such standards should
include aspects such as token format, lifecycle management, verification protocols, and
security properties, providing a consistent security model for different platforms and
vendors.

In conclusion, the dynamic token encryption and decryption method creates a
promising research path for the field of serverless security. With the continued
development of serverless architecture and the cross-integration of new technologies such
as cloud computing, big data, artificial intelligence, and the Internet of Things, the
dynamic token method will embrace broader development space and research hotspots.
Through continuous innovation in performance optimization, intelligent adaptation,
multi-scenario expansion, and cross-cloud collaboration, the dynamic token method is
expected to become a key pillar in the serverless security protection system, providing
users with comprehensive, intelligent, and flexible security services, helping the serverless
computing model become a mainstream application architecture and solid foundation for

digital transformation in the new era.

CONCLUSION

This research deeply explores the significant contributions of dynamic token encryption
and decryption methods in enhancing serverless application security from both theoretical
and practical dimensions. Through systematic theoretical modeling, experimental
validation, and practical application analysis, we propose an innovative security solution
tailored to serverless architecture characteristics, providing new insights for addressing the
adaptability challenges of static permission models in highly dynamic operating
environments.

From a theoretical contribution perspective, this study establishes a theoretical
framework for dynamic token security models, built around four core security attributes:
time-effectiveness, context-binding, unpredictability, and non-reusability. Unlike
traditional static authorization methods, this model incorporates function execution
context and request-specific information into the security decision process, achieving
precise permission control at the request level. This methodological innovation extends the
perspective of serverless security research, filling research gaps in dynamic authorization
mechanisms in existing literature. Particularly in connecting the theoretical model with the
OWASP Serverless Top 10 security risk framework, this research establishes clear mapping
relationships, demonstrating how dynamic token mechanisms specifically address major
security threats in serverless environments.

In terms of practical contributions, this research demonstrates the feasibility and
effectiveness of dynamic token mechanisms in real-world environments through
prototype system implementation and multidimensional validation. Our experimental
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evaluation covers various application patterns from simple functions to complex business
scenarios, systematically quantifying the relationship between security enhancement and
performance impact. Notably, as application complexity increases, the relative
performance overhead introduced by dynamic token mechanisms gradually diminishes,
becoming almost negligible in real business scenarios. This finding suggests that the
method is not only theoretically sound but also practical for actual deployment, capable of
maintaining good system performance while providing strong security guarantees.

The bidirectional interaction between theory and practice is a distinctive feature of this
research. On one hand, our theoretical model provides clear guidance for prototype system
implementation, with core designs such as token lifecycle management strategies and
multi-factor verification mechanisms derived from the theoretical framework. On the
other hand, findings from practical deployment have enriched the theoretical model,
especially in terms of performance optimization and user experience, where feedback from
actual applications has prompted us to adjust and refine our initial theoretical
assumptions. This virtuous cycle between theory and practice makes the research
outcomes more academically valuable and practically significant.

Despite the positive results achieved in this research, we honestly acknowledge its
limitations. First, current experimental validation has been primarily conducted on specific
cloud platforms, and research on cross-platform applicability requires further
investigation. Second, although we have proposed possible solutions to the challenge of
execution environment integrity, this fundamental issue has not been completely resolved,
especially in extreme attack scenarios. Additionally, while the user experience survey
provided valuable feedback, the sample composition was primarily small teams and
individual developers, potentially not fully reflecting implementation challenges in large
enterprise environments. These limitations suggest that while the dynamic token method
is effective, it still needs to be validated and refined in broader scenarios.

From an industry practice perspective, this research provides practical guidance for
enterprises adopting serverless technology. The research results indicate that dynamic
token mechanisms can serve as an effective means to address serverless security pain
points, particularly suitable for multi-tenant environments handling sensitive data. Our
proposed progressive adoption strategy and integration methods with existing security
infrastructure provide an actionable path for enterprise implementation, lowering the
adoption threshold. Through case analyses in this research, we demonstrate application
patterns of this method in different business scenarios, providing a reference framework
for security teams to customize security solutions based on their specific needs.

In terms of academic contributions, this research provides new research perspectives
and methodologies for the serverless security field. By applying dynamic authorization,
context awareness, and defense-in-depth principles to serverless environments, we expand
the boundaries of cloud security research. In particular, the approach of using function
execution context as a security decision element provides an innovative direction for
addressing authorization challenges in cloud-native environments. This research
framework is not only applicable to serverless computing but also provides valuable
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references for related fields such as microservice security and container security, with the
potential to influence broader cloud-native security research.

Looking ahead, there remains vast space for research and application of dynamic token
methods. As serverless architecture extends to more complex scenarios, security
requirements will continue to evolve. We believe that subsequent research can continue to
explore in several directions: first, deeply integrating dynamic token mechanisms with
zero-trust architecture to build a more comprehensive cloud-native security framework;
second, exploring token protection mechanisms based on hardware trusted roots to further
enhance execution environment security; and third, developing formal verification
techniques for dynamic token methods to provide more rigorous security guarantees.
These research directions require interdisciplinary collaboration, combining knowledge
from cryptography, system security, and software engineering to achieve breakthrough
progress.

In conclusion, this research makes meaningful theoretical and practical contributions to
the field of serverless security, proposing dynamic token encryption and decryption
methods that provide new insights for addressing permission management challenges in
serverless environments. We believe that as serverless technology continues to develop and
find widespread application, this security enhancement method will play an increasingly
important role, promoting serverless computing as a secure and reliable pillar of new-era
digital infrastructure. Future research will continue to deepen and expand this field,
driving the joint advancement of serverless security theory and practice.
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