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ABSTRACT

Dimensionality reduction (DR) simplifies complex data from genomics, imaging,
sensors, and language into interpretable forms that support visualization, clustering,
and modeling. Yet widely used methods like principal component analysis,
t-distributed stochastic neighbor embedding, uniform manifold approximation and
projection, and autoencoders are often applied as “black boxes,” neglecting
interpretability, fairness, stability, and privacy. This review introduces a unified
classification—linear, nonlinear, hybrid, and ensemble approaches—and assesses
them against eight core challenges: dimensionality selection, overfitting, instability,
noise sensitivity, bias, scalability, privacy risks, and ethical compliance. We outline
solutions such as intrinsic dimensionality estimation, robust neighborhood graphs,
fairness-aware embeddings, scalable algorithms, and automated tuning. Drawing on
case studies from bioinformatics, vision, language, and Internet of Things analytics,
we offer a practical roadmap for deploying dimensionality reduction methods that
are scalable, interpretable, and ethically sound—advancing responsible artificial
intelligence in high-stakes applications.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and Machine
Learning, Data Science, Text Mining

Keywords Dimensionality reduction (DR), Principal component analysis (PCA), t-distributed
stochastic neighbor embedding (t-SNE), Uniform manifold approximation and projection (UMAP),
Autoencoders, Manifold learning, Interpretability, Scalability, Privacy and fairness in machine
learning, High-dimensional data analytics

INTRODUCTION

The proliferation of high-dimensional data across domains such as genomics, computer
vision, NLP, finance, and environmental monitoring has made DR an essential component
of modern data science workflows (Meili ¢» Zhang, 2024). By mapping high-dimensional
datasets into lower-dimensional representations, dimensionality reduction (DR)
techniques facilitate visualization, denoising, feature extraction, and pattern discovery.
Moreover, they improve the performance and interpretability of downstream tasks,
including clustering, classification, anomaly detection, and predictive modeling (Ayesha,
Hanif & Talib, 2020).

Classical DR approaches, particularly linear techniques such as principal component
analysis (PCA), linear discriminant analysis (LDA), and factor analysis (FA), offer
efficiency, transparency by projecting data onto linearly defined subspaces (Greenacre
et al., 2022; Qu ¢ Pei, 2024). However, these models often fail to capture nonlinear
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relationships and manifold structures that characterize real-world datasets. In response,
nonlinear methods—such as t-distributed stochastic neighbor embedding (t-SNE),
uniform manifold approximation, projection (UMAP), Isomap, and locally linear
embedding (LLE) have emerged to better preserve local and global topology (Healy ¢
Mclnnes, 2024). In parallel, deep learning-based DR methods, including autoencoders
(AEs), variational AE (VAEs), transformer-based embeddings, have extended the field to
support generative modeling and complex representation learning (Kingma ¢ Welling,
2019; Asperti & Trentin, 2020).

Despite these advances, DR techniques are frequently deployed as black-box tools with
minimal attention to key methodological concerns. Crucial questions—such as how many
dimensions to retain, how to ensure embedding stability, how to interpret latent
representations, and how to mitigate bias or privacy risks—often go unaddressed (Kobak
¢ Linderman, 2021). This oversight poses serious challenges in high-stakes applications
like precision medicine, financial forecasting, and legal analytics, where transparency,
reproducibility, and ethical compliance are non-negotiable.

This review provides a comprehensive and critical synthesis of DR methods, organized
into four main categories: linear, nonlinear, hybrid, and ensemble approaches. We identify
and examine eight persistent challenges that constrain real-world applicability:
dimensionality selection (DS), overfitting, instability, interpretability, scalability, bias
propagation, noise sensitivity, and ethical risks such as reversibility and re-identification
(Greenacre et al., 2022). For each, we outline state-of-the-art solutions, including intrinsic
dimensionality estimation, fairness-aware and privacy-preserving embeddings, robust
graph-based methods, and scalable deep architectures (Marukatat, 2023,; Kingma ¢
Welling, 2019). By linking theory with practical use cases and implementation
considerations, this review aims to equip researchers and practitioners with the tools and
strategies needed to apply DR techniques effectively.

CLASSIFICATION OF DIMENSIONALITY REDUCTION
METHODS

Selecting an appropriate dimensionality-reduction (DR) technique is pivotal for revealing
meaningful structure in high-dimensional data. Each method encodes assumptions about
the data geometry—linearity, neighborhood continuity, smooth manifolds—that must
align with the downstream objective. Formally, DR maps a matrix X € R"*? to an
embedding Y € R™* with k < d, while striving to preserve global variance, local
topology, or class separability. As illustrated in Fig. 1, different DR algorithms emphasize
distinct structural properties, resulting in varied geometric interpretations of the same
manifold.

Linear approaches

Linear techniques project data onto low-dimensional subspaces. PCA identifies orthogonal
directions of maximal variance, offering speed and interpretability (Greenacre et al., 2022;
Jolliffe & Cadima, 2016). PCA underpins exploratory plots, gene-expression compression,
and sensor decorrelation, but struggles with strong non-linearities or outliers (Bian et al.,
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Figure 1 Comparison of five DR methods-on the 3D Swiss Roll projected to 2D. (A-F) PCA fails to
unfold the nonlinear manifold. UMAP and Isomap preserve both local and global structures, with UMAP
yielding a cleaner unroll. t-SNE captures local neighborhoods but distorts global structure. LLE poorly

recovers global geometry, highlighting trade-offs in structure preservation across methods.
Full-size K&l DOT: 10.7717/peerj-cs.3025/fig-1

2022). LDA optimises between-/within-class scatter for supervised tasks such as face
recognition or biomarker discovery, yet assumes class homoscedasticity and balanced
priors (Li et al., 2023a; Qu ¢ Pei, 2024; Li et al., 2024). FA decomposes observed variables
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Table 1 Summary of linear dimensionality reduction variants.

Variant Description

References

Principal component analysis (PCA) variants

Standard PCA Projects data along directions of maximum variance. Fast and interpretable baseline,

(O(nd?)) but fails on nonlinear manifolds and is sensitive to feature scaling.

Sparse PCA Adds /¢, penalty to promote sparse loadings, improving interpretability. Requires
(O(ndk)) careful tuning and may reduce numerical stability.

Robust PCA Decomposes input into low-rank and sparse components, making it robust to noise and
(O(ndlogd) or outliers. Computationally expensive on large datasets.
higher)

Kernel PCA (O(n®)) Uses kernel trick to capture nonlinear structure in high-dimensional feature space.
Models curvature well, but interpretability is poor and performance depends on

kernel choice.

Probabilistic PCA  Applies Bayesian PCA with Gaussian noise modeling. Enables uncertainty

(O(nd?)) quantification but is sensitive to assumptions.
Incremental PCA Performs PCA in mini-batches, improving memory efficiency for large or streaming
(O(ndk)) data. May reduce accuracy and is sensitive to data order.

Multilinear PCA
(O(n Hi\n/lzl dm))
Linear discriminant analysis (LDA) variants
Standard LDA
(O(nd? + d*))
Regularized LDA
(O(nd?))
Kernel LDA (O(n®)) Projects data into kernel space before LDA to model nonlinear separation. Handles
curved class boundaries but is hard to interpret and sensitive to kernel choice.

Extends PCA to tensor data via mode-wise decomposition. Captures multi-modal
structure but has high computational cost and is sensitive to tensor shape.

Maximizes class separation based on between- and within-class scatter. Effective for
supervised DR but assumes equal class covariances and linear decision boundaries.

Stabilizes LDA with shrinkage for small-sample or noisy settings. Improves
generalization but depends heavily on regularization parameter /.

Sparse LDA Adds sparsity to projection vectors for feature selection in high-dimensional spaces.
(O(ndk)) Enhances interpretability but may be unstable under multicollinearity.

Penalized LDA Applies ¢, regularization to reduce overfitting. Useful in noisy or sparse data but may
(O(nd*)) oversmooth projections.

Hierarchical LDA ~ Models class hierarchies using tree-structured priors. Supports multi-level classification
(O(nd + 1)) but requires complex training.

Locally linear embedding (LLE) variants

Standard LLE Reconstructs each point as a linear combination of neighbors to preserve local

(O(n*d + nk®)) geometry. Effective for unfolding manifolds but highly sensitive to noise and
sampling.
Modified LLE Adjusts weights for uneven sampling. Improves robustness under irregular density but

(O(n*d + nk®))
Hessian LLE
(O(nk*))
Sparse LLE (O(nk?)) Adds ¢, constraints on reconstruction weights to highlight dominant neighbors.
Improves interpretability but can become unstable in high correlation settings.

lacks guarantees on global structure.

Incorporates curvature via Hessian penalty to capture second-order geometry. Effective
for image manifolds but computationally intensive and fragile.

Geodesic LLE
(O(n?*logn))

Uses shortest path distances on neighbor graph to capture non-local structure. Suitable
for complex topologies but sensitive to connectivity.

Abdi & Williams (2010), Jolliffe &
Cadima (2016)

Li et al. (2023b), Xiao et al. (2023)

Gao et al. (2021), Bian et al. (2022)

Shahzad, Huang & Memon (2022),
Fang et al. (2025)

Hong et al. (2021), Collas et al. (2021)

Balsubramani, Dasgupta & Freund
(2013), Ross et al. (2008)

Guo, Zhou & Zhang (2021), Han et al.
(2023)

Fisher (1936), Hastie et al. (2009)

Li et al. (2024), Guo, Hastie &~
Tibshirani (2007), Zaib et al. (2021)

Fang et al. (2025), Li et al. (2023a), Qu
& Pei (2024)

Li et al. (2023c), Park, Ahn ¢ Jeon
(2022)

Kwon et al. (2024), Wu, Wu & Wu
(2021)

Yu et al. (2019), Wallach, Mimno &
McCallum (2009)

Chen & Liu (2011), Xue, Zhang &
Qiang (2023)

Zhang & Wang (2006)
Liu et al. (2022)
Ziegelmeier, Kirby & Peterson (2017

Islam & Xing (2021)

into latent factors plus noise—valuable in psychometrics—but is restricted to linear signal
models. Independent component analysis (ICA) and non-negative matrix factorisation
(NMF) extend the linear family by enforcing statistical independence or non-negativity,
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respectively, and excel in topic modelling (Mackiewicz & Ratajczak, 1993; Izenman, 2013).
(See Table 1 for Linear methods variant-wise breakdown.)

Yet real-world manifolds are rarely perfectly linear, motivating the nonlinear methods
discussed next. Nonlinear approaches: These techniques uncover curved manifolds or
high-order relations that linear projections overlook. They divide into manifold-learning
algorithms and neural-network models. Manifold learning: t-SNE preserves local
similarities and is standard for single-cell RNA-seq or word-embedding visualisation, but
its perplexity sensitivity, global-structure distortion require caution (Taylor ¢» Merényi,
2022; Serna-Serna et al., 2023). UMAP leverages fuzzy topological graphs to balance local
and global faithfulness with lower runtime (Healy ¢ Mclnnes, 2024; McInnes, Healy ¢
Melville, 2018). Isomap retains geodesic distances; LLE maintains linear reconstructions in
neighbourhoods—both effective for motion-tracking data yet noise-prone (Xue, Zhang ¢
Qiang, 2023; Chen ¢ Liu, 2011) (see Fig. 1). Kernel PCA lifts data into a
reproducing-kernel Hilbert space before applying PCA, capturing nonlinear variance but
incurring O(n*) memory for the kernel matrix; Nystrom or random-feature
approximations reduce this to O(nm) (m < n) at modest accuracy cost (Shahzad, Huang
e Memon, 2022). (See Table 2 for non-linear methods variant-wise breakdown.)

Neural-network models

AEs learn encoder—decoder pairs that compress and reconstruct inputs, whereas VAEs add
a probabilistic latent prior to enable generative sampling (Asperti ¢» Trentin, 2020; Kingma
& Welling, 2019). These models support image compression, multimodal fusion, and
anomaly detection but demand large datasets, careful regularisation, and sacrifice
transparency. Recent transformer-based encoders and self-supervised contrastive learners
supply context-rich embeddings for vision and language. Fairness-regularised
autoencoders further attempt to decorrelate sensitive attributes from latent codes (Kingma
& Welling, 2019).

When neither linear nor a single nonlinear method suffices, hybrid and ensemble
strategies provide a pragmatic compromise. Hybrid and Ensemble Approaches: hybrid
pipeline applies PCA first-to denoise and decorrelate—followed by UMAP or t-SNE for
nonlinear refinement, boosting scalability and stabilising initialisation on large image or
single-cell datasets (Kobak & Linderman, 2021). Ensemble DR aggregates multiple
embeddings from different seeds, subsets, or algorithms. Procrustes alignment, geometric
averaging, or consensus fusion produce a robust embedding that mitigates run-to-run
variance. The trade-off is higher computation and reduced interpretability of the
consensus.

Outlook

DR has progressed from linear decompositions to GPU-accelerated, self-supervised
architectures. Linear methods endure for their speed and clarity; nonlinear and neural
techniques reveal fine-grained patterns. Hybrid pipelines and ensembles dominate
production workflows, balancing accuracy, stability, and transparency. Future advances
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Table 2 Summary of non-linear dimensionality reduction variants with time complexity.

Variant (time Description: key idea, strengths, and limitations References
complexity)

t-SNE variants

Standard t-SNE (O(N?)) Preserves local neighborhood structure using probabilistic similarity in a Van der Maaten & Hinton (2008), Serna-
low-dimensional space. Widely adopted for visualizing complex datasets, but ~ Serna et al. (2023)
it is non-invertible, distorts global relationships, and scales poorly.

Barnes-Hut t-SNE Accelerates standard t-SNE via tree-based approximations, reducing Van Der Maaten (2014), Meyer, Pozo &
(O(NlogN)) computational complexity. Scalable for large datasets like single-cell RNA-  Zola (2021)
seq, but approximation may distort dense regions.
Parametric t-SNE (O(N) Learns an explicit neural mapping from inputs to low-dimensional space. Sainburg, Mclnnes & Gentner (2021),
at inference) Enables reuse across datasets and supports transfer learning but sacrifices Chen et al. (2024)

interpretability and requires retraining on distribution shift.

Joint t-SNE (O(MN?), M Embeds multiple modalities by enforcing a shared similarity structure across Wang et al. (2021a), Taylor ¢ Merényi
= modalities) them. Useful in multi-view learning but assumes consistent structure and is ~ (2022)
vulnerable to modality-specific noise.

Time-dependent t-SNE  Captures temporal structure by conditioning current embedding on previous Ali, Borgo ¢ Jones (2021), Linderman e

(O(TN?), T = state. Effective for visualizing trajectories or dynamic systems, though lacks  Steinerberger (2022), Wang et al. (2021a)
timesteps) theoretical stability guarantees.

Accelerated t-SNE Employs GPU acceleration and algorithmic approximations for real-time or  Delchevalerie et al. (2021), Kang et al.
(O(NlogN)) large-scale visualization. Performance is hardware-dependent and (2021)

tuning-sensitive across implementations.
UMAP variants

Standard UMAP Preserves both local and global structure using topological graph construction. McInnes, Healy ¢ Melville (2018), Ghojogh
(O(NlogN)) Fast, unsupervised, and widely adopted, though it is non-invertible and et al. (2023)
sensitive to initialization.
Supervised UMAP Incorporates class labels to improve embedding coherence in supervised Becht et al. (2019), Kobak & Linderman
(O(NlogN)) settings. Enhances class separation but may overfit on noisy or imbalanced ~ (2021)
labels.
Parametric UMAP Trains a neural network to approximate UMAP embedding function, enabling Sainburg, Mclnnes & Gentner (2021)
(O(N) at inference) transfer learning and embedding of new data. Reduces interpretability and
requires retraining on distributional shifts.
Cross-entropy UMAP Optimizes a divergence objective to improve alignment of high- and Kobak & Berens (2019), Kobak ¢
(O(N?)) low-dimensional graphs. Preserves global structure but is slower and less Linderman (2021)

stable on sparse graphs.

Density-preserving Adjusts embeddings to preserve input space densities, improving balance Narayan, Berger & Cho (2021)
UMAP (O(NlogN)) across populations. Effective in genomics and imbalanced datasets, but
difficult to tune under sparse sampling.

Metric UMAP Allows user-defined distance functions (e.g., cosine, Jaccard) for more flexible McInnes, Healy &> Melville (2018), Ghojogh
(O(NlogN)) embedding. Works well in NLP and recommender systems but degrades et al. (2023)
when metric mismatched to structure.
Temporal UMAP Extends UMAP to encode sequence ordering, preserving continuity over time. Sainburg, Mclnnes & Gentner (2021)
(O(TN1logN)) Used in time-series and biological signal data but lacks a standard loss for

temporal invariance.

will stem from AutoML-guided method selection, streaming manifold learners, and
domain-aware adaptations (Xiao et al., 2023). Concurrently, rising demands for
interpretability, fairness, and privacy are steering research toward explainable,
bias-controlled, and differentially-private DR algorithms. Rigorous benchmarks remain
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essential for the responsible deployment of dimensionality-reduction techniques in
high-impact settings (Wang et al., 2021b).

CHALLENGES

Determining the optimal dimensionality

Selecting the optimal number of dimensions (k) in a pipeline remains a persistent and
unresolved challenge—one with broad implications for model performance,
interpretability, and computational efficiency. With DR increasingly integral to
high-stakes applications such as biomedical analytics, precision medicine, inadequate or
arbitrary selection of dimensionality poses significant risks to the reproducibility,
transparency, and reliability of downstream analyses (Guerra-Urzola et al., 2021).

Under-reduction vs. over-reduction

The consequences of inappropriate DS manifest primarily as under-reduction or over-
reduction. Under-reduction, where too few dimensions are retained, can obscure subtle
but critical signals. For example, in single-cell RNA sequencing involving over 20,000
genes, reducing data to k = 2 for visualization may preserve less than 0.1% of total
variance. This aggressive reduction can yield visually appealing clusters while collapsing
biologically relevant gradients, such as differentiation trajectories or batch effects (Yang
et al., 2021). Conversely, over-reduction—retaining dimensions beyond meaningful
thresholds—can preserve irrelevant variance or amplify noise, especially in sparse,
high-collinearity datasets found in NLP or cybersecurity. This typically inflates distance
metrics and spurious correlations, leading to overfitting (Narayan, Berger ¢ Cho, 2021).

Heuristic-based selection and its pitfalls

Many dimensionality-selection practices rely on heuristics, such as retaining principal
components that explain 90-95% of variance or using scree plots. Although
computationally convenient, these methods assume variance equates to structure—an
assumption often invalid in sparse or noisy data (Greenacre et al., 2022; Jolliffe & Cadima,
2016). Moreover, these heuristics are fundamentally linear and fail to translate to nonlinear
DR techniques like t-SNE or UMAP, which lack variance-based metrics (Kobak ¢
Linderman, 2021).

Limitations of statistical thresholds

Statistical approaches like parallel analysis and Gavish-Donoho thresholding attempt to
formalize DS using null distributions. While theoretically grounded, these methods often
produce overly conservative estimates in real-world data, especially in noisy or
limited-sample regimes. In scRNA-seq or text-mining, they may exclude biologically
meaningful low-variance features (Narayan, Berger ¢» Cho, 2021). Furthermore, their
linear assumptions break down for deep or kernel-based DR models, where dimensions are
learned via optimization rather than derived analytically.

Challenges with intrinsic dimensionality estimation
ID estimators infer the minimal dimensions required to capture a dataset’s manifold
structure. Common ID methods include maximum likelihood estimation, correlation
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dimension, and modern algorithms like DANCo and TwoNN (Antwarg et al., 2021).
However, ID estimation is highly sensitive to noise, local density variations, and clustering
artifacts. Estimates may vary substantially across similar subsets, and robust ID inference
often requires large sample sizes and computationally expensive corrections (Meild ¢
Zhang, 2024).

Task-dependence and dimensionality drift

Optimal dimensionality is task-specific. While 2D/3D embeddings suffice for visualization,
high-dimensional embeddings are essential for classification, anomaly detection, or
semantic search (Marukatat, 2023). Notably, performance often improves with increasing
k up to a point, then plateaus or deteriorates as noise dominates—a non-monotonic
behavior. Moreover, optimal dimensionality can shift with dataset drift or evolving
dimensionality drift, necessitating adaptive DR strategies such as continual learning and
streaming methods (Xiao et al., 2023).

Practical constraints on exhaustive dimensionality tuning

Exhaustively tuning k via hyperparameter search is infeasible for many modern DR
algorithms, especially nonlinear ones like t-SNE and UMAP, which are sensitive to
initialization and stochasticity (Wang et al., 2021b). Advanced methods increasingly turn
to AutoML and Bayesian optimization to infer k implicitly. However, many neural
approaches—e.g., VAEs, SimCLR, and BYOL—control latent dimensionality indirectly via
architecture rather than explicit hyperparameters, further complicating dimensionality
tuning (Kingma ¢» Welling, 2019).

Summary

Choosing the right number of output dimensions k is crucial for balancing information
retention and interpretability. Common methods include scree plots and explained
variance for linear DR, with more robust options like parallel analysis and Gavish-Donoho
thresholding for noise control. In high-dimensional data, intrinsic dimensionality
estimators provide geometric insights but depend on sample density. Newer task-aware
methods use contrastive loss to align k with downstream tasks. While each approach has
trade-offs, together they help ensure embeddings preserve structure and usefulness.

Navigating the interpretability—accuracy trade-off in dimensionality
reduction

DR compresses high-dimensional data into compact forms that retain key features for
tasks like clustering, classification etc. However, modern DR methods—especially those
using nonlinear manifold learning—often trade interpretability for representational
fidelity. This trade-off is especially problematic in sensitive domains where transparency,
explainability, and regulatory compliance are essential.

Defining the trade-off

We define interpretability in DR as the degree to which latent embedding structures can be
explicitly mapped to original input features, domain-specific concepts, or
human-understandable constructs. Conversely, fidelity pertains to preserving meaningful
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relationships inherent to the data, such as global or local distance structures, neighborhood
consistency, and class separability, essential for reliable downstream inference.
Unfortunately, DR techniques offering high embedding fidelity typically employ complex
nonlinear transformations that severely limit interpretability, while highly interpretable
methods frequently underfit complex, nonlinear datasets (Greenacre et al., 2022).

Opacity of nonlinear embeddings

Nonlinear manifold learning methods like t-SNE and UMAP are popular in
bioinformatics, single-cell analysis, and computer vision for capturing complex topologies.
However, their multistep embedding pipelines—neighbor graph construction, fuzzy set
computation, and iterative optimization—obscure clear feature-to-embedding mappings.
For instance, while UMAP effectively clusters cell types in single-cell RNA-seq, it can mask
continuous biological gradients like differentiation (Kobak ¢ Linderman, 2021; Healy &
Mclnnes, 2024; Narayan, Berger ¢» Cho, 2021). These methods are also sensitive to
initialization and hyperparameters, raising reproducibility concerns.

Deep latent representations and black-box risks

Deep learning-based DR methods—autoencoders, VAEs, transformer encoders—worsen
interpretability by embedding data into nonlinear latent spaces with entangled feature
dimensions (Kingma ¢ Welling, 2019). In healthcare, this can blend sensitive traits

(e.g., race, income) with clinical variables, risking biased outcomes. Such opacity challenges
fairness, transparency, and compliance with standards like General Data Protection
Regulation (GDPR), HIPAA guidelines (Zhang, Chen ¢» Hong, 2021).

Transparency in linear models—but at what cost?

Linear DR methods preserve interpretability by projecting data into directions that are
explicit linear combinations of the input features. These loadings allow direct mapping of
latent dimensions to feature contributions, which is particularly useful in fields requiring
justification, such as public health or forensic auditing (Greenacre et al., 2022). However,
this transparency limits their capacity to model complex nonlinearity or curvature in the
data manifold, rendering them ineffective in many real-world tasks involving temporal,
sensory, or multimodal data.

Regulatory and ethical implications

The interpretability-accuracy trade-off has significant ethical and legal implications.
Global regulations—including the EU’s GDPR, the proposed AI Act, and HIPAA—now
demand accountability and traceability in automated systems. Failures in explainability, as
seen in high-profile tools like COMPAS, have sparked scrutiny over DR’s role in opaque
modeling pipelines (Mehrabi et al., 2021). Embeddings that obscure feature contributions
may undermine users’ rights to explanation and compromise trust and compliance.

Partial solutions and remaining gaps

While various methods have attempted to address this trade-off—such as hybrid pipelines,
post-hoc attribution tools, and attention-based architectures—few offer generalizable,
scalable, or domain-agnostic interpretability. Some strategies introduce significant
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complexity or reduce performance, impeding adoption in real-world systems. For
example, interpretability-enhancing models often lack robustness across noise-prone or
sparse datasets (Zhang, Chen ¢ Hong, 2021).

Summary

Balancing interpretability and accuracy remains a key challenge in DR. While nonlinear
models offer higher fidelity, they require new strategies to maintain interpretability. Future
work should focus on unifying both goals through interpretable model designs, metrics for
explanation quality, and standardized benchmarks for joint evaluation.

Stability, overfitting, and generalization—the reliability triad

DR methods are increasingly embedded in scientific and industrial pipelines for
visualization, clustering, anomaly detection, and representation learning. Yet, many of
these methods—particularly nonlinear, deep, or graph-based approaches—are susceptible
to a triad of interrelated problems: stability, overfitting, and poor generalization.
Collectively, these issues undermine the reliability of embeddings, leading to inconsistent
downstream decisions, analytic irreproducibility, and erosion of trust in model outputs
(Sainburg, Mclnnes & Gentner, 2021; Chen et al., 2024).

Instability and reproducibility failures

DR methods like t-SNE and UMAP involve stochastic optimization, non-convex losses,
and approximate nearest neighbor (ANN) graphs, all of which introduce non-determinism
(Wang et al., 2021b). As a result, repeated runs—even with the same data and
parameters—can produce markedly different local and global structures. In single-cell
RNA-seq, for instance, rerunning UMAP may merge or split cell clusters differently,
affecting biological interpretation (Kobak ¢ Linderman, 2021). Hyperparameter sensitivity
worsens this: minor tweaks to perplexity (t-SNE) or neighbor count (UMAP) can reshape
the manifold (Taylor ¢ Merényi, 2022). Such variability undermines replicability,
especially in exploratory analyses without ground truth.

Overfitting in high-capacity DR models

Modern DR methods—especially autoencoders and VAEs—often use overparameterized
architectures capable of memorizing training data. In high-dimensional, low-sample-size
(HDLSS) settings, they risk capturing dataset-specific noise over meaningful structure
(Asperti & Trentin, 2020; Kingma ¢» Welling, 2019). For example, a deep autoencoder
trained on limited EHR data may encode hospital-specific artifacts rather than general
disease patterns. Despite low reconstruction loss, the latent space becomes noise-
entangled, undermining downstream tasks. Even classical methods like PCA are
vulnerable—under sparse, noisy conditions, leading components may align with outliers,
distorting the true data trends (Guerra-Urzola et al., 2021; Jolliffe ¢ Cadima, 2016).

Generalization failures and domain fragility

Embeddings learned from one dataset often fail to generalize to distributionally shifted
data due to covariate shift, batch effects, or sampling bias. In clinical contexts, PCA or
autoencoder embeddings trained on one hospital’s data may break down when applied to
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another with different demographics or equipment. Even UMAP’s transform function can
distort class boundaries if new data deviate from the original density (Zhang, Chen ¢
Hong, 2021). This domain fragility poses significant risks for real-time or cross-site
deployment in diagnostics, fraud detection, or IoT streams.

The rashomon effect in unsupervised embeddings

Unsupervised DR exacerbates the so-called Rashomon effect—where multiple, equally
plausible embeddings reflect different underlying data aspects. Depending on initial
conditions, loss weighting, or random sampling, models may emphasize demographic
subgroups, measurement artifacts, or secondary trends. For example, an embedding of
student performance data may cluster students by socioeconomic status in one run and by
geographic region in another, despite both being technically valid. This ambiguity
challenges interpretability and raises concerns about cherry-picking results that support

preconceived narratives.

Difficulty in evaluation and reporting

Despite the critical nature of these issues, robust evaluation of DR reliability is rarely
performed. Unlike supervised models, DR lacks standardized generalization error metrics.
Surrogate measures—such as Procrustes alignment, neighborhood preservation scores, or
silhouette consistency across seeds—exist but are inconsistently applied and often omitted
in publications. Without community-adopted benchmarks, method selection is ad hoc,
and downstream conclusions may be built on unstable or misleading embeddings
(Mehrabi et al., 2021).

Summary

The reliability triad—instability, overfitting, and poor generalization—represents a core
limitation of current DR pipelines. Each element reinforces the others: overfitting fuels
instability; instability conceals overfitting; both degrade generalization. Addressing this
requires holistic solutions—deterministic architectures, regularization, domain-aware
constraints, and standardized evaluation—discussed in the next section as part of a
roadmap toward robust, reproducible DR.

Ethical concerns and reversibility risks

Although DR is often assumed to aid in anonymization by compressing high-dimensional
datasets into abstract, low-dimensional forms, this assumption has increasingly come
under scrutiny. Many DR techniques preserve enough structural detail to permit the
re-identification of individual records or the inference of sensitive attributes (Antwarg
et al., 2021). These vulnerabilities raise profound concerns when DR is applied in
biomedical, financial, or behavioral domains, where confidentiality breaches can have
legal, ethical, and societal consequences (Mehrabi et al., 2021).

Inversion and reconstruction risks

Certain DR methods, such as PCA and autoencoders, are intrinsically reversible under
known conditions. PCA applies orthogonal linear transformations, allowing approximate
reconstruction when the projection matrix and retained components are available.
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Autoencoders—including undercomplete and variational variants—explicitly train
decoder networks to invert embeddings, often achieving high-fidelity recovery of input
data (Asperti &> Trentin, 2020; Kingma & Welling, 2019). In sensitive settings, this
reversibility enables adversaries to reconstruct identifiable information from embeddings,
thereby breaching data confidentiality (Guerra-Urzola et al., 2021).

Attribute and membership inference from embeddings

Even in the absence of perfect reconstruction, low-dimensional embeddings can leak latent
information. In collaborative ML workflows, such as federated learning or
cross-institutional analytics, parties often exchange DR-transformed data under the
assumption that abstraction ensures privacy. However, adversaries can leverage auxiliary
knowledge to infer protected attributes, perform linkage attacks in training data—exposing
a core weakness in the notion that DR inherently anonymizes data (Zhang, Chen ¢ Hong,
2021). Such leakage is particularly troubling when demographic or health-related
attributes are indirectly encoded in the embedding geometry.

Lack of formal privacy guarantees

Mainstream DR algorithms—t-SNE, UMAP, PCA, autoencoders—lack formal privacy
guarantees like differential privacy, k-anonymity, or ¢-diversity. Their focus on preserving
data structure or neighborhood topology often conflicts with obfuscation goals. For
example, UMAP’s emphasis on class separability aids clustering but heightens
vulnerability to attribute inference attacks (Kobak ¢» Linderman, 2021). Without
integrated privacy safeguards, such embeddings are prone to reverse engineering,
especially in adversarial settings or with auxiliary data.

Regulatory implications

The reversibility and latent leakage properties of DR methods create friction with data
protection frameworks such as the GDPR, HIPAA. These regulations prohibit any
transformations that allow re-identification of anonymized subjects or violate consent and
data minimization principles. Yet most DR pipelines are implemented without compliance
audits, interpretability guarantees, or transparency mechanisms, leaving organizations
vulnerable to legal risk and public mistrust.

Summary

The notion that DR inherently enhances privacy is common and flawed. Inversion attacks,
attribute inference and the lack of formal privacy guarantees expose serious weaknesses in
current DR practices. As DR methods are increasingly embedded in pipelines for
healthcare, finance and behavioral analytics, addressing these ethical vulnerabilities
becomes critical. Without robust mitigation strategies & regulatory accountability, DR
may exacerbate privacy risks rather than mitigate them.

Bias propagation from high-dimensional features

DR is frequently employed as a preprocessing step in analytical pipelines, often under the
assumption that abstraction mitigates reliance on sensitive or confounding features.
However, recent research demonstrates that DR techniques can retain—and even
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amplify—structural biases embedded in the high-dimensional feature space. This is
particularly problematic in domains where input features are often entangled with
sensitive attributes such as race, gender, or socioeconomic status.

Propagation of feature-level biases

DR methods aim to preserve intrinsic patterns within data but inevitably also retain
statistical associations, including those involving sensitive variables. In applications like
credit scoring or medical diagnostics, proxy features often correlate with protected
attributes due to historical or systemic inequities. Even when explicit identifiers are
excluded, nonlinear DR methods—such as t-SNE and UMAP—can produce latent spaces
where demographic groupings remain separable, embedding socio-structural bias into
ostensibly neutral representations (Kobak ¢ Linderman, 2021).

Structural biases in manifold construction

Manifold-based DR methods rely on constructing nearest-neighbor graphs to capture local
geometry in high-dimensional space. If the data reflect underrepresentation,
overdiagnosis, or sampling imbalance—as often occurs in clinical, legal, or educational
datasets—those disparities become encoded in the graph structure itself. This topology
influences the low-dimensional embedding, often reinforcing marginalization or
over-clustering of minority subgroups (Yang et al., 2021; Mehrabi et al., 2021). In
healthcare, for instance, diagnostic categories may be overrepresented for certain
populations, resulting in distorted embeddings that mischaracterize patient.

Downstream consequences of embedding bias

Biases introduced at the DR stage can propagate through the entire modeling pipeline.
Downstream tasks such as clustering, stratification, recommendation, or prediction
operate on biased representations, potentially leading to disparate outcomes. Because the
embedding process is typically unsupervised and opaque, these biases may go undetected
until decisions are already impacted. Even fairness-aware models applied later in the
pipeline may be ineffective if the underlying representation space encodes distorted or
discriminatory structure (Ziegelmeier, Kirby ¢ Peterson, 2017).

Summary

Bias propagation in DR is a critical yet often overlooked risk in modern data workflows. As
DR is increasingly used in high-stakes domains, it can encode systemic disparities into
opaque representations that influence key decisions. Unlike supervised models, DR
methods are rarely audited for fairness. Addressing this gap requires bias-aware
algorithms, fairness metrics for embeddings, and domain-specific guidelines to prevent
representational harm.

Scalability and memory bottlenecks

DR is essential for managing high-dimensional data, but many popular methods struggle
with computational and memory bottlenecks at scale. These challenges arise from
algorithmic complexity—especially pairwise computations, graph construction, and
iterative optimization. In fields like genomics, geospatial analysis, and real-time sensor
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networks, data volume and speed often exceed the capacity of standard DR approaches
(Xiao et al.,, 2023).

Quadratic complexity in kernel and graph-based methods

Methods such as kernel PCA, Isomap, and diffusion maps require computation of pairwise
distance or similarity matrices, resulting in O(n?) or worse time and memory complexity.
As datasets scale to millions of instances, these approaches become impractical. In
single-cell transcriptomics, for instance, computing and storing all cell-cell similarity
values can exhaust system memory before embedding even begins (Fang et al., 2025).
Likewise, remote sensing and high-resolution imagery tasks often generate similarity
matrices too large for in-memory processing without distributed systems or
approximation techniques (Wang et al., 2021a).

Iterative optimization in nonlinear embeddings

Nonlinear DR algorithms such as t-SNE and UMAP involve iterative optimization of
complex loss functions to preserve local and global structures. These techniques become
increasingly resource-intensive as dataset size increases. Low-perplexity settings in t-SNE
require finer-grained neighborhood estimation, while UMAP’s fuzzy simplicial set
construction and stochastic gradient descent iterations scale poorly for large n (Linderman
¢ Steinerberger, 2022; Taylor & Merényi, 2022). This hampers real-time or interactive
applications such as fraud detection, streaming IoT analytics, or online recommendation
systems (Ali, Borgo ¢ Jones, 2021).

Memory and training overhead

Autoencoders and VAEs further compound scalability challenges. These models demand
substantial computational resources, including GPU acceleration, high batch memory, and
prolonged training cycles. In high-dimensional domains such as image recognition or text
mining, feature vectors often exceed tens of thousands of elements—necessitating
aggressive regularization, dimensional bottlenecks, or downsampling to prevent out-of-
memory errors. These constraints make deep DR models infeasible in
resource-constrained settings or edge devices (Asperti ¢ Trentin, 2020).

Real-world constraints and operational impact

The computational limitations of DR techniques directly impact their usability in
time-sensitive and resource-limited applications. In clinical diagnostics, for example,
preprocessing delays from t-SNE or autoencoder-based pipelines may hinder timely
treatment decisions. In real-time urban analytics or manufacturing quality control, the
inability to deploy DR models at the edge limits situational awareness and decision
speed—undermining the core utility of DR.

Summary

Scalability and memory inefficiencies remain central obstacles to the widespread adoption
of DR in large-scale, real-world systems. While approximate, incremental, and distributed
DR methods offer promising alternatives, their implementation and adoption remain
limited in practice. To ensure DR fulfills its potential in high-volume, high-velocity
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settings, future research must prioritize algorithmic scalability, low-latency inference, and
hardware-efficient model architectures.

SOLUTIONS

Principled approaches to determining the optimal dimensionality
Determining the optimal number of dimensions (k) in a DR pipeline is essential for
producing compact yet information-rich representations that align with the analytical task
at hand. While heuristics—such as retaining components explaining 90-95% of total
variance—are computationally efficient and widely adopted, they often fail to capture the
trade-off between meaningful signal retention and noise suppression. A range of
principled, data-driven strategies has emerged to address this challenge by tailoring

DS to both the intrinsic structure of the dataset and its downstream use case

(Greenacre et al., 2022).

Variance-based methods

Traditional variance-based approaches, typically applied in PCA, retain components based
on cumulative explained variance. However, they rely on the assumption that variance
magnitude correlates with information utility—an assumption that breaks down in
domains like genomics and NLP, where low-variance features may encode critical
structure. Parallel analysis refines this approach by comparing observed eigenvalues (4;) to
those from random or permuted data (4andom)> retaining only components with
eigenvalues exceeding this empirical null distribution (Abdi ¢» Williams, 2010). This
guards against overfitting due to sampling variability and improves statistical robustness.

Intrinsic dimensionality estimation

ID estimation seeks to quantify the minimum number of dimensions needed to represent
the underlying data manifold faithfully. Techniques include correlation dimension, MLE,
and geometric estimators like DANCo and TwoNN, which infer local dimensionality from
distance or angle-based statistics (Meilid ¢» Zhang, 2024). These approaches are well-suited
to nonlinear or fractal-like datasets. However, ID estimates can be unstable in high-noise
or sparsely sampled data regimes. Ensemble ID estimation—combining multiple
estimators—offers improved reliability but increases computational burden. Moreover,
estimated ID can guide hyperparameter tuning in DR methods, such as perplexity in t-SNE
or neighborhood size in UMAP (Van der Maaten ¢ Hinton, 2008).

Evaluation-aware and task-aligned selection

Optimal dimensionality is frequently task-dependent. For supervised learning tasks,
selecting k to maximize cross-validated performance metrics such as accuracy, area under
the curve (AUC), or F;-score is a common strategy (Guyon ¢ Elisseeff, 2003). In
unsupervised contexts, clustering quality metrics (e.g., silhouette score, Davies-Bouldin
index) and embedding integrity measures (e.g., trustworthiness, continuity) can be used to
evaluate candidate dimensionalities (Li et al., 2017). For instance, sentiment classification
might succeed with k ~ 2, while topic modeling or semantic retrieval could require k > 10.
Supervised DR approaches, including Lasso, Elastic Net, or supervised autoencoders,
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further improve task alignment by filtering dimensions directly linked to outcome-relevant
signals (Bian et al., 2022; Zhu et al., 2013).

Automated hyperparameter optimization

Automated tuning frameworks—such as grid search, random search, and Bayesian
optimization—can optimize k in tandem with DR-specific parameters like perplexity
(t-SNE), k-neighbors (UMAP), or regularization strength (LDA). As shown in Fig. 2,
variation in perplexity and learning rate dramatically alters the structure and
interpretability of t-SNE projections, underscoring the importance of proper tuning.
Bayesian optimization, while more sample-efficient, can become computationally
expensive on large datasets (O(nlogn) per iteration). Parallel execution and
GPU-accelerated evaluation are increasingly necessary for scaling these approaches to
production environments (Xiao et al., 2023; Van Der Maaten, 2014).

Ensemble and multi-scale dimensionality reduction

Ensemble DR methods aggregate insights across multiple embeddings—either with varied
k or distinct algorithms—to enhance stability and generalizability. Procrustes alignment
can align and combine low-dimensional representations into a consensus structure (Wang
et al., 2021a). Multi-scale DR is particularly useful in hierarchical datasets (e.g., taxonomies
or medical ontologies), where preserving both fine-grained and global relationships is
essential. These approaches mitigate the risk of choosing suboptimal k values and offer
robustness when a single embedding fails to capture all relevant structures (Healy ¢
Mclnnes, 2024).

Summary

Optimal DR is complex and context-dependent, requiring more than simple heuristics.
Variance-based thresholds and parallel analysis offer statistical rigor for linear DR, while
ID estimation captures nonlinear structure. Supervised and evaluation-aware methods
improve alignment with tasks, and ensemble approaches boost robustness. Integrating
these into scalable workflows ensures DR outputs are both efficient and meaningful across
varied data science applications.

Strategies for robustly handling noise, outliers, and missing data
Noise, outliers, and missing data introduce significant risks into DR, often leading to
distorted embeddings, spurious clustering, and compromised downstream inferences.
Unlike generic preprocessing, robust DR pipelines require integrated strategies that
directly address these imperfections during embedding. Addressing them systematically is
essential to preserve the integrity of the underlying data manifold and ensure trustworthy
analysis (Gao et al., 2021; Wang et al., 2022).

Context-aware preprocessing

Initial preprocessing steps such as log transformation, variance-stabilizing normalization,
or low-pass filtering can attenuate high-frequency noise. Winsorization and percentile
clipping are effective for minimizing the influence of outliers, especially in skewed
sensor or financial datasets. However, overzealous filtering may suppress valuable
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Figure 2 Effect of t-SNE hyperparameters on MNIST. t-SNE projections of MNIST under varying
perplexity (rows: 5, 30, 90) and learning rates (columns: high vs. low). Low perplexity emphasizes local
detail; higher values enhance global structure. High learning rates, especially with low perplexity, cause
distortion and fragmented clusters. The figure highlights t-SNE’s sensitivity to hyperparameter tuning
and the balance between local and global structure. Full-size K&l DOTI: 10.7717/peerj-cs.3025/fig-2
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signal—particularly in domains, where anomalies carry crucial information (Ayesha, Hanif
e Talib, 2020; Bian et al., 2022). Even modest noise can distort decision boundaries,
highlighting the need for task-aware noise mitigation. Preprocessing should balance signal
preservation with effective noise reduction to maintain embedding integrity.

Robust linear DR techniques

Robust PCA is a cornerstone method for separating structure from noise. It decomposes
the data matrix into a low-rank matrix and a sparse anomaly matrix via the convex
optimization. Weighted PCA further enhances robustness by down-weighting unreliable
or high-variance observations (Guerra-Urzola et al., 2021). These variants preserve linear
interpretability while offering improved resistance to noise and outliers.

Improving embedding robustness

Nonlinear DR methods are highly sensitive to noise during neighborhood graph
construction. Preprocessing with PCA or denoising autoencoders can suppress irrelevant
variance, improving neighborhood accuracy. Regularization techniques—such as pruning
weak edges, weighting edges by confidence, or penalizing local geometric variance—help
stabilize graph topology and preserve manifold structure (Mclnnes, Healy ¢ Melville, 2018;
Wang et al., 2021a). As shown in Fig. 3, even small changes in parameter can dramatically
reshape latent space, highlighting the need for careful tuning. These strategies are
especially valuable where local noise can mask global patterns.

Strategies for imputation

Missing data, if poorly addressed, can introduce bias into low-dimensional embeddings.
While simple imputation is fast, it often distorts variance and degrades data quality. Soft-
Impute, a matrix factorization method, offers low-rank approximations and is widely used
in genomics and recommender systems (Meyer, Pozo ¢ Zola, 2021). Multiple imputation
approaches model uncertainty across different missingness mechanisms: MCAR, MAR,
and MNAR. For high-dimensional, nonlinear data, autoencoder-based models and GANs
like GAIN better capture variable dependencies and yield more accurate reconstructions
(Zhang, Chen & Hong, 2021; Borisov et al., 2022). Figure 4 compares how these methods
impact latent space quality.

Domain-informed quality control

In high-stakes domains like medicine, finance, and industrial monitoring, domain-specific
thresholds play a critical role. Clinical datasets may impose physiological plausibility
constraints (e.g., systolic blood pressure between 80-200 mmHg), while manufacturing
systems define acceptable ranges for sensor variables. Incorporating these domain checks
into the preprocessing pipeline helps distinguish between true anomalies and sensor noise
or data entry errors, improving the validity of downstream DR outputs (Ayesha, Hanif ¢
Talib, 2020).

Summary
Reliable DR in real-world settings demands robust strategies for handling noise, outliers,
and missing data. Effective DR workflows should integrate task-aware preprocessing,

Wani (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.3025 18/34


http://dx.doi.org/10.7717/peerj-cs.3025
https://peerj.com/computer-science/

PeerJ Computer Science

Original PCA Data k=1
15 9
° °
° ° b
L]
10 1.0 4
L]
LA ° ®
~. [ ] . ° ° ..
L]
0.5 ® ° °
~ ®as® ° o, ® ° ~ 05
# o % o’ ®els % £ o ° o
o} .. [ S ° ° 1] ) )
g o o ¥ s ® °
o
g LI o. ° o ® .g 2 ° o o LY
§ °° ol e e %o o® S oo ° . Q.se
< 3‘ & o’ o:: e%e, s oo e °e
(]
4 o ° e e = 3 ‘e e
051 e o o ® o _ e oo
ca® © ° 051 ® ]
L]
° ° S ¢
1.0 ° ® ° ¢
°
- ° 104 Impgted Data
@ Original Data [} @ Original Data
-3 -2 -1 0 1 2 3 4 -3 -2 -1 0 1 2 3 4
PCA Component 1 PCA Component 1
k=3 k=5
2.0 Imputed Data 201 Imputed Data
® Original Data @ Original Data
15 154
Y L]
1.0 1.01
S ° S °
c ° 5 ° L)
g g ’ g s °
a 05 o 2 054
£ o ® ° ° £ ° ° °
S °® [ S 0O [
° ° 8°
g A . > g 0.0 ~ °
a 0.0 [ ] a .0 4 [}
oe £.2° . o oo R .8 °s
L] () ° °
o % . ° .'. \ °
-0.5 ° o ® -0.5 L4 [
o °
° o < °
-1.0 ° L4 -1.04 i
-3 -2 -1 0 1 2 3 4 -3 -2 -1 0 1 2 3 4
PCA Component 1 PCA Component 1
k=7 k=9
Imputed Data Imputed Data
® Original Data @ Original Data
15 154
° LJ
1.0 1.0 4
o ° o ®
3 ® ° 3 ® o
g s o ° * ° g 031 ° ° o
Q @ Q
£ °® [ £ .0. [
(] (]
S e ° s S Py ° [
Y 00 ° O 00 °
& ®e e F 4 °e & LX) @,2° °e
° () ° °
o °% . e °
[ 3] e
-05 ° [ ] -0514 @ °
L] o
° o ° hd
-0 ° ° -1.0 M
-3 2 -1 0 1 2 3 4 3 -2 1 0 1 2 3 4
PCA Component 1 PCA Component 1

Figure 3 Effect of K in k-nearest neighbors (KNN) imputation on PCA projections. PCA embeddings of the Iris dataset with 40% missing values
imputed using KNN with k = 1, 3, 5, 7, 9. The top-left shows the original data. Navy points are original values; orange are imputed. Smaller k yields

noisier, less stable imputations; larger k better preserves the original structure.
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Figure 4 Comparison of six dimensionality reduction methods—PCA, t-SNE, UMAP, Isomap, LLE, and MDS—on the Iris dataset, projecting
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anomaly-resilient DR algorithms, advanced imputation methods, and domain-guided
quality checks. These components collectively ensure that low-dimensional
representations reflect authentic structure and support reproducible, interpretable, and
context-sensitive analytics.

Balancing interpretability with accuracy in dimensionality reduction
Modern DR techniques increasingly favor capturing complex nonlinear patterns in
high-dimensional data, often at the cost of interpretability (see Fig. 5). As DR becomes
integral to high-stakes applications—such as clinical decision support, fraud detection, and
policy modeling—the trade-off between accuracy and transparency presents both practical
and ethical challenges. Balancing these demands is essential to ensure analytically robust
embeddings that also comply with regulatory standards.

Hybrid approaches for interpretability

Combining linear and nonlinear DR techniques can yield embeddings that retain the
structure of complex manifolds while maintaining a degree of interpretability. A widely
used pipeline applies PCA for initial denoising and variance compression, followed by
UMAP or t-SNE to extract nonlinear topological relationships (Becht et al., 2019). This
approach benefits domains like genomics and scRNA-seq, where PCA components can be
directly mapped to gene expression variance, while nonlinear methods reveal subtle
phenotypic patterns (Zhang & Lei, 2011).

Interpretability techniques

Post-hoc methods provide retrospective insight into black-box DR models. Techniques like
SHAP can be adapted to estimate feature contributions to latent coordinates (Antwarg
et al., 2021), while gradient-based saliency maps highlight influential inputs in
autoencoders—useful in areas like text mining (Borisov et al., 2022). However, these
approaches can be fragile and may not reflect true causal structure unless the DR model is
well-constrained. Surrogate and perturbation-based explanations must be used cautiously
to avoid over-interpretation or misleading rationales.

Sparse and regularized embedding models

Constraining latent representations encourages interpretability. As shown in Fig. 6,
increasing levels of missingness progressively distort PCA embeddings, underscoring how
even modest data incompleteness can compromise interpretability in unconstrained
models. Sparse AE enforce L, penalties to produce compact embeddings where each latent
dimension is activated by a limited subset of inputs—particularly effective in domains such
as climate modeling and metabolic profiling (Li et al., 2023b). f-VAEs (ff enhance
interpretability by encouraging disentanglement of latent factors) through a weighted
Kullback-Leibler (KL)-divergence penalty (Kingma ¢ Welling, 2019). Orthogonality and
independence constraints, inspired by ICA, minimize redundancy and produce latent
dimensions that correspond to distinct, semantically meaningful components (Hastie

et al., 2009).
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Figure 5 Comparison of six dimensionality reduction techniques—on MNIST digit embeddings projected to 2D. t-SNE and UMAP produce
well-separated clusters, preserving local structure and class distinctions. Isomap retains some global layout but distorts intra-class details. PCA and
MDS preserve variance yet blur class boundaries. LLE compresses the manifold, obscuring meaningful structure. The results underscore each
method’s trade-offs in visualizing high-dimensional data.
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Figure 6 Visualization of PCA on original and imputed datasets with varying percentages of missing values. Comparison of PCA embeddings of
the original Iris dataset and versions with 10-80% missing values imputed. Original data points (blue circles) and imputed values (orange crosses)
show increasing divergence as missingness rises, especially beyond 40%. The plot underscores how imputation degrades geometric fidelity and warns
of inflated variance or cluster drift in downstream analysis.
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Domain-informed constraints

Integrating prior knowledge through domain-informed regularization or architectural
design enhances semantic interpretability. Grouping features by taxonomies—like
biological pathways, financial metrics, or sensor module—helps embeddings reflect
real-world structures. Applying plausibility constraints, such as energy conservation or
physiological limits, keeps representations grounded and prevents overfitting to noise or
spurious patterns (Hastie et al., 2009). These approaches strengthen the trustworthiness of
DR pipelines, especially in regulated domains.

Regulatory and operational implications

Regulatory mandates increasingly demand transparency in algorithmic decisions,
including those involving DR. In healthcare, embeddings must link back to clinical
features; in finance, they must justify credit risk. Requirements like the GDPR’s right to
explanation and IEEE standards make interpretability a compliance issue. DR pipelines
using hybrid models, sparse constraints, and post-hoc tools—built with frameworks like
scikitlearn or Keras.

Summary

Balancing interpretability and accuracy in DR is no longer a theoretical concern—it is a
practical and regulatory imperative. Hybrid pipelines, post-hoc explanations,
sparsity-inducing models, and domain-informed constraints offer a roadmap for
embedding design that is both expressive and explainable. These strategies ensure that DR
outputs are not only powerful analytical tools, but also transparent, reproducible, and
ethically deployable in high-stakes environments.

Ensuring stability and reproducibility in dimensionality reduction
Low-dimensional embeddings must exhibit stability across repeated executions to support
reliable interpretation, consistent decision-making, and robust scientific inference. Yet
many DR techniques—particularly those involving stochastic processes yield variable
results even under fixed hyperparameters, jeopardizing both replicability and
reproducibility (Kobak ¢» Linderman, 2021). This poses substantial risks in domains where
reproducible evidence and regulatory compliance are paramount.

Deterministic initialization and parametric models

Stability can be improved by fixing random seeds and using deterministic initialization
strategies—such as initializing with PCA coordinates—to reduce run-to-run variance.
Parametric DR models, including parametric t-SNE and neural network-based mappings,
learn explicit transformation functions from high- to low-dimensional space, producing
consistent embeddings for both existing and novel data (Sainburg, Mclnnes ¢» Gentner,
2021). However, these methods must be deployed with careful control over environmental
variables, including seed management, batch ordering, and hardware determinism.

Ensemble methods for embedding robustness
Ensemble techniques enhance robustness by averaging or aligning results from multiple
DR runs. Repeated stochastic embeddings under varying seeds can be combined using
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Procrustes analysis to form consensus representations that smooth over local variability.
Multi-method ensembles—integrating PCA, UMAP, Isomap, and others—offer richer
representations of manifold structure, particularly valuable in exploratory tasks such as
patient clustering or cross-population genomic comparisons (Serna-Serna et al., 2023).
While computationally expensive, ensembles mitigate stochastic artifacts and improve
consistency across analyses.

Post-Hoc alignment and geometric normalization

Post-hoc alignment techniques address superficial differences in embeddings—such as
rotation, reflection, and scaling—without retraining. Procrustes transformation aligns
embeddings from different runs to a shared reference space, enabling valid comparisons.
Canonical correlation analysis (CCA) further identifies common latent directions across
embeddings, aiding in cross-validation and interpretability assessments. Although these
techniques do not resolve deeper topological inconsistencies (e.g., cluster fragmentation),
they stabilize visualization and analytical coherence across stochastic outputs (Kobak ¢
Linderman, 2021).

Hyperparameter robustness

Embedding stability is highly sensitive to hyperparameters such as perplexity,
neighborhood size, and learning rate. Systematic sensitivity analysis—via grid search,
random sampling, or Bayesian optimization—can identify parameter regions that yield
stable and high-quality embeddings. Stability can be quantified using metrics such as
trustworthiness, continuity, neighborhood preservation, or cluster consistency across seeds
(Taylor & Merényi, 2022). Integrating these evaluations into DR pipelines facilitates robust
parameter selection and improves analytical reliability.

Workflow versioning and environment control

Ensuring reproducibility goes beyond algorithmic solutions—it requires end-to-end
workflow control. This involves version-locking libraries, logging preprocessing steps,
fixing random seeds, and using infrastructure for traceability. Tools like pipeline
automation, data versioning, and environment encapsulation support full-stack
reproducibility. These practices are vital in regulated settings and collaborative research,
where auditability and integrity are essential. Table 3 provides a practical checklist to guide
reproducible DR workflows.

Summary

Embedding stability and reproducibility are essential for responsible DR use. Techniques
like deterministic initialization, parametric modeling, ensemble averaging, post-hoc
alignment, hyperparameter tuning, and workflow versioning collectively reduce variability.
While not foolproof, these strategies significantly improve the consistency and credibility
of DR analyses.

Mitigating overfitting and improving generalization
Despite being unsupervised, DR is prone to overfitting—especially in HDLSS settings
marked by sparsity, noise, and heterogeneity. Such overfitting leads to embeddings that
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Table 3 Reproducibility checklist for dimensionality reduction workflows.

Category

Checklist Item

Data handling

DR configuration

Stability controls

Visualization fidelity

Interpretability &
downstream use

Fairness and privacy

Computational
environment

Specify dataset origin, method of collection, all preprocessing steps (e.g., scaling, filtering, normalization), and logic for
train/validation/test split.

Document DR algorithm name and version, hyperparameters (e.g., perplexity, neighbors, target k), and input feature
dimensionality before reduction.

Fix random seeds for stochastic DR, report embedding variance across runs, and include quantitative stability scores
(e.g., trustworthiness, continuity).

Ensure visualizations have labeled axes, consistent colormaps/legends, same scale/aspect ratio, and are reproducible from
saved configurations.

Save final low-dimensional embeddings, document feature attribution or diagnostics, & perform embedding inversion/
influence analysis if applicable.

Check for bias leakage, apply mitigation strategies (e.g., adversarial debiasing), and implement differential privacy where
needed.

Record compute hardware, software/library versions, and share reproducible environment files (e.g., Dockerfile,
‘requirements.txt’).

capture dataset-specific artifacts rather than underlying structure, resulting in misleading
clusters, poor generalization, and reduced trust in applications like personalized medicine,
real-time IoT analytics, and genomics (Bian et al., 2022). To mitigate this, robust DR
pipelines must integrate regularization, cross-validation, noise-resilient neighborhood
graphs, domain-informed inductive biases, and mechanisms for transfer learning.

Regularization and sparse encoding

Regularization is critical to preventing overfitting in high-capacity models such as
autoencoders. L; regularization promotes sparse latent representations by enforcing
feature selectivity, while L, regularization penalizes large weights, thereby smoothing
learned transformations. Dropout further enhances generalization by randomly omitting
units during training, encouraging the model to develop redundant, distributed
representations (Li et al., 2023b). These constraints limit overfitting to noise and guide DR
models toward stable, interpretable embeddings that retain semantic relevance across
datasets.

Cross-validation and stability assessment

Adapted cross-validation strategies allow indirect evaluation of embedding robustness.
Reconstruction error (for PCA, autoencoders), continuity (manifold), and clustering
consistency (e.g., silhouette score variance across splits) can reveal overfitting tendencies.
In unsupervised settings, techniques such as bootstrap neighborhood overlap, subsample
stability, and manifold distortion metrics provide proxies for generalization performance
(Marukatat, 2023). These assessments inform hyperparameter tuning and offer critical
insights into the structural fidelity of embeddings.

Robust neighborhood graph construction
Manifold-based DR algorithms rely on neighborhood graphs, which are often distorted by
noise or irregular sampling densities. Enhanced robustness can be achieved through graph
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trimming (removing low-confidence edges), adaptive kernels (adjusting bandwidth based
on local density), and sparsification (retaining only stable connections) (Kobak ¢
Linderman, 2021; Healy ¢» Mclnnes, 2024). These refinements reduce susceptibility to
noise-induced artifacts and promote more faithful recovery of the underlying data
geometry.

Embedding domain-specific inductive biases

Incorporating domain knowledge into DR models improves generalization and
interpretability. Grouping features based on known ontologies—such as gene pathways,
device types, or regulatory hierarchies—introduces soft structural priors. Explicit
constraints, including non-negativity, conservation laws, or unit normalization, limit the
embedding space to feasible configurations. These inductive biases ground embeddings in
real-world semantics and ensure alignment with domain expectations, thereby mitigating
overfitting to irrelevant variance.

Incremental learning for generalization

Generalization across new or evolving datasets requires DR methods to support
transferability and adaptability. Parametric techniques—such as AE and parametric
t-SNE—learn explicit embedding functions, enabling out-of-sample projection without
retraining (Sainburg, McInnes & Gentner, 2021). UMAP supports transformation of
unseen data using precomputed graph structure. In dynamic environments, incremental
DR models can update embeddings in response to data streams, avoiding full
recomputation and maintaining temporal consistency. These properties are essential in
real-time or longitudinal settings such as fraud detection and clinical monitoring (A/,
Borgo & Jones, 2021).

Summary

Mitigating overfitting and improving generalization in DR requires a multifaceted strategy:
regularization and sparsity reduce complexity; unsupervised validation checks embedding
robustness; improved graph construction enhances noise resistance; domain biases ensure
semantic coherence; and transfer learning broadens applicability. Together, these methods
produce stable, interpretable, and deployment-ready DR outputs.

Fairness and privacy-aware dimensionality reduction

As DR methods see growing use in sensitive domains, concerns about fairness and privacy
have become critical. Although DR may seem privacy-preserving due to data abstraction,
evidence shows it can retain, amplify, or even expose structural biases and enable
adversarial reconstruction of sensitive information. Addressing these risks demands
explicit integration of fairness-aware objectives and privacy-preserving mechanisms into
DR pipelines to ensure ethical and compliant downstream tasks (Prayitno et al., 2021).

Fairness-conscious preprocessing

Bias mitigation in DR starts with preprocessing strategies aimed at minimizing the impact
of sensitive attributes. Techniques like sample reweighting, adversarial debiasing, and
orthogonal projection help decorrelate protected attributes from other features. Fair
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autoencoders, for example, use adversarial branches to predict sensitive traits, pushing the
encoder to obscure subgroup distinctions. This has shown success on datasets like
COMPAS, reducing racial bias and improving statistical parity. Orthogonal projection
methods similarly remove linear ties to socioeconomic status in clinical data, promoting
fairer and more generalizable latent representations.

Bias auditing and fairness metrics

Systematic auditing of embeddings is essential for uncovering biases encoded by DR
methods. Metrics such as demographic parity difference, equalized odds, statistical parity
difference and entropy-based subgroup balance provide actionable diagnostics. More
nuanced metrics include KL divergence between subgroup distributions and silhouette
scores stratified by subgroup, both of which can detect subtle, latent-space biases.
Implementing these audits using standardized libraries like fairlearn, aif360 enables
consistent and transparent fairness evaluation (Mehrabi et al., 2021).

Differential privacy and noise injection

To protect individual privacy, especially in sensitive applications involving personally
identifiable information, differential privacy (DP) methods have been incorporated into
DR algorithms. DP-compliant variants of PCA, UMAP, and t-SNE introduce calibrated
noise into computations (e.g., covariance matrices, gradient updates, pairwise distances),
limiting the potential for re-identification. While DP mechanisms slightly compromise
embedding quality, practitioners can manage this privacy-utility trade-off via adjustable
privacy parameters (g), ensuring compliance with regulatory frameworks such as HIPAA,
GDPR, and the EU Al Act (Prayitno et al., 2021).

Embedding inversion resistance and obfuscation

DR methods, particularly linear transformations and autoencoders, inherently risk
adversarial inversion, potentially compromising sensitive inputs. Techniques to mitigate
inversion risks include using contractive autoencoders, random projections, dropout noise,
or applying non-invertible transformations. Practitioners should perform regular
inversion risk assessments using model inversion attacks or reconstruction benchmarks to
quantify the vulnerability of their embeddings and iteratively enhance their resistance to
adversarial reconstruction.

Federated and decentralized DR architectures

In scenarios where centralized data aggregation poses significant privacy risks, federated
and decentralized DR methods offer viable alternatives. Techniques such as federated PCA
and distributed autoencoders enable institutions to locally generate embeddings, sharing
only aggregated or anonymized latent representations. When coupled with DP
mechanisms and secure aggregation protocols, these methods support collaborative
insights without direct raw data exposure, adhering to principles of privacy-by-design and
data minimization, especially vital in multi-center clinical research and international
financial systems (Prayitno et al., 2021).
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Table 4 Rules for robust and responsible dimensionality reduction.

# Best Practice Rationale
1 Audit bias before and after DR Evaluate whether protected attributes are encoded in the latent space using metrics such as demographic parity
or KL divergence.
2 Use fairness-aware Apply orthogonal projection, sample reweighting, or adversarial debiasing to remove correlations with sensitive
preprocessing attributes.
3 Choose DR method based on Linear methods are suited for interpretability, nonlinear methods for visualization, and hybrid methods for
task goal structure preservation.
4 Avoid over interpreting plots 2D embeddings can be misleading—complement with quantitative metrics and downstream validation.
5 Quantify information loss Use explained variance, reconstruction error, or task-specific performance to measure trade-offs.
6 Stabilize stochastic DR methods Fix seeds, use ensemble runs, or apply consensus strategies for reproducibility (e.g., t-SNE).
7 Integrate differential privacy Use DP-UMAP, DP-PCA, or noise-aware architectures to protect individuals in sensitive datasets.
early
8 Assess vulnerability to inversion Test for re-identification using model inversion or adversarial reconstruction techniques.
9 Adopt federated DR when For distributed or privacy-sensitive datasets, use federated PCA or distributed autoencoders.
needed
10 Document all parameters and ~ Ensure transparency by logging preprocessing, seeds, hyperparameters, and audit results for reproducibility.

audits

Summary

Fairness in DR requires more than abstraction—it demands a concrete framework that
includes bias-aware preprocessing, privacy protections (e. g DP), inversion resistance, and
decentralized design. Practitioners must balance fairness, accuracy, and interpretability
using clear metrics and practical tools to ensure ethical, trustworthy, and compliant DR in
high-stakes applications.

FUTURE DIRECTIONS

As DR evolves, future efforts will prioritize scalability, interpretability, and ethical
integrity. Emerging approaches—like transformers, neural differential equations, and
quantum DR—offer promise for complex or high-speed data, though some remain
early-stage. Standardized benchmarks, reproducible protocols, and fairness-aware
objectives are essential to address bias and privacy concerns. Scalable solutions such as
incremental UMAP, GPU-accelerated t-SNE, and federated DR will support real-time,
privacy-sensitive use. Finally, human-centric tools—like interactive visualizations and
attribution methods—will be key to ensuring transparency and trust.

CONCLUSIONS

DR remains a cornerstone of modern data science, enabling interpretable, efficient, and
scalable analysis across high-dimensional domains. This review has synthesized the
evolution of DR methods—from classical projections to deep, hybrid, and ensemble
techniques—and examined their limitations across foundational challenges. We outlined
actionable solutions and condensed them into rules (Table 4) for responsible and effective
DR deployment. As these methods increasingly drive decision-making in sensitive
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contexts such as healthcare, finance, and policy, aligning DR with principles of fairness,
privacy, and reproducibility is no longer optional—it is essential. Looking forward,
innovations like transformer-based embeddings, federated DR, and quantum-accelerated
pipelines will shape the next generation of interpretable and ethically grounded DR.

DR must be reimagined not just as preprocessing, but as a central tool for deriving
meaningful, trustworthy insights from complex data.
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