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ABSTRACT

In the field of electrical power material management, it is paramount that users
receive accurate recommendations regarding the electrical power materials they
require. Recently, a growing number of studies have been dedicated to graph neural
network (GNN)-based recommendation systems due to their ability to seamlessly
combine node information with topological structure, enhancing the effectiveness of
recommendations. However, a notable drawback of current GNN-based
recommendation is their inability to explicitly capture users’ intent in
recommendations, which limits the performance. In fact, users’ intent is crucial in
determining their actions. One example is when users first form an intent to buy a
particular set of items and then choose a specific item from the set based on their
preferences. To fill this gap, this article proposes an intent-aware knowledge
graph-based model for electrical material recommendation, named IKG-EMR.
IKG-EMR models user preferences and intent by leveraging knowledge graph and
user behavior sequences, respectively. Specifically, a graph neural network is adopted
to generate user intent embedding and item embedding from the tripartite graph of
“User-Item-Topic”, and a multi-head attention network (Transformer) is used for
extracting preference from user behavior sequences. Finally, an adaptive fusion with
attention network is devised to generate comprehensive user representation by
integrating user preference and intent features. Extensive experiments conducted on
the real-life electric power materials show that our proposed model outperforms
state-of-the-art methods.

Subjects Agents and Multi-Agent Systems, Algorithms and Analysis of Algorithms, Data Mining
and Machine Learning, Optimization Theory and Computation, Neural Networks
Keywords Recommender system, Graph neural networks, Topic model, Transformer

INTRODUCTION

With the ongoing digital transformation in the power industry, electrical power material
management is encountering a range of issues. These include data silos, inefficiencies in
information retrieval, and inaccuracies in forecasting material demands. These obstacles
not only impede management effectiveness but also present risks such as supply chain
interruptions and inventory imbalances, which can result in higher operational expenses
(You et al., 2023). Therefore, there is a pressing requirement to address these challenges
and elevate the sophistication of material management within the power sector.
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In this context, leveraging theories such as big data and machine learning to predict the
demand for power grid materials has emerged as a crucial strategy for modernizing
material management practices. Recommendation systems, as sophisticated filtering tools
powered by big data and artificial intelligence, have demonstrated considerable potential
for application across diverse sectors, including e-commerce platforms, music streaming
services, and news platforms. By analyzing users’ historical behaviors and preferences
effectively, recommendation systems can deliver personalized services, enhance user
experience, and elevate satisfaction levels. Integrating recommendation systems into power
material management can assist enterprises in reducing operational costs through precise
demand forecasting, inventory optimization, and improved procurement efficiency.
Furthermore, this article seeks to explore a cutting-edge recommender system tailored for
electrical materials.

The recommendation system focuses on examining user-item interactions, employing
methodologies such as matrix decomposition, collaborative filtering, and deep learning to
deliver personalized recommendations. These techniques have demonstrated considerable
success in the realm of personalized suggestions. Nonetheless, they encounter notable
hurdles, such as data sparsity, cold start challenges, and the absence of interpretability in
recommendations. In response, an increasing body of research (Wang et al., 2019a, 2020)
suggests integrating knowledge graphs into recommendation systems through graph
neural networks to leverage their extensive semantic data and better capture user
preferences. Since graph neural networks (GNNs) (Li et al., 2023) propagate high-order
information by layer-wise aggregation from neighboring nodes, this multi-hop
information significantly enhances the representation of users. The aggregation
mechanism utilized by GNNs successfully overcomes the shortcomings of both
embedding-based and path-based approaches, leading to the development of more
resilient recommender systems. For instance, Ji et al. (2023) proposed a knowledge
augmentation model, KMTE, which enhances the efficacy of conversational
recommendation systems by integrating time embedding and domain-specific knowledge.

Despite their advantages, GNN-based methods have a significant limitation: they are
unable to explicitly capture user intent information, which is crucial in the selection
process. For instance, as illustrated in Fig. 1, the traditional GNN approach selects items
based solely on user preferences, as seen in the left part of Fig. 1. A user who favors
alternating current transformers is more likely to choose alternating current transformers
from a range of transformer-related equipment, such as transformer distribution boxes
and transformer clamps. However, this approach overlooks the influence of user intent. In
fact, users’ preference favor the fine-grained embedding of users, while users intent likes
the coarse-grained embedding of users. Therefore, the selection behavior that takes intent
into account aligns more closely with the user’s decision-making process, as depicted in the
right part of Fig. 1. In this scenario, the user first intends to purchase electrical transformer
equipment and subsequently selects an alternating current transformer based on their
preference for that category. User intent can refine the item selection process and provide
additional context for recommendations. Additionally, the drawbacks of conventional
GNN approaches in capturing user intent arise from their dependence on aggregating
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Figure 1 An illustration demonstrating how intent influences a user’s behavior.
Full-size k&l DOI: 10.7717/peerj-cs.3023/fig-1

items that users have interacted with or related high-level items to construct user
representations, which mainly emphasize user preferences. This focus complicates the
effective exploration of users’ intention data.

To address the aforementioned challenge, we proposes an intent-aware knowledge
graph-based model for electrical material recommendation, named IKG-EMR. IKG-EMR
models user preferences and intent by utilizing knowledge graphs and user behavior
sequences, respectively. In this framework, a graph neural network (GNN) is designed to
produce user intent and item embeddings from the tripartite graph of “User-Item-Topic”
(the tripartite graph depicts the complex relationships among users, items and topics).
Meanwhile, a multi-head Transformer generates user preference embeddings, and a
multi-head attention network (Transformer) extracts preferences from user behavior
sequences. Ultimately, an adaptive fusion mechanism with an attention network is
developed to create a comprehensive user representation by combining user preference
and intent features. Additionally, it is important to highlight that the real-life electric
dataset applied in this article holds significant potential for enhancing services in electrical
power material management, aiding in customer attraction and retention, and ultimately
increasing the conversion rates from casual visitors to buyers. In summary, the
contributions of this article can be summarized in three key points:

» We construct tripartite graph of “User-Item-Topic” and behavioral sequence, and design
a graph neural network and a multi-head Transformer to model user intent embedding
and user preference embedding. This approach enables us to obtain comprehensive and
high-quality representations of users, thereby enhancing the accuracy of
recommendations.

* We design an adaptive fusion with attention network which can effectively incorporate
correlation embedding information of users’ intent and preference, rather than mere
combinations. Unlike traditional attention mechanisms that use scalar weights, our
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approach offers enhanced representational capabilities to manage the significance of
these two types of user embedding vectors more effectively.

 Extensive experiments on the real-world electrical power dataset demonstrate that
IKG-EMR evidently outperforms the state-of-art methods, and further results also
validate the effectiveness of IKG-EMR in modeling the intent of users.

RELATED WORK

The relevant studies on the issue of electrical power material recommendation are
summarized from three aspects: session-based recommendations, GNN-based
recommendations, and intent-aware recommendations.

Session-based recommendations

Session-based recommendation focus on predicting the next item for a user based on their
past interactions, such as a series of purchases or clicks (Xu et al., 2019). Unlike traditional
user-item recommendation frameworks, SR emphasizes sequential patterns and utilizes a
limited set of user interactions within a brief timeframe, referred to as a session. Early
research (Shani et al., 2005; Rendle, Freudenthaler ¢ Schmidt-Thieme, 2010) commonly
employed Markov decision processes (MDPs) to forecast a user’s subsequent actions based
on their prior behaviors. For instance, Rendle, Freudenthaler & Schmidt-Thieme (2010)
introduced a model that captures the sequential nature of consecutive clicks, improving the
accuracy of predictions for each sequence. Nonetheless, a significant limitation of Markov
chain-based models is their assumption that past elements are independent, which can
hinder prediction accuracy.

In recent years, a considerable amount of research (Quadrana et al., 2017; Zhao et al.,
2020) has focused on harnessing deep learning techniques, particularly through the
development of various recurrent neural networks (RNNs) and attention-based models for
session-based recommendations, which have shown promising results. For instance,
Quadrana et al. (2017) proposed an innovative approach to personalize RNN models by
transferring information across sessions and introduced a hierarchical RNN model that
refines and propagates the latent hidden states of RNNs throughout user sessions.
Additionally, Li et al. (2017) employed the embedding from the last-click to represent the
user’s current interests and built an attention model on this foundation to effectively
capture the user’s short-term intent. Recently, there has been an increasing interest in
graph neural networks (GNNs), which effectively merge node information with
topological structures, positioning themselves as an innovative approach within the field of
recommender systems (Wei et al., 2022; Zhang et al., 2022). Several studies (Wu et al.,
2019; Zhang et al., 2020; Zhu et al., 2023) have adapted GNNs for session-based
recommendation tasks, improving performance by modeling each session as a graph. For
instance, the SR-GNN model (Wu et al., 2019) employs gated graph neural networks
(GGNN) to understand the intricate relationships between item transitions in
session-based recommendations. Nonetheless, numerous methods struggle to effectively
differentiate the impacts of various historical sessions on the current session. To tackle this
problem, Zhang et al. (2020) proposed a personalized graph neural network that
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incorporates an attention mechanism to better represent how past sessions influence the
current one. Despite these advancements, the GNN-based recommendation methods
discussed often lack interpretability, making it difficult to assure users of the reliability of
the recommended outcomes.

GNN-based recommendations

In recent years, there has been a rapid rise in the exploration of various GNN variants to
tackle a wide range of challenges in graph-related tasks like graph embedding, node
classification, and link prediction (Raza et al., 2024). These studies have demonstrated
significant potential in handling complex graph data (Gao et al., 2021; Wu et al., 2020; Ma
et al., 2022; Luo et al., 2022). Leveraging the ability of GNNs to process graph-structured
data and extract structural information, a mass of GNN-based recommender systems has
emerged to address diverse challenges across different recommendation scenarios (Wang
et al., 2021b, 2021a). Motivated by the achievements of collaborative filtering (CF) models
that utilize neural networks, researchers have delved into graph-based CF techniques
(Berg, Kipf & Welling, 2018; Wang et al., 2019d; Hu et al., 2021). For instance, models like
graph convolutional matrix completion (GCMC) (Berg, Kipf & Welling, 2018) and neural
graph collaborative filtering (NGCF) (Wang et al., 2019d) apply graph convolution and
embedding propagation mechanisms to enhance the representation of users and items.
However, these methods often overlook latent relations between users and items.
Addressing this limitation, Hu et al. (2021) propose a neural graph personalized ranking
(NGPR) model to explicitly capture these connections by utilizing the user-item
interaction graph along with nonlinear interaction modeling. Although these collaborative
filtering methods for graph-structured data provide considerable advantages, they may not
fully consider the dynamic evolution of user preferences and consumption motivations,
particularly in sequential recommendation scenarios. Models like HOP-Rec (Yang et al,
2018) strive to enrich user-item interactions through random walks. The inherent
structure of graphs naturally aligns with many data types in recommender systems, such as
user-item interactions represented as bipartite graphs and user clickstreams modeled as
session graphs (Ding et al., 2021).

To tackle the challenges mentioned above, several existing approaches (Wu et al., 2019;
Qiu et al., 2019; Xu et al., 2019) have constructed sequential graphs that are generated by
the item sequences within the same session. They then employed GNNs to capture the
intricate transitions among items, which were deemed complex and challenging for
traditional sequential methods (Ding et al., 2021). GGNN (Li et al., 2015), as a modification
of GNNs, integrated GRUs to comprehensively capture internode relations by iteratively
integrating influences from adjacent nodes within the graph. Subsequently, SR-GNN (Wu
et al., 2019) employed GGNN to represent intricate item transition dynamics in
session-based recommendation contexts. However, many of these approaches did not
adequately distinguish the effects of different historical sessions on the current session. To
tackle this challenge, a personalized graph neural network with an attention mechanism
(A-PGNN) (Zhang et al., 2020) was introduced to address this issue by modeling the
influence of historical sessions on the current session. Nevertheless, prior models typically
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focused on modeling item-to-item relations within each session, neglecting the
opportunity to globally characterize relations across different sessions for enhanced
representations of items. To overcome this limitation, Wang et al. (2021b) introduced the
LP-MRGNN model, which successfully constructed and modeled a multi-relational item
graph to extract valuable insights from various sessions and diverse types of user behavior.
Motivated by the diverse GNN-based models mentioned above, this study presents a new
GNN-based model designed to learn item representations from co-occurrence graphs
based on four attributes for session-based recommendations. As far as we know, no
previous research has aimed to concurrently model item connections within session
graphs alongside item-item transitions in multi-view attribute co-occurrence graphs.

Intent-aware recommendations
Recently, researchers have strived to embed intent-awareness into recommendation
systems in a more direct and unambiguous manner, as noted in the work by Jannach ¢
Zanker (2024). Notably, the results from practical industrial applications underscore the
substantial potential of customizing recommendations based on the anticipated intentions
of users. For example, in the context of session-based recommendation, the MCPRN
model, as presented by Wang et al. (2019b), introduced mixture-channel purpose routing
networks. These networks were designed to adaptively learn the diverse purchase
intentions of users for each item across different channels (sub-sequences). Meanwhile, Liu
et al. (2020) put forward a multi-intent translation graph neural network, which aimed to
uncover multiple user intents by taking into account the correlations among these intents.
Additionally, Pan et al. (2020) devised an intent-guided neighbor detector in their ICM-SR
model, which was used to retrieve the appropriate neighbor sessions for the representation
of neighbors. Distinct from session-based recommendation approaches, another stream of
research efforts is centered on modeling the sequential changes in users’ interaction
behaviors over a more extended time period. Ma et al. (2020) proposed the DSSRec model,
which featured a seq2seq training strategy. This strategy employed multiple future
interactions as a form of supervision and incorporated an intent variable derived from a
user’s historical and future behavior sequences. The intent variable served to capture the
mutual information between an individual user’s past and future behavior sequences. It’s
worth noting that two users with similar intents might have representations that are quite
distant in the representation space. In contrast to this approach, in our work, the intent
variable is learned from all users’ sequences and is utilized to maximize the mutual
information among different users who have similar learned intents. Moreover, ASLI
(Tanjim et al., 2020) utilized a temporal convolutional network along with side
information (such as user action types like click, add-to-favorite, etc.,) to capture user
intent. Subsequently, the learned intents were employed to guide the session
recommendation (SR) model in predicting the next item.

Unlike the aforementioned studies, our proposed IKG-EMR models user embedding
from both two perspectives by utilizing knowledge graphs and user behavior sequences,
respectively, i.e., user preference and user intent. In addition, IKG-EMR designs a GNN to
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Table 1 Notations and corresponding descriptions.

Notations Description

U V,OE User set, item set, node set, edge set

S Behavior sequence of user u,
G=(0,E) Tripartite graph of “User-Item-Topic”
K Number of topics

Xis Xy Initial embeddings of item i and user u
N, Number of items connected to user u
rl Intent embedding of user u

rf Preference embedding of user u

Tus Ti Final embedding of user u and item i
Vi) The probability of user u purchasing item i
L(y) Loss function of IKG-EMR

produce user intent and item embeddings from the tripartite graph of “User-Item-Topic”,
which can alleviate the problem of sparsity faced by recommendation systems.

PRELIMINARY

In this section, we begin by introducing some fundamental definitions and then present
the problem formulation. Additionally, Table 1 presents key notations used in this article
and their corresponding meanings.

Definition 1. (Behavioral sequence). The behavioral sequence represents a user’s click
stream, detailing the order of items they have interacted with over time. This sequence
captures the items a user has previously purchased. We denote the behavioral sequence of
user u as S".

Let Uand V represent the set of users and items, respectively. For each user u € U, their
behavioral sequence S* = [v, v, - - -, vy| with the ascending order of time can be gotten,
where N = |$¥] is the number of purchases of user u, v; denotes the i-th item.

Definition 2. (Item topic generalization). For any item i, its title can be generalized
through Latent Dirichlet Allocation (LDA) (Blei, Ng ¢ Jordan, 2003) to obtain a probability
distribution over topics, denoted as 0; = {0}, k=1,2,... K, ka:l) Oix = 1, where k is
the index of the topic and K is the number of topics after item generalization. The topic with
the highest probability distribution value in the 0; set is selected as the final topic of the item,
as given in Eq. (1).

¢(i) : p(i) = ti, 1 <k <K, ey
where t; represents the generalized topic of item i,,. Finally, the set of all topics

T ={t,ta,...,tx} is obtained, where ty, = {i|Vp(i) — t}.

Definition 3. (Tripartite graph). Let G = (O, E) be the tripartite graph of “User-Item-
Topic” as constructed in Fig. 2, where O and E are the sets of nodes and edges in the graph. If
the “user-item” purchase matrix Yp is not empty and there exists a mapping relationship in
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Figure 2 An example of tripartite graph of “User-Item-Topic” and message propagation. Full-size Ka] DOT: 10.7717/peerj-cs.3023/fig-2

the topic set T for “item-topic”, edges will be formed between corresponding users and items,
as well as between topics and items. The nodes in this graph can be categorized into three
classes: the user set U = {uy, uy, ..., un}, the item set I = {vy,v,..., vy}, and the topic
set T={t;,tr, ..., tx}.

Figure 2 illustrates an example of tripartite graph of “User-Item-Topic”. Specifically,
Fig. 2A is the tripartite graph of “User-Item-Topic” containing five users, five items and
three topics. Figures 2B and 2C show the progress of message propagation for us and u; in
this tripartite graph, respectively.

Definition 4. (Electrical power material recommendation). For a specific user u and their
behavioral sequence S*, the objective of the electrical power material recommendation task is
to forecast which electrical material v; this user is most inclined to buy during their next visit.

METHODOLOGY

In this section, we outline the IKG-EMR model for recommending electrical materials. We
begin by giving an overview of the framework, followed by a detailed explanation of its key
components. We also introduce the training process and the loss function utilized in the
model.

Overview

To implement the task of electrical power material recommendation, this article proposes a
intent-aware knowledge graph-based mode, named IKG-EMR. As shown in Fig. 3, the
input of IKG-EMR contain the tripartite graph of “User-Item-Topic” and the behavior
sequence of user. IKG-EMR mainly consists of four modules: user intent embedding and
item embedding, user preference embedding, adaptive fusion network, and making
recommendation. Specifically, we first use a graph neural network to generate user intent
embedding and item embedding from the tripartite graph of “User-Item-Topic”, and a
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multi-head Transformer to generate user preference embedding, respectively (“Generating

User and Item Embedding”). Then, a cohesive representation of users can be achieved by

implementing an adaptive gated fusion method, which integrates the intent and preference

embeddings of the users (see “Adaptive Fusion Approach”). For recommendation

purposes, IKG-EMR computes the purchase probabilities for each item based on the

representations of the specified target user and items through interaction modeling. The

items with the highest top-k purchase probabilities will constitute the user’s

recommendation list (refer to “Making recommendation and model training”).

Generating user and item embedding
In this subsection, we detail how to model user’s embedding from tripartite graph of

“User-Item-Topic” and behavioral sequence of users, respectively.
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Generating user intent embedding
We adopt a GNN information propagation architecture to obtain collaborative filtering
signals along the graph structure, thus obtaining representation vectors for both users and
items. In practice, items with interaction history often reflect user preferences, while a
group of users with interaction records on the same item can be viewed as item features,
reflecting similarities between items. Therefore, for users with high-order edge
relationships in the tripartite graph of “User-Item-Topic”, we conduct embedded
propagative learning separately, including information propagation and information
aggregation.

Message propagation. In a generic single-layer GNN network (Hu et al., 2021), for any
pair of “user-item” (u, i) with an edge connection in a traditional bipartite graph, the
information from item i to user u can be formulated by Eq. (2).

My :f(xia Xu, Cu,i)> (2)

where, f(-) is the encoding function for information, x; and x, represent the representation
vectors for item 7 and user u, respectively. Specifically, the title of item i is input into a
pre-trained bidirectional encoder representations from transformers (BERT) model to
obtain vector x;; x,, is obtained through One-Hot encoding of the identifier (ID) for user u.
cu; is the attenuation factor used to control the propagation of any edge (u, i), and is
represented by the regularization variable ﬁ The function f(-) can be implemented by
Eq. (3).

f(xi %, cui) = L [ Wix;; Wox], (3)
INu|

where N, represents the number of items connected to user u, o« = (x! Wx,) is designed

to measure the information dependency between user u and item i (similar to an attention

mechanism), and W, W,, and W3 are trainable weight matrices in the GNN network used

to extract useful information in information propagation. “;” denotes vector concatenation.

Ultimately, solving Eq. (3) is equivalent to the form given in Eq. (4).

1
f(xi,xu; Cu,i) = W [(X,T W3Xu)W1xi; szi]- (4)
u

Similarly, for any pair (u, i) with an edge connection in the tripartite graph of “User-
Item-Topic”, the propagation from item 7 to user u is composed of two paths: items directly
associated with user u, and a set of items belonging to the same latent semantic topic as
item i{z|z € 0(i), z # i} that can be represented as in Eq. (5).

My :f(xiaxua Cu,i) + Z f(xzaxm Cu,z)
’ (l)| z€0(i)z#i
1 ©

([(xiTW3xu) Wixi; Waxi] + T—) Z [(x,-TW3xu)W1xi; szi]>7
T |zeH(i),Z7éi

1
[N

where z represents all the items that belong to the same topic as item i, |0(i)| denotes the
number of items included in the topic to which item i belongs, and W;, W, and W3 are
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trainable weight matrices in the GNN network. For example, in Fig. 2B, during the
propagation process to obtain the representation vector for user 5, item 3 is a item
purchased by user 5. Since it can be inferred from Eq. (1) that items 4 and 3 belong to the
same topic t, (0(3) — t,), user 5 can receive information about the similar topic item 4 of
the purchased item 3 in a single information propagation.

To make the computations in each batch more efficient at this stage, while propagating
over the set of other items {z € 0(i), z # i} belonging to the same latent semantic topic #
as item 7, we perform random sampling on the item set {z}. Let L be the maximum number
of items sampled from the set that belong to the same topic as item i. If |[{z}| <L, a
random sample is taken within the set {z}, and then replicated until |{z}| = L.

Message aggregation. Building upon the information propagation, we further aggregate
the information propagated from all neighboring nodes of user u (including neighbors in
the traditional bipartite graph as well as neighbors obtained through the three-part graph
G) to obtain the representation vector for user u. Specifically, the aggregation function can
be defined as Eq. (6).

hu =0 Z My—i |, (6)
iEN,
where o(+) is the activation function, and in this case, we choose ReLU(-) = max(0, -) as
the activation function.

To obtain the final representation vector for user u, we transform h, by using Eq. (7).

vl =a(W,h, +b,), (7)

where W, and b, represent trainable weight matrices and bias vectors, respectively. r!
represents the embedding of user u intent learned through embedding propagation in the
GNN. Here, we also use ReLU as the activation function.

Generating item embedding

Similar to the computation embedding of the user u intent 7! as shown in “Generating
User Intent Embedding”, we can also obtain the out of GNN for item i denoted as h;, and
the representation vector for item i by aggregating information from users connected to
item i, denoted as r;. In conclusion, the three-part graph representation learning based on
graph neural networks can explicitly utilize connection information to associate user and
item representations, and use latent semantic topics as bridges to aggregate more user and
item neighbor nodes through the aggregation layer to obtain richer information, thereby
obtaining high-quality user and item representation vectors.

The above details the information propagation and aggregation process of a single-layer
GNN, where the final representation vector for a item depends solely on its direct
neighbors. To capture higher-order relationships between users and items, we extend the
GNN from a single layer to multiple layers to propagate embedding information more
extensively and deeply. As shown in Fig. 1, the second-order user representation vector can
be obtained as follows: firstly, use Eqs. (6) and (7) to aggregate information from
neighboring items and topics to obtain the first-order item representation vector and topic
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representation vector. Then, once again, aggregate information from first-order items and
topics based on neighboring users to obtain the second-order user representation vector.
Similarly, as shown in Fig. 1C, second-order item representation vectors can also be
obtained.

Generating user preference embedding
To better capture the evolving preference of user, a multi-head Transformer network is
employed for user preference embedding. This network enables the extraction of temporal
features from a user’s past purchases, enhancing the representation of user features.

For a user u with a behavioral sequence $* = [vy, vy, - - -, vy, we encode the elements in
the sequence into embeddings {v;, vz, --,vn} by using a pre-trained BERT model as
given in Eq. (8).

E, = BERT(S,) = [ex,;€x, - - - s €x,]- (8)

To incorporate the sequential details of the purchased items, we utilize positional
embedding operation (Vaswani et al., 2017) to update the item embeddings. The positional
embedding operation utilizes sine and cosine functions to improve the model’s ability to
distinguish between positions in the sequence. This can be defined in Egs. (9) and (10).

. i
PE; o) = sin <10 000%) , ©)
R d

PE(iok11) = C05<

l) , (10)
10,0004

where i denotes the position of an item in a sequence, d denotes the dimension of the item,
2k and 2k + 1 are the even-numbered and the odd-numbered dimensions, respectively.

After the positional embedding operation, we derive the sequence position embedding
representation, denoted as P, = { php, .., pﬁ} The time series with position
information is then obtained by combining P, with E,, denoted as
Z,={e, +p),....e, +pr}.

Next, we utilize the transformer encoder (Vaswani et al., 2017) to identify the
underlying semantic patterns within the input data. This transformer encoder employs a
multi-head self-attention mechanism, featuring several heads, where each head uses
dot-product calculations to assess the relationships among the items as given in Eq. (11).
QK+t

SelfAttn(Q, K, V) = softmax <—> V, (11)
@) v
where Q = ZuW,Q, K= ZuWiK, and V = ZuWiV denote the query, key, and value,
respectively, while /dj serves as a scaling factor to prevent excessively large dot products.
For each head head;, the query, key, and value are linearly projected h times, and the results

are then concatenated as given in Eqgs. (12) and (13).

head; = SelfAttn(Q, K, V) = SelfAttn(Z, W2, Z,WK Z, WY, (12)
MultiHead(Q, K, V) = [head,; heads; - - - ; head,| W©, (13)
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where WS, WK, WY and W are learnable parameters, ;” denotes the concatenation of
matrices, and h is the number of heads.

Finally, we apply a feed-forward layer, referred to as FeedForward(-), which utilizes the
ReLU activation function to transform the embeddings and produce the representation of
user preferences by Eq. (14).

r’ = W,ReLU(W MultiHead(Q, K, V) + b;) + b, (14)

where rfj is the embedding of user preference, W, W,,, b and b,, are learnable parameters.

Adaptive fusion approach

Both short-term and long-term components have strengths and weaknesses. It is necessary
to accommodate these two components. Instead of using a naive way to combine them,

eg,r, = rlu + rﬁ , we devise an adaptive fusion network to evaluate the relevance of user
intent and preferences, and aggregate information based on that assessment. Initially, we
embed the identifiers (ID) of user u into a representation vector, which serves as the user’s
profile vector r9. Given the embedding vectors of user intent r, user preference r’, and
user’s profile vector r} as inputs, the gate vector F,, is designed to regulate the influence of
long-term and short-term preferences, as defined in Eq. (15).

F, = sigmoid(WqrQ + Wir! + Wpr? +b,,), (15)

where Wy, Wi, Wi, b, are projection parameters.
Finally, the output of preference vector r, of user u can be calculated by Eq. (16).

ru=(1-F,)or,+F,0r, (16)

where ® denotes element-wise multiplication.

Making recommendation and model training

The “user-item” interaction modeling layer aims to model the preference level between
users and items. Specifically, in the recommendation model framework of IKG-EMR, the
interaction score between user u’s representation vector r, and item i’s representation
vector 7; to predict user s interaction score with item i as defined in Eq. (18).

Zyi = E(rz;r,-), (17)

where 3(-) is the activation function. Here, we also choose ReLU as the activation
function. The final output of the “user-item” interaction modeling layer is the interaction
score of user u with item i, denoted as z,;.

Given the interaction score z,; between user u and item i, we use the sigmoid function to
obtain the model’s output (the probability of user u purchasing item i), as given in Eq. (18).

Y(u,i) = sigmoid(zy;), (18)

1
JEON

where sigmoid(-) =
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Table 2 Statistics of the electric power materials dataset.

Dataset #Users #Items #Interactions
Electric 80 2,195 16,598
Note:

“#” represents the quantity of someone object.

During the model training phase, in terms of recommending items to users, the positive
labels are the set of items i that user u actually purchased (interaction exists), denoted as
Y. The negative labels are formed by log-uniform sampling from the item set I excluding
the positive labels (interaction does not exist), denoted as Y. We use binary cross-entropy
loss, widely used in recommendation systems, as the loss function for IKM-EMR, as
defined in Eq. (19).

LO)== Y Gusloglu) + (1~ yualogll = Jus) + O, (19)
(u,i)eY+UY~

where © denotes all the learnable parameters in this model, ||©|> represents

L2-regularizer, and / is the regularization coefficient. y, ; represents the probability

distribution of user u actually purchasing item i. Specifically, if (u,i) € YT, then y,; = 1;

otherwise, y,; = 0.

We utilize the Adam optimizer (Zhu et al., 2023) to minimize the loss function £(¥) to
optimize the parameters in the IKM-EMR model. Compared to existing training schemes,
this approach efficiently extracts valuable insights from negative samples, thereby lowering
the computational expenses associated with model training.

EXPERIMENTS

In this section, we start by detailing the experimental setup in “Experimental Setup”, which
covers the experimental datasets, baseline methods, evaluation metrics, and
implementation specifics. Following that, to demonstrate the efficacy of the proposed
IKM-EMR, we perform comprehensive comparative experiments against leading baseline
methods in “Overall Performance Comparison”. Finally, we carry out ablation studies and
a hyper-parameter analysis on our model to examine the influence of various components
in “Ablation Study”. Finally, the impact of hyper-parameters in IKM-EMR on its overall
performance is further analyzed in “Hyper-Parameter Analysis”.

Experimental setup

Datasets

We evaluate the proposed model using a real-world electric power materials dataset
provided by Jiangsu Electric Power Materials (http://www.js.sgcc.com.cn), one of China’s
largest provincial power grid companies. The time interval of this dataset spans from
March 18,2021, to May 9, 2023. The statistics of the preprocessed dataset is summarized in
Table 2, and the dataset is available at https://github.com/zgx881205/electric-dataset.
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Figure 4 Long-tail distributions of entities in knowledge graph of electric power materials.
Full-size Ka] DOTI: 10.7717/peer;j-cs.3023/fig-4

In practice, knowledge graph of real-world electric power materials dataset faces
sparsity and noise, including long-tail entity distributions and irrelevant item-entity links,
which limit KGR effectiveness. Using this real-world electrical dataset as an illustration, as
depicted in Fig. 4, most entities in knowledge graphs display a long-tail distribution.
Accurately modeling semantic transitions in the knowledge graph using Trans-based
method necessitates a sufficient number of triplets associated with each entity, posing

challenges for precisely capturing relationships between items.

Baselines

We evaluate the proposed IKG-EMR model against two traditional recommendation
approaches, namely User-KNN and SVD, two earlier deep learning techniques, i.e., CDL
and DeepFM, and also three advanced deep neural graph-based recommendation methods
(GCMC, SR-GNN, and KGCN).

o User-KNN (Resnick et al., 1994). User-KNN utilizes nearest neighbor algorithms to
recommend items to users by identifying similar users in the system.

e SVD (Koren, 2008). SVD employs matrix factorization to decompose the user-item
matrix and capture latent factors representing user preferences and item characteristics.

o CDL (Wang, Wang & Yeung, 2015). CDL integrates deep representation learning for
content data with collaborative filtering applied to the feedback matrix, such as rating.
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e DeepFM (Guo et al., 2017). DeepFM integrates matrix factorization techniques with
deep neural networks to enhance the recommendation process.

o KGAT (Wang et al., 2019c). Knowledge graph attention network (KGAT) is a neural
architecture that dynamically aggregates node features using attention mechanisms to
learn adaptive representations of graph-structured data.

o CKAN (Wang et al., 2020). CKAN merges collaborative filtering with KG by proposing a
heterogeneous propagation method that encodes both approaches.

o GCMC (Berg, Kipf & Welling, 2018). GCMC utilizes gated graph neural networks
(GGNN) to capture transition relationships of items for session-based
recommendations.

e SR-GNN (Wu et al., 2019). SR-GNN employs GGNN to effectively model the intricate
transition relationships between items for session-based recommendations.

* KGCN (Wang et al., 2019a). KGCN integrates knowledge graphs into recommendation
systems using graph convolutional networks to improve accuracy by leveraging item
relationships and user preferences encoded in the knowledge graph.

Evaluation metrics

In order to assess the performance of IKG-EMR and baseline methods, we utilize
evaluation metric Recall@k and Normalized Discounted Cumulative Gain (NDCG@k)
that are widely used in the related work (Zhu et al., 2021; Liu et al., 2021).

Recall@k serves as a widely recognized metric for gauging predictive accuracy in
recommendation systems. It measures the proportion of accurately recommended
items found within the top-k recommendations across all testing scenarios, as defined
in Eq. (20).

Recall@k = Z |G|Q|R |’ (20)
ME T

where Rk represents the top-k list of recommendations for each user u, while G, indicates
the item purchased by user u in their current session. The test set is denoted by .7, and g,
specifies the item purchased by user u in their current session.

Coverage@k refers to the proportion of items in the recommendation results relative to
the entire item catalog. A higher proportion indicates that the recommender system covers
a broader and more diverse range of products, as defined in Eq. (21).

K|
Coverage@k = |0__| Z |R (21)
u,ics

NDCG®k is a widely used ranking metric in session-based recommendation systems,
assessing the model’s effectiveness in ordering recommended items. Emphasizing the
importance of correct item rankings, NDCG@k calculates a score by summing the gains
from position j = 1 to j = k in the ranking outcomes. This metric reflects the model’s
ability to prioritize relevant items within the top-k recommendations provided to users, as
defined in Eq. (22).
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) ) k_oRel(R,()eGu) _ | (22)
NDCG@k = — T .
“9.‘ uc7 j=1 logglﬂ)

where Rel(-) serves as an indicator function that denotes the reward assigned to the item at
position j. Specifically, Rel(-) is set to 1, if the item at position j results in a purchase,
otherwise Rel(-) is set to 0. The optimal outcome for NDCG@k is 1, signifying perfect
alignment between the ground truth ranking and the recommendation list where the
desired item is ranked first.

Implementation details

We conducted experiments for all comparison methods using their optimal parameter
configurations. Specifically, cosine similarity was chosen as the similarity metric, with 80
nearest neighbors in Item-KNN and CDL. In DeepFM, the latent variable dimension was
set to 10, while all hidden unit sizes were fixed at 256 with dropout probabilities and
learning rates at 0.2 and 0.002 in SR-GNN, respectively. The implementation details
involve using Surprise (http://surpriselib.com/) for Item-KNN and PMF, while CDL,
DeepFM, GCMC, and SR-GNN were implemented using TensorFlow (https://www.
tensorflow.org/).

In the IKG-EMR approach, Python’s Gensim (https://pypi.org/project/gensim/) library
is utilized for topic generalization. The item titles are fed into an LDA model, generating
matrices of “word-topic” and “item-topic” probability distributions, along with key
high-frequency words associated with each topic. The maximum number of randomly
sampled latent semantic topics, denoted as L, is set to 5. Despite the strong representation
learning abilities of GNNs, precautions against overfitting are necessary. Random
sampling is applied to the latent semantic topic set 6(i), akin to the “item-topic” edge
dropout strategy outlined in previous studies. The GNN architecture consists of 2 layers,
with a batch size of 64 and a learning rate of 0.001. Notably, leveraging the pre-trained
BERT model for unified embedding vectors necessitates setting the default embedding
dimension d to 768 for the four attribute types. In the multi-head self-attention
mechanism, the number of heads h and dimension of dj are set 8 and 96, respectively. We
use 10-fold cross-validation to provide robust results for different methods. We randomly
split the dataset into two parts, respectively, 10% of which as the training set and the rest
set as the test set (the class size distribution holds). The IKG-EMR and other neural-based
models are designed and trained on a Windows server equipped with a 3.5 GHz Intel
19-11900k CPU and an 24 GB Nvidia GeForce RTX 3090 Ti GPU, using the PyTorch
(https://pytorch.org/) framework.

Overall performance comparison

Table 3 presents a comprehensive comparison of the overall performance between our
IKG-EMR approach and the baseline methods. The table is divided into three sections: the
first part includes traditional methods, i.e., User-KNN and SVD; the second part comprises
neural-based collaborative filtering and matrix factorization methods, i.e., CDL and
DeepFM; and the third part showcases GNN-based models, i.e., GCMC, SR-GNN and
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Table 3 Performance comparison of IKG-EMR and baseline methods on the electric dataset.

Methods Top-5

Top-10 Top-20

Recall@5 Coverage@5 NDCG@5 Recall@l0 Coverage@l0 NDCG@10 Recall@20 Coverage@20 NDCG@20
User-KNN  0.023 0.041 0.027 0.094 0.102 0.068 0.122 0.218 0.079
SVD 0.029 0.058 0.025 0.112 0.119 0.075 0.135 0.234 0.086
CDL 0.044 0.067 0.056 0.129 0.135 0.085 0.154 0.297 0.119
DeepFM 0.051 0.069 0.059 0.116 0.128 0.087 0.161 0.284 0.126
KGAT 0.065 0.096 0.061 0.135 0.156 0.096 0.179 0.386 0.158
CKAN 0.070 0.093 0.067 0.142 0.168 0.114 0.203 0.397 0.177
GCMC 0.065 0.089 0.061 0.135 0.174 0.090 0.179 0.402 0.158
SR-GNN 0.070 0.108 0.067 0.142 0.169 0.114 0.203 0.428 0.177
KGCN 0.072 0.112 0.061 0.148 0.192 0.125 0.212 0.413 0.189
IKG-EMR  0.083 0.124 0.068 0.162 0.242 0.134 0.223 0.489 0.201

Note:

The highest value for each metric are highlighted in bold.

KGCN. Overall, IKG-EMR consistently outperforms all baselines across the three datasets,
as indicated by all evaluation metrics (Recall@k, Coverage@k and NDCG@k). More
specifically, several key observations can be made:

o The neural-based collaborative filtering (CF) and matrix factorization (MF) techniques,

such as CDL and DeepFM, demonstrate a marked improvement in performance
compared to earlier traditional methods like User-KNN and SVD. One potential reason
for this is that neural-based approaches are capable of learning more effective
representations of users and items than their traditional counterparts.

GNN-based methods, such as SR-GNN, which treats behavior sequences as a directed
graph-structured data, outperform GAE, which utilizes a bipartite interaction graph
(e.g., GCMC), as well as the neural-based CF and MF techniques, e.g., CDL and DeepFM.
This suggests that the design of gated GNNss is particularly well-suited for session-based
recommendation scenarios. Consequently, we also employ a multi-head Transformer to
model user preferences derived from behavioral sequences.

IKG-EMR consistently outperforms leading personalized GNNs, including SR-GNN, in
the context of session-based recommendation tasks, such as SR-GNN, as well as
KG-based recommendation systems. This enhancement can be attributed to two main
factors: (1) leveraging the strengths of GNNs, IKG-EMR is capable of extracting
high-quality representations of user intent; (2) ; and (3) the adaptive fusion mechanism
combined with an attention network in IKG-EMR effectively integrates the correlational
embedding information of users’ intent and preferences.

IKG-EMR consistently outperforms leading personalized GNNs, including SR-GNN, in
the context of session-based recommendation tasks, such as SR-GNN, as well as
KG-based recommendation systems. This enhancement can be attributed to three main
factors: (1) leveraging the strengths of GNNs, IKG-EMR is capable of extracting
high-quality representations of user intent; (2) IKG-EMR utilizes a Transformer-based
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Table 4 Performance comparison of IKG-EMR and three ablation models on the electric dataset.

Methods Top-5

Top-10 Top-20

Recall@5 Coverage@5 NDCG@5 Recall@1l0 Coverage@10 NDCG@10 Recall@20 Coverage@20 NDCG@20

IKG-EMR (NoP) 0.056 0.087 0.045 0.128 0.187 0.105 0.172 0.399 0.151

IKG-EMR (Nol)  0.062 0.091 0.052 0.139 0.195 0.118 0.192 0.412 0.168

IKG-EMR (NoA) 0.071 0.104 0.054 0.154 0.215 0.114 0.213 0.454 0.184

IKG-EMR 0.083 0.124 0.068 0.162 0.242 0.134 0.223 0.489 0.201
Note:

The highest value for each metric are highlighted in bold.

architecture to capture sequential dependencies in user behavior sequences; and (3) the
adaptive fusion mechanism combined with an attention network in IKG-EMR
effectively integrates the correlational embedding information of users’ intent and
preferences.

Ablation study

Here, we conduct ablation studies to assess the effectiveness of the key components within
IKG-EMR by creating three variants of the model: IKG-EMR (NoP), IKG-EMR (Nol) and
IKG-EMR (NoA). Specifically, IKG-EMR (NoP) excludes the user preference encoder
module, meaning it does not take into account the informativeness of user preferences
while learning their representations. IKG-EMR (Nol) omits the user intent encoder from
the User Intent and Item Encoder module, thereby disregarding the embedding of user
intent in the representation learning process. Finally, IKG-EMR (NoA) removes the
adaptive fusion mechanism with the attention network, resulting in a simple combination
of the embedding vectors of user intent and preferences without recognizing the differing
significance of these two types of embeddings. The results of these ablation studies are
listed in Table 4.

First, we compare IKG-EMR with its three variants: IKG-EMR (NoP), IKG-EMR (Nol),
and IKG-EMR (NoA). As observed, IKG-EMR exhibits significantly better performance
than these three variants, indicating that the user intent encoder, user preference encoder,
and the adaptive fusion mechanism with the attention network are critical for the task of
electrical power recommendation.

Second, the notable performance decline of IKG-EMR (NoP) demonstrates that
modeling user preferences is the most important factor in electrical power
recommendation. This is primarily because incorporating user preferences serves as a
fine-grained encoder, enabling the recommendation of more items that users actually like,
in contrast to the coarse-grained approach provided by the user intent encoder.

Hyper-parameter analysis

Here, Recall@20, Coverage@20 and NDCG@20 are selected as evaluation metrics, and
then we further examine how key parameters, including the number of GNN layers and
the message dropout rate, affect IKG-EMR.
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Effect of number of GNN layers

To demonstrate the specific effects of GNNs in IKG-EMR, we explore how varying the
number of GNN layers (d,) used for graph representation propagation impacts
performance. Figure 5 illustrates the results for GNN layer values (d,) ranging from 1 to 3.
Notably, both Recall@20 and NDCG@20 show marked improvement when the GNN
depth increases from 1 to 2. A 2-layer GNN achieves the best performance, while the
performance of the 1-layer GNN is the lowest. This discrepancy in performance is due to
the 1-layer GNN’s inability to capture higher-order relationships. Generally, deeper GNNs
are anticipated to gather more extensive information from both long-term and short-term
behavioral graphs. However, when d, exceeds 3, the node representations can become less
distinguishable, which increases noise within the model. As a result, this can impede
further improvements in recommendation performance.

Effect of dropout

To mitigate overfitting in IKG-EMR and investigate the impact of different dropout rates,
the technique of message dropout is utilized here. Figure 6 illustrates the Recall@20 and
NDCG@20 results, demonstrating how the message dropout ratio affects performance
across two datasets. As indicated, consistent with prior research (Berg, Kipf ¢» Welling,
2018), messages are independently dropped out, which enhances the robustness of the
embeddings against the variability of individual edges. It is evident that an appropriately
chosen dropout ratio allows IKG-EMR to achieve commendable results, while settings that
are too low or too high can readily result in underfitting or overfitting issues.

Effect of learning rate
To investigate how the learning rate affects the performance of IKG-EMR, we tune the
learning rate amongst [1071, 1072, 1073, 1074, 107°]. The corresponding results are
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illustrated in Fig. 7. From Fig. 7, we can clearly observe that the performance of IKG-EMR

is sensitive to the set of learning rate. The optimal options of learning rate for IKG-EMR
is 1072,

Effect of batch size

To investigate how the number of batch size affects the performance of IKG-EMR, we tune

the batch size amongst [16, 32, 64, 128, 256]. The corresponding results are illustrated in
Fig. 8. It is obvious that when batch size is set to 64, IKG-EMR can achieve the best
performance.
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Effect of transformer heads

We investigate how the number of transformer heads affects the performance of
IKG-EMR. We vary different numbers of transformer heads from 2 to 12 with a step size 2
in the experiment. The corresponding results are illustrated in Fig. 9. As can be seen, the
optimal options of the number of transformer heads for IKG-EMR is 8. As the number of
heads increases from 8 to 10, the performances descend due to over-parameterization.

CONCLUSION

This article has addressed the important topic of recommending electrical power materials
through the use of GNN. Most of the existing GNN-based recommendation methods still

Zhao et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3023 22/27


http://dx.doi.org/10.7717/peerj-cs.3023/fig-8
http://dx.doi.org/10.7717/peerj-cs.3023/fig-9
http://dx.doi.org/10.7717/peerj-cs.3023
https://peerj.com/computer-science/

PeerJ Computer Science

suffer from the shortcoming of their inability to capture users’ intent in recommendations.
To tackle this limitation, this article proposes an intent-aware knowledge graph-based
model for electrical material recommendation, named IKG-EMR. The major novelties of
the IKG-EMR lie in devising a graph neural network to generate user intent embedding
from the tripartite graph of “User-Item-Topic”, and a a multi-head attention network
(Transformer) to generate user preference embedding. Furthermore, an adaptive fusion
with attention network is devised to generate high-quality users’ representations by
integrating user preference and intent features. The experimental results obtained from the
real-world electrical dataset demonstrate the advantages of the proposed IKG-EMR model
for session-based recommendation tasks.

In practice, IKG-EMR can be deployed for electrical power companies to precisely
match materials to project requirements, which can reduce the error of manual screening
and improve the efficiency of material procurement. In addition, it can also be extended to
other scenarios of product recommendation, such as movies, music and course
recommendation. However, IKG-EMR is essentially a black-box deep learning model.
Although it achieves high recommendation accuracy, it suffers from a lack of
interpretability in its results—meaning its recommendations are difficult for
decision-making departments in power companies to understand and trust.

In our future research, we intend to further explore the use of GAT and incorporate the
aforementioned information to learn representations of users and products, due to
IKG-EMR does not take into account the “number of times a user has purchased a item”
(i.e., edge weights) and user demographic information in information dissemination.
Additionally, we plan to explore and utilize large language models (LLMs) to further
enhance the performance of electrical power material recommendation.
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