Submitted 25 October 2024
Accepted 20 June 2025
Published 25 July 2025

Corresponding author
Tao Lin, lintao@scu.edu.cn

Academic editor
José Alberto Benitez-Andrades

Additional Information and
Declarations can be found on
page 17

DOI 10.7717/peerj-cs.3024

() Copyright
2025 Wang et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

An enhanced approach for automatic
annotation of error codes based on
Seq2edit

Jian Wang"?, Tao Lin', Rongsen Zhao' and Huiling Zhao*

1 College of Computer Science, Sichuan University, Chengdu, Sichuan, China
2 College of Electronic Information, Jincheng College, Chengdu, Sichuan, China

ABSTRACT

The deep natural language translation models have been used for automatic code
error correction and have demonstrated outstanding potential. However, a large and
accurately annotated training dataset is essential for these models to perform well.
The key to improving the performance of these models lies in automatically and
accurately annotating code errors and establishing a larger training dataset. Recently,
a code error automatic annotation method based on Seq2edit has been proposed to
optimize the dataset. However, the accuracy of the annotation is affected because
tokens in the input code from the same statement may be aligned to different
statements. This article proposes a Seq2edit annotation method based on the source
code’s sentence structure. By dividing the code into statements with independent
meanings and introducing a cost coefficient to improve the Levenshtein algorithm,
this method optimizes the calculation of edit distance and enhances the ability to
align tokens. Experimental results show that this method can fully utilize the
contextual information of the source code during the automatic annotation process,
leading to a significant improvement in annotation accuracy.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and Machine
Learning, Natural Language and Speech, Neural Networks

Keywords Seq2edit, Automatic annotation, Deep learning, Levenshtein algorithm, Code alignment,
Annotation accuracy

INTRODUCTION

Motivation

With the extensive unsupervised pretraining of deep neural network models on a large
amount of source code, the ability of machines to understand code has improved
significantly (Ahmad et al., 2021). Impressive performance has been achieved in tasks such
as code classification, code querying, code completion, and documentation generation (Lu
et al., 2021). However, code correction, which requires strong reasoning, still faces
significant challenges (Allamanis, Jackson-Flux & Brockschmidt, 2021). Code correction is
the neural machine translation task (NMT) that translates an erroneous task into a correct
task. Each word in the code is tokenized as a token, and the code sequence containing
errors is directly translated into the target token sequence through a Seq2seq approach,
thereby obtaining the output target code (Malmi et al., 2019). This end-to-end approach is
simple and fast, but it suffers from low efficiency due to the need to predict all tokens,
leading to lower similarity between the output and input code. Subsequently,

How to cite this article Wang J, Lin T, Zhao R, Zhao H. 2025. An enhanced approach for automatic annotation of error codes based on
Seq2edit. Peer] Comput. Sci. 11:¢3024 DOI 10.7717/peerj-cs.3024

http://dx.doi.org/10.7717/peerj-cs.3024
mailto:lintao@�scu.�edu.�cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.3024
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

Malmi et al. (2019) and others proposed the “Seq2edit” method to improve this situation.
Instead of generating a target token sequence, it outputs an edit operation sequence for the
input code’s token sequence. Each input token is annotated with a category label, such as
“KEEP”, “DELETE” or “INSERT” indicating which tokens in the input should be retained,
deleted, or have new tokens inserted. During the generation of the target token sequence,
the model can directly perform stretching and deletion operations on the positions of
tokens based on the labeled annotations. After training, the deep learning model only
needs to predict the content for “INSERT” type labels (Yao et al., 2021; Berabi et al., 2021).
This approach significantly reduces the number of tokens that need to be predicted and
leverages the kept context in the target code to improve the accuracy of predicting the
missing words (Zhu et al., 2021; Chen et al., 2019). Therefore, the accuracy of token
annotations in the Seq2edit approach is crucial for generating the final token sequence.
Establishing a larger training dataset to improve the model’s prediction label accuracy is
the key to its success.

The word-based annotation method used in the Seq2edit approach was the earliest one
adopted (Malmi et al., 2019). It involved labeling each token in the input with an edit-type
label to indicate the differences between the input and output sequences, which were
determined based on the longest common subsequence matching. Although this method
was simple, most input tokens were annotated with the “KEEP” label, resulting in highly
imbalanced label types in the training samples. This imbalance led to the model being
biased towards predicting unknown tokens as the “KEEP” type. A method of span merging
for edit sequences was proposed to address the problem of label type imbalance which may
mislead the model during training (Stahlberg ¢» Kumar, 2020; Hu et al., 2022). The term
“span” refers to a region range of label positions where consecutive identical labels can
span across multiple lines of code statements for merging, as long as they adhere to the
principle of minimum edit distance. This process generates the target code sequence,
resulting in a collection of triples in the form of (Tags, and Span Token), which effectively
mitigates the imbalance in types. The minimum edit distance employed during merging
refers to the fewest steps, such as adding, deleting, or replacing label pairs, required to
transform the input code into the correct output code. One typical edit distance algorithm
is Levenshtein, which uses dynamic programming and backtracking to find the path with
the minimum total edit distance (Wang et al., 2017). The adjacent operations of the same
type along the edit path were combined to obtain the output annotation sequence.
However, a significant limitation of such methods is that multiple different edit paths often
exist when determining the minimum edit distance. The deterministic backtracking
algorithm usually selects only one path that aligns all words forward or backward. As
shown in the correction sequence 1 in Table 1. The annotations lead to situations where
multiple words that should belong to a single code statement are segmented and aligned to
different statements. In contrast, correction sequence 2 represents a more concise and clear
expected annotation result.

Therefore, to address the issues of imbalanced label categories caused by word-based
methods and errors in training data annotation due to dispersed alignment of tokens in
span-based methods, this article proposes a sentence label method (SLM) for code

Wang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3024 2/19

http://dx.doi.org/10.7717/peerj-cs.3024
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Comparison of different annotation methods for code errors.

Error code public java.util.List <TYPE_1> METHOD_1 () { for (TYPE_2 VAR 2 : VAR 3) {VAR_1. METHOD_2 (VAR_2.
METHOD_1 ()) : } return VAR 1}
Correct code public java.utilList <ITYPE_1> METHOD_1 () { return VAR 1 ;}
Error-corrected (KEEP, 6, NONE), (DELETE, 10, NONE), (KEEP, 11, NONE), (DELETE, 15, NONE), (KEEP, 17, NONE), (DELETE, 29,
sequence 1 NONE), (KEEP, 33, NONE)
Error-corrected (KEEP, 9, NONE), (DELETE, 29, NONE), (KEEP, 33, NONE)
sequence 2

statement alignment, aiming to enhance the accuracy of automatic data annotation for
training corpora. This method employs a strategy of aligning and merging code
statements, enhancing the Levenshtein algorithm and beam search approach, increasing
the probability of selecting correct tokens from the input code sequence and striving to
retain the original form of the input code as much as possible. This contributes to
establishing a larger training dataset and enhances the effectiveness of training complex
code correction models.

RELATED WORK

Currently, code correction work can be mainly divided into two categories. The first
category is based on Seq2seq end-to-end approaches, where large amounts of data are used
to pre-train the model. In this approach, the erroneous source code is encoded and used as
input to generate the corrected output code through an autoregressive process. Although
these methods achieved good correction results, the generated code had a significant edit
distance from the erroneous code. The second category is based on the Seq2edit approach,
which involves a pipeline for code correction. In this method, the erroneous source code is
first labeled with edit categories such as “KEEP”, “INSERT” and “DELETE” and then the
erroneous source code is operated upon based on these labels. This approach tends to
preserve the content of the input source code well, but the correction performance is not
entirely satisfactory.

A Seqg2seq-based end-to-end neural network error correction
approach

End-to-end neural network models typically adopt the Transformer architecture. They are
pre-trained on a large corpus of data and then use a decoder to generate the target sequence
directly. Kanade et al. (2020) first proposed using the CuBERT model based on the BERT
model for code pre-training. Their article used Python code from the Google BigQuery
platform as the corpus to learn contextual embeddings for code. They successfully achieved
variable misuse detection, binary operator error detection, and operator swapping for error
correction. Feng et al. (2020) also proposed the CodeBERT model, which utilizes a
dual-modal pre-training approach for both code and natural language to learn more
general token representations. Following this, Mashhadi ¢» Hemmati (2021) attempted to
fine-tune CodeBERT on the ManySStuBs4] dataset to repair simple JAVA code errors.

Wang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3024 3/19

http://dx.doi.org/10.7717/peerj-cs.3024
https://peerj.com/computer-science/

PeerJ Computer Science

Zhu et al. (2021) introduced the GraphCodeBERT model, which leverages data flow to
represent the source and destination of variable data more effectively. They performed
pre-training on code, comments, and variable sequences to repair C language code and
achieved high repair accuracy, though it was limited to variable type errors. The articles
mentioned above mainly used encoder architectures, while some researchers focused on
using decoder architectures for code correction. Svyatkovskiy et al. (2020) proposed the
GPT-C model, which applied the generative pre-trained Tranformer (GPT) architecture
for code correction attempts. This model was primarily used for code completion tasks,
and they proposed four training strategies. However, its performance in multilingual
settings was not satisfactory.

Code correction method based on seq2edit code sequence labeling
The Seq2seq approach generates the target code from scratch, which leads to low efficiency
in target code generation due to the need to select words (tokens) from a huge vocabulary.
Some Seq2edit methods have been proposed to address this issue. Gu et al. (2016)
introduced a generation mechanism allowing selective copying from the input text.
However, this copying mechanism still requires generating words not present in the input
text, which does not fundamentally solve the problem of low efficiency caused by a large
vocabulary. To reduce the vocabulary size, Malmi et al. (2019) proposed a method for
generating the vocabulary by aligning erroneous code and correct code based on their
longest common subsequence during annotation. As shown in Table 2, the “public” in the
beginning is labeled with a “KEEP” tag, indicating that it should be retained.

The remaining parts are first labeled with a combination of “DELETE” and “KEEP"°r¢”
indicating that the unnecessary tokens in the erroneous code should be deleted, and then
the correct content is added sequentially. For example, in Table 2, if the erroneous code
“void” should be replaced with “boolean,” it would be represented as “DELETE
KEEPY*°'an ” This approach significantly reduces the vocabulary size, consisting of only
one “DELETE” label and multiple “DELETE+KEEP"°"%” labels. Only the most probable
vocabulary is selected from the vocabulary table during prediction.

Omelianchuk et al. (2020) improved this method by introducing the “INSERT**™®” label
to replace the original “KEEPY*"®” and “DELETE"*"Y” labels. They also added the
“REPLACE""™®” label to represent replacement operations. When comparing different
parts of the erroneous and correct code, not all words are included in the vocabulary table;
only frequently occurring words are selected to be added. However, this may lead to Out-
Of-Vocabulary (OOV) situations where some words are not present in the vocabulary.

Stahlberg & Kumar (2020) further improved the method by proposing a span-based
annotation approach. This method also uses algorithms like the longest common
subsequence and Levenshtein distance (Levenshtein, 1966) to align erroneous and correct
code, and it adopts “KEEP”, “DELETE”, “INSERT” and “REPLACE” tags as edit categories.
The main difference is that the tags are independent and not combined with words. After
obtaining the correct sequence of edit operations, the same tags can be merged into triplets
representing edit operations (Tags, Span, Token). These triplets indicate the edit operation
category, the ending position of the span, and the predicted result, respectively. As shown

Wang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3024 4/19

http://dx.doi.org/10.7717/peerj-cs.3024
https://peerj.com/computer-science/

PeerJ Computer Science

Table 2 Word-based tagging methods.

Error code public void METHOD_1 (TYPE_1 node) { METHOD_2 (node) ; METHOD_3 (VAR_1 . get(((VAR_1 . size()) —1))) }
Correct code public boolean METHOD_1 (TYPE_1 node) { boolean set = METHOD_2 (node) ; if (set) METHOD_3 (VAR_1 . get(((VAR_1 .
size()) —1))) ; return set ; }
Error-corrected KEEP DELETE KEEPP°?lan KEEP KEEP KEEP KEEP KEEP KEEP KEEPPeolean set= KEEP KEEP KEEP KEEP KEEPY (s¢
sequence KEEP KEEP KEEP KEEP KEEP KEEP KEEP KEEP KEEP KEEP KEEP KEEPTetr™ set

Table 3 Span-based tagging methods.
Error code public void METHOD_1 (TYPE_1 node) {
METHOD_2 (node) ;
METHOD_3 (VAR_I . get(((VAR_1 . size()) —1))) ;

}
Correct code public boolean METHOD_1 (TYPE_I node) {

boolean set = METHOD_2 (node) ;
if (set) METHOD_3 (VAR_1 . get(((VAR_I . size()) —1))) ;
return set ;

}
Error-corrected sequence (KEEP, 1, NONE), (REPLACE, 2, boolean), (KEEP, 8, NONE),

(INSERT, 8, boolean set =), (KEEP, 13, NONE), (INSERT, 13, if (set)), (KEEP, 33, NONE),
(INSERT, 33, return set ;), (KEEP, 34, NONE)

in Table 3, the triplet (REPLACE, 2, boolean) indicates that all the words between the
ending position of the previous span and the second position need to be replaced with
“boolean.”

Table 3 shows that this method only needs to output one span, represented by a triplet,
to encompass all the operations within that span. For the spans labeled as “INSERT” and
“REPLACE,” the prediction model generates the required words. This approach efficiently
handles spans labeled as “KEEP” and “DELETE” without the need for further operation
predictions. Therefore, it is much more efficient than word-based annotation methods and
effectively solves the problem of out-of-vocabulary (OOV) words.

MATERIALS AND METHODS

SLM method: concept and implementation

The SLM is an improved algorithm based on the seq2edit span-based approach. The
positional order of statements in code does not uniformly affect the outcome. For instance,
some statements, such as variable assignment statements, may have no impact on the
result regardless of their position before usage. In contrast, the position of other
statements, such as variable definitions, can significantly alter the outcome if swapped with
adjacent statements. However, current span-based methods, which rely on the longest
common subsequence and Levenshtein distance algorithms, may result in unreasonable
alignment positions during merging. This can be addressed by improving the token

Wang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3024 519

http://dx.doi.org/10.7717/peerj-cs.3024
https://peerj.com/computer-science/

PeerJ Computer Science

Error Code
Statement —
Segmentation
|D Paired Statements Word Labeled Results Merging Results
Stat t] Public java. ! !
atemen I Listt . .
) —> > util. Listfor (N I\ g
> Alignment @@ TvrE2 [D> r
Correct Code _/1AI:AVE/§I_R
Statement —
= > Segmentation
JAVA 5
Figure 1 The schematic diagram of the process of the SLM method. Full-size K&l DOT: 10.7717/peerj-cs.3024/fig-1

alignment approach. The proposed SLM method segments the code into statements and
employs an enhanced Levenshtein distance algorithm to align code statements and tokens.
By incorporating a cost function into the original computation, the method mitigates the
interference caused by differences in variable or function names during edit distance
calculation. This avoids redundant or erroneous triplet results due to merging, thereby
yielding a more optimal span annotation outcome. The main workflow of this method is
illustrated in Fig. 1 and consists of three critical modules: source code statement
segmentation, statement alignment computation, and result span annotation.

Statement segmentation

Statement segmentation is similar to Chinese word splitting, where a piece of code is
divided into statements as the smallest units. In JAVA programs, code statements are
typically categorized into basic and compound statements. Basic statements are separated
by semicolons, front curly braces, and back curly braces, such as assignment statements
with a semicolon at the end. Compound statements consist of multiple basic statements,
such as functions, loops, and conditional statements. The opening curly brace “{” is treated
as an end symbol, and the closing curly brace “}” is merged into the end of the preceding
statement as a basic statement. Taking a function as an example, the code can be divided
into statement blocks as as shown in Table 4.

Take a pair of erroneous and correct code data, denoted as <X, Y>, and segment them
into statements as S(X) = (X;..X,,) where X; represents a set of statements obtained by
segmenting the code. Similarly, following the same approach, we get S(Y) = (Y;..Y},), where
each Y; represents a set of statements obtained by segmenting the correct code.

Statement alignment calculation

After segmenting the correct and erroneous statements, we employed candidate-aligned

statements and a beam search algorithm to identify the optimal matching solution. For the
candidate-aligned statements, we utilized an optimized adjast_Levenshtein algorithm to

compute the optimal pairing of statements. The relationships between the algorithms are
shown in the Fig. 2.

Wang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3024 6/19

http://dx.doi.org/10.7717/peerj-cs.3024/fig-1
http://dx.doi.org/10.7717/peerj-cs.3024
https://peerj.com/computer-science/

PeerJ Computer Science

Table 4 The result of code segmentation.

Error code X, Public java.utilList <TYPE_1> METHOD_I () { for (TYPE_2 VAR_2: VAR_3) { VAR_1L.METHOD_2 (VAR_2.METHOD_1 ()); }}
return VAR_1;}

Statement 1 Public java.util.List <TYPE_1> METHOD_1 () {
{xi}

Statement 2 for (TYPE_2 VAR_2: VAR _3) {
{X2}

Statement 3 ~ VAR_1LMETHOD_2 (VAR 2.METHOD_1 ()); }
{X:}

Statement 4 ~ return VAR 1}

{Xa}

Algorithm1

INPUT: The erroneous code
statements Xi and the correct code
statements Yj

Algorithm2

CALCULATION —CALL

INPUT: Pairs of correct and
erroneous statements

OUTPUT: Candidate pairs of correct

and erroneous statements OUTPUT: Adjusted Levenshtein

Distance Scores

Output
as Input

INPUT: Candidate pairs of correct
and erroneous statements

—

CALCULATION: The beam search

OUTPUT: The best aligned
schemes(Xbest,Ybest)

Figure 2 The relationships between the algorithms. Full-size Kl DOI: 10.7717/peerj-cs.3024/fig-2

The divided erroneous code statements (X;..X,,) and correct code statements (Y;..Y,,)
are aligned pairwise. Each element in the X set is compared with each element in Y set to
calculate their similarity scores using the adjast_Levenshtein. The top K pairs of statement

Wang et al. (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.3024 719

http://dx.doi.org/10.7717/peerj-cs.3024/fig-2
http://dx.doi.org/10.7717/peerj-cs.3024
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 1 Candidate combination algorithm.
Require: Segmented statements of error code X = {X1,Xa, ..., X, };
Segmented statements of correct code Y = {Y,Y,,...,Y,}
Ensure: The combination of candidate alignments for error codes and correct codes
0 ={01,0,,...,0kn}
LO— [T
2: fori=0—n—1do
33 forj=0—m—1do
4 T.append(getCost(X;, Y;)) #Calculate the edit distance between X; and ;.
5: end for
6: #Take the k groups with the smallest edit distance in T
7: #and add them to the alignment combination O.
8: O.append(getMinGroup(T, k))
9: T.clear()
10: end for
11: return O

blocks with the highest scores are added to the span candidate set O. As a result, O gets a
total of n * K candidate pairs ((X;, Y1) ... (Xi, Yx)). The edit distance algorithm is used for
similarity calculation, described in Algorithm 1.

In computing the edit distance between a pair of statements, the conventional
Levenshtein algorithm is limited by its reliance on character-level insertions, deletions, and
substitutions. It fails to account for word-order transpositions due to its inability to capture
character sequence changes. Therefore, we adjust the word order to align the sequences
properly, and then we apply the adjust_Levenshtein to calculate the distance. In this
context, we defined the getCost(X;, Y;) function in the Algorithm 1 to compute the edit
distance between statements of X; and Y; dynamically. The formula employed in the
function is defined in Eq. (1).

adjust_Levenshtein(X;, Y;) = Levenshtein(X;, Y;) x Cost(X;, Y;). (1)

To detect and correct word-order discrepancies, we segment statements X; and Y; into
individual words x; and y; using spaces as delimiters. If the words extracted from two
statements can be reordered to form identical sentence structures, this is identified as a
word-order error. When such errors are present, minimal editing operations are applied to
identify feasible word-order adjustments between the two statements and compute the
associated cost. Here, We use the cost function Cost(X;, Y;) to represent the word order
swapping distance, which helps us choose the pair (X;, Y;) with the lowest cost.

For the alignment of X; and Y}, we need to consider both the category and similarity
factors. Firstly, we use regular expressions and heuristic rules to determine the category
Type(X;, Y;) belongs to, such as assignment statements, loop statements, and function call
statements. If the categories are equal, then Costyyp, is set to 1; otherwise, it is set to 1. We
set the penalty value 4 = 3 to increase the penalty so that statements of the same functional

Wang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3024 8/19

http://dx.doi.org/10.7717/peerj-cs.3024
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 2 The adjust_Levenshtein algorithm (getCost(X;,Y;) function) for
word order permutation.
Require: The basic statements X; and Y; to be aligned.
Ensure: Flag indicating whether it is a program error problem; lev,,,,;: Levenshtein edit
distance for swapping.
l: L, = Len(X;); L, = Len(Y;)
2: X = lowercase(X;); Y = lowercase(Y))
3: flag = False; Leviygns = Levy,1,
4: for k =1 — min(Ly, L,) do
5. if sorted(X[L, — k : Ly]) = sorted(Y[L, — k : L,]) then
6 flag = True
7 LeVirans = min(Levy, g, switch_counts(Ly) + Levi, kr, k)
8 end if
9: end for
10: LeVirans = Levirans * Cost(X;, Yj)
11: return flag, Lev, ;s

category are prioritized for alignment. Furthermore, we use a lexical analyzer to extract all
identifiers involved in X; and Y, such as method names, function names, and variable
names. The overlap Costp,me between those sets of identifiers is then calculated. The
overlap is defined as the proportion of common elements shared between the strings (e.g.,
method names, function names, and variable names). If the overlap is identical and all
elements are shared between them, meaning two sentences are identical up to swaps, the
Costpame is set to 1; otherwise, it is set to 0. The calculation is shown in Eq. (2).

Cost(X;, Yj) = Costyype — Costname (2)

The implementation of the edit distance algorithm incorporating the cost function,
getCost(X;, Y)), is detailed in Algorithm 2. The algorithm takes the basic statements X; and
Y; that require alignment as input. After computation using the adjust_Levenshtein,
Algorithm 2 outputs a flag indicating whether a word-order transposition has occurred
and the final edit distance score Levy,,s. The flag is utilized to facilitate the analysis of the
number of statements involving word-order transpositions, while the Levtrans score is
employed to aid in the selection of candidate pairs in Algorithm 1.

To identify the alignment scheme with the minimal cost among all possible alignments,
we first select the K pairs with the smallest edit distances from the set of alignment
candidates O output by Algorithm 1. These pairs are used to initialize K alignment
schemes, where each scheme P; contains a pair of aligned code statements. These schemes
are stored in the set P = {Py, P,, ..., P;}. Meanwhile, for each scheme, we maintain a set U =
{U1, Uy, ..., Ui} of already aligned statements to prevent the repeated selection of the same
statements in iterations. Subsequently, in each round, we continue to select K pairs from O
for alignment operations, ordered by increasing edit distance. If no alignable pairs are
available for a particular scheme, a basic statement is randomly selected and added to the

Wang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3024 9/19

http://dx.doi.org/10.7717/peerj-cs.3024
https://peerj.com/computer-science/

PeerJ Computer Science

alignment scheme. This implies that the remaining basic statements need to be inserted or
deleted, with their edit distances being equivalent to their string lengths. Consequently,
each existing alignment scheme P; generates up to K new branching schemes, resulting in
K? new schemes in total. We employ a beam search approach, retaining only the K
schemes with the lowest cumulative edit distances after each round, until all basic
statements are aligned. Ultimately, the scheme with the minimal total edit distance is
selected as the optimal alignment scheme S from all candidates. This process is illustrated
in Algorithm 3, where we utilize the Top-K alignment algorithm based on beam search
to obtain the optimal alignment scheme after obtaining the candidate pairs from
Algorithm 1.

Span annotation

After obtaining the S set through the abovementioned calculations, the original span
annotation method is applied to label each word accordingly before merging, resulting in a
collection of triplets. As a result, given a pair of erroneous and correct code samples as
input, an edit sequence output can be generated, where each element in the sequence
consists of a triplet.

Selection for K-value
The choice of K-value in Algorithms 1 and 3 is vital. When K is too small, the alignment
algorithm may overlook high-quality alignment combinations during the selection
process. Conversely, when K is excessively large, the algorithm may select numerous
alignment combinations that offer little improvement to the overall alignment quality.
This not only fails to enhance the quality of the alignment results effectively but also
significantly increases the computational time required for the algorithm to execute. To
address this issue, we conducted a series of parameter-tuning experiments to determine the
optimal value of K for the beam search width in our alignment algorithm. Specifically, we
performed alignment tests on a manually annotated dataset and compared the alignment
outcomes for different values of K. The results of these experiments are illustrated in Fig. 3.
The results of the K-value selection experiment reveal several critical insights. As the
value of K increases, there is a significant improvement in the annotation accuracy of the
training set by the annotation algorithm. Furthermore, when the annotated results are
utilized to train a code correction model, the accuracy of the generated code by the model
also increases with the value of K. For instance, compared to K = 2, when K = 5, the
annotation accuracy (ACC) increased by 28.0%. However, the time required to annotate
the same training set increased by approximately 107%, with the computational time being
proportional to the value of K. Notably, when K was set to 6, there was no significant
change in the ACC or the interval number metrics compared to K = 5, while the execution
time of the algorithm increased dramatically. Therefore, considering the trade-off between
annotation accuracy and computational efficiency, the optimal value of K was determined
to be 5.

Wang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3024 10/19

http://dx.doi.org/10.7717/peerj-cs.3024
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 3 The alignment calculation for TopK.
Require: The combination of candidate alignments for error codes and correct codes:
0={0,0;,...,0s,};
Require: Number of alignment schemes retained: k
Ensure: Alignment schemes: S
1: P =[Py, P,,..., P {Initialize k empty candidate alignment schemes.}
2: U =[Uy,U,,..., U {Initialize the set of already aligned code statements in each
alignment scheme.}
3: Pselected =]
4: Sort the aligned candidate combinations in ascending order of edit distance.
5: Sort(O)
6: fori=0ton—1do
7. forj=0tok—1do

8: #Select k combinations with the smallest cost from the non-intersecting set
between aligned candidate combinations O and U;,.
9: Oselected = getTopKButNotUsed(O, j)
10: #If the combination is not empty, then up to K branching combinations are
generated.
11: #for each existing scheme
12: #If the combination is empty, keep the current scheme.
13: if Ogelected 7 null then
14: Pyelected-append(concat(Pj, Ogelected))
15: else
16: Pyelected-append(P;)
17: end if
18: end for

19: #Keep k schemes with the smallest edit distance and generate the set of aligned
statements corresponding to each scheme.

20: P = getTopK(Pselected)

21: U = getOccupyFromPlan(P)

22: Pylected-Clear()

23: end for

24: S = getMin(P)

25: return S

EXPERIMENT

The experimental process consisted of two main experiments:

e Annotation accuracy evaluation experiment: The first experiment compared the
performance of automated code sequence labeling on the manually labeled dataset to
assess the effectiveness of the proposed method.

Wang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3024 11/19

http://dx.doi.org/10.7717/peerj-cs.3024
https://peerj.com/computer-science/

PeerJ Computer Science

90.00 87.43 8/.71 7.5 90.00 87.43 87.71 45
85.00 7 85.00 40
A A 3
80.00 80.00 >
C 65 C 30
C 7500 C 75.00
25
(%) 6 (%)
70.00 70.00 20
65.00 s 65.00 15
60.00 5 60.00 10
2 4 2 3 4 5 b
The value of K The value of K
Annotati i
HEE 2:c0u:alc(})ln gPan-hiumber T A:::Jra;gn Annotation Time
Figure 3 Results of K-value selection experiment. Full-size K] DOI: 10.7717/peerj-cs.3024/fig-3

» Model effectiveness validation experiment: The second experiment involved annotating
the entire CodeXGLUE Small dataset using our method and two existing annotation
methods. We trained models using the annotated results and assessed the impact of the
corpora on the models by comparing the corrected code with the correct code.

In summary, the experiments aimed to validate the effectiveness of the method through
code sequence automatic labeling on the manually labeled dataset and assess the influence
of different labeling results on model performance through training and evaluation.

Datasets

To assess whether our annotation method brings improvements to code correction
models, we conducted experiments using the CodeXGLUE Small dataset and manually
labeled datasets (Lu et al., 2021). The CodeXGLUE Small dataset consists of 46,680 pairs
for the test set, 5,835 pairs for the validation set, and 5,835 pairs for the test set, with each
code pair containing a segment of erroneous code and its corresponding correct code. The
manually labeled dataset was randomly selected from the CodeXGLUE Small dataset,
comprising 350 code pairs. The annotation principle was to correct the erroneous code to
the correct code using the minimum number of editing operations while preserving the
overall structure of the code. The third-party dataset is available at: https://github.com/
microsoft/CodeXGLUE.

Data preprocessing

We performed preliminary data preprocessing on the CodeXGLUE Small dataset, which
consists of code text. First, we used the data cleaning tool Numpy to remove noise and
irrelevant information from the code. Specifically, we applied np.char.strip to remove

Wang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3024 1219

https://github.com/microsoft/CodeXGLUE
https://github.com/microsoft/CodeXGLUE
http://dx.doi.org/10.7717/peerj-cs.3024/fig-3
http://dx.doi.org/10.7717/peerj-cs.3024
https://peerj.com/computer-science/

PeerJ Computer Science

leading and trailing whitespace from each code segment and np.char.replace to eliminate
unnecessary whitespace within the code lines. Additionally, we removed comments using
regular expressions to focus solely on the executable code. Second, we identified and
removed outliers in code length using the zscore method from the statistical package SciPy,
ensuring that the dataset contained only code segments within a reasonable length range.
Finally, we eliminated duplicate code segments using the drop_duplicates function from
the data deduplication tool Pandas. The preprocessed datasets are archived and readily
accessible at the following repository: https://github.com/Ling0924/codebert_gec//tree/
main/data. Furthermore, the data generated as a result of our analyses is deposited in a
distinct section of the same repository, which can be accessed via this link: https://github.
com/Ling0924/codebert_gec/tree/main/data/modelinput.

Model

We chose CodeBERT for this study for several reasons. CodeBERT is trained on large code
datasets, making it well-suited for programming tasks. It also outperforms models without
code-specific pre-training in benchmark tasks and its transformer architecture effectively
handles the complexities of source code. Finally, strong community support ensures
CodeBERT stays up-to-date with the latest advancements. In our project, we have elected
to pre-train CodeBERT utilizing a seq2seq methodology augmented with cross-attention.
This approach is designed to enhance the model’s proficiency in comprehending and
generating code, thereby equipping it to navigate the nuanced patterns and
interdependencies inherent to coding tasks with greater finesse.

Computing infrastructure

In the context of our research, both macOS and Windows operating systems have been
identified as suitable platforms, with no particular hardware prerequisites stipulated.
Participants are instructed to engage with the README file, which is optimally accessed
and manipulated within the confines of a Jupyter Notebook environment (.ipynb file). This
approach ensures a standardized and efficient interaction with the provided
documentation and associated computational resources.

Labeling methods and prediction models

In the experiment comparing prediction results using the CodeBERT model, we selected
the word-based annotation algorithm proposed by Malmi et al. (2019) and the span-based
annotation method proposed by Stahlberg ¢» Kumar (2020) as benchmarks for
comparison. The trained model selected for this study was CodeBERT (Feng et al., 2020)
which serves as the baseline model for code repair tasks in the CodeXGLUE (Lu et al.,
2021) framework.

Evaluation metrics

The evaluation metrics include accuracy (ACC), bilingual evaluation understudy (BLEU),
edit spans, and average processing time. ACC represents the proportion of generated
annotation sequences that match the manually annotated results exactly.

Wang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3024 13/19

https://github.com/Ling0924/codebert_gec//tree/main/data
https://github.com/Ling0924/codebert_gec//tree/main/data
https://github.com/Ling0924/codebert_gec/tree/main/data/modelinput
https://github.com/Ling0924/codebert_gec/tree/main/data/modelinput
http://dx.doi.org/10.7717/peerj-cs.3024
https://peerj.com/computer-science/

PeerJ Computer Science

BLEU (Papineni et al., 2002) is a widely used metric that evaluates the quality of
machine translation introduced by researchers, including Papineni et al. (2002). It aims to
address the time-consuming and costly nature of traditional human evaluation methods.
BLEU primarily calculates the similarity between translation results and reference answers
based on n-gram matching and sentence length penalty. It helps developers quickly and
accurately assess the performance of machine translation systems. BLEU values are higher
when the source code sequences and result sequences are closer. The metric “number of
edit spans” denotes the average count of triplets representing edit operations within the
results, thereby reflecting the number of edit operations performed. Due to differences
from other labeling methods, the word-based labeling method converts its labeling results
into a similar span representation format to the span-based labeling method, following the
principle of “merge if adjacent and identical.” For unused “REPLACE” edit labels, a
method is adopted to merge adjacent “INSERT” and “DELETE” labels into “REPLACE”
for a fair comparison.

Average processing time refers to the average time it takes for the annotation sequence
results to be obtained through the SLM method after processing the input code. It is
calculated by dividing the total time spent on all code annotations by the number of code
samples. These evaluation metrics provide a comprehensive assessment of the
performance and efficiency of the proposed method.

RESULTS AND ANALYSIS

Annotation accuracy evaluation experiment

In the annotation accuracy evaluation experiment, the search parameter K was set to 5, and
a comparative study was conducted between the SLM method and the word-based and
span-based labeling methods on the manually labeled dataset. As shown in Table 5, the
experimental results present the accuracy, number of edit spans, and processing time for
the three labeling methods.

The experimental results reveal that the SLM-based labeling method significantly
improved training set annotation accuracy, reaching the optimal value of 87.43%, without
a substantial increase in edit span count compared to the other two methods. The
improvement percentages were 44.35% and 22.90%, respectively, indicating that the
statement-based labeling approach is closer to real human annotations. Meanwhile, the
edit span count was 5.71, indicating an average of 5.71 triplets per generated edit sequence,
falling between 6.83 and 4.97 for the other two methods. This indicates the proposed
method selectively merges spans to preserve the code statement structure. The average
annotation time was recorded as 31 s, significantly higher than the other two methods,
signifying that this method requires more time.

The experiment demonstrates the effectiveness of the SLM-based labeling method in
enhancing annotation accuracy while maintaining a reasonable edit span count,
showcasing its potential for more accurate and context-aware code error annotation.

Wang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3024 14/19

http://dx.doi.org/10.7717/peerj-cs.3024
https://peerj.com/computer-science/

PeerJ Computer Science

Table 5 The comparison of annotation methods and annotation effectiveness. The bold entries
represent the optimal results in the comparison.

Methods ACC (%) Edit span count Time (s)
Word_based 60.57 6.83 10
span_based 71.14 4.97 15
Our method (K = 5) 87.43 5.7 31
18
15.86
16 14.28
14 12.75
12
10
8
6
4
2 0.854 0.82 0.857
0 | — — ===
Word_based Interval_based Our method (K=5)

B CodeBERT ACC(generation) (%) M BLEU

Figure 4 The comparison of prediction performance of different models under various annotation
methods. Full-size K&l DOT: 10.7717/peerj-cs.3024/fig-4

Model effectiveness validation experiment

To further assess the impact of the SLM annotation method on the performance of
predictive models, we indirectly evaluated the effectiveness of our annotation approach by
measuring the code generation accuracy of the models. Given that the CodeBERT model
employs bidirectional feature extraction, which enhances its performance in
context-dependent tasks such as cloze tests, it is particularly well-suited for our
experimental tasks. Therefore, in the second experiment, we trained the CodeBERT model
on the entire CodeXGLUE Small dataset using three different annotation methods and
compared the code correction results on the test set. The experimental results are
presented in Fig. 4.

The results of this experiment provide insights into how the SLM model-annotated
sequence samples contribute to the performance of the CodeBERT model in the context of
the error correction task. The comparison sheds light on the effectiveness of utilizing
SLM-generated annotations for improving the performance of prediction models.

The experimental results demonstrate that in the CodeBERT model, the proposed SLM
labeling method achieved the best accuracy and BLEU performance. The accuracy value of
15.86% is an improvement of 3.11% compared to the word-based method and 1.58%
compared to the span-based method. This suggests that the corpus labeled using this
method enhances prediction performance after model training. Furthermore, the BLEU

Wang et al. (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.3024 15/19

http://dx.doi.org/10.7717/peerj-cs.3024/fig-4
http://dx.doi.org/10.7717/peerj-cs.3024
https://peerj.com/computer-science/

PeerJ Computer Science

Table 6 The comparison of test sample outputs using CodeBert.

Input code public void method_1 (type_1 var_1) { super . method_1 (var_1);var_2.method_2 (var_3);var_2.method_3 (var_4);var_5.
setEnabled (true) ; }

Expected public void method_1 (type_1 var_1) { super . method_1 (var_1) ; var_5 . setEnabled (true) ; }
output
Word_base public void method_1 (type_1 var_1) { var_5 . setEnabled (true) ; }
span_base public void method_1 (type_1 var_1) { super . method_1 (var_1); var_2 . method_2 (var_3); var_2 . method_3 (var_4);var_5.
setEnabled (true) ; }
Text_base public void method_1 (type_1 var_1) { super . method_1 (var_1) ; var_5 . setEnabled (true) ; }

score based on statements is 0.857, representing slight improvements of 0.003% and
0.037% compared to the other two methods. An analysis of this outcome reveals that all
three Seq2edit-based methods, including SLM, effectively retain tokens from the input
code by applying “KEEP” labels. Additionally, the SLM method removes redundant
statements from the corpus, while the word-based and span-based methods are more
inclined to retain these redundant statements. A comparison of the outputs for a test
sample among the three methods is presented in Table 6. This observation supports the
conclusion that the SLM method’s annotation strategy, combined with the selective
removal of redundant statements, contributes to improved prediction performance and
BLEU scores in the CodeBERT model.

Table 6 shows that when predicting a segment of erroneous input code, the red-colored
portions highlight the differences between the input code and the expected output code.
The test results reveal that only the method proposed in this article produces the correct
correction result. The word-based approach results in a missing portion “super. method_1
(var_1)” in the predicted output, and the span-based method fails to remove the
redundant content “var_2 . method_2 (var_3); var_2 . method_3 (var_4)” from the input
sample. This further underscores that although the word-based and span-based methods
exhibit favorable BLEU scores, their lower accuracy is a significant contributing factor.

Thus, based on the results of these two sets of experiments, it is demonstrated that the
SLM method proposed in this article can automatically annotate the training corpus, aiding
the error correction model’s more effective training. As a result, during prediction, the
SLM method achieves optimal error correction results while also considering BLEU values.
Compared to existing word-based and span-based methods, the SLM method considers
both sentence alignment and word alignment to generate the edit sequence during code
alignment. This approach enables the model to predict missing content in a contextually
explicit manner accurately.

In summary, the SLM method offers superior performance in code alignment and
annotation, effectively enhancing error correction models and achieving optimal error
correction results while balancing BLEU values.

CONCLUSION

The automatic annotation effects of word-based and span-based annotation methods
based on seq2edit are not satisfactory. In this article, we propose an annotation method

Wang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3024 16/19

http://dx.doi.org/10.7717/peerj-cs.3024
https://peerj.com/computer-science/

PeerJ Computer Science

called SLM based on seq2edit code statement alignment. First, the code is divided into
multiple statements according to certain rules, and a cost coefficient is introduced to
address the issue that the algorithm cannot handle word-order transposition errors. This
improves the Levenshtein algorithm to align code statements, overcoming the problem of
the traditional Levenshtein algorithm where tokens belonging to a single code statement
are dispersed and aligned to different statements. Second, a beam search algorithm is
introduced to search for the optimal matching sentence pairs. By retaining the top K most
similar sentence pairs in parallel during each search iteration, the algorithm ensures the
highest probability of selecting the optimal alignment sentences. Finally, span-based
annotation is applied to the aligned sentences to quickly generate statement annotations,
resulting in an output of an edit sequence. Experimental results show that compared to
word-based and span-based methods, the annotation results of our method are closer to
manual annotation. Moreover, using the annotated corpus generated by our method to
train and predict with the CodeBERT model, the accuracy and BLEU score reached 15.86%
and 0.857, respectively, indicating that our method achieves a good balance in preserving
effective tokens in the input code and improving accuracy. In future research, we will
improve the prediction model by introducing richer code syntax and semantic
representations to decode the missing content of Replace and Insert labels, thereby
enhancing the accuracy of generating content for these two types of labels and overall
improving the performance of the code correction model.

This article also has some limitations and shortcomings. First, generalization testing is
an effective way to verify the effectiveness of our method in correcting different types of
code errors. However, due to limitations in resources, the article did not conduct
generalization testing on other datasets. Second, Although we employed various methods
to reduce randomness during the experimental design process, the high computational
cost of model training has thus far precluded us from conducting statistical tests to
formally validate that random factors do not influence our results. In future research, we
will conduct generalization testing on more diverse code datasets with different types,
scales, and domains. Subsequent studies will introduce more sophisticated statistical
testing methods, such as repeated experiment design and analysis of variance, to conduct
comprehensive statistical analyses of the experimental results, thereby enhancing the
practicality and scalability of the model.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the Sichuan Science and Technology Program, specifically
allocated for the Practice of Collaborative Competition to Promote the Talent
Development Model in Education, under grant number 2024NSFSC0499. The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Wang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3024 17/19

http://dx.doi.org/10.7717/peerj-cs.3024
https://peerj.com/computer-science/

PeerJ Computer Science

Grant Disclosures

The following grant information was disclosed by the authors:

Sichuan Science and Technology Program.

Practice of Collaborative Competition to Promote Talent Development Model in
Education: 2024NSFSC0499.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Jian Wang conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, and approved the final draft.

e Tao Lin conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

» Rongsen Zhao performed the experiments, performed the computation work, prepared
figures and/or tables, and approved the final draft.

e Huiling Zhao analyzed the data, performed the computation work, authored or reviewed
drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data and code are available at GitHub:

- https://github.com/Ling0924/codebert_gec.

- Huiling Zhao. (2025). Ling0924/codebert_gec: v1.0.0 (v1.0.0). Zenodo. https://doi.org/
10.5281/zenodo.15741384

The third-party data is available at GitHub: https://github.com/microsoft/CodeXGLUE.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.3024#supplemental-information.

REFERENCES

Ahmad WU, Chakraborty S, Ray B, Chang K-W. 2021. Unified pre-training for program
understanding and generation. ArXiv DOT 10.48550/arXiv.2103.06333.

Allamanis M, Jackson-Flux H, Brockschmidt M. 2021. Self-supervised bug detection and
repair. Advances in Neural Information Processing Systems 34:27865-27876
DOI 10.48550/arXiv.2105.12787.

Berabi B, He J, Raychev V, Vechev M. 2021. TFix: learning to fix coding errors with a text-to-text
transformer. In: International Conference on Machine Learning. PMLR, 780-791.

Chen Z, Kommrusch S, Tufano M, Pouchet L-N, Poshyvanyk D, Monperrus M. 2019.
Sequencer: sequence-to-sequence learning for end-to-end program repair. IEEE Transactions on
Software Engineering 47(9):1943-1959 DOI 10.1109/tse.2019.2940179.

Feng Z, Guo D, Tang D, Duan N, Feng X, Gong M, Shou L, Qin B, Liu T, Jiang D. 2020.
CodeBERT: a pre-trained model for programming and natural languages. ArXiv
DOI 10.48550/arXiv.2002.08155.

Wang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3024 18/19

https://github.com/Ling0924/codebert_gec
https://doi.org/10.5281/zenodo.15741384
https://doi.org/10.5281/zenodo.15741384
https://github.com/microsoft/CodeXGLUE
http://dx.doi.org/10.7717/peerj-cs.3024#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3024#supplemental-information
http://dx.doi.org/10.48550/arXiv.2103.06333
http://dx.doi.org/10.48550/arXiv.2105.12787
http://dx.doi.org/10.1109/tse.2019.2940179
http://dx.doi.org/10.48550/arXiv.2002.08155
http://dx.doi.org/10.7717/peerj-cs.3024
https://peerj.com/computer-science/

PeerJ Computer Science

Gu J, Lu Z, Li H, Li VO. 2016. Incorporating copying mechanism in sequence-to-sequence
learning. ArXiv DOI 10.48550/arXiv.1603.06393.

Hu Y, Shi X, Zhou Q, Pike L. 2022. Fix bugs with transformer through a neural-symbolic edit
grammar. ArXiv DOI 10.48550/arXiv.2204.06643.

Kanade A, Maniatis P, Balakrishnan G, Shi K. 2020. Learning and evaluating contextual
embedding of source code. In: International Conference on Machine Learning. PMLR, 5110-
5121.

Levenshtein VI. 1966. Binary codes capable of correcting deletions, insertions, and reversals. In:
Soviet Physics Doklady. Soviet Union: American Institute of Physics (AIP), Vol. 10, No. 8.
707-710.

Lu S, Guo D, Ren S, Huang J, Svyatkovskiy A, Blanco A, Clement C, Drain D, Jiang D, Tang D.
2021. CodeXGLUE: a machine learning benchmark dataset for code understanding and
generation. ArXiv DOI 10.48550/arXiv.2102.04664.

Malmi E, Krause S, Rothe S, Mirylenka D, Severyn A. 2019. Encode, tag, realize: high-precision
text editing. ArXiv DOI 10.48550/arXiv.1909.01187.

Mashhadi E, Hemmati H. 2021. Applying CodeBERT for automated program repair of java simple
bugs. In: 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR).
Piscataway: IEEE, 505-509.

Omelianchuk K, Atrasevych V, Chernodub A, Skurzhanskyi O. 2020. Gector-grammatical error
correction: tag, not rewrite. ArXiv DOI 10.48550/arXiv.2005.12592.

Papineni K, Roukos S, Ward T, Zhu W-J. 2002. BLEU: a method for automatic evaluation of
machine translation. In: Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics, 311-318.

Stahlberg F, Kumar S. 2020. Seq2edits: sequence transduction using span-level edit operations.
ArXiv DOI 10.48550/arXiv.2009.11136.

Svyatkovskiy A, Deng SK, Fu S, Sundaresan N. 2020. Intellicode compose: code generation using
transformer. In: Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, 1433-1443.

Wang W, Chen Z, Meng X, Li W. 2017. Research and implementation of identifying music
through performances using entropy based audio-fingerprint. Computer Science 44(Z6):551-
556 DOI 10.11896/].ISSN.1002-137X.2017.6A.123.

Yao Z, Xu FF, Yin P, Sun H, Neubig G. 2021. Learning structural edits via incremental tree
transformations. ArXiv DOI 10.48550/arXiv.2101.12087.

Zhu Q, Sun Z, Xiao Y-A, Zhang W, Yuan K, Xiong Y, Zhang L. 2021. A syntax-guided edit
decoder for neural program repair. In: Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering,
341-353.

Wang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3024 19/19

http://dx.doi.org/10.48550/arXiv.1603.06393
http://dx.doi.org/10.48550/arXiv.2204.06643
http://dx.doi.org/10.48550/arXiv.2102.04664
http://dx.doi.org/10.48550/arXiv.1909.01187
http://dx.doi.org/10.48550/arXiv.2005.12592
http://dx.doi.org/10.48550/arXiv.2009.11136
http://dx.doi.org/10.11896/J.ISSN.1002-137X.2017.6A.123
http://dx.doi.org/10.48550/arXiv.2101.12087
http://dx.doi.org/10.7717/peerj-cs.3024
https://peerj.com/computer-science/

	An enhanced approach for automatic annotation of error codes based on Seq2edit
	Introduction
	Related work
	Materials and Methods
	Experiment
	Results and analysis
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

