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ABSTRACT
Traditional classification algorithms usually assume that all samples in a dataset
contribute equally to the training of a machine learning model, which is not always
the case. In fact, samples in temporal data, such as precipitation data, may not have
equal importance; more recent samples contain more accurate and useful
information than earlier ones. To address this issue, the article proposes a novel
method, named temporal random tree (TRT), in which recent training samples have
a greater impact on the model’s decision-making process. It divides the dataset into
temporal segments, assigns higher weights to classifiers trained on more recent data,
and employs a weighted majority voting strategy. The experiments demonstrated the
effectiveness of TRT on the real-world WeatherAUS precipitation dataset, achieving
an accuracy of 83.54%, which represents a 5% improvement over the traditional
random tree method. Additionally, our method achieved an average improvement of
9.98% compared to state-of-the-art results in the recent literature. These findings
highlight TRT’s potential as a valuable method for spatiotemporal rainfall
classification.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Data Science
Keywords Machine learning, Rainfall classification, Random tree, Spatiotemporal data,
Classification, Temporal weighting, Precipitation prediction, Weather pattern, Rain/no-rain,
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INTRODUCTION
Precipitation is one of the most critical meteorological phenomena, with wide-ranging
impacts across various fields, including energy, agriculture, the economy, transportation,
outdoor sports, mining, and water resource management. Its influence extends to
numerous environmental events, such as flooding, erosion, runoff, drought, and soil
infiltration, all of which are directly linked to the intensity and duration of rainfall. Given
the significant role precipitation plays in both natural and human systems, accurate and
reliable forecasting has become a central focus of scientific research (Foufoula-Georgiou
et al., 2020). However, precipitation forecasting presents substantial challenges due to the
inherent spatiotemporal variability of rainfall distribution. The complex interactions
between atmospheric, geographical, and environmental factors make it difficult to predict
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precipitation patterns with high accuracy, especially over diverse regions and timeframes.
Addressing these challenges is essential for improving decision-making in disaster
management, water conservation, and agricultural planning (Cristiano, ten Veldhuis & van
de Giesen, 2017).

Machine learning (ML) models have demonstrated significant potential in rainfall
prediction due to their ability to identify complex patterns in large datasets and make
accurate predictions (Oluoch, 2024). As a branch of artificial intelligence (AI), ML models
can learn directly from the data, capturing intricate relationships between variables
without explicit knowledge. This flexibility makes them particularly well-suited for dealing
with the nonlinear and dynamic nature of meteorological data, including precipitation
(Zhang et al., 2025). As a result, ML-based approaches have become increasingly popular
for addressing the challenges associated with forecasting rainfall, offering improved
performance over conventional methods in many cases.

Recent advances in ML have further enhanced the accuracy of precipitation predictions,
offering new techniques to account for both spatial and temporal variability in rainfall
patterns. State-of-the-art algorithms can process vast amounts of meteorological data,
enabling more reliable predictions across geographical regions and time periods.
Meteorological data encompasses a wide range of variables, including humidity,
temperature, atmospheric pressure, wind speed, and historical precipitation levels
(Chantry et al., 2021). Innovations in ML have become critical tools for managing the
increasing unpredictability of weather systems driven by climate change. As weather
patterns become more erratic and global temperatures rise, accurate precipitation
forecasting is essential for effective disaster management, water resource planning, and
adaptation strategies across multiple sectors. However, despite these advancements,
further improvements are still needed to effectively address the temporal dependencies and
spatial variations inherent in precipitation data (Binetti, Massarelli & Uricchio, 2024).

Temporal data presents unique challenges in the context of rainfall classification,
primarily due to the unequal importance of data points over time. In precipitation datasets,
more recent samples often carry greater relevance and accuracy, as they reflect the latest
atmospheric conditions and trends. This temporal variability complicates the forecasting
process, as traditional classification algorithms typically treat all data points equally,
regardless of their temporal significance. As a result, older samples may contribute less
insights to the model (Balram et al., 2024). Furthermore, conventional methods often rely
on predefined assumptions about data relationships, which can hinder their ability to
adapt to the dynamic nature of meteorological phenomena. It becomes essential to devise
strategies that effectively overcome these limitations that prioritize recent data and
effectively capture the temporal dependencies inherent in precipitation prediction
(Wang et al., 2024b).

Alongside the importance of temporal data, spatial information plays a crucial role in
improving rainfall forecasts, as geographic factors affect local weather patterns and
precipitation distribution. Variations in topography, land use, and proximity to water
bodies create distinct microclimates that affect rainfall and other meteorological variables.
For instance, mountainous regions may experience orographic lift, leading to increased
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precipitation, while urban areas might see altered patterns due to the urban heat island
effect. Features such as location, temperature, humidity, and atmospheric pressure are
important for capturing these geographic influences in forecasting models (Li et al., 2022).
Incorporating spatial data enhances the understanding of how these factors interact to
shape precipitation patterns, enabling more reliable predictions across diverse locations.
Additionally, models must consider temporal dynamics, as precipitation patterns can
change rapidly over time. Integrating both spatial and temporal data will enhance
forecasting capabilities in machine learning models, contributing to improved living
spaces, public health outcomes, and sustainable development objectives within the realm
of spatial science (Zhang et al., 2024).

Despite these advancements, existing approaches for rainfall classification using
machine learning still face significant limitations, particularly in handling temporal
aspects. For example, in rainfall prediction systems, recent weather data is more significant
for forecasting the next 24-h than data from the previous month. In this context, it is
crucial to focus on recent information to enhance forecasting accuracy. However, there
might also be cases when former data may help the model recognize general trends that
recent data fail to show. Unfortunately, as the gap between past and present data grows,
general classification algorithms can fail to learn current patterns.

To develop a rainfall classification model, various machine learning techniques—such
as support vector machines (Putri, 2024), neural networks (Ramani et al., 2024), k-nearest
neighbors (Nasrullah, Saedudin & Hamami, 2024), and ensemble methods like AdaBoost
(Kumar & Swathi, 2023)—have been explored. Recent studies have particularly focused on
deep learning and hybrid models for enhanced accuracy in hydrological time-series
forecasting (Waqas & Humphries, 2024; Waqas et al., 2024a, 2024b). A detailed survey of
machine learning techniques applied to precipitation forecasting, including region-specific
and AI-based approaches for both classification and regression tasks, is presented in
Waqas et al. (2023), Dotse et al. (2024), Putra, Rosid & Handoko (2024), Waqas et al.
(2024c), Sokol et al. (2021), Samad & Choi (2020). Traditional forecasting techniques, such
as numerical weather prediction models and statistical methods (e.g., autoregressive
models, moving averages), are often based on deterministic equations and simplified
physical assumptions. While grounded in meteorological theory, these approaches
frequently struggle to capture the nonlinear and dynamic nature of precipitation patterns,
especially under rapidly changing weather conditions. As a result, their accuracy can be
limited in complex or localized environments. In contrast, machine learning approaches
are data-driven and excel at uncovering hidden, nonlinear relationships within historical
weather data. By learning directly from patterns in both spatial and temporal dimensions,
ML models can better adapt to local climate variability and offer improved performance,
particularly in short-term and regional rainfall classification. Especially, tree-based
models—including decision trees (Xiang et al., 2020), random forests (RFs) (Prathibha
et al., 2023), and extreme gradient boosting trees (Woo et al., 2024)—have been applied to
precipitation data. Random tree (RT), a variant of decision trees, offers some benefits such
as reduced risk of overfitting and a high level of interpretability when compared to more
complex models like neural networks (Mishra & Ratha, 2016). These characteristics make
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random trees a strong candidate for rainfall classification, yet they have not been widely
applied to temporal precipitation prediction. This gap presents an opportunity to extend
the RT model with temporal capabilities.

This study introduces temporal random tree (TRT), a novel machine learning approach
designed to adapt to the dynamic nature of precipitation patterns in time-varying systems
by incorporating spatial information. This study aims to solve the problem of short-term
rainfall classification by developing a model that captures both temporal dependencies and
spatial variability in meteorological data. Specifically, the model is designed to predict
whether it will rain tomorrow or not, based on recent and spatially distributed weather
observations. In TRT, the model prioritizes recent training samples over older ones by
assigning them higher weights during the learning process. This temporal weighting
mechanism ensures that the model focuses on the most relevant and up-to-date
information. By emphasizing recent patterns and integrating spatial context, TRT
improves the model’s predictive accuracy and demonstrates substantial performance gains
compared to traditional baseline methods.

The problem of predicting whether it will rain tomorrow has significant real-world
applications across domains such as agriculture, transportation, disaster preparedness, and
urban planning. Unlike numerical weather prediction models that estimate continuous
rainfall values over longer horizons, short-term binary classification models like TRT are
lightweight, fast, and suitable for real-time decision-making scenarios. This makes them
valuable for time-sensitive applications such as flood alerts, logistics adjustments, and
smart irrigation. Additionally, the task provides a strong benchmark for time-series
learning in machine learning, helping explore challenges like imbalanced data,
spatiotemporal correlations, and fast-changing environmental patterns. TRT
addresses these challenges with a practical and interpretable solution that complements
existing forecasting systems and supports more responsive and resilient infrastructure
planning.

Contributions
The key contributions of the proposed TRT method are as follows:

(i) Introduction of TRT: The TRT is introduced as a novel method for rainfall
classification, integrating temporal dynamics for the first time in literature.

(ii) Emphasis on recent samples: TRT improves responsiveness by assigning higher
weights to recent training samples, enhancing its ability to capture relevant trends
in weather data.

(iii) Application to spatial and temporal datasets: TRT is designed to handle both spatial
and temporal precipitation data, expanding its applicability in meteorological
research.

(iv) Investigation of regional and global classifiers: The method is tested on both regional
classifiers (specific locations) and a generalized classifier (across all locations),
demonstrating its versatility.
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TRT was applied to a comprehensive, real-world dataset (WeatherAUS), comprising
145,460 records from 49 Australian weather stations, showing its practical relevance in
real-world forecasting scenarios. The main findings of the study can be summarized as
follows. TRT achieved 83.54% accuracy, a 5% improvement over the traditional RT
method. Moreover, regional datasets showed a 5.1% improvement, validated by a
statistically significant Mann-Whitney U test (p-value = 0.0003422). Furthermore, TRT
outperformed existing methods, showing an average improvement of 9.98% in accuracy
across the same dataset, establishing it as a competitive method in the field. In addition to
accuracy, TRT performed strongly across recall, precision, and F-measure, with average
values above 0.82, confirming its effectiveness in predicting both rain and no-rain events.

The structure of this article is organized as follows: “Related Works” provides an
overview of related work, highlighting significant advancements pertinent to this research.
“Methodology” focuses on the methodology and explains the techniques employed.
“Experimental Studies” details the experimental setup and reports the findings. “Results”
presents the results, providing an in-depth analysis of our findings and comparisons with
existing methods. Lastly, “Discussion” concludes the study by providing a summary of the
key insights and proposing directions for future research.

RELATED WORKS
This section provides an overview of recent advancements in machine learning studies for
precipitation forecasting. These studies vary significantly across several dimensions,
including study region, classification or regression objectives, forecast period, and horizon.
Table 1 presents a comprehensive summary of these studies, categorized by reference, year,
region, method, classification/regression objectives (denoted as C for classification and R
for regression), data collection period, forecast horizon, data type, and performance
metrics, providing a detailed and up-to-date overview of recent 5 years of literature (Narejo
et al., 2021; Majnooni et al., 2023; Zhang et al., 2020; Shejule & Pekkat, 2024; Gianoglio
et al., 2023; Anand & Kannan, 2022; Lei et al., 2024; Hu, Yin & Guo, 2024; Arbabi et al.,
2024; Ebtehaj & Bonakdari, 2024; Putra, Rosid & Handoko, 2024; Liao, Lu & Yin, 2024;
Wang et al., 2024a; Liu et al., 2024; Saubhagya et al., 2023; Skarlatos et al., 2023; Necesito
et al., 2023; Baljon & Sharma, 2023; Kumar et al., 2023; Kwon et al., 2024; Liu et al., 2022;
Sulaiman et al., 2022; Simanjuntak et al., 2022; Chu et al., 2022; Papailiou et al., 2022; Di
Nunno et al., 2022; Salaeh et al., 2022; Poornima et al., 2023; Choi et al., 2021; Shin et al.,
2021; Yan et al., 2021; Bouget et al., 2021; Bellido-Jiménez, Gualda & García-Marín, 2021;
Nguyen, Kim & Bae, 2021;Wang et al., 2021;Wehbe, Temimi & Adler, 2020; Chhetri et al.,
2020;Wei & Chou, 2020). This table forms the foundation for comprehending the current
research landscape and motivates the introduction of the proposed TRT method as a novel
solution that addresses gaps in effectively incorporating temporal dynamics in
precipitation forecasting.

Recent studies on precipitation forecasting have been conducted across diverse
geographical regions. Several have focused on China (Lei et al., 2024; Liao, Lu & Yin, 2024;
Wang et al., 2024a; Liu et al., 2024; Liu et al., 2022; Yan et al., 2021;Wang et al., 2021) and
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Table 1 Summary of recent precipitation prediction studies over the past 5 years.

Ref Year Region Methods C R Period Forecast
horizon

Data type Performance
metrics

Lei et al. (2024) 2024 China CNN, LSTM √ 2000–2018 Monthly Daily rainfall data from NMIC RMSE, R2, CC,
SIG

Hu, Yin & Guo
(2024)

2024 France LSTM, RNN √ √ 2016–2018 Hourly Radar data MSE, MAE,
SSIM, CSI,
HSS

Arbabi et al.
(2024)

2024 Iran RF, M5, SVR, GPR,
KNN

√ 1951–2021 Monthly Rainfall data from meteorological
stations

R2, NS, RMSE,
MAE

Ebtehaj &
Bonakdari
(2024)

2024 Canada CNN, LSTM √ 1994–2022 Hourly Meteorological data from Quebec
province

R2, NSE, AIC,
PBIAS,
NRMSE, RSR

Putra, Rosid &
Handoko
(2024)

2024 Indonesia XGBoost √ 2022 Hourly Rain gauges, weather radar,
weather satellite data

RMSE

Liao, Lu & Yin
(2024)

2024 China ConvLSTM, SmaAT-
UNet

√ 2009–2015 Hourly HKO-7 radar data POD, CSI, FAR

Wang et al.
(2024a)

2024 China LSTM, M-P, GAMMA √ 2019–2020 Hourly Data from Doppler weather radar,
meteorological stations,
OTT-Parsivel laser raindrop
spectrometer

MRE, MAE,
RMSE

Liu et al. (2024) 2024 China,
India

DFFNet, CNN √ 2016–2019 Hourly Northern Xinjiang
India, FaceDetection epilepsy
NATOPS PEMS-SF

Accuracy, PRE,
REC, F1

Shejule &
Pekkat (2024)

2024 India LSTM √ 2015–2019 Hourly Meteorological data RMSE, MAPE

Majnooni et al.
(2023)

2023 USA RF, XGBoost, SVR,
MLP, KNN, LR,
AdaBoost, DT

√ 1983–2020 Monthly Rain gauge data R, R2, MSE,
NSE

Gianoglio et al.
(2023)

2023 Italy ANN √ 2017–2019 Daily Smart rainfall system data REC,
Specificity

Saubhagya et al.
(2023)

2023 Sri Lanka Spatial Kriging, CNN,
SVM, NB, MLP,
LSTM, Logistic
Regression, RF

√ 2015–2019 Daily Weather data from MDSL Accuracy, PRE,
REC, F1

Skarlatos et al.
(2023)

2023 Greece Seasonal LSTM,
Univariate LSTM

√ 2010–2020 Yearly Meteorological data from GAWSN MSE

Necesito et al.
(2023)

2023 Philippines DWT, Univariate LSTM √ 2013–2018 Monthly Rainfall data from ASIT NSE, CC, KGE,
IA, LMI,
MAPE,
RMSE, RSR

Baljon &
Sharma (2023)

2023 Saudi
Arabia

Function Fitting ANN √ 1982–2011 Monthly Rainfall data from metrological
department

Accuracy, PRE,
REC, F1,
specificity

Kumar et al.
(2023)

2023 India CatBoost, XGBoost,
Lasso, Ridge, LR,
LGBM

√ 1980–2021 Daily Rainfall data from WRIS MAE, RMSE,
RMSPE, R2

Kwon et al.
(2024)

2023 Korea ConvLSTM, U-Net √ √ 2017–2021 Minutely Radar data RMSE, MAE,
Accuracy,
PRE, REC, F1
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Table 1 (continued)

Ref Year Region Methods C R Period Forecast
horizon

Data type Performance
metrics

Liu et al. (2022) 2022 China ConvLSTM √ 2015–2020 Hourly Rainfall data from NHB CC, MSE,
RMSE, CSI,
FAR, POD

Sulaiman et al.
(2022)

2022 Malaysia RF, PCA, SVC,
SVR, ANN, RVM

√ √ 1998–2007 Daily Atmospheric data and
rainfall data

Accuracy,
RMSE, NSE

Simanjuntak
et al. (2022)

2022 Indonesia Multivariate LSTM, RF √ √ 2021 Minutely Himawari-8 and GPM IMERG
meteorological data

Accuracy,
MAE, RMSE

Chu et al. (2022) 2022 Korea SVM, RF, XGBoost √ 2007 Hourly Rainfall and GIS data RMSE, MAE,
RMSLE

Papailiou et al.
(2022)

2022 Greece ANN, MLR √ 2006–2018 Daily Precipitation data from the
NOANN network

NSE, R, RMSE

Di Nunno et al.
(2022)

2022 Bangladesh M5P, SVR, M5P-SVR,
PSO

√ 1956–2013 Monthly Weather data from BMD MAE, RMSE,
RAE, R2

Salaeh et al.
(2022)

2022 Thailand M5, RF, SVR, MLP,
LSTM

√ 2004–2018 Monthly Meteorological data from TMD MAE, RMSE,
R, OI

Poornima et al.
(2023)

2022 India LSTM √ 1901–2017 Monthly Rainfall data from open
government data

RMSE, loss,
learning rate

Anand &
Kannan
(2022)

2022 India ANN, RF √ 2012–2013 Daily Smart rainfall system data PRE, REC, F1

Choi et al.
(2021)

2021 Japan U-Net √ √ 2017–2019 Hourly RAIN-F+ rainfall data MAE,
PPMCC,
PRE, REC, F1

Shin et al.
(2021)

2021 USA
Korea

Regression Tree, RF √ 1996–2006
2011–2019

Minutely 2DVD radar data RMSE, MAE,
bias, CORR,
COE, 1-NE

Yan et al. (2021) 2021 China TabNet, ANN, LSTM,
LightGBM

√ 2012–2016 Daily Meteorological data from stations
in China

KGE, MAE,
RE, RMSE,
MAPE

Bouget et al.
(2021)

2021 France U-Net √ 2016–2018 Hourly MeteoNet rain radar and wind
data

F1, bias, TS

Bellido-Jiménez,
Gualda &
García-Marín
(2021)

2021 Spain MLP, SVM, RF, LI √ 2000–2021 Daily Precipitation data from RIAA RMSE,
MBE, R2

Nguyen, Kim &
Bae (2021)

2021 Korea MLR, MARS, MLP,
RNN, LSTM

√ 2016–2020 Minutely MAPLE radar data CSI, POD,
PEMR,
RMSE, R,
RFB

Wang et al.
(2021)

2021 China WPD-ELM, ARIMA,
BPNN

√ 1958–2016 Yearly Precipitation data from Jinsha
weather station

RMSE, MAE,
R, NSEC

Narejo et al.
(2021)

2021 Italy DBN, CNN √ 2010–2015 Hourly Meteorological data MSE, RMSE, R

Zhang et al.
(2020)

2020 China CNN, BLSTM √ 2014–2016 Daily Rain gauge data RMSE, CC,
MBE, MAE

(Continued)
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Korea (Kwon et al., 2024; Chu et al., 2022; Shin et al., 2021; Nguyen, Kim & Bae, 2021),
highlighting these areas as significant centers of research. Other regions explored include
India (Liu et al., 2024; Kumar et al., 2023; Poornima et al., 2023), Indonesia (Putra, Rosid &
Handoko, 2024; Simanjuntak et al., 2022), and Saudi Arabia (Baljon & Sharma, 2023;
Wehbe, Temimi & Adler, 2020). European regions such as France (Hu, Yin & Guo, 2024;
Bouget et al., 2021), Greece (Skarlatos et al., 2023; Papailiou et al., 2022), and Spain
(Bellido-Jiménez, Gualda & García-Marín, 2021) have also been well-represented in recent
literature. Research in Southeast Asia, including the Philippines (Necesito et al., 2023),
Thailand (Salaeh et al., 2022), and Sri Lanka (Saubhagya et al., 2023), contribute to the
understanding of precipitation dynamics in these regions. American regions, including
Canada (Ebtehaj & Bonakdari, 2024) and the USA (Shin et al., 2021), have also been
addressed in recent works.

Additionally, the reviewed works employ machine learning techniques for different
forecasting objectives, with some focusing on classification and others on regression tasks.
Several works address classification tasks (Lei et al., 2024; Kwon et al., 2024; Choi et al.,
2021; Bouget et al., 2021), while others focus on regression objectives (Arbabi et al., 2024;
Ebtehaj & Bonakdari, 2024; Putra, Rosid & Handoko, 2024; Chu et al., 2022; Skarlatos
et al., 2023; Kumar et al., 2023; Liu et al., 2022; Papailiou et al., 2022; Poornima et al., 2023;
Bellido-Jiménez, Gualda & García-Marín, 2021; Wehbe, Temimi & Adler, 2020). A subset
of studies (Hu, Yin & Guo, 2024; Sulaiman et al., 2022; Chu et al., 2022; Salaeh et al., 2022;
Nguyen, Kim & Bae, 2021) incorporate both classification and regression approaches,
providing a comprehensive analysis of precipitation patterns. These varied objectives
underscore the dual nature of precipitation forecasting, catering to both discrete event
categorization and continuous prediction.

A wide range of machine learning methods have been utilized in precipitation
forecasting, from traditional techniques like support vector machine (SVM) (Chu et al.,
2022; Salaeh et al., 2022), RF (Arbabi et al., 2024; Putra, Rosid & Handoko, 2024;
Simanjuntak et al., 2022), and logistic regression (LR) (Bellido-Jiménez, Gualda & García-
Marín, 2021; Wei & Chou, 2020) to more advanced deep learning models such as
convolutional neural network (CNN) (Lei et al., 2024; Saubhagya et al., 2023) and long
short-term memory (LSTM) networks (Hu, Yin & Guo, 2024; Liao, Lu & Yin, 2024;

Table 1 (continued)

Ref Year Region Methods C R Period Forecast
horizon

Data type Performance
metrics

Wehbe, Temimi
& Adler (2020)

2020 Saudi
Arabia

GWR, ANN √ 2015–2018 Daily Ground-based rainfall data from
NCM

RMSE, rBIAS,
POD, FAR,
PCC, NSE

Chhetri et al.
(2020)

2020 Bhutan MLP, CNN, LSTM,
GRU, BLSTM,
BLSTM-GRU

√ 1997–2017 Monthly Rainfall data from
NCHM

RMSE, MSE,
PCC, R2

Wei & Chou
(2020)

2020 Taiwan DNN, MLR √ 1961–2017 Hourly Typhoon events data RMSE, rRMSE,
MAE, rMAE,
R2
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Necesito et al., 2023; Waqas & Humphries, 2024; Waqas et al., 2024a). Hybrid models,
including ensemble methods (Saubhagya et al., 2023; Sulaiman et al., 2022),
attention-based neural networks (Yan et al., 2021), and specialized architectures like U-Net
(Choi et al., 2021), have been employed to capture complex patterns. Comprehensive
reviews covering these approaches in various geographic and climatic contexts are
provided in Waqas et al. (2023). The standard classification algorithms assume equal
importance for all training samples, failing to account for the temporal evolution of
weather patterns. Our study proposes a new temporal data classification method, which
takes into consideration the time-varying nature of the problem to enhance prediction
performance.

The mentioned methods can be broadly categorized into deep learning models, hybrid
and specialized architectures, ensemble and tree-based methods, support vector machines,
statistical and linear models, and simpler instance-based approaches. While each category
offers valuable contributions, they also present notable limitations in terms of data
requirements, temporal modeling capabilities, interpretability, computational cost, and
generalizability. In the following, we critically examine these categories to emphasize the
specific challenges they pose and to contextualize the motivation behind our proposed
method. Deep learning models (e.g., CNN, LSTM, GRU, bidirectional LSTM (BiLSTM),
convolutional LSTM (ConvLSTM)) have shown promising results due to their ability to
learn complex temporal patterns. However, they often require large datasets, are
computationally intensive, suffer from long training times, and function as black-box
models with limited interpretability. These models are also sensitive to hyperparameter
tuning and risk of overfitting, especially in scenarios with limited or imbalanced data.

Hybrid and specialized deep learning architectures, such as U-Net variants or
attention-based networks, offer enhanced performance by incorporating domain-specific
structures. Nevertheless, they tend to be complex, hard to reproduce, and highly sensitive
to dataset characteristics. Their deployment in real-time or low-power environments
remains a significant challenge. Tree-based models provide better interpretability and
lower computational cost compared to deep learning. However, they lack inherent
mechanisms to model temporal sequences and may overfit if not properly tuned, especially
in high-dimensional spaces. Statistical approaches like ARIMA, ridge regression, and
logistic regression are efficient and interpretable but are generally limited to linear or
univariate modeling. These methods struggle with capturing nonlinear dependencies and
multivariate interactions, making them less effective for complex spatiotemporal
forecasting tasks.

Simpler models such as K-nearest neighbors, naive Bayes, and principal component
analysis (PCA) based techniques are easy to implement but often perform poorly in
high-dimensional or noisy environments. They typically lack the capacity to model
temporal dynamics and require extensive preprocessing or feature engineering. This
landscape highlights a key research gap: while existing models excel in either temporal
modeling or interpretability, few can balance both effectively. In this context, our proposed
TRT method explicitly incorporates temporal structure into a tree-based learning
framework. TRT offers an interpretable, computationally efficient, and easily deployable
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solution for precipitation forecasting. Unlike deep learning approaches, TRT does not
require large datasets or intensive tuning and avoids the black-box limitations by
maintaining transparency in its decision paths. Additionally, unlike traditional statistical
models, TRT captures complex temporal interactions across multiple features.

The performance of precipitation forecasting methods was validated using various
metrics based on the forecasting objectives. For example, for regression models, common
metrics included root mean square deviation (RMSD) (Lei et al., 2024; Arbabi et al., 2024;
Ebtehaj & Bonakdari, 2024), mean absolute error (MAE) (Hu, Yin & Guo, 2024; Liao, Lu &
Yin, 2024; Wang et al., 2024a), and R-squared (Kumar et al., 2023; Papailiou et al., 2022;
Bellido-Jiménez, Gualda & García-Marín, 2021). Classification models were evaluated
using metrics, including accuracy (Baljon & Sharma, 2023), precision (PRE), recall (REC),
and F1-score (F1) (Liu et al., 2024; Saubhagya et al., 2023). Metrics like Nash-Sutcliffe
efficiency (NSE) (Arbabi et al., 2024; Papailiou et al., 2022) and structural similarity index
measure (SSIM) (Hu, Yin & Guo, 2024) were applied for specific evaluation needs too. The
reviewed research investigated various forecast horizons, with hourly forecasts being the
most common (Hu, Yin & Guo, 2024; Ebtehaj & Bonakdari, 2024; Kwon et al., 2024;
Bouget et al., 2021). Minutely forecasts (Kwon et al., 2024; Nguyen, Kim & Bae, 2021) were
explored for very short-term predictions, while monthly and yearly horizons (Skarlatos
et al., 2023; Chhetri et al., 2020) were used for long-term analysis. This range of forecast
horizons illustrates the different temporal scales at which precipitation can be studied.

The superiority of the RT algorithm has been consistently recognized across a wide
range of applications (Barrios & Romero, 2019; Kumar et al., 2023; Solomon, Giwa &
Taziwa, 2023; Kumar et al., 2022; Fareed et al., 2022; Goga, Kuyoro & Goga, 2015; Prakash
& Nguyen, 2023; Abana, 2019; Ghasemkhani et al., 2025). In Barrios & Romero (2019), RT
demonstrated superior performance over several classification techniques, including
random forest (RF) and J48, indicating its competitive edge in various predictive scenarios.
Similarly, in the domain of civil engineering, RT achieved higher performance than
methods such as support vector machines, random forest, multiple linear regression, and
multivariate adaptive regression spline (Kumar et al., 2023). Another study (Solomon,
Giwa & Taziwa, 2023) showed that RT outperformed artificial neural networks in
predicting the fuel properties. In the daily discharge estimation task, RT again surpassed
models like random forest, M5P, REPTree, and decision stump (Kumar et al., 2022).
Beyond classification performance, RT showed its superiority over J48, decision stump,
and Hoeffding tree (Fareed et al., 2022). In Prakash & Nguyen (2023), RT outperformed
artificial neural networks in predicting load-deflection of composite concrete bridges. Its
robustness has also been demonstrated in different studies (Goga, Kuyoro & Goga, 2015;
Abana, 2019), where it delivered reliable and accurate results. Furthermore, advanced
adaptations of the model, such as the ordinal random tree with rank-oriented feature
selection (ORT-ROFS), have proven effective in complex applications like road traffic
accident severity prediction (Ghasemkhani et al., 2025). These diverse examples
collectively support the use of RT in this study and justify its extension into a temporal
context through the proposed TRT method.
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METHODOLOGY
Proposed method
In rainfall prediction systems, recent data samples tend to provide more relevant and
up-to-date information compared to older ones, as climate conditions evolve over time due
to factors like global warming. The consideration of many past samples in temporal data
may mislead the algorithm to capture up-to-date patterns, potentially leading to prediction
errors. To address this issue, we propose a novel method, called TRT, which gives more
weight to recent training samples, enhancing the model’s ability to determine current
trends. Therefore, in the proposed method, the recent training samples have more effects
on the decision of the model.

Figure 1 illustrates the architecture of the proposed approach. The dataset is composed
of various weather features, including temperature, evaporation, rainfall, wind speed,
sunshine, pressure, humidity, and cloud cover. The dataset is divided into several
partitions, each representing a different time period, from the oldest to the most recent
data. From each partition, a distinct RT classifier is constructed, reflecting the notion that
different temporal datasets lead to different decision trees due to their evolving statistical
patterns. The method assigns weight values to each RT, with more recent data partitions
receiving higher weights to reflect their importance in capturing current weather patterns.
These weighted models in an ensemble approach emphasize recency while preserving
valuable historical context. Specifically, the classifier built from the most recent data is
assigned the highest weight, while the classifier trained on the oldest partition is given the
lowest weight. This weighting system follows a square-root-based approach. When new
data is provided to the model, all random trees make predictions, which are then combined
using a weighted majority voting scheme. Trees trained on more recent data have a
stronger influence on the final decision, ensuring that the prediction relies on the latest
available information, allowing the model to adapt to changing weather patterns.

The temporal weighting strategy in this study implicitly reflects important
meteorological considerations. Seasonal variability and evolving climatic trends, often
driven by global warming, affect rainfall patterns over time. Incorporating recent data with
greater weight ensures the model adapts to these changes, reducing the risk of outdated
patterns misleading the prediction. Additionally, spatial and temporal weather features
such as temperature and humidity, which are known to be influenced by seasonal cycles,
are part of the dataset, allowing the model to learn contextual climate behaviors. Thus,
TRT accounts for both short-term temporal dynamics and longer-term climatic variability
without requiring explicit climate modeling.

By integrating a mechanism that allows for greater emphasis on recent data, TRT
effectively adapts to the dynamic nature of precipitation patterns, making it ideal for
real-time prediction applications. This dynamic adaptability is further reinforced through
the core structure of TRT, which enhances its ability to handle non-linearity in
precipitation data. The model uses the RT algorithm, known for its ability to capture
non-linear relationships between input features and the target variable. This is achieved
through several mechanisms. First, random feature subset selection at each split allows the
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model to construct more diverse and nonlinear decision boundaries. This key
improvement comes from the logarithmic splitting mechanism within RT, which
incorporates non-linear scaling through the K-value, aligning well with the complex,
non-linear nature of real-world precipitation patterns. Second, it is different from other
tree-based models in terms of the pruning issue, which preserves complex and intricate
patterns in the data. Additionally, TRT reduces deterministic bias by leveraging
stochasticity, encouraging the discovery of hidden interactions that may not be captured
by linear methods. Furthermore, TRT introduces temporal weighting, where recent data
partitions are given higher importance. This temporal framework ensures that the
model adapts to evolving weather patterns, with more recent trees prioritized in the
ensemble while older trees still contribute, albeit with lower weights. By emphasizing
recent trends, TRT offers a more responsive model for predicting precipitation in
real-time, while still retaining knowledge from past patterns to ensure a balanced and
accurate prediction.

Although recurrent neural networks such as LSTM have been widely used in temporal
prediction tasks, we intentionally chose not to adopt them due to several practical and
methodological limitations. LSTM architectures, while powerful, are computationally
demanding and often require significant hardware resources, which may not be feasible for
all use cases. They involve complex tuning of hyperparameters and can be sensitive to
initialization, leading to challenges in convergence. Furthermore, LSTMs act as black-box
models with limited interpretability, making it difficult to extract meaningful
understandings from their predictions, an important consideration in rainfall forecasting
models. These challenges, combined with the need for large datasets, make LSTMs less
suitable for scenarios where transparency and computational efficiency are key concerns.
Our proposed TRT method was designed to overcome these issues while preserving
predictive strength.

Together, these features make TRT a competitive and innovative alternative for
real-time rainfall classification, particularly in the development of early warning systems.

Figure 1 Architecture of the TRT method for rainfall classification.
Full-size DOI: 10.7717/peerj-cs.3022/fig-1
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The ability to give greater weight to recent data while maintaining a robust representation
of historical patterns positions TRT as an invaluable tool for improving decision-making
and response strategies in weather-related events.

Formal description
Let the entire datasetD, consisting of n samples, each associated with a timestamp from the
set T ¼ t1; t2; . . . ; tnf g, where the timestamps are ordered such that t1 < t2 . . . < tn. Each
timestamp t corresponds to a data point t; x; yð Þ, where x represents the input features, and
y denotes the target label. The dataset D is partitioned into s disjoint subsets,
D ¼ D1;D2; . . . ;Dsf g, according to the temporal ordering of the timestamp variable,
ensuring that each subset Di covers data from a specific time range. The partitioning
progresses from past to present, with D1 containing the oldest data and Ds containing the
most recent. For each dataset Di, a random tree classifier RTi is constructed. These
classifiers are then assigned weights using a square-root-based weighting strategy.
Specifically, the weight of the ith random tree is

ffiffi
i

p
, meaning that recent partitions receive

higher weights than older ones. The weight set can be represented as

W ¼ ffiffiffi
1

p
;

ffiffiffi
2

p
; . . . ;

ffiffi
s

p� �
.

In our weighted majority voting mechanism, the output of each classifier is assigned a
weight based on its temporal proximity, and the final prediction is determined by
aggregating these weighted votes, typically selecting the class with the highest total overall
score. We do not normalize the weights since normalization is unnecessary for hard voting
scenarios where class labels are aggregated based on weighted counts. What matters is the
relative magnitude of weights between trees. Therefore, omitting normalization does not
impact the correctness of the decision and aligns with the intended behavior of the voting
mechanism.

Random tree classifier
The random tree algorithm (Frank & Kirkby, n.d.) belongs to the family of decision
tree-based methods and builds trees by injecting stochasticity into both feature and sample
selection processes. This embedded randomness enhances model diversity and mitigates
overfitting—benefits particularly valuable when the algorithm serves as a base learner in
ensemble models. Given a training dataset D ¼ xi; yið Þf gni¼1, where each xi 2 Rd denotes a
feature vector and yi is the associated target label, the goal is to explore a hypothesis space
H comprising all possible decision trees derivable from D. At each decision node, a
random subset of features is selected for consideration. This subset is denoted by Fm � F,
where Fmj j ¼ m and m � d, ensuring that only a portion of the available features is
evaluated during each split. The algorithm proceeds by choosing a splitting
criterion—commonly Gini impurity, entropy, or variance reduction—tailored to the
specific task, such as classification or regression. These criteria aim to optimize the quality
of splits by reducing impurity or uncertainty at each node. Tree construction continues
recursively until a stopping condition is satisfied, which may involve a maximum allowable
depth, a minimum number of data points in a node, or reaching a state where all samples
in a node share the same label or exhibit negligible variance. Final predictions are derived
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from the leaf nodes: classification tasks use majority voting within the leaf, while regression
tasks rely on the average of target values in that node.

In classification settings, the Gini impurity is a widely used metric to quantify the
impurity within a node and is defined in Eq. (1) as follows:

Gini Sð Þ ¼ 1�
Xc

i¼1

p2i (1)

where S denotes the sample set at a particular node, pi is the relative frequency of class i
among samples in S, and c represents the total number of distinct classes.

Entropy offers an alternative impurity metric for classification, capturing the level of
unpredictability within the node. It is given by Eq. (2) as follows:

H Sð Þ ¼ �
Xc

i¼1

pilog2pi (2)

where pi corresponds to the probability of encountering class i at the node.
For regression tasks, splits are evaluated based on the goal of minimizing the variance in

target values. The variance for a node S is calculated using Eq. (3) as follows:

Var Sð Þ ¼ 1
Sj j

X
i2S

yi � �yð Þ2 (3)

where yi indicates the target value of instance i, and �y is the mean of the target values for
all instances in node S.

Temporal random tree (TRT) algorithm: This algorithm, presented in Fig. 2, provides a
detailed step-by-step procedure for implementing the proposed TRT method. It takes as
input a dataset D = ti; xi; yið Þf gni¼1, where each sample consists of timestamps ti, input
features xi, and corresponding labels yi, along with the size of the model s and new query
instances Q for prediction. The algorithm begins with data preparation and feature
selection processes. It then calculates the size of each partition by dividing the size of the
dataset by the size of the model. For each i from 1 to s, it generates partial datasets Di by
the Copy function, constructs random tree classifiers RTi by the RandomTree function,
and assigns weights Wi to these classifiers by the Sqrt function. For classification, the
algorithm iterates over each new instance x and applies a weighted majority voting scheme
to obtain the predicted label y, subsequently aggregating these predicted labels into bY . The
process culminates in the output of the predicted labels for the instances in Q. The
complexity of the TRT algorithm is O(L(n/s)� s), where L(n/s) is the time required for the
execution of the RT method on n/s instances and s is the size of the model.

Dataset description
The dataset used in this study referred to as WeatherAUS, includes nearly 10 years of daily
weather observations gathered from 49 weather stations across Australia, resulting in
145,460 records. These observations span from November 1, 2007, to June 25, 2017,
providing extensive spatial and temporal coverage. The dataset is publicly and freely
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accessible on the Kaggle repository (Kaggle, 2020). The dataset includes 23 meteorological
features such as temperature, rainfall, wind speed, humidity, and atmospheric pressure.
These variables are used to train classification models aimed at predicting next-day rainfall.
The target variable, “RainTomorrow”, is a binary indicator of whether it will rain on the
next day (Yes/No), while “RainToday” provides the same binary indicator for the current
day.

The dataset represents a broad range of meteorological variables, as summarized in
Table 2, which outlines each feature’s description, units, data type, and basic statistical
information (maximum, minimum, mean, and standard deviation). This table presents the
full set of 23 features available in the dataset, ranging from basic weather conditions, such
as MinTemp (minimum temperature) and MaxTemp (maximum temperature), to more
complex variables like WindGustDir (direction of the strongest wind gust) and
Pressure9am (atmospheric pressure at 9 am). WindGustDir includes several cardinal and
intercardinal directions: east (E), west (W), north (N), south (S), east northeast (ENE), east
southeast (ESE), west northwest (WNW), west southwest (WSW), north east (NE), north
west (NW), north northeast (NNE), north northwest (NNW), south east (SE), south west
(SW), south southeast (SSE), and south southwest (SSW). Additionally, it includes a
binary indicator “RainToday”, which is essential for predicting next-day rainfall. The
feature descriptions, data types, and key statistics offer a thorough insight into the
variability and range of the meteorological observations, which are crucial for building
predictive models.

Figure 2 Temporal random tree (TRT) algorithm. Full-size DOI: 10.7717/peerj-cs.3022/fig-2
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A sample dataset is presented in Table 3, showcasing observations from different spatial
locations across various years. Each column in the table represents a specific sample from a
unique day and weather station, illustrating the variation in meteorological conditions
throughout Australia. The table provides a snapshot of essential weather features, such as
temperature, rainfall, wind speed, humidity, and more. By including data from multiple
locations and time points, the dataset captures the diverse climatic patterns present across
the continent, offering valuable insights for training classification models aimed at
predicting next-day rainfall.

Table 2 Description of the features in the rainfall classification dataset.

No Feature Description Unit Data
type

Min Max Mean Std
Dev

1 Date The date of weather observation m/d/y Date 11/1/
2007

6/25/
2017

– –

2 Location The meteorological station location – String Adelaide, Albany, Albury, …,
Woomera

3 MinTemp The lowest temperature recorded for a particular day �C Numeric −8.50 33.90 12.19 6.40

4 MaxTemp The highest temperature recorded for a particular day �C Numeric −4.80 48.10 23.23 7.12

5 Rainfall The amount of rainfall recorded for the day mm Numeric 0 371.00 2.35 8.47

6 Evaporation The Class A pan evaporation in the 24 h until 9 am mm Numeric 0 145.00 5.47 4.19

7 Sunshine The number of hours that the sun is brightly shining during the day Hours Numeric 0 14.50 7.62 3.78

8 WindGustDir The direction of the strongest wind blowing in the 24 h to midnight – Categoric E, W, N, S, ENE, ESE, WNW,
WSW, NE, NW, NNE, NNW, SE,
SW, SSE, SSW

9 WindGustSpeed The speed of the strongest wind gust in the 24 h to midnight km/h Numeric 6.00 135.00 39.98 13.59

10 WindDir3pm The direction of the wind at 3 pm – Categoric E, W, N, S, ENE, ESE, WNW,
WSW, NE, NW, NNE, NNW, SE,
SW, SSE, SSW

11 WindDir9am The direction of the wind at 9 am – Categoric E, W, N, S, ENE, ESE, WNW,
WSW, NE, NW, NNE, NNW, SE,
SW, SSE, SSW

12 WindSpeed3pm Wind speed averaged over 10 min before 3 pm km/h Numeric 0 87.00 18.64 8.80

13 WindSpeed9am Wind speed averaged over 10 min before 9 am km/h Numeric 0 130.00 14.00 8.89

14 Humidity3pm The percentage of relative humidity at 3 pm % Numeric 0 100.00 51.48 20.80

15 Humidity9am The percentage of relative humidity at 9 am % Numeric 0 100.00 68.84 19.05

16 Pressure3pm Atmospheric pressure reduced to mean sea level at 3 pm hpa Numeric 977.10 1,039.60 1,015.26 7.04

17 Pressure9am Atmospheric pressure reduced to mean sea level at 9 am hpa Numeric 980.50 1,041.00 1,017.65 7.11

18 Cloud3pm Cloud-obscured fraction of the sky at 3 pm oktas Numeric 0 9.00 4.50 2.72

19 Cloud9am Cloud-obscured fraction of the sky at 9 am oktas Numeric 0 9.00 4.44 2.89

20 Temp3pm Observed temperature at 3 pm �C Numeric −5.40 46.70 21.69 6.94

21 Temp9am Observed temperature at 9 am �C Numeric −7.20 40.20 16.99 6.49

22 RainToday If the precipitation in the 24 h to 9 am exceeds 1mm, the value is “yes”;
otherwise, the value is “no”.

– Binary Yes, no

23 RainTomorrow
(target)

Whether it will rain tomorrow or not. – Binary Yes, no (classes)
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Table 4 presents the geographical positions, including the latitude and longitude, of the
49 weather stations included in the WeatherAUS dataset. To further visualize their spatial
distribution, Fig. 3 provides a map marking each station’s location across the Australian
continent. This geographical representation highlights the extensive coverage of
meteorological observations, showcasing how data is collected from diverse climatic zones
and environments. Each station is strategically positioned to capture local weather
conditions, contributing valuable insights for rainfall prediction models. The range of
locations—from urban centers like Sydney and Melbourne to remote areas such as Alice
Springs and Woomera—underscores the dataset’s comprehensive nature, ensuring a
robust analysis of weather patterns across the continent.

Data preprocessing
In the data preprocessing phase, the target attribute, “RainTomorrow”, was first addressed
by removing any instances with NA (not available) values. This step ensured that the
dataset contained only complete entries for the target variable, thereby enhancing the
reliability of subsequent analyses. Additionally, any missing values across all attributes

Table 3 Partial dataset showcasing daily weather observations from various stations.

Feature Sample1 Sample2 Sample3 Sample4 Sample5 Sample6 Sample7 Sample8 Sample9 Sample10

Date 11/1/2007 7/1/2008 4/22/2009 10/29/2010 5/23/2011 2/20/2012 12/23/2014 3/13/2015 1/22/2016 6/9/2017

Location Canberra Melbourne Cairns Sydney Melbourne Brisbane Hobart Darwin Townsville Mildura

MinTemp 8 9.5 20.2 14.5 13.4 21.9 15.7 22.4 23.7 3

MaxTemp 24.3 15.4 30.2 22.1 18.3 32.4 20.4 34.2 31.5 15.5

Rainfall 0 2 0 0.2 3.4 0 1.6 22.2 0 0

Evaporation 3.4 2.8 5.8 6.2 1.6 6 4.6 7.8 11 1

Sunshine 6.3 7 11 1.8 2 11.2 0 9.3 12.1 8.4

WindGustDir NW W SE ENE WSW NE SW W NE SSE

WindGustSpeed 30 63 46 31 50 22 48 41 35 43

WindDir3pm NW W ESE ENE SSW NNE S W ENE S

WindDir9am SW W S WNW N W E WSW ESE SSW

WindSpeed3pm 20 35 35 15 24 7 17 24 28 17

WindSpeed9am 6 37 20 11 13 4 4 22 17 11

Humidity3pm 29 38 48 59 85 59 81 64 50 48

Humidity9am 68 60 57 82 88 75 89 77 53 97

Pressure3pm 1,015 1,010.3 1,010.8 1,017.5 1,001.3 1,009.6 1,003.5 1,005.5 1,010.2 1,031.5

Pressure9am 1,019.7 1,006.8 1,013.8 1,020.7 1,001.2 1,013.9 1,005.3 1,008.8 1,014.2 1,033.7

Cloud3pm 7 7 6 7 7 6 8 3 1 1

Cloud9am 7 1 2 7 7 6 8 3 3 0

Temp3pm 23.6 14.6 28.5 20.5 13.9 30 17 33.8 30.4 15.3

Temp9am 14.4 11 26.3 16.2 14.5 26.5 17.4 30.4 29.1 5.4

RainToday No Yes No No Yes No Yes Yes No No

RainTomorrow Yes No No No Yes Yes Yes No No No
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were replaced with a placeholder “?” to facilitate further examination and prevent data loss.
The dataset was then sorted chronologically from oldest to newest, allowing for a clear
temporal analysis of the weather patterns.

Feature selection
Feature selection plays a crucial role in machine learning, aimed at reducing the
dimensionality of the dataset while minimizing information loss. In this study, feature
selection was performed to recognize the most relevant attributes for predicting rainfall,
specifically the target variable “RainTomorrow”. The focus was on selecting features that
contribute significantly to model accuracy while reducing dimensionality for improved
computational efficiency. To rank the features according to their importance, we utilized
Information Gain as one of the primary techniques for feature selection. This method
evaluates the contribution of each feature in relation to the target variable by measuring the

Table 4 Geographical positions of weather stations in the WeatherAUS dataset.

ID Location Latitude (S) Longitude (E) ID Location Latitude (S) Longitude (E)

1 Adelaide 34.93 138.60 26 Nhil 36.33 141.65

2 Albany 35.03 117.88 27 Norah Head 33.28 151.57

3 Albury 36.07 146.91 28 Norfolk Island 29.04 167.95

4 Alice Springs 23.70 133.88 29 Nuriootpa 34.47 139.00

5 Badgerys Creek 33.88 150.76 30 Pearce RAAF 31.67 116.02

6 Ballarat 37.56 143.85 31 Penrith 33.75 150.69

7 Bendigo 36.76 144.28 32 Perth 31.95 115.86

8 Brisbane 27.47 153.03 33 Perth Airport 31.94 115.97

9 Cairns 16.92 145.77 34 Portland 38.34 141.60

10 Canberra 35.28 149.13 35 Richmond 37.82 144.99

11 Cobar 31.50 145.84 36 Sale 38.11 147.07

12 Coffs Harbour 30.30 153.11 37 Salmon Gums 32.98 121.65

13 Dartmoor 37.92 141.27 38 Sydney 33.87 151.21

14 Darwin 12.46 130.85 39 Sydney Airport 33.95 151.18

15 Gold Coast 28.02 153.40 40 Townsville 19.26 146.82

16 Hobart 42.88 147.33 41 Tuggeranong 35.42 149.07

17 Katherine 14.45 132.27 42 Uluru 25.34 131.04

18 Launceston 41.43 147.14 43 Wagga Wagga 35.12 147.37

19 Melbourne 37.81 144.96 44 Walpole 34.98 116.73

20 Melbourne Airport 37.67 144.84 45 Watsonia 37.71 145.08

21 Mildura 34.21 142.13 46 Williamtown 32.81 151.84

22 Moree 29.46 149.84 47 Witchcliffe 34.02 115.10

23 Mount Gambier 37.83 140.78 48 Wollongong 34.42 150.89

24 Mount Ginini 35.53 148.77 49 Woomera 31.20 136.83

25 Newcastle 32.93 151.78
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mutual information. Specifically, it calculates the entropy on a particular attribute, as
expressed in Eq. (4):

Information Gain S;Að Þ ¼ Entropy Sð Þ �
X

v 2 values Að Þ

Svj j
Sj j Entropy Svð Þ (4)

where Entropy is defined by Eq. (5):

Entropy Sð Þ ¼ �
Xc

i¼1

pi log2 pið Þ: (5)

In this context, S represents the dataset, A is an attribute, v denotes all possible values of
the attribute A, and Sv is the subset of S where the attribute A has the value v.
The pi represents the proportion of instances belonging to the class i, with c denoting the
overall count of classes in the target variable “RainTomorrow”. For example, in this case,
the classes could be “Yes” (it will rain) and “No” (it will not rain). We established a
threshold of 0.01, ensuring that features with an Information Gain below this level were
discarded. This approach allows for the retention of only the most informative attributes,
thereby enhancing the efficiency of the model and reducing the risk of overfitting.

Figure 4 illustrates the feature importance scores across the selected features. It is
evident that “Humidity3pm” and “Rainfall” exhibit the highest feature importance,

Figure 3 Spatial distribution of weather stations in the WeatherAUS dataset, Map data ©2025
Google. Full-size DOI: 10.7717/peerj-cs.3022/fig-3
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indicating their significant contribution to predicting the target variable, “RainTomorrow”.
Other prominent features include “RainToday”, “Humidity9am”, “Cloud3pm”, and
“Sunshine”, which also provide valuable information. The graphical representation
underscores the importance of these features in our predictive model.

In the current study, we analyzed the impact of feature removal performance. This
involved systematically observing how the absence of features affected the overall accuracy
and robustness of the model. Common heuristic approaches from the literature were
considered for feature subset selection. These heuristics offer simple yet effective strategies
to reduce dimensionality. Specifically, log2 nð Þ and ffiffiffi

n
p

heuristics were examined, where n
represents the number of all features (n ¼ 22 in the WeatherAUS dataset), resulting in
approximate subset sizes of four or five features. Therefore, the model’s performance was
tested using the top-4 and top-5 ranked features. Although these reduced subsets achieved
reasonable accuracy (81.13% for the top-4 and 81.64% for the top-five features), the best
overall performance (83.54%) was obtained when a 0.01 threshold was used. Therefore,
considering this threshold, the top-14 feature set was used in the final model to maximize
predictive performance. This selection provided a good trade-off between model
complexity and generalization, ultimately enhancing the classifier’s ability to make
accurate predictions on unseen data.

EXPERIMENTAL STUDIES
This article presents a novel approach, called TRT, designed to emphasize more recent
training data, influencing the model’s decision-making more significantly. The TRT
method was evaluated on datasets containing both spatial and temporal precipitation data,
where it showcased its effectiveness. To demonstrate its practical application, the model
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Figure 4 The “Information Gain” values for selected features in the WeatherAUS dataset.
Full-size DOI: 10.7717/peerj-cs.3022/fig-4
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was tested on the real-world WeatherAUS dataset. The implementation of TRT was
developed in C# using the Weka libraries (Witten et al., 2016).

Although the proposed TRT model is primarily designed for short-term rainfall
classification—specifically, forecasting the likelihood of rain on the following day—the
temporal weighting mechanism it employs has the potential to be beneficial for long-term
prediction as well. To find the probability of rain on each day of the upcoming week, the
algorithm can be applied by recursive forecasting (predict day 1, then use that to help
predict day 2, and so on). By giving more weight to recent data, the model can quickly
adapt to changing environmental conditions, making it more responsive to current trends.
This responsiveness is crucial for forecasting tasks, especially when dealing with evolving
patterns. The temporal weighting system also reduces the influence of outdated or
irrelevant data, improving the model’s overall performance. When applied to long-term
forecasting, the temporal weighting approach it utilizes could be adapted by providing a
proper balance between recent trends and historical context.

The configuration and hyperparameters used for the RT classifier in our experiments
are detailed in Table 5. These parameters control various aspects of the model’s behavior,
such as the number of attributes randomly selected at each node as “KValue”, the
maximum depth of the tree “maxDepth”, and the minimum number of instances per leaf
“minNum”. Additionally, the parameter “minVarianceProp” influences the splitting
criteria for numeric attributes. The parameter “s” represents the number of temporal
partitions into which the training data is divided, corresponding to the number of
individual random trees constructed in the ensemble, as the size of the TRT model. A
larger value of “s” increases temporal resolution by enabling more precise emphasis on
recent data within the prediction process. To evaluate the sensitivity of the model’s square-
root-based weighting to different values of “s” (ranging from 2 to 10), a series of
experiments were conducted, and the results are presented in Table 6. Performance is
evaluated using accuracy, precision, recall, and F-measure. The results indicate that the
performance consistently improves as “s” increases, with the best accuracy (83.54%) and
F-measure (0.830) achieved at s = 10. This trend demonstrates that the model benefits from
finer temporal granularity, reinforcing the importance of recent data in improving
predictive performance. Furthermore, to empirically evaluate the effect of the proposed
square-root-based weighted voting scheme on TRT model robustness, we compared it
against two alternative voting strategies, including simple weighted voting and
power-weighted voting. In all three strategies, the temporal order of the trees is respected—
trees trained on more recent data are given greater influence in the voting process. In the
simple weighted voting approach, each tree is assigned a weight directly proportional to its
temporal position (e.g., weight = 1 for the oldest, 2 for the next, …, up to s for the most
recent tree). This linear scheme modestly favors recent data. The power-weighted voting
method intensifies this bias by assigning exponential weights (i.e., weight = 21 for the
oldest, 22 for the next, …, 2s for the most recent), resulting in a strong emphasis on the
most recent data. Our proposed square-root-based weighted voting strategy, in contrast,
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uses the square root of the temporal index (e.g.,
ffiffiffi
1

p
to

ffiffi
s

p
) to balance influence between

older and newer data more moderately. We evaluated the impact of each strategy using
accuracy, precision, recall, and F-measure. The results are summarized in Table 7. The
proposed square-root-based voting yielded the best performance across all metrics. The
simple weighted approach was followed closely, while the power-weighted scheme, despite
its strong temporal bias, slightly underperformed. These results demonstrate that our
square-root-based method provides a more balanced and robust integration of temporal
contributions within the ensemble.

Since the datasets have temporal sequences and the chronological order of observations
should be considered, the results were provided for the classifiers trained with the first 75%
of the records (from November 1, 2007, to June 12, 2015) and tested with the remaining
25% of the records (from June 13, 2015, to June 25, 2017). To assess the model’s
effectiveness comprehensively, we utilized several standard evaluation metrics, including
accuracy, precision, recall, and F-measure. The formulas for these metrics are presented in
Eqs. (6) to (9), respectively. Each of these metrics provides a different perspective on the
model’s performance within classification tasks. The mathematical definitions for the

Table 5 Hyperparameters of the classifier used in the TRT method.

Hyperparameter Description Value

KValue Number of randomly chosen attributes at each node. If 0, it defaults to log2 #predictorsð Þ þ 1: 0

maxDepth The tree’s maximum depth. If 0, the tree grows until all leaves are pure or contain fewer than the minimum number of
instances.

0

minNum Minimum number of samples per leaf. 1.0

minVarianceProp Minimum ratio of the overall variance for splitting a numeric attribute. 0.001

batchSize Number of samples to process in one batch during training. 100

numFolds Number of folds used in cross-validation (0 means no cross-validation). 0

Seed Seed value for random number generation, used for reproducibility of results. 1

breakTiesRandomly Whether to randomly break ties when splitting on attributes (True/False). False

Size (s) Number of temporal partitions and corresponding random trees used in the ensemble as the size of the model. 10

Table 6 Sensitivity analysis of the TRT model across different values of the size parameter s in
various evaluation metrics.

Size (s) Accuracy Precision Recall F-measure

2 79.01 0.784 0.790 0.787

3 82.49 0.812 0.825 0.819

4 81.86 0.806 0.819 0.812

5 82.97 0.816 0.830 0.823

6 83.20 0.819 0.832 0.826

7 83.35 0.821 0.834 0.827

8 83.47 0.822 0.835 0.828

9 83.48 0.823 0.835 0.829

10 83.54 0.824 0.835 0.830
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metrics based on true positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN) concepts.

• Accuracy: The ratio of correctly classified instances to the total number of instances,
calculated as:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

: (6)

• Recall: The ratio of true positive instances correctly identified out of all actual positive
instances, calculated as:

Recall ¼ TP
TP þ FN

: (7)

• Precision: The ratio of correctly predicted positive instances to the total predicted
positive instances, calculated as:

Precision ¼ TP
TP þ FP

: (8)

• F-measure: It combines precision and recall metrics through their harmonic mean,
ensuring a balanced evaluation of both, calculated as:

F-measure ¼ 2� Precision� Recall
Precisionþ Recall

: (9)

RESULTS
The results show a clear performance improvement when using TRT compared to the
standard RT model. As seen in Table 8, TRT achieved an accuracy of 83.54%, which
represents a 5% improvement over RT. Furthermore, TRT outperformed RT in terms of
other key metrics, including precision, recall, and F-measure. The results demonstrate that
TRT, with its emphasis on recent data through its temporal weighting strategy, enhances
predictive accuracy and reliability in forecasting next-day rainfall.

To further evaluate the robustness of this improvement, we conducted additional
experiments using 10 different random seeds (from seed 1 to seed 10) for training both
models. The goal was to assess model stability by analyzing the variance in accuracy across
runs. The RT model exhibited a variance of 0.1449, while the TRT model showed a notably
lower variance of 0.0692. This reduced variance indicates that TRT not only delivers higher
average accuracy but also offers more consistent performance across different
initializations. Such stability highlights the reliability of TRT and supports the conclusion

Table 7 Comparison of different weighting and voting strategies in various evaluation metrics.

Voting strategy Accuracy Precision Recall F-measure

Simple weighted 83.44 0.822 0.834 0.828

Power-weighted 82.96 0.816 0.830 0.823

Square-root-based weighted 83.54 0.824 0.835 0.830
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that the observed improvement in accuracy is not only statistically significant but also
robust with respect to variations in data splits and random initialization.

The detailed performance metrics for individual locations further emphasize the
effectiveness of the TRT model over the standard RT model. As presented in Table 9,
which shows the accuracy of each model across numerous regional datasets, TRT
consistently outperformed RT in all the regions. For instance, there is a significant increase
from 74.87% with RT to 80.85% with TRT for the SydneyAirport dataset. Similarly, the
accuracy was improved from 81.01% to 84.59% for the Albury dataset. For other locations,
such as Cobar and Mildura, TRT also demonstrated substantial enhancements, with
accuracies rising to 86.21% and 90.82%, respectively. Overall, TRT provided an average
improvement of 5.1% across all datasets, reinforcing its capability to deliver more reliable
predictions in rainfall classification by leveraging spatiotemporal information.

The improvements on various regional spatial datasets are not only quantitative but also
address a key modeling challenge, namely the tendency of traditional models to overlook
spatial heterogeneity by treating the dataset as a homogeneous whole. In contrast, TRT’s
evaluation was deliberately extended to individual geographic locations to capture
region-specific precipitation dynamics. As detailed in Table 9, performance was assessed
across 49 spatially diverse stations, where TRT consistently outperformed RT. This
regional evaluation strategy serves as a practical and effective solution to the spatial
integration challenge, achieving localized insight without requiring complex feature
engineering or explicit geospatial modeling. The consistent accuracy gains across all
regions underscore TRT’s robustness in capturing local weather variations. This spatial
breakdown not only validates TRT’s strong generalization capability but also demonstrates
its suitability for both nationwide forecasting and regionally adaptive applications.

The performance of the TRT model is further evaluated using precision, recall, and
F-measure metrics, as illustrated in Fig. 5. The proposed method demonstrated a notable
improvement across all three metrics compared to the standard RT method. Specifically,
precision increased by 4.3%, recall improved by 5%, and F-measure showed an
enhancement of 4.7% on average. These results indicate that TRT not only enhances
overall accuracy but also improves the model’s reliability in identifying true positive cases,
which is crucial for effective rainfall prediction. By integrating spatiotemporal information,
TRT successfully provided higher performance than RT across these important evaluation
metrics.

The effectiveness of the TRT model can also be illustrated through the examples of
confusion matrices, as shown in Table 10. For instance, in the Witchcliffe dataset, the
model achieved a good accuracy of 84.82%, by accurately predicting 474 no-rain and

Table 8 Performance comparison of RT and TRT on the WeatherAUS dataset.

Accuracy (%) Precision Recall F-measure

Dataset RT TRT RT TRT RT TRT RT TRT

WeatherAUS 79.57 83.54 0.786 0.824 0.796 0.835 0.791 0.830
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152 rain events, indicating a robust performance. Similarly, the model with the Dartmoor
dataset demonstrated an accuracy of 82.74%, by correctly forecasting 475 no-rain and
134 rain events, reflecting its ability to effectively identify instances of rainfall. Lastly, in the
MountGambier dataset, the model correctly classified 617 out of 758 instances. These
example confusion matrices highlight the superior performance of the TRT model in
forecasting rainfall across various locations.

Building upon the comparison of the TRT and TR models using various metrics such as
accuracy, precision, recall, F-measure, and the confusion matrix, we further evaluated the

Table 9 Accuracy of RT and TRT models across various regional spatial datasets.

Dataset RT TRT Dataset RT TRT Dataset RT TRT

Adelaide 82.66 83.57 Launceston 82.03 82.96 Richmond 81.71 86.31

Albany 71.09 75.86 Melbourne 71.59 76.68 Sale 74.80 82.00

Albury 81.01 84.59 MelbourneAirport 76.49 81.14 SalmonGums 79.57 81.33

AliceSprings 91.56 92.74 Mildura 87.63 90.82 Sydney 74.37 82.04

BadgerysCreek 80.05 84.97 Moree 85.57 87.54 SydneyAirport 74.87 80.85

Ballarat 76.22 80.98 MountGambier 78.63 81.40 Townsville 84.98 88.27

Bendigo 82.21 85.24 MountGinini 73.18 81.29 Tuggeranong 80.00 84.67

Brisbane 81.29 85.59 Newcastle 76.59 77.27 Uluru 89.76 90.55

Cairns 70.28 77.24 Nhil 80.66 84.22 WaggaWagga 83.20 83.47

Canberra 81.05 84.80 NorahHead 75.31 79.13 Walpole 76.45 79.57

Cobar 82.73 86.21 NorfolkIsland 66.26 74.09 Watsonia 76.27 82.27

CoffsHarbour 74.70 80.11 Nuriootpa 85.22 86.55 Williamtown 72.46 80.44

Dartmoor 78.13 82.74 PearceRAAF 85.82 88.86 Witchcliffe 79.40 84.82

Darwin 81.70 85.21 Penrith 83.27 84.62 Wollongong 75.87 82.98

GoldCoast 72.75 78.39 Perth 85.36 86.73 Woomera 92.65 93.18

Hobart 76.54 79.80 PerthAirport 83.40 86.06

Katherine 84.10 85.38 Portland 70.76 76.64

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

F-Measure

Recall

Precision

Temporal Random Tree Random Tree

Figure 5 The mean values of precision, recall, and F-measure for temporal random tree (TRT) and
random tree (RT) models, illustrating the performance improvements of TRT.

Full-size DOI: 10.7717/peerj-cs.3022/fig-5
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statistical significance of the observed performance differences between the two models
across various regional spatial datasets. To assess whether the results were statistically
meaningful, we employed the Mann-Whitney U test (Emerson, 2023), also known as the
Wilcoxon rank-sum test, which is a non-parametric test used to compare two independent
samples. It tests the null hypothesis that the two groups come from the same distribution,
meaning the probability of one sample being greater than the other is equal. The test is
useful when the data does not meet the assumptions required for parametric tests, such as
normality. It assumes that the observations are independent, and the data is at least
ordinal, meaning that for any two observations, one can be ranked as greater than the
other. The null hypothesis H0 posits that the two groups have identical distributions, while
the alternative hypothesis H1 suggests that the distributions differ. This test is particularly
beneficial when dealing with non-normal distributions of data. Additionally, the p-value
obtained from this test indicates the likelihood of observing the results under the null
hypothesis that the two samples come from the same distribution.

In our study, the obtained p-value was 0.0003422, which is far below the standard
significance threshold of 0.05. According to conventional interpretations, a p-value less
than 0.01 is considered highly significant, indicating very strong evidence against the null
hypothesis. Values between 0.01 and 0.05 are deemed statistically significant, while those
between 0.05 and 0.10 are often regarded as marginally significant or suggestive but not
conclusive. P-values greater than 0.10 are typically considered not significant. Therefore,
our result falls in the “highly significant” category, reinforcing the rejection of the null
hypothesis and confirming that the difference between TRT and RT models is statistically
meaningful.

The mathematical expression of the Mann-Whitney U test is presented in Eq. (10) as
follows:

U ¼ n1n2 þ n1 n1 þ 1ð Þ
2

� R1: (10)

In this equation, n1 and n2 indicate the sample sizes of the two groups being compared,
while R1 denotes the sum of the ranks assigned to the values in the first group. The formula
uses these values to calculate the U statistic, which is a measure of the difference in ranks
between the two groups.

To provide a deeper understanding of the TRT method, we exemplify a part of its
decision tree structure for the WeatherAUS dataset in Fig. 6. This decision tree captures

Table 10 Confusion matrix examples for the TRT model across different datasets.

Dataset Accuracy Confusion matrix

Witchcliffe 84.82% 474 42
70 152

Dartmoor 82.74% 475 48
79 134

MountGambier 81.40% 466 65
76 151
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the hierarchical decision-making process, where each internal node corresponds to a
feature split, and the branches represent possible outcomes based on feature values. The
leaf nodes indicate the final predictions. For example, the root node of the tree splits based
on the “Rainfall” feature, which represents the amount of rainfall recorded for the day,
helping to determine whether it will rain tomorrow by reaching the leaf nodes. If “Rainfall”
<0.25, the tree further splits based on “Humidity3pm” (e.g., less than 66.5), and if this is
also true, it evaluates “Sunshine” (e.g., less than 10.55). The leaf node in this branch might
be labeled “No”, indicating no rain tomorrow. Conversely, when “Rainfall” ≥0.25, the tree
continues the evaluation based on features like “Pressure9am” (e.g., greater than 1,011.65),
followed by “Humidity3pm”. This path might lead to a leaf node labeled “Yes”, indicating
rain tomorrow. This decision tree from the WeatherAUS dataset illustrates how the TRT
method integrates both temporal and spatial features—such as humidity, pressure,
sunshine, and temperature—to forecast precipitation.

In addition to illustrating the hierarchical structure, we analyzed feature importance
based on their frequency of appearance near the top levels of the tree and their respective
scores. Features such as “Rainfall”, “Humidity3pm”, and “Pressure9am” consistently
appear in early splits, indicating their dominant role in shaping the prediction. This
quantitative insight confirms that the model prioritizes meteorologically relevant variables,
further reinforcing the success of TRT in using informative features for accurate rainfall
classification.

DISCUSSION
In this study, we compared the proposed TRT method with the state-of-the-art
methods (Akram et al., 2024; Asaddulloh et al., 2023; Pangesti, Resti & Cahyono, 2023;

Figure 6 Partial illustration of the temporal random tree classifier across the WeatherAUS dataset.
Full-size DOI: 10.7717/peerj-cs.3022/fig-6
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Table 11 Comparison of the TRT method with the state-of-the-art methods for rainfall classification over the WeatherAUS dataset.

Reference Year Method Accuracy
(%)

Relative performance
improvement

Akram et al. (2024) 2024 Naive Bayes 80.30 4.03

LogitBoost 82.20 1.63

Repeated Incremental Pruning to Produce Error Reduction
(RIPPER)

82.00 1.88

Decision Stump 77.60 7.65

Adaptive Boosting (AdaBoost) 80.20 4.16

Random Forest 83.20 0.41

Artificial Neural Network 82.50 1.26

K* 79.20 5.48

Asaddulloh et al. (2023) 2023 Support Vector Machines (Linear) 82.29 1.52

Support Vector Machines (RBF) 77.87 7.28

Support Vector Machines (Polynomial) 78.93 5.84

Support Vector Machines (Sigmoid) 77.79 7.39

Naive Bayes (Multinomial) 74.81 11.67

Naive Bayes (Gaussian) 78.95 5.81

Naive Bayes (Bernoulli) 79.54 5.03

Logistic Regression 72.45 15.31

Pangesti, Resti & Cahyono (2023) 2023 Fuzzy Naive Bayes 78.19 6.84

Naive Bayes 77.13 8.31

Decision Tree 76.66 8.97

Ensemble Method 79.29 5.36

Mahadware et al. (2022) 2022 Categorical Boosting (CatBoost) 81.37 2.67

Perceptron 77.60 7.65

Umamaheswari & Ramaswamy
(2022)

2022 K-Nearest Neighbors (KNN) 71.09 17.51

Back Propagation Neural Network (BPNN) 71.29 17.18

Convolutional Neural Network (CNN) 73.93 13.00

Iterative Convolutional Neural Network (ICNN) 76.78 8.80

Deep Convolutional Neural Network (DCNN) 79.85 4.62

He (2021) 2021 Logistic Regression with Active Learning 82.00 1.88

Logistic Regression with Random Sampling Learning 82.20 1.63

Zhu & Liang (2021) 2021 Deep Neural Network (DNN) 65.00 28.52

Naive Bayes using Smooth Sensitivity (SSNB) 64.00 30.53

Support Vector Machines 64.00 30.53

Deep-Neural-Network-Based Model (DNN++) 62.00 34.74

Naive Bayes 60.00 39.23

Siregar et al. (2020) 2020 Naive Bayes 77.22 8.18

Decision Tree 79.46 5.13

Random Forest 82.38 1.41

Average 76.52 9.98

Proposed approach Temporal Random Tree (TRT) 83.54
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Mahadware et al., 2022; Umamaheswari & Ramaswamy, 2022; He, 2021; Zhu & Liang,
2021; Siregar et al., 2020) on the same WeatherAUS dataset in Table 11 from the past five
years. The results demonstrate that TRT achieved an average improvement of 9.98%
compared to the existing methods. To further emphasize this improvement, we introduced
the relative performance improvement column, which quantifies the percentage difference
in accuracy between TRT and each baseline method. This represents how consistently TRT
outperforms the others across a broad range of algorithms. By reaching the highest
accuracy of 83.54%, it surpassed all other methods. This marginal improvement over
previous methods suggests that TRT’s ability to effectively model temporal dependencies
alongside spatial information provides an edge. For example, TRT outperformed other
competitive methods (Akram et al., 2024), such as K� (79.20%), Naive Bayes (80.30%), and
RIPPER (82%), with relative performance improvement of 5.48%, 4.03%, 1.88%,
respectively, reaffirming its robustness in handling complex spatiotemporal data.

Furthermore, several neural network-based approaches, including artificial neural
network (ANN) (Akram et al., 2024), back propagation neural network (BPNN)
(Umamaheswari & Ramaswamy, 2022), convolutional neural network (CNN), iterative
CNN (ICNN), deep CNN (DCNN), and deep neural network (DNN) (Zhu & Liang, 2021),
were evaluated. While these models generally excel in multiple prediction tasks, their
performance in this study (ranging from 65.00% to 82.50%) fell short compared to TRT. A
key reason lies in their limited ability to natively capture explicit temporal dependencies,
especially in precipitation forecasting, where spatial and temporal interactions are key. In
contrast, TRT’s temporal weighting mechanism prioritizes recent data, enabling it to make
more context-aware decisions based on time-sensitive meteorological patterns. This
capability is particularly critical in rainfall classification, where recent weather conditions
often have the greatest influence on next-day predictions. Thus, TRT’s design inherently
addresses a limitation often observed in conventional neural network-based methods when
applied to temporally dynamic environmental data.

Methods like SVM (Asaddulloh et al., 2023), despite their versatility across various
kernels, were less effective in capturing time-dependent patterns, as seen with the lower
performance of SVM (RBF) (77.87%), SVM (Polynomial) (78.93%), SVM (Linear)
(82.29%), and SVM (Sigmoid) (77.79%). The proposed method clearly showed its
superiority over ensemble methods (Akram et al., 2024) like AdaBoost (80.20%),
LogitBoost (82.20%), Ensemble Method (Pangesti, Resti & Cahyono, 2023), CatBoost
(Mahadware et al., 2022), and Random Forest (83.20%), with relative performance
improvement of 4.16%, 1.63%, 5.36%, 2.67%, 1.41%, respectively. Although Random
Forest, as a tree-based ensemble model, performed well, it still lagged behind TRT. This
performance gap can be attributed to the fact that Random Forest does not incorporate a
temporal weighting mechanism or prioritize recent data, whereas TRT does. The temporal
focus in TRT allows it to give more weight to recent, highly informative data, which is
crucial in tasks like rainfall classification, where current meteorological conditions
are more relevant than older data. Decision tree-based models (Akram et al., 2024;
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Pangesti, Resti & Cahyono, 2023; Siregar et al., 2020) such as decision stump (77.60%)
showed lower accuracies compared to TRT, likely due to their weaker handling of temporal
structures. In summary, the superior performance of TRT, especially over neural networks
and ensemble models, underscores the advantage of its dual focus on spatial and temporal
information. This makes it particularly well-suited for rainfall classification, where both
dimensions are critical for accurate predictions.

CONCLUSIONS AND FUTURE WORKS
In this work, we constructed a machine-learning-based model that can be utilized in
developing proactive alert systems for timely and precise rainfall classification. This study
introduces TRT, a novel approach that emphasizes the significance of recent data. Our
findings indicate that TRT achieved an impressive accuracy of 83.54%, representing a 5%
improvement over the standard RT model. Furthermore, TRT demonstrated
enhancements across other critical evaluation measures, including precision, recall, and
F-measure, highlighting its robustness and reliability in both classes (rain and no-rain).
Notably, TRT consistently outperformed RT across numerous spatial datasets, showcasing
significant accuracy gains in several regions. For instance, Albury’s accuracy increased
from 81.01% to 84.59% with TRT. Overall, TRT provided an average improvement of 5.1%
across all datasets, reinforcing its capability to deliver more reliable predictions in rainfall
classification through the effective integration of spatiotemporal information. This
improvement was statistically significant, as confirmed by the Mann-Whitney U test with
p-value of 0.0003422, which is well below the significance threshold of 0.05. Importantly,
the proposed TRT method achieved an average improvement of 9.98% compared to the
state-of-the-art techniques, with the highest accuracy of 83.54%, surpassing all other
methods. Moreover, the improvements in precision (4.3%), recall (5%), and F-measure
(4.7%) indicate that TRT enhances not only overall accuracy but also the model’s ability to
recognize true positive cases, which is essential for effective rainfall prediction. The model’s
design supports the development of early warning systems, enabling timely and accurate
forecasts that can significantly enhance decision-making and response strategies in
weather-related events.

Future work can proceed in several aspects. One promising direction is that the
development of a web/mobile application can provide a user-friendly interface for
accessing TRT’s predictions. This application would enable real-time use of TRT’s
forecasting capabilities, empowering decision-makers to make timely and informed
responses to weather-related events. In this way, it will be possible to make it as a versatile
and important asset for precipitation prediction. In the future, in addition to rainfall
prediction, the proposed TRT method can also be used in other time-varying domains
such as traffic conditions, air pollution, shifting migration patterns, stock market, and
remote sensing.

APPENDIX A
Table A1 lists the abbreviations used in this study.
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