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ABSTRACT
This article introduces a hybrid approach to enhance indoor pathfinding and
navigation within complex multistory environments by integrating rapidly-exploring
random tree (RRT)-Connect and Dijkstra’s algorithm. We propose a novel solution
leveraging the strengths of RRT-connect for rapid path generation, combined with
Dijkstra’s algorithm for refining and optimizing the final route. Our method
leverages the rapid exploration of RRT—Connect while refining paths using
Dijkstra’s algorithm, resulting in fewer nodes explored compared to Lazy Theta�

while maintaining efficiency. Experimental results demonstrate that our hybrid
approach significantly reduces computational overhead, with RRT-Connect
exploring approximately 1,750 nodes—outperforming RRT (2,000 nodes), RRT�

(1,850 nodes), and Dijkstra (1,780 nodes). The algorithm achieves up to 50% faster
execution in narrow spaces compared to traditional RRT, making it well-suited for
real-time navigation. Additionally, parallel processing optimizes performance,
ensuring efficient pathfinding in dynamic environments. A Next.js-based frontend
visualization system further enhances usability by rendering path nodes in real time.
This hybrid approach balances rapid exploration, optimal path computation, and
computational efficiency, making it a robust solution for indoor navigation in
large-scale and complex environments.

Subjects Adaptive and Self-Organizing Systems, Algorithms and Analysis of Algorithms,
Autonomous Systems, Optimization Theory and Computation, Spatial and Geographic Information
Systems
Keywords Hybrid RRT-connect Dijkstra’s algorithm, Indoor navigation, Multistory buildings,
RRT-connect, Pathfinding, Dijkstra’s algorithm

INTRODUCTION
Efficient and accurate pathfinding has become a critical area of focus, especially in
environments where complex structures such as multistory buildings exist. From college
campuses to large shopping malls and smart cities, there is an increasing need for users to
navigate these environments seamlessly. Traditional navigation systems and applications,
which rely primarily on 2D projections, face significant challenges when applied to
environments with multiple levels, obstacles, and dynamic conditions. Furthermore, the
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demand for real-time navigation and minimal computational delays adds another layer of
complexity to these systems (Liu et al., 2020).

Traditional algorithms such as Dijkstra’s and A� have been effective in pathfinding but
struggle in dynamic, multilevel environments due to their computational overhead and
inefficiencies in large-scale maps (Singh et al., 2024). While Dijkstra’s algorithm ensures
optimality, its efficiency degrades significantly in high-dimensional spaces or
environments with complex layouts. This is due to its exhaustive nature, which leads to
substantial computational overhead in large graphs, especially when dealing with multiple
levels. This limitation makes it unsuitable for real-time pathfinding in large multistory
buildings where nodes represent different spatial locations across floors, and dynamic
changes such as obstacles and re-routing are frequent (Zhang et al., 2021).

To address these limitations, this article proposes the use of rapidly-exploring random
trees (RRT), particularly the RRT-Connect variants, for spatial navigation in multilevel
environments. RRT algorithms are considered highly effective for high-dimensional spaces
due to their ability to focus on feasible paths without the need for an exhaustive search of
the entire space. They explore randomly and rapidly, extending the search tree towards a
goal while avoiding unnecessary exploration. RRT-Connect enhances the basic RRT
algorithm by growing trees from both the start and goal configurations, eventually
connecting them for a more efficient solution (Faramondi et al., 2014; Zhou et al., 2022).

In addition to algorithmic improvements, the system integrates parallel processing
capabilities, taking advantage of CPU parallelization. The implementation of
parallelization reduces the time complexity associated with expanding trees and finding
optimal paths, especially in large, dynamic environments. This allows for real-time
computation, making it viable for use in environments where fast responses are crucial,
such as emergencies or navigation in crowded spaces (El-Sheimy & Li, 2021).

In summary, this research introduces a spatial database for multilevel navigation that
leverages RRT-based algorithms and parallel processing to overcome the shortcomings of
traditional approaches. The system is designed to provide users with an efficient, real-time
solution for navigating complex environments, without the computational limitations of
exhaustive search algorithms like Dijkstra.

LITERATURE OVERVIEW
The field of pathfinding algorithms has evolved significantly over the years, with each
algorithm designed to solve specific challenges in navigation and route optimization. The
increasing complexity of real-world environments, such as multilevel structures and
dynamic obstacles (Tran & Ha, 2022), has driven the development of more efficient
algorithms, particularly in scenarios where real-time computation is essential. In this
literature review, we compare traditional algorithms like Dijkstra’s and A�, as well as more
methods like RRT and their variants, in the context of spatial databases and multilevel
navigation.

Sriramulu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3028 2/36

http://dx.doi.org/10.7717/peerj-cs.3028
https://peerj.com/computer-science/


Traditional pathfinding algorithms
Dijikstra’s algorithm
Dijkstra’s algorithm is one of the most well-known and widely used algorithms for finding
the shortest path between two points on a graph. It guarantees finding the optimal solution
by exhaustively exploring every possible path until the shortest one is determined. It has
been applied extensively in 2D environments, such as road networks and basic indoor
navigation.

However, its exhaustive nature becomes a limitation when applied to more complex,
high-dimensional environments. In multistory buildings or environments with dynamic
obstacles, Dijkstra’s algorithm suffers from excessive computation time and memory
consumption. Furthermore, since the algorithm explores all nodes, it struggles with
real-time efficiency in scenarios where fast responses are critical.

A� algorithm
A� builds upon Dijkstra’s algorithm by introducing a heuristic function to guide the search
process more efficiently. It reduces computational overhead by focusing on the most
promising nodes, balancing exploration and path cost. A� is faster than Dijkstra in practice
for most applications and has been applied in many navigation systems, particularly where
obstacles are sparse and the environment is mostly static.

However, like Dijkstra’s algorithm, A� faces challenges in environments with multiple
levels and dynamic obstacles, particularly when the heuristic used is not well-suited to the
problem space. Moreover, A� can struggle with memory efficiency in large environments
due to its reliance on storing the open and closed lists.

Modern pathfinding algorithms
Rapidly-exploring random trees (Algorithm 1)

RRT is a more recent algorithm designed to tackle the shortcomings of traditional
pathfinding methods in high-dimensional and dynamic spaces like robots or autonomous
driving path findings. RRT works by incrementally building a search tree by randomly
sampling the environment, expanding the tree toward each sample. Unlike Dijkstra and
A�, RRT does not attempt to explore the entire graph exhaustively but focuses on
expanding the tree based on random exploration. Furthermore, In Dijkstra’s algorithm, the
graph is predefined and fully explored, with edges representing the known connections
between nodes. Meanwhile, In RRT the graph is built incrementally by adding random
samples as new nodes and connecting them to the nearest existing nodes in the tree. As
shown in Fig. 1. It is exploratory and adapts based on the configuration space without
needing the entire graph structure beforehand (Martinez, Jacinto & Montiel, 2023).

The basic steps are as follows:

1. It constructs a random tree at the starting point Xinit of the two-dimensional state space
as the root node;

2. A random sampling point Xrand is generated in the free search space and used to guide
the expansion of the random tree;
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3. After traversing the nodes that have been generated in the whole random tree, the tree
node that is closest to the random point Xrand is found, selected, and defined as Xnear;

4. From the node Xnear, along the extension direction of the node Xrand as the extension
direction, the appropriate step size is expanded, and the appropriate step size is set as
the branch length to generate a new node Xnew as the new tree node;

5. If an obstacle is encountered in the expansion process, the expansion is canceled, and
sampling is performed again. The path repeats the above iterative process until the
target node exceeds the specified number of iterations and finally forms a
fast-expanding random tree path, ending the search.

Wang et al. (2023), Brad & Dolha (2021).
RRT has become a popular choice in robotics, automated navigation, and multilevel

environments due to its ability to quickly generate paths in complex spaces. However, the
basic RRT algorithm does not guarantee an optimal solution and can suffer from slow
convergence in certain scenarios.

RRT-Connect and bi-directional RRT
RRT-Connect is an extension of the RRT algorithm that attempts to improve the
convergence speed by growing two trees simultaneously: one from the start point and one
from the goal. The trees explore the environment independently but attempt to connect to
each other as they grow, significantly reducing the time needed to find a feasible path.
Bi-directional RRT works similarly, expanding the search from both the start and goal
nodes simultaneously but is more efficient in larger environments where growing a single
tree takes too long (Fan et al., 2024).

Figure 1 Visualization of the rapidly-exploring random tree (RRT) algorithm.
Full-size DOI: 10.7717/peerj-cs.3028/fig-1
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As shown in Fig. 2. The RRT-Connect algorithm grows two trees: one from the start
position qstart and the other from the goal position qgoal. The goal is to connect the two
trees to find a collision-free path.

The RRT algorithm attempts to find a path by sampling random configurations in the
space and then extending the tree to include these samples. The tree grows from an initial
point qstart , and in each iteration, a random configuration qrand is generated. The algorithm
then extends the tree by moving a step from the nearest node qnear towards qrand, but
stopping if a collision occurs.

Algorithm 1 RRT algorithm (Rapidly-exploring random tree).

Input: M, xinit, xgoal
Output: A path τ from xinit to xgoal

1 1: s:initðÞ;
2 2: for i 1 to n do
3 3: xrand  SampleðMÞ;
4 4: xnear  Nearðxrand; sÞ;
5 5: xnew  Steerðxrand; xnear; StepSizeÞ;
6 6: Et  Edgeðxnew; xnearÞ;
7 7: if CollisionFreeðM;EtÞ then
8 8: s:addNodeðxnewÞ;
9 9: s:addEdgeðEtÞ;
10 end
11 10: if xnew ¼¼ xgoal then
12 11: Success();
13 end
14 end

Figure 2 RRT-Connect algorithm: extend from tree Tb with root as goal position q-goal to tree Ta
with root as start position q-start. Full-size DOI: 10.7717/peerj-cs.3028/fig-2
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The extension function is given as:

qnew ¼ qnear þ e
ðqrand � qnearÞ
kqrand � qneark (1)

where:

. qnew is the new node,

. e is the step size,

. qrand is the random configuration, and

. qnear is the nearest node in the tree to qrand.

RRT-Connect extends this by simultaneously growing two trees: one from the start and
one from the goal. The trees will attempt to connect to each other as they grow. In each
iteration, the algorithm grows tree Ta from qstart towards the random configuration qrand,
and then grows tree Tb from qgoal towards qnew, the new node in tree Ta.

The extension of tree Tb towards tree Ta is done using the same extension function as
Eq. (1), but with the trees reversed:

q0new ¼ q0near þ e
ðqnew � q0nearÞ
kqnew � q0neark

(2)

where:

. q0new is the new node added to tree Tb,

. q0near is the nearest node in tree Tb to qnew, and

. qnew is the new node generated in tree Ta.

If qnew from tree Ta and q0new from tree Tb are close enough, the trees are connected, and
a feasible path has been found.

In mathematical terms, the two trees are connected when:

kqnew � q0newk < d (3)

where d is a predefined threshold for connection.
The computational complexity of RRT-Connect depends on the number of nodes

generated in both trees, which is often improved by utilizing parallel processing techniques
such as CPU parallelization (Hidalgo-Paniagua et al., 2018).

These algorithms are well-suited for real-time applications in dynamic environments,
where traditional algorithms like Dijkstra and A� are too slow. Furthermore, by leveraging
parallel processing such as CPU parallelization the performance of these algorithms can be
significantly improved, enabling their application in real-time scenarios like complex
indoor navigation.

Finally, overall overview of pathfinding algorithms is summed up, as shown in Fig. 3.

Proposed spatial databases in navigation
Spatial databases are a critical component of any navigation system. They store
information about the environment, such as the coordinates of nodes (e.g., rooms, floors)
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and the paths between them. The efficiency of a pathfinding algorithm often depends on
the underlying data structure of the spatial database.

Traditional navigation systems rely on simple relational databases to store nodes and
paths in a 2D plane. However, as environments grow in complexity (e.g., multilevel
buildings), these databases must store spatial information in multiple dimensions and
manage dynamic updates to node locations or paths as obstacles and conditions change.
The efficiency of querying and updating the database directly impacts the performance of
pathfinding algorithms.

Modern spatial databases integrate advanced indexing techniques such as R-trees or
quadtree structures, enabling faster queries in multidimensional spaces. These databases
are essential for supporting algorithms like RRT-Connect, which rely on rapid, frequent
lookups of node and path data during the tree expansion process (Kanth, Ravada &
Abugov, 2002).

In addition to advanced indexing, modern spatial databases often incorporate real-time
data processing capabilities, allowing them to handle dynamic changes in the environment,
such as moving obstacles or evolving terrain conditions. This real-time adaptability is
crucial for algorithms like RRT-Connect, which require the system to continuously assess
the feasibility of paths and re-route as necessary. By leveraging these spatial databases, the
pathfinding algorithms can maintain high efficiency and accuracy even in complex,
ever-changing environments.

Figure 3 Overview of pathfinding algorithms and key characteristics.
Full-size DOI: 10.7717/peerj-cs.3028/fig-3
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Algorithm comparison and discussion
Based on the research, we can summarize the key features, benefits, and drawbacks of the
main pathfinding algorithms in the following Table 1.

PROPOSED METHODOLOGY
In this section, we present a detailed description of the proposed solution, which addresses
the shortcomings of traditional pathfinding algorithms like Dijkstra and A� in multilevel,
complex environments. Our solution leverages modern pathfinding algorithms such as
RRT-Connect, combined with parallel processing techniques, to ensure efficient and
real-time navigation in dynamic environments like multistory buildings. This approach
also integrates advanced spatial databases to handle dynamic changes in the environment,
ensuring that nodes and paths are updated and queried efficiently.

Problem recap
Traditional algorithms like Dijkstra’s and A� have been widely used for pathfinding, but
they encounter significant challenges when applied to dynamic, multilevel environments.
These challenges include:

Excessive computation time
Dijkstra and A� tend to explore nodes exhaustively, which becomes computationally
expensive in large graphs.

Inability to scale
As the number of nodes and levels increase (such as in multistory buildings), these
algorithms struggle with efficiency and memory usage.

Lack of adaptability to dynamic environments
When dealing with environments that may change frequently (such as obstacles appearing
or disappearing), traditional algorithms face challenges in re-computing paths efficiently.

Key components of the proposed solution
The proposed solution is designed to overcome these limitations by incorporating three
key innovations:

1. Algorithmic Improvements with RRT-Connect

2. Parallel Processing for Speed and Efficiency

3. Efficient Spatial Database Design

Table 1 Comparison of pathfinding algorithms.

Algorithm Optimality Time complexity Memory efficiency

1 Dijkstra Guaranteed High OðV2Þ Low

2 A* Near-optimal High OðV logVÞ Medium

3 RRT Non-optimal Low High

4 RRT-connect Near-optimal Moderate High
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Algorithmic improvements: RRT-connect
RRT-Connect is an extension of the basic RRT algorithm. These algorithms are
particularly suitable for complex environments where exhaustive searches like Dijkstra and
A� are too slow. The key principle behind RRT-Connect is its rapid exploration of space
through random sampling and tree expansion, ensuring that the algorithm does not
explore unnecessary paths (Faramondi et al., 2014; Zhou et al., 2022).

1. RRT-Connect algorithm

The RRT-Connect algorithm works by building two trees:

(a) Start tree: Grows from the initial point.

(b) Goal tree: Grows from the destination point.

The two trees expand toward random samples of the environment, and when they get close
enough, they connect, forming a path. The main advantage of RRT-Connect over basic
RRT is its dual growth from both the start and goal points, which reduces exploration time
and increases the chances of the two trees meeting sooner.

The algorithm proceeds as follows:

(a) Initialization: The trees are initialized from the start and goal points.

(b) Sampling: A random point is sampled in the environment.

(c) Tree expansion: Both trees are extended toward the sampled point.

(d) Connection check: The algorithm checks if the trees have been connected.

(e) Path construction: Once the trees connect, the complete path is constructed by
combining the two trees.

More in-detailed explanation is provided through a flowchart in Fig. 4.

2. Path construction

RRT-Connect is a variant of the RRT algorithm that improves pathfinding efficiency by
using two trees: one grown from the start node and another from the goal node. Unlike
standard RRT, where the trees grow independently, RRT-Connect actively attempts to
connect the two trees as they expand. This connection mechanism significantly speeds up
the process of finding a path between the start and goal nodes.

(a) Each tree grows by sampling random points in the space and extending toward
these points.

(b) When a new node is added to one tree, RRT-Connect immediately tries to extend
the other tree toward this new node.

(c) This process continues until the two trees connect, forming a complete path. The
iterative connection attempts reduce unnecessary exploration, making the
algorithm more efficient for environments with obstacles and complex routes.

RRT-Connect’s strategy of growing trees toward each other reduces the number of
iterations needed to find a solution, particularly in large, multilevel environments. This
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makes it well-suited for indoor navigation systems where the search space can be highly
complex and multi-dimensional.

Parallel processing for speed and efficiency
While RRT-Connect improves pathfinding performance, large environments with
dynamic changes still pose a challenge due to the number of nodes and paths that need to
be explored in real-time. To address this issue, we propose parallel processing techniques
that leverage CPU resources to accelerate the algorithm’s performance.

CPU parallelization
In environments where real-time performance is critical, the RRT-Connect algorithm can
be parallelized to distribute the task of node expansion across multiple CPU cores. Each
core handles the expansion of a section of the tree, performing operations such as:

. Sampling a random node

. Checking for obstacles

. Extending the tree toward the node

By distributing these tasks across multiple CPU cores, we can significantly reduce the
time taken for the algorithm to find a valid path.

Figure 4 Flowchart of RRT-connect algorithm. Full-size DOI: 10.7717/peerj-cs.3028/fig-4
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This allows for rapid node exploration and tree growth, particularly in environments
where fast response times are required, such as real-time navigation in crowded spaces.

Proposed efficient spatial database design
To support real-time navigation, an efficient spatial database is critical for storing and
retrieving information about nodes, paths, and obstacles. The spatial database in our
proposed solution stores nodes (representing points of interest such as rooms, floors, or
other locations) and the paths between them.

Node storage
Each node in the spatial database is represented by its coordinates (X, Y, Z for 3D spaces, or
just X, Y for 2D environments). In a multilevel building, for example, nodes could
represent:

. Rooms on different floors

. Staircases or elevators connecting floors

. Hallways or corridors

Path storage
Paths between nodes represent the edges in the graph, with each path having an associated
distance and other attributes, such as:

. The time it takes to traverse the path

. The conditions of the path (e.g., obstacles, blocked routes)

The database is structured to allow for fast querying and updating of nodes and paths,
particularly in environments where the conditions may change dynamically.

Database query optimization
To ensure efficient querying, the spatial database employs advanced indexing techniques
such as:

. R-trees: Used to index multi-dimensional data, allowing for efficient spatial queries.

. Quadtree structures: Help partition the space into manageable sections, enabling faster
lookup of nodes and paths.

By optimizing the database for fast lookups and updates, the system can handle
dynamic changes in the environment, such as new obstacles appearing, in real-time
without compromising on performance.

Dynamic path recalculation
One of the core features of the proposed solution is its ability to handle dynamic changes in
the environment. In real-world navigation scenarios, such as emergencies or changes in
building layouts, it is crucial that the system can quickly re-compute paths based on new
conditions.
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Obstacle handling
The system detects obstacles (e.g., blocked hallways, staircases, or elevators) and updates
the database to mark these paths as unavailable. The pathfinding algorithm then
recalculates the optimal route based on the updated environment.

Real-time path updates
When a dynamic change is detected, such as a new obstacle in the path, the algorithm uses
the information stored in the database to recalculate the best path in real-time, ensuring
that users are always provided with the most efficient route.

Summary of the proposed solution
The proposed solution combines the following key components to achieve efficient,
real-time navigation in complex environments:

1. RRT-Connect:

Modern pathfinding algorithms are designed to handle complex, multilevel environments
and generate all routes across obstacles.

2. Parallel processing:

Leveraging CPU parallelization to speed up pathfinding, particularly in real-time, dynamic
environments.

3. Dijkstra’s algorithm:

Generated routes can be saved in the format of a pickle file, and then at the time of finding
the optimal path, Dijkstra’s algorithm is applied over the generated routes to provide the
optimal path to the user.

4. Efficient spatial database design:

A robust spatial database that stores nodes, paths, and obstacles, allowing for fast lookups
and dynamic updates. The spatial database in our proposed solution stores nodes
(representing points of interest such as rooms, floors, or other locations) and the paths
between them.

By integrating these components, the proposed system addresses the limitations of
traditional pathfinding algorithms and provides a scalable, real-time navigation solution
for complex environments.

IMPLEMENTATION
System architecture overview
As shown in Fig. 5, a detailed explanation here:

Backend system
The backend system is the core component of the pathfinding operations, integrating the
algorithm and parallel processing to navigate complex indoor environments.
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Algorithm (RRT-Connect + Dijkstra’s)
The algorithm in the proposed solution uses a hybrid approach. The RRT-Connect
algorithm rapidly explores random points in the environment to generate potential paths.
Once exploration is completed, Dijkstra’s algorithm is applied to the explored nodes to
compute the optimal and shortest path between the user’s start and goal points, ensuring a
balance between fast exploration and path optimality (Zhang et al., 2023; Dirik &
Kocamaz, 2020).

Spatial database
The spatial database holds data about the surroundings, containing nodes (representing
rooms, halls, etc.) and paths (representing connections between these nodes). It is also
capable of reflecting real-time updates, such as new obstacles or changes in paths made by
external sources, ensuring the algorithms utilize the most current data (Mohanty & Parhi,
2013).

Frontend system
The frontend system is built with NextJs to provide a seamless, interactive user interface
for real-time navigation updates.

Figure 5 System architecture of the implementation. Full-size DOI: 10.7717/peerj-cs.3028/fig-5
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NextJs UI
The user interface is developed using NextJs to enable fast, dynamic updates and real-time
path rendering. NextJs efficiently handles the rendering of components, such as the
multi-story floor plan, dynamically displaying path nodes and routes based on backend
calculations.

The UI takes the data from the user from the floor of the source building to the floor of
the destination building. Based upon the Admin settings saved for a floor map base with its
respective building name is saved in the database. Upon selection of each building the
respective floors are mapped in the options. From further selection of floors, in the
building then the output is shown. The floor data, i.e., its number and its building name is
saved as a session data in the frontend. Further when the floor view is selected by the user
then that respective building floor mapping can be seen. As soon as the button is clicked
the information like the floor number, room number, and building name is sent. Then the
image base is chosen based on the information sent and on the stored nodes the shortest
path is drawn using Dijkstra’s algorithm in the backend only; it takes very short time which
is then sent in the frontend and is showcased. Much of the data from the application
programming interface (APIs) are maintained through session data, if the page gets
refreshed then form need to be filled again by the user. For a better example, we selected
the source as “Tech Park” and the destination as “University Building”. The respective
floors and room options were there from which in the source “Floor 2” and “TP 218” is
selected. In the Destination “Floor 6” and “UB 612” is selected. The results are shown in
Fig. 6.

The floor view of the tech park, as when it is viewed then the information like “Floor 2”
and “TP 218” is selected and sent. Based upon this information from “TP 218” to “Lift”, a
view of 2nd floor is drawn, as shown in Fig. 7.

Further from the “Lift” to the “Entrance Gate” of the ground floor of the tech park is
drawn, as shown in Fig. 8.

The floor view of the university building, as when it is viewed then the information like
“Floor 6” and “UB 612” is selected and sent. Based upon this information from “UB 612” to
“Lift”, a view of the 2nd floor is drawn, as shown in Fig. 9.

Further from the “Entrance Gate” to the “Lift” of the ground floor of the university
building is drawn, as shown in Fig. 10.

Visualization of multi-story navigation
The frontend allows users to visualize multi-story navigation paths on floor plans.
Real-time plotting of path nodes helps users track their progress and adjust routes
dynamically when obstacles appear or paths are recalculated. The system highlights
explored and unexplored areas to provide users with a clear understanding of their
surroundings.

API design

RESTful APIs. The API layer is built using Django (or Flask/Node.js alternatives) to
handle requests from the frontend and communicate with the backend for pathfinding
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Figure 6 External view of the distance between buildings. Full-size DOI: 10.7717/peerj-cs.3028/fig-6

Figure 7 Floor 2 of tech park. Full-size DOI: 10.7717/peerj-cs.3028/fig-7
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Figure 8 Ground floor of tech park. Full-size DOI: 10.7717/peerj-cs.3028/fig-8

Figure 9 Ground floor of university building. Full-size DOI: 10.7717/peerj-cs.3028/fig-9
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operations. These APIs manage user requests, retrieve optimal paths, and send updates to
the frontend in real time.

Pathfinding request and response structure. The API processes requests from the NextJs
frontend, which may include user-selected start and end points or dynamic updates from
the environment (e.g., newly detected obstacles). The API then communicates with the
backend to trigger the RRT-Connect and Dijkstra’s algorithms, sending the optimal path
data back to the frontend for visualization.

Parallel processing for efficiency
CPU parallelization
By employing multithreading, the algorithm can concurrently process multiple nodes,
expanding the search space and discovering new paths more rapidly. This speeds up path
exploration, reducing overall computational time. Tasks such as node sampling, obstacle
checking, and tree expansion are distributed across multiple CPU cores. This parallel
processing ensures efficient utilization of hardware resources, accelerating the pathfinding
process and allowing the system to handle more complex environments (Zhang et al.,
2023; Pérez-Higueras et al., 2019).

Real-time recalculation
Once environmental changes are detected, recalculations of paths are parallelized. This
allows for rapid path adjustments using the updated data from the spatial database,
ensuring that real-time navigation is responsive and efficient. The results are shown in
Fig. 11.

Figure 10 Floor 6 of university building. Full-size DOI: 10.7717/peerj-cs.3028/fig-10
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Algorithm implementation (Algorithm 2)
This algorithm implements a hybrid RRT-Connect approach combined with Dijkstra’s
Shortest Path to optimize pathfinding in complex environments. RRT-Connect explores
potential paths by growing trees from both the start and goal positions, while Dijkstra’s
algorithm is used to refine the search and guarantee the shortest path once the exploration
is complete (Dirik & Kocamaz, 2020; Mohanty & Parhi, 2013). This hybrid approach
enables efficient path discovery and retrieval in multi-goal navigation scenarios.

Spatial database integration
Node and path storage

In the implementation, nodes representing key elements such as rooms, elevators, and
stairs are stored in a structured spatial database with their 3D coordinates (X, Y, Z). These
nodes are linked to paths, which represent the traversable routes between locations. This
ensures that the system efficiently manages navigation data in complex, multi-story
buildings (Mohanty & Parhi, 2013).

To optimize the performance of querying and storing data, the spatial database
leverages R-tree indexing. This ensures that node and path retrievals are fast, which is
essential for real-time operations. The R-trees help manage spatial data more effectively,
particularly when dealing with large and complex environments like multi-level structures
(Mohanty & Parhi, 2013). The Entity Relationship Diagram of spatial database is shown in
Fig. 12.

Dynamic environment handling

The database is designed to dynamically handle changes in the environment. For example,
when an obstacle blocks a path, the system updates the node and path data in real-time
(Zhang et al., 2023). This capability ensures that the navigation algorithm always has access
to the latest information, allowing it to adjust the routes dynamically and avoid obstacles.
The implementation supports rapid querying and efficient updates to the node and path
data.

Figure 11 Dynamic path recalculation layer. Full-size DOI: 10.7717/peerj-cs.3028/fig-11
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Algorithm 2 Hybrid RRT connect algorithm with Dijkstra shortest path.

Input: Map, Start Position, Goal Position
Output: Shortest path from Start to Goal
Data: Spatial database to store nodes and edges

(1) Procedure RRT_Connect (start, goal):
(2) Initialize tree_start with start node;
(3) Initialize tree_goal with goal node;
(4) Set goal_reached to False;
(5) foreach sample point (up to max_samples) do
(6) if goal is reached then
(7) Break the loop;
(8 end
(9) nearest_node_start = get_nearest_node(tree_start, sampled_point);
(10) new_node_start = extend(nearest_node_start, sampled_point);
(11) nearest_node_goal = get_nearest_node(tree_goal, new_node_start);
(12) new_node_goal = extend(nearest_node_goal, new_node_start);
(13) if distance(new_node_start, new_node_goal) < threshold then
(14) Connect new_node_start to new_node_goal;
(15) Set goal_reached to True;
(16) Break the loop;
(17) end
(18) Swap(tree_start, tree_goal);
(19) end
(20) if goal_reached then
(21) Store the discovered path from start to goal;
(22) end
(23) else
(24) Mark goal as not reachable;
(25) end
(26) Save the discovered nodes and edges to the database;
(27) Procedure Dijkstra_Shortest_Path (start, goal):
(28) Load the best paths from the saved RRT exploration;
(29) Initialize priority queue with start node;
(30) Set the distance of start node to 0;
(31) Set all other nodes’ distances to infinity;
(32) while queue is not empty do
(33) Dequeue the node with the lowest cost;
(34) if node is the goal then
(35) Break the loop;
(36) end
(37) foreach neighbor of current node do

(Continued)
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Administrator interface for enhanced management and customization
The Administrator Interface is an essential component of the proposed system, designed to
enhance the management and customization of navigation paths in multistory
environments. It provides a graphical interface that enables efficient path management,
real-time adjustments, and validation tools to ensure optimal navigation.

Path management

The interface allows administrators to efficiently generate, save, and validate paths within
the system. Using the RRT-Connect algorithm, administrators can dynamically create
predefined paths between nodes, which are then stored in the database for future use. This
reduces computational overhead by allowing pre-generated paths to be reused instead of
recomputing them for every query. The screen view is shown in Fig. 13.

Algorithm 2 (continued)

(38) Calculate new cost to reach this neighbor;
(39) if new cost < recorded cost do
(40) Update the neighbor’s cost;
(41) Update the neighbor’s parent to current node;
(42) Add the neighbor to the queue;
(43) end
(44) end
(45) end
(46) Reconstruct the path from goal to start using parent pointers;
(47) return the shortest path;
(48) Procedure Explore_Map (goal_positions):
(49) foreach goal in goal_positions do
(50) Run RRT_Connect for that goal;
(51) if goal is reachable then
(52) Store the best path;
(53) end
(54) end
(55) Save all best paths to a file;
(56) Procedure Run_Djikstras (start, goal):
(57) Load the best path for the given goal;
(58) Run Dijkstra_Shortest_Path to find the shortest path;
(59) Display the shortest path on the map;
(60) Main
(61) Explore_Map (goal_positions);
(62) foreach user request do
(63) Call Run_Djikstras (start, goal);
(64) end
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. Generate and save paths: Paths can be generated between selected nodes using the
RRT-Connect algorithm and stored persistently.

. Load predefined paths: Administrators can retrieve and use previously stored paths to
optimize the system’s real-time performance.

. Validation and consistency checks: Ensures that generated paths are traversable, free
from obstacles, and comply with optimal navigation standards.

Drawing and editing tools
To further enhance usability, the Administrator Interface includes several drawing and
customization tools for fine-tuning the indoor map representation.

. Drawing tools: Includes pen, line, rectangle, and eraser tools for marking obstacles, open
paths, and restricted zones.

. Brush customization: Allows administrators to adjust brush size and color selection for
precision in marking critical zones and boundaries.

. Undo/redo and clear functionality: Enables easy modifications and corrections to the
navigation layout without the need for manual reconfiguration.

Path validation and Dijkstra’s algorithm execution

Once paths are generated, the system offers path validation tools to ensure accuracy and
reliability. Administrators can execute Dijkstra’s algorithm on selected node pairs to
compute the shortest path for further optimization.

Figure 12 Database entity relationship diagram. Full-size DOI: 10.7717/peerj-cs.3028/fig-12
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. Path validation: The system checks generated paths for continuity, traversability, and
collision avoidance.

. Dijkstra’s algorithm: If multiple paths exist between two points, the administrator can
compute the shortest and most efficient path.

Grid and node selection
A grid-based overlay is included in the Administrator Interface to support systematic
selection of nodes and structured navigation planning.

. Grid overlay for node selection: The interface allows structured selection of start and
goal nodes by overlaying a grid on the map.

. Node naming and identification: Administrators can assign meaningful labels to nodes
(e.g., “Exit A”, “Staircase 1”, “Room 205”) to enhance usability.

. Saving path configurations: Named nodes and generated paths can be stored, reducing
the need for repeated manual configurations.

HARDWARE CONFIGURATION AND SYSTEM SETUP
To ensure the efficient execution and testing of the proposed navigation system, we utilized
a combination of local hardware, cloud-based deployment, and remote testing
environments. This section outlines the hardware and software configurations used for
developing, testing, and optimizing the RRT-Connect and Dijkstra-based navigation
system.

Figure 13 Screenshot of the administrator interface created using Python tkinter.
Full-size DOI: 10.7717/peerj-cs.3028/fig-13
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Local hardware setup
The system was initially developed and tested on a high-performance computing setup to
handle parallel computations for pathfinding, real-time spatial database queries, and
administrator interface operations. The hardware specifications are as follows:

. Processor: Intel 4-Core, 8-Thread CPU with multi-threading support

. RAM: 16 GB DDR4 memory

. Storage: Minimum 256 GB SSD for fast OS installation, package deployment, and
execution of administrator software

. Operating system: Ubuntu 22.04/Windows 11 for compatibility testing

. Frontend testing: Chromium-based browsers such as Google Chrome and Microsoft
Edge for evaluating the NextJs-based administrator panel and real-time navigation
rendering

Cloud-based testing on GCP
To evaluate scalability and remote accessibility, we deployed the Flask backend server on
Google Cloud Run (Free Tier). The GCP Cloud Run Free Tier configuration includes:

. CPU: Shared vCPU instance (1 virtual core)

. RAM: 512 MB allocated per instance

. Storage: Temporary ephemeral storage (persistent storage is not included in the free
tier)

. Networking: Auto-scaled API endpoint for handling administrator requests remotely

. Server location: Multi-region availability (North America, Europe, and Asia-Pacific
regions tested)

This cloud deployment ensured that the navigation system could handle API requests
efficiently without requiring continuous local server hosting.

Algorithm prototyping and testing on Google Colab
To validate the performance of the RRT-Connect and Dijkstra algorithms with
comparison to other pathfinding algorithms, we conducted additional testing and
prototyping on Google Colab.

Google Colab configuration:

. GPU: NVIDIA T4 Tensor Core GPU

. CPU: 2 vCPUs

. RAM: 12 GB

. Runtime: Python 3.x environment with access to NumPy for algorithm validation

. Storage: Temporary runtime storage for datasets and pathfinding logs
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This setup enabled rapid prototyping and performance benchmarking before full-scale
deployment.

ALGORITHM COMPARISONS
The objective was to evaluate the performance of various pathfinding algorithms in terms
of efficiency, speed, scalability, and adaptability.

ENVIRONMENT OVERVIEW
The comparisons were conducted in Google Colab using a default mapbase named TP-12.
The TP-12 map base represents a real-world environment, specifically modeled after the
12th floor of an tech park building. The blueprint for this floor was obtained from the
college authorities, and after careful analysis, a structured map representation was drawn.
The purpose of this environment is to simulate real-world indoor navigation scenarios,
incorporating rooms, corridors, elevators (lifts), and narrow passages that reflect common
architectural designs. The environment is structured with 10 rooms, two lifts (elevators),
and a central passageway that connects different sections of the floor. The design mimics
real-world indoor layouts, ensuring practical applicability in navigation and path-planning
algorithms. Thus, the real-world layout blueprint is shown in Fig. 14.

Key components of the environment

. Rooms: 10 rooms of varying sizes are present, providing a mix of open and constrained
spaces.

. Lifts (elevators): Two lifts are positioned at opposite ends of the floor to facilitate
multi-floor navigation.

Figure 14 Floor plan of the floor. Full-size DOI: 10.7717/peerj-cs.3028/fig-14
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. Narrow passage: A tight corridor that connects different sections, testing the algorithm’s
ability to maneuver through confined spaces.

. Obstacles (black blocks): Assumed-length black boxes have been placed in different
areas to represent walls and barriers within the environment.

ASSUMED DIMENSIONS AND MEASUREMENTS
Based on the blueprint and assumed dimensions and measurements, mapbase is created
and shown in shown in Fig. 15. To ensure a realistic simulation, specific assumed
dimensions have been applied to different components of the mapbase. The assumed
measurements are as follows:

Overall floor dimensions

. Total width: ~1,600 units (assumed pixels in the simulation).

. Total height: ~850 units.

Room sizes

. Rooms on the left and right sections (adjacent to lifts): 200–250 units wide,
300–350 units tall.

. Rooms connected to corridors: Smaller rooms vary between 150–250 units in width
and 250–300 units in height.

Lift (elevator) dimensions

. Lift width: 100–120 units.

. Lift height: 200–250 units.

Figure 15 Default mapbase with the red points as the nodes.
Full-size DOI: 10.7717/peerj-cs.3028/fig-15
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. Lifts are positioned at: (X~150, Y~100–600) on the left and (X~1450, Y~100–600) on
the right.

Central corridor and passage

. Corridor width: ~150–200 units.

. Corridor length: Spans across the entire floor horizontally (~1,400 units long).

Obstacles and barriers (black blocks)

. The black areas in the map represent walls and non-traversable regions.

. The sizes of obstacles vary between 100–300 units in width and height depending on
their placement.

Algorithms
Below, we explain the different algorithms chosen for comparison, detailing their strengths
and weaknesses.

RRT-connect (rapidly-exploring random tree-connect)

RRT-Connect extends the standard RRT by growing two trees simultaneously from the
start and goal, aiming to reduce exploration time.

. Strengths: Faster than standard RRT, suitable for high-dimensional environments, finds
feasible paths quickly.

. Weaknesses: Does not guarantee optimal paths, can generate inefficient routes,
computationally expensive with obstacles.

Lazy Theta�

Lazy Theta� is a variant of A� that optimizes node expansions by incorporating line-of-
sight checks for direct connections. The result is shown in Fig. 16.

. Strengths: More efficient than A�, reduces node exploration, produces smoother paths.

. Weaknesses: Slower in constrained environments, struggles with narrow passages, high
memory usage.

Probabilistic RoadMap
Probabilistic RoadMap (PRM) constructs a roadmap by sampling the free space and then
applying a shortest-path algorithm. The result is shown in Fig. 17.

. Strengths: Efficient in high-dimensional spaces, fast query times, suitable for
precomputed maps.

. Weaknesses: Requires many samples, unsuitable for dynamic environments, lacks
adaptability.
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Particle swarm optimization for path planning
Particle swarm optimization (PSO) models paths as particles moving in space and
optimizes based on local and global solutions. The result is shown in Fig. 18.

. Strengths: Avoids local minima, effective for complex optimization problems, suitable
for global planning.

. Weaknesses: Slow for real-time pathfinding, converges slowly, struggles with dynamic
obstacles.

Hybrid (RRT-Connect + Dijkstra)
This hybrid approach leverages RRT-Connect for rapid exploration and Dijkstra’s
algorithm for refining optimal paths. An admin panel allows easy environmental
modifications.

. Strengths: Balances exploration and optimality, adaptable to dynamic environments,
efficient with parallel processing.

. Weaknesses: More computationally intensive in initial iterations, paths may require
smoothing.

Performance evaluation
The performance is evaluated among different algorithms and shown in Tables 2, 3, 4.

OBSERVATIONS
Best for real-time navigation

. The hybrid (RRT-Connect + Dijkstra) algorithm explores fewer nodes than Lazy Theta�

while maintaining efficiency.

Figure 16 Nodes explored through Lazy Theta� algorithm.
Full-size DOI: 10.7717/peerj-cs.3028/fig-16
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. It has a lower time complexity compared to RRT-Connect alone.

. Balances rapid exploration and optimal pathfinding.

Fastest execution (lowest time taken)

. PRM executes the fastest but is not suited for real-time navigation as it requires
precomputed roadmaps.

Most nodes explored (best for large environments)

. Lazy Theta� explores the highest number of nodes but is computationally expensive for
real-time indoor navigation.

Figure 18 Nodes explored through PSO algorithm. Full-size DOI: 10.7717/peerj-cs.3028/fig-18

Figure 17 Nodes explored through PRM algorithm. Full-size DOI: 10.7717/peerj-cs.3028/fig-17
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Worst performance (slowest algorithm)

. PSO performs poorly, processing only 0.47 nodes per second, making it unsuitable for
real-time applications.

Why our hybrid algorithm is better for indoor navigation?

. Reduces unnecessary node exploration.

. Uses parallel computing for faster pathfinding.

. Efficiently handles dynamic environments.

. Balances exploration and optimal path computation.

Known limitations

. Requires post-processing for a refined path after the algorithm processing.

. Requires defining obstacles and different indoor features for a better and optimal result.

Table 2 Comparison of iterations, MapBase, and execution time for different pathfinding
algorithms.

Algorithm Iterations MapBase Time taken (s)

RRT-connect 1,000 TP-12 452.38

Lazy Theta* Indefinite TP-12 3,728.19

PRM 2,000 TP-12 31.16

PSO 1,000 TP-12 987.08

Hybrid (RRT-Connect + Dijkstra) 1,750 (estimated) Multi-level Lower than RRT-connect

Table 3 Comparison of nodes explored and speed for different pathfinding algorithms.

Algorithm Nodes explored Speed (nodes/s)

RRT-connect 12,153 26.86

Lazy Theta* 3,467,280 930.02

PRM 2,012 64.58

PSO 462 0.47

Hybrid (RRT-Connect + Dijkstra) 1,780 Higher than PRM

Table 4 Comparison of optimality, scalability, and adaptability for different pathfinding algorithms.

Algorithm Optimality Scalability Adaptability

RRT-connect No High Moderate

Lazy theta* Yes Low High

PRM Yes High Low

PSO No Low Low

Hybrid (RRT-Connect + Dijkstra) Yes High High
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. Requires n� ðn� 1Þ time complexity on its initial run for determining the path network
through the obstacles (where n defines the number of navigable rooms).

RESULTS
The experimental results presented in the diagram reveal that the RRT-Connect algorithm
strikes an effective balance between pathfinding efficiency and exploration depth. As the
graph shown in Fig. 19. The number of nodes explored refers to the total number of
waypoints or decision points the algorithm considers while constructing a path from the
start to the goal. A higher number of explored nodes often indicates a more exhaustive
search, which can lead to increased computation time. In contrast, an algorithm that
explores fewer nodes while still achieving optimal or near-optimal paths demonstrates
greater efficiency in search space utilization. With an exploration of approximately 1,750
nodes, RRT-Connect demonstrates superior performance compared to the RRT algorithm,
which explores around 2,000 nodes. Moreover, RRT-Connect outperforms both RRT� and
Dijkstra’s algorithms, which explored roughly 1,850 and 1,780 nodes, respectively. Despite
exploring fewer nodes than RRT, RRT-Connect maintains its ability to generate highly
optimized and feasible paths, showing that it prioritizes strategic node exploration over
exhaustive space coverage.

Figure 19 Comparison of nodes explored by algorithms in the narrow channel of obstacles.
Full-size DOI: 10.7717/peerj-cs.3028/fig-19
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This moderate node exploration is key to RRT-Connect’s efficiency. Unlike traditional
RRT, which explores the entire space exhaustively, RRT-Connect focuses on connecting
nodes in a way that results in faster convergence while reducing computational load. This
makes RRT-Connect particularly effective in dynamic, complex, and multilevel
environments where real-time adaptability is crucial. It provides a valuable solution for
large-scale navigation problems by delivering high-quality paths with less processing
overhead.

The ability of RRT-Connect to minimize node exploration without compromising path
quality ensures that it is not only faster but also more computationally efficient. Its focused
exploration makes it well-suited for real-time applications where quick adaptation and
efficient pathfinding are paramount. Ultimately, RRT-Connect emerges as a strong choice
for navigating intricate environments, offering a harmonious balance between depth of
exploration and computational efficiency.

The graph shown in Fig. 20 illustrates the performance of four algorithms—RRT,
RRT-connect, RRT�, and an improved RRT across different environments. Focusing on
RRT-connect (orange), it consistently shows lower computation times, especially in
complex scenarios. In the “narrow entrance and exit” environment, RRT-connect requires
around 120 time units, which is 33% less than RRT’s 180 units and about 15% lower than
RRT� (approximately 140 units). Similarly, in the “narrow channel” environment,
RRT-connect’s time is roughly 100 units, which is 50% less than RRT’s 200 units and about
25% faster than RRT�’s 130 units.

For simpler environments, like “simple obstacle,” RRT-connect also performs well,
taking around 20 units—over 50% less than the 40 units of RRT and similar to the
improved RRT’s performance. In the “Obstruction-free” scenario, RRT-connect’s time is

Figure 20 Comparison of process timings in different environments.
Full-size DOI: 10.7717/peerj-cs.3028/fig-20
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minimal at around 10 units, making it more than 85% faster than RRT, which takes
approximately 65 units.

These numbers highlight RRT-connect’s ability to significantly reduce computation
time across various scenarios, especially in more challenging environments. This makes it
the most efficient algorithm in terms of time, balancing both speed and capability in
complex path-planning tasks.

As shown in Fig. 21, the algorithm first explores the entire environment to generate a
comprehensive set of nodes distributed across the space, particularly around obstacles.
This process begins by sampling random points within the defined bounds of the
environment, which may include both free spaces and regions obstructed by obstacles.
Each sampled point undergoes a collision-checking procedure to determine if it is viable
for node creation; only points that do not collide with obstacles are retained. As the
algorithm continues to generate nodes, it incrementally builds a graph representation of
the environment, where each node is connected to nearby nodes, forming edges based on
proximity and accessibility. This extensive exploration enables the algorithm to capture the
intricate topology of the environment, allowing it to understand the spatial relationships
between obstacles and free spaces more effectively.

As shown in Fig. 22, Once a sufficient number of nodes are generated within the
environment, Dijkstra’s algorithm is applied to determine the most efficient path from the
designated start node to the goal node. This algorithm works by systematically evaluating
all possible routes between nodes, ensuring that the final selected path is the shortest in
terms of total cost. Dijkstra’s algorithm guarantees an optimal solution by prioritizing
paths with the lowest cumulative cost while navigating around obstacles. It explores each
node by considering all its connections, progressively expanding outward until it reaches
the goal.

This two-step process—first generating nodes and then applying Dijkstra’s algorithm—

ensures a reliable and obstacle-free path. However, it can become computationally

Figure 21 Explored node paths. Full-size DOI: 10.7717/peerj-cs.3028/fig-21
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expensive, especially in complex or large-scale environments. The more nodes generated
during the first step, the higher the computational overhead in the second step, as
Dijkstra’s algorithm evaluates a greater number of edges and nodes. This trade-off between
exploration and efficiency is critical in real-time applications where responsiveness is
essential. To optimize performance, techniques such as limiting the number of nodes or
implementing heuristics can be used to balance computational cost and solution accuracy.
Achieving this balance allows for fast pathfinding while maintaining the quality and
robustness of the selected path.

CONCLUSION
This research underscores the exceptional performance of the RRT-Connect with Dijkstra
algorithm, particularly in scenarios requiring both efficient exploration and optimal
pathfinding. By combining the rapid tree growth of RRT-Connect with the systematic,
shortest-path assurance of Dijkstra’s algorithm, this approach achieves a robust balance
between exploration depth and solution efficiency.

RRT-Connect + Dijkstra demonstrated significant improvements over other
algorithms, particularly in node exploration and path computation in complex
environments. For example, in narrow and intricate scenarios, RRT-Connect with Dijkstra
explored 1,780 nodes, which is a notable improvement over RRT�’s 1,850 nodes and
Dijkstra’s standard performance of 1,780 nodes. While slightly behind RRT-Connect in
sheer node exploration, the combined approach offers a more structured and optimized
path.

In terms of computational performance, RRT-Connect with Dijkstra reduces
computation times by around 25% compared to standard RRT, and achieves a 10%
improvement over RRT� in complex environments, such as the narrow entrance and exit
test cases. This balance between speed and pathfinding thoroughness makes RRT-Connect

Figure 22 Shortest path found in nodes. Full-size DOI: 10.7717/peerj-cs.3028/fig-22
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with Dijkstra particularly advantageous in applications where both efficiency and precision
are critical, such as complex indoor navigation.

When RRT-Connect is coupled with Dijkstra’s algorithm, the system becomes even
more powerful. Dijkstra’s algorithm, renowned for its ability to find the shortest path by
systematically evaluating all possible routes, ensures that once RRT-Connect has explored
the environment, the best possible path is selected based on cost minimization. This
two-step process delivers a comprehensive solution where the exploration phase captures
the environment’s topology in detail, and the pathfinding phase ensures that the most
efficient route is taken.

Moreover, integrating RRT-Connect and Dijkstra’s algorithm within a spatial database
offers enhanced real-time performance, making this approach suitable for
high-dimensional and dynamic spaces where conventional algorithms such as Dijkstra’s
alone may struggle. To further boost computational efficiency, this study also leverages
CPU parallelization through multi-threading, enabling faster data processing and
real-time responses in dynamic scenarios.

The combination of RRT-Connect and Dijkstra’s algorithm not only provides better
performance in terms of speed and navigation accuracy but also offers a more visually clear
and effective approach for navigating intricate, obstacle-laden environments. As
demonstrated in the research, the system can efficiently handle the complexities of
navigation in multistory environments, making it a cutting-edge solution compared to
traditional methods.

Looking forward, there are several avenues for further research and optimization. First,
the system could be enhanced to manage real-world physical obstacles, such as dynamic
objects or moving elements, which are not fully addressed in the current implementation.
Additionally, further improvements could be realized through CPU-based parallel
processing, which would enable even faster computation of large-scale data and further
reduce the time required for both node exploration and pathfinding. These advancements
would not only make the system more robust but also expand its application to a broader
range of real-world scenarios.

In summary, the combination of RRT-Connect for exploration and Dijkstra’s algorithm
for optimal pathfinding represents a significant leap forward in the field of real-time
navigation. It strikes a crucial balance between exploration depth and computational
efficiency, positioning this hybrid approach as a leading solution for navigating
increasingly complex and dynamic environments.
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