Submitted 26 April 2025
Accepted 19 June 2025
Published 13 October 2025

Corresponding author
Panfei Yang, yangpanfei@ceprei.com

Academic editor
Syed Hassan Shah

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.3021

© Copyright
2025 Liu et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

KECO: toward efficient task offloading in
mobile edge computing with federated
knowledge distillation

Zhuang Liu', Dong Li* and Panfei Yang®

! Guangzhou Human Resources and Social Security Data Service Center, Guangzhou, Guangdong,
China

% China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou,

Guangdong, China

ABSTRACT

With the diversification and personalization of mobile user demands, as well as the
rapid development of distributed computing technology, leveraging mobile edge
computing task offloading to provide users with convenient services has become a
research focus. However, existing methods still face issues such as time consumption,
high resource consumption, and data silos. Based on this perspective, we propose the
federated Knowledge distillation based mobile Edge Computing task Offloading
(KECO) method to achieve accurate task offloading and system energy saving.
Through federated distillation learning, a teacher-student model is established, and
complex and parameter-rich models are used as teachers to assist in the training of
the student model. The teacher model transfers the knowledge and information it
had learned to the student to enhance the generalization ability of the student.
Finally, using the lightweight and flexible nature of the student model, it is deployed
in a distributed system to implement the task offloading strategy in mobile edge
computing. Experiments show that KECO performs well in large-scale task
classification and allocation, and has efficient, reliable, and wide application
potential.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and Machine
Learning, Data Science, Mobile and Ubiquitous Computing

Keywords Mobile edge computing, Task offloading, System energy saving, Federated learning,
Distributed systems

INTRODUCTION

In recent years, 5G based wireless communication technology has been widely used, and
mobile edge computing (MEC) (Dong et al., 2024; Yadav ¢ Nanivadekar, 2023; Liu et al.,
2024) technology has also been rapidly developed. Diversified task demand processing
based on mobile edge environment (Hu et al., 2024; Liu, Liu ¢ Li, 2024; Chen et al., 2024)
has become one of the research hotspots. In order to realize distributed task offloading of
MEC, we can use the method based on multi-edge device collaborative computing to
realize combinatorial optimization and diversified task processing. An efficient distributed
task processing method can meet the parallel processing requirements including a single
user and multiple mobile computing devices. On the contrary, when the MEC task
offloading method based on the traditional framework and optimization model faces the
large-scale and multi-class tasks in the mobile communication environment, the system

How to cite this article Liu Z, Li D, Yang P. 2025. KECO: toward efficient task offloading in mobile edge computing with federated
knowledge distillation. Peer] Comput. Sci. 11:e3021 DOI 10.7717/peerj-cs.3021

http://dx.doi.org/10.7717/peerj-cs.3021
mailto:yangpanfei@�ceprei.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.3021
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

Training Dataset for MEC
Task Offloading

Teacher Model | { Student Model
7 7

~

\ 4

Softmax

Soft Labels (Teacher)

Distillation
Loss

Soft Labels (Student)

Student
Loss

Actual Hard Labels

|

[Total Loss]

Hard Labels (Student)

Figure 1 The MEC task off loading under federated knowledge distillation.
Full-size K&l DOT: 10.7717/peerj-cs.3021/fig-1

may encounter the problems of increased computing cost, sudden increase of
communication cost and load imbalance. Therefore, it is necessary to explore an efficient
task processing strategy in the current process of MEC.

At present, many new computing paradigms are developing rapidly and have attracted
wide attention. In the face of increasing user task requests and diversified task types,
combining different domains has become a trend to solve this problem. As shown in Fig. 1,
the purpose of this work is to combine the distributed computing idea and the frontier
artificial intelligence, and realize the integration of multi-domain technologies, so as to
achieve the reasonable allocation of collaborative computing tasks in the MEC
environment. The goal is to design and implement efficient collaborative task processing
methods, achieve reasonable task allocation and system energy saving, and reduce task
processing costs.

Federated learning framework (Lee et al., 2024; Li et al., 2024) is adopted to realize
parameter interaction between multiple mobile computing devices and parameter update

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3021 2/21

http://dx.doi.org/10.7717/peerj-cs.3021/fig-1
http://dx.doi.org/10.7717/peerj-cs.3021
https://peerj.com/computer-science/

PeerJ Computer Science

of calculation model without exposing the local private data of each mobile device, and
multi-scenario task processing and global energy consumption minimization are realized
from the whole system level. At the same time, based on the big model idea (Xu et al., 2024;
Yuan et al., 2024), the larger deep neural network model (Darban et al., 2024; Chauhan
et al., 2024) obtained by learning is transferred to the lightweight network model. The
student model learns the parameters of the model by imitating the output information of
the teacher model on the agent data set. Under the condition that the task data is
constantly updated, a federation knowledge distillation process under the incremental
learning mode for task collaborative processing is realized through the interactive learning
between the large model and the mobile lightweight model, so as to realize the offloading
strategy of the collaborative computing task.

The main contributions of this work are as follows:

(1) Aiming at the rapid increase in the number of task requests of mobile users and the
diversification of task categories, a task offloading method of MEC based on federated
knowledge distillation learning is proposed;

(2) A joint task offloading model based on knowledge distillation is proposed. By
federating the data of participating aggregation nodes, every mobile device can learn the
latest task offloading strategy. Meanwhile, transfer learning between teacher model and
student model is introduced to improve the universality of the algorithm.

(3) Experimental verification shows that this method can achieve reasonable task
offloading strategy and system energy saving. Compared with many advanced methods, it
convincingly demonstrates its advantages in task offloading in MEC environments.

RELATED WORK

In this section, we will cover the related work to MEC, federated machine learning, and
federated knowledge distillation.

In terms of MEC, Loutfi et al. (2024) recently aimed to outline the intersection between
mobile awareness and MEC on 6G networks. The general concept of MEC in 6G mobile
network is introduced. This will highlight the integration between MEC and 6G, bringing
more efficient network and service migration to the edge, reducing latency and enhancing
the user experience. At the same time, the survey discusses augmented reality and MEC
applications. The survey discusses the integration of mobile awareness and MEC in
upcoming mobile applications and highlights the need for 6G networks. The result of this
integration is seamless communication during the handover between the service base
station and the target base station. This study helps to understand the future trends of
mobile perception and MEC operation in 6G mobile communications. Finally, it provides
a comprehensive overview of the challenges and future research directions of MEC
mobility management in 6G mobile networks, highlighting the complexity and potential of
integrating mobile awareness and mobile edge. Shah et al. (2023) studied the utility
function maximization problem by jointly optimizing the computing power, user
association, performance, duration and location of user equipment (UE) in unmanned
aerial vehicle (UAV)-assisted MEC networks under disaster scenarios. Several constraints
are considered, including latency, quality of service, and coverage. The optimization

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3021 3/21

http://dx.doi.org/10.7717/peerj-cs.3021
https://peerj.com/computer-science/

PeerJ Computer Science

problem is a mixed integer nonlinear programming problem. Finally, a multi-stage
offloading algorithm based on learning algorithm and interior point method is proposed to
obtain a feasible solution. Alzubi et al. (2023) address this issue by proposing a
blockchain-enabled security management framework for MEC environments. This
approach provides another level of security and includes blockchain security features such
as tamper-resistant, immutable, transparent, traceable, and distributed ledgers in MEC
environments. The framework ensures the secure storage of data in the MEC environment.
Wi et al. (2023) proposed a MEC system based on Software Defined Network (SDN). In
MEC systems, SDs can oftload compute tasks to edge servers to reduce processing latency
and avoid energy waste. At the same time, with the programmability, scalability and
isolation of the control plane and data plane of SDN, the SDN controller can manage edge
devices within the MEC system. Secondly, based on random game, the problem of
computing offload and resource allocation in MEC system is studied, and a model of
computing offload based on random game is established. It is further proved that the
multi-user stochastic game in this system can reach Nash equilibrium. At the same time,
each SD is further treated as an independent agent, and a random-game based resource
allocation algorithm with preferential experience playback (SGRA-PERs) is designed to
minimize energy consumption and processing latency of multi-agent reinforcement
learning. Xiao et al. (2022) proposed a MEC service migration method based on alliance
game and location awareness for the redistribution of mobile users in crowded scenarios.
The proposed methods include: using the improved K-means clustering method, MEC
servers are divided into several alliances according to their Euclidean distance; discovering
hot spots in each alliance region and dispatch services according to their corresponding
cooperation; migrating services to appropriate edge servers to achieve high utilization and
load equity among consortium members. To address the performance degradation due to
interference between radar sensing and MEC, Huang et al. (2022) utilized advanced
intelligent reflectors (IRS) to improve the performance of radar sensing and MEC. The
interaction between computational offload transmission and radar perception in MEC is
further characterized by using radar estimation information rate as the performance index
of radar perception and considering the assistance of IRS. Under the premise of meeting
the requirement of radar estimated information rate and calculating offloading delay
constraint, an optimization problem is proposed to minimize the total energy
consumption of all devices. Finally, an effective algorithm is proposed to optimize the
computing and communication resources.

The above work represents the latest research trends in MEC, covering topics such as
6G networks, blockchain, dynamic resource allocation, security and privacy, joint learning,
software-defined networking, and service migration. These studies contribute to the
advancement of MEC technology and provide valuable insights for future research and
development in the field.

On the federal machine learning front (Chen, Zhou ¢ Zhou, 2023), recently Nguyen
et al. (2022) conducted a comprehensive investigation into the use of federated learning
(FL) in smart healthcare. It starts with the latest developments in FL, motivation and
requirements for using FL in smart healthcare. It then discusses the latest FL designs in

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3021 4/21

http://dx.doi.org/10.7717/peerj-cs.3021
https://peerj.com/computer-science/

PeerJ Computer Science

smart health, from resource aware FL, security and privacy aware FL to incentive FL and
personalization FL. This was followed by an updated review of FL’s emerging applications
in key healthcare areas, including health data management, remote health monitoring,
medical imaging and COVID-19 detection. It concludes with an analysis of several recent
FL-based smart healthcare projects and highlights key lessons learned from the survey.
Zhu et al. (2023) conducted a comprehensive survey of the challenges, solutions, and future
directions of BlockFed (BlockFed). First, it identifies key problems in federated learning
and explains why blockchain offers a potential solution to these problems. Second, based
on how federated learning and blockchain functions are integrated, the existing system
models are divided into three categories: decoupling, coupling, and overlapping. Then, the
advantages and disadvantages of these three system models are compared, the
disadvantages are considered as the challenges BlockFed faces, and the corresponding
solutions are studied. Sun et al. (2023) propose a fine-grained training strategy for
federated learning to accelerate its convergence in MECs with dynamic communities. The
scheme is based on multi-agent reinforcement learning, which enables each edge node to
adaptively adjust its training strategy (aggregation time and frequency) according to
network dynamics, while compromising each other to improve the convergence of
federation learning. To further adapt to the dynamic community in MEC, they propose a
meta-learning-based scheme where new nodes can learn from other nodes and rapidly
migrate scenes, thereby further accelerating the convergence of federated learning. He ef al.
(2023) proposed an architecture that combines digital twin (DT) and MEC technologies
with FL framework, in which DT networks can virtually mimic the state and network
topology of physical entities (pe) for real-time data analysis and network resource
optimization. Using MEC’s computing offload technology, the resource constraint of MDs
and the congestion of core network are alleviated. FL is further used to construct DT model
based on pe running data. Then, based on this, the computational offloading and resource
allocation problems are co-optimized to reduce discrete effects in FL. Since the objective
function is a stochastic programming problem, a Markov decision process (MDP) model is
established and the deep deterministic strategy gradient (DDPG) algorithm is used to solve
the objective function. Sharma et al. (2022) aim to minimize the total energy consumption
of the underlying Unmanned Aerial System (UAS) with MEC and non-orthogonal
multiple access (NOMA) systems. Markov decision process (MDP) is used to transform
the optimization problem into multi-agent reinforcement learning (MARL) problem. At
the same time, in order to achieve the optimal strategy and reduce the total energy
consumption of the system, a multi-agent joint reinforcement learning (MAFRL) scheme
is proposed.

From the above work, we can observe that federated machine learning has the ability to
overcome the problem of data silos through privacy-preserving model training.

In terms of federated knowledge distillation, Wu et al. (2022) proposed a federated
learning method Federated Knowledge Distillation (FedKD), based on adaptive mutual
knowledge distillation and dynamic gradient compression technology. FedKD was
validated in three different scenarios requiring privacy protection, and the results showed
that through centralized model learning, FedKD minimized communication costs by

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3021 5/21

http://dx.doi.org/10.7717/peerj-cs.3021
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Comparison of different types of federal knowledge distillation methods. The main learning methods of federated knowledge distillation
which integrates the technical features, applicable scenarios and performance.

Type Technology Advantages Limitations
Parameter The client uploads logits or soft labels, and This reduces communication overhead and Generate soft targets by relying on public
aggregation the server aggregates them for distillation. mitigates the impact of non-independent datasets, with relatively weak privacy
and identically distributed (Non-IID) data. protection.
Local The teacher-student model distillation is It protects the privacy of the original data ~ The local computing resources are highly
distillation completed locally on the client side, and and supports model heterogeneity. consumed, thus an efficient distillation
only the student model is uploaded. strategy needs to be designed.
Differential ~ Adding noise (such as the Laplace Complies with strict privacy protection Noise introduction leads to a decrease in
privacy mechanism) during the logits requirements (e-DP), with strong model performance (approximately
enhanced transmission or aggregation stage. compliance. 3-5% accuracy loss).
version
Dynamic Divides the model into blocks for Reduces 31% of communication bandwidth The inter-block dependencies are
block-level transmission, and the client selectively and adapts to heterogeneous computing complex, and the convergence speed is
distillation receives and distills the key modules. capabilities. relatively slow.
Single-round The client uploads the local model only The communication cost is extremely low, — The model performance is limited by the
distillation once, and the server aggregates the suitable for high-latency networks. single-round knowledge fusion, and the
distillation in one go (One-Shot). effect is poor in Non-IID scenarios.
Multimodal ~ Cross-modal knowledge transfer (such as Breaks through the limitations of Requires the design of cross-modal
distillation from text to image), client-side sharing of single-modal data, enhances the alignment loss function, with high

modality-independent features.

generalization ability of the model. training complexity.

94.89% and achieved competitive results. FedKD offers the potential to effectively deploy
privacy-protecting intelligent systems in many scenarios, such as smart healthcare and
personalization. Han et al. (2022) proposed FedX, an unsupervised federated learning
framework. Models learn unbiased representations from decentralized and heterogeneous
local data. It uses bilateral knowledge distillation with comparative learning as the core
component, allowing federated systems to operate without requiring clients to share any
data characteristics. In addition, its adaptive architecture can serve as an add-on module to
existing unsupervised algorithms in federated environments. Ma et al. (2022) proposed
continuous distillation Federated Learning (CFeD) to solve the problem of catastrophic
forgetting under FL. CFeD performs knowledge distillation on both the client and server,
with each party independently owning an unlabeled proxy dataset to mitigate forgetting. In
addition, CFeD assigned different learning objectives to different clients, namely learning
new tasks and reviewing old tasks, aiming to improve the learning ability of the model. Yao
et al. (2023) proposed a new approach to heterogeneous federated learning, fedGKD,
which incorporates knowledge from historical global models and guides local training to
mitigate the “customer drift” problem. The fedGKD was evaluated by conducting a large
number of experiments on various computer vision (CV) and natural language processing
(NLP) datasets in different heterogeneous settings (i.e., CIFAR-10/100, Tiny-Imagenet,
AG News, SST5). The proposed method guarantees convergence under general
assumptions and is superior to the most advanced baselines under non-Independent and
Identically Distributed (non-1ID) federated settings. Chen et al. (2023) proposed a
federated learning framework based on transferred knowledge in a distributed system with

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3021 6/21

http://dx.doi.org/10.7717/peerj-cs.3021
https://peerj.com/computer-science/

PeerJ Computer Science

limited resources. A federated learning optimization problem based on knowledge
distillation considering dynamic local resources is solved. This method uses knowledge
distillation for federated learning, which avoids taking up expensive network bandwidth or
bringing heavy burden to the network. Theoretical analysis proves the convergence of
learning process. Table 1 is a comparison of the main learning methods of federated
knowledge distillation, which integrates the technical features, applicable scenarios and
performance.

To sum up, with the continuous development of machine learning, researchers have
integrated the most cutting-edge technologies such as natural language models and
federated learning to achieve multi-domain integration and create a new computing
paradigm.

FORMALIZATION

For the local computing task latency, when users process some tasks locally, time delay can
be set as t;, which is determined by task allocation ratio ¢, task quantity A, central
processing unit (CPU) resource required by local processing each bit of data cpu and local
computing resource C;, which can be expressed as follows:

com € XA X cpu
L - CL .
The computing energy consumption calculated locally by the user can be expressed by

E;, the size of which is related to the user’s effective switching capacitance p and its chip
properties, which can be expressed as follows:

EL =¢exAxcpux px C’

In a multi-edge and single-user MEC system, user send s part of the task to the ith edge
device, the expression for the transfer rate V(i) is as follows:

Pr|sr?
V(i) = B'log <1 + :
i 2 B? X 5ltr

where B represents the bandwidth of the user to the ith edge device, P;"" represents the
transmitted power of the user to the ith edge device, S, represents the status information
between the user and the nth edge device, and ;" represents the power spectral density of
noise.

Then we can derive the expression of the task transfer delay #,,.(i) for the user to send the
task to the ith edge device, which can be expressed as follows:

A- &
(i) = R
ul) Vi (i)

where ¢;(i = 1,2,...,1I) indicates the proportion of tasks assigned to the ith edge device.

Then, we can get the expression of transmission energy consumption Ey, (i) for the user
to send the task to the ith edge device, that is:

E(i) = P - ty(i).

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3021 7/21

http://dx.doi.org/10.7717/peerj-cs.3021
https://peerj.com/computer-science/

PeerJ Computer Science

While the user computes some tasks locally, sends the remaining tasks to the edge
devices. The task computation delay of the ith edge device computing task can be defined
as follows:

& X A X cpu;
i - ’
Gi

where C; indicates the computing resources of the ith edge device, and cpu; indicates the

com __

number of CPU revolutions required by the ith edge device to compute 1 bit of data.
Based on the above, it can be deduced that the computing energy consumption E;“*" for
the user to transmit the task to the ith edge device is:

E" =& x A X cpu; X p; X C,
where p; represents the effective switching capacitance of the ith edge device.

Finally, for the modeling of energy consumption problem, the following optimization
problem can be constructed from the formalized process:

&,6;,B" PI"
’ i i=

I
min <8><Axcpuxp><CL2+Z(P§’~ttr(i)—|—e,-><A><cpu,~><p,-><C,~2)).
i—1

THE PROPOSED ALGORITHM

System architecture

This article mainly introduces the architecture of the MEC which consists of multiple edge
devices and a user, and describes how users can execute a computing task locally and
offload the task to multiple edge devices at the same time. In particular, we construct a data
processing and transfer model based on the computing latency of a user executing a task
locally, the computing latency of a user transferring a task to multiple edge devices, and the
computing latency of a task executed on the edge devices.

As shown in the Fig. 2, the MEC assisted offloading calculation model in the scenario of
single user and multiple edge devices is constructed. The system consists of multiple edge
devices and a single user terminal which together act as a data processing center. The edge
equipment and a single user jointly build the federated knowledge distillation model, and
perform parameter updating and incremental training. To optimize system energy
consumption, this work proposes a joint allocation scheme based on MEC task allocation
ratio, user transmit power and bandwidth. The user computes some tasks locally, and then
sends the remaining computing tasks to multiple edge devices deployed at the network
edge. The edge devices calculate the tasks after receiving the tasks. The calculation delay
and transmission delay of the tasks are taken into account so as to construct the system
model.

Main idea of proposed method

In this work, an innovative edge federation learning algorithm is designed, which
incorporates knowledge distillation technology. Compared with the traditional federated
learning style, this marginal federated learning based on knowledge distillation has its
unique features in each round of learning process. As shown in the Fig. 3, clients selected to

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3021 8/21

http://dx.doi.org/10.7717/peerj-cs.3021
https://peerj.com/computer-science/

PeerJ Computer Science

Global Model
Task Requests E
Ti(t Dt
(A (Task Queue] —‘g

Task Data

MEC Device N

Figure 2 The view of system architecture. Full-size E&] DOTI: 10.7717/peerj-cs.3021/fig-2

'S
i (\Client Group x'
| Local Model ;
Training |
Download ! PN |
! a |
Aggregate ! > Client x1 |
: |
| coe |
Download L i
| |
! Soft abels Hard Labels Predlctwn |
p | MEAN |
: |
v Aggregate i |
i
Global Mode : Logists :
Update = Lol ~ _J

Client Group y'
Global Soft Labels] .&oeal Model
A Q Training

°o°

! > Clze 7 y1 |

|

|

Client :
|

|

|

|

|

Soft abels Hard Labels Predtctwn |
|

|

|

|

)

Download

I
|
| Vv MEAN
I
Aggregate '
l L Logists)
l

Figure 3 The mobile edge task off loading based on federated knowledge distillation.
Full-size K&l DOT: 10.7717/peerj-cs.3021/fig-3

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3021 00 j9/21

http://dx.doi.org/10.7717/peerj-cs.3021/fig-2
http://dx.doi.org/10.7717/peerj-cs.3021/fig-3
http://dx.doi.org/10.7717/peerj-cs.3021
https://peerj.com/computer-science/

PeerJ Computer Science

participate in federated learning download not only the global model from the edge server,
but also the global soft label. During the local training process, the client uses both the local
hard label and the downloaded global soft label as optimization targets. In addition, it
generates new sample logits while the client trains the local model. The edge server will
collect the local model parameters and sample logits uploaded by the client for aggregation
operation. It trains the global model and generates new global soft labels. These new global
models and global soft labels will be used for the next round of federated learning. The edge
federated learning architecture based on knowledge distillation proposed in this section
consists of an edge server and several clients.

In the framework of the edge federated learning algorithm based on knowledge
distillation technology designed in this work, we assume that the federated learning
training process consists of a total of T iterations. After tth iteration, the client completes
the local model update, the member of the client set x, will upload the local model
parameters and the sample logits to the edge server. The member of the client set y uploads
only the sample logits to the edge server. The edge server then performs an aggregation of
the global model based on the received data, which can be defined as follows:

Wiy = > |A| x Wi, ,

i 1Al

where W represents the parameters of the model. I is the total number of clients in client

set x during federated learning. For any client i, after completing fth local training, it
uploads the updated model parameters, which is referred to as W,, ;. Meanwhile, A/
represents the size of the local data set for the ith client. The server aggregates global soft
labels based on this information. The process is as follows:

I i
D1 }A;‘ X Gpyy
S 14y

where G,,; represents the average logits of the sample uploaded by client 7 in client set x

Gt+1 = G+1;

after completing fth local training; And Ag,; represents the local soft label gradient
generated by clients in the client set y at the end of tth local training to supplement and
correct the global soft label information.

In the client set y, assume that when the time threshold T ends, it receives from the set
the sample logits uploaded by u clients after (t — I)th training, and receives the sample
logits uploaded by v clients in the set after tth local training:

Agyy = > 4] x G} _ > |4l % Gl
> i 1A 2 i 4]

In the process of local training, the client not only trains the local model, but also

generates the sample logits. In this process, the local model update method of the client is
similar to the local model update method in traditional federated learning, that is, each
client adopts gradient descent algorithm to update the weight of the model.

Wi

_ i 7
1 = Wy — 4,

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3021 10/21

http://dx.doi.org/10.7717/peerj-cs.3021
https://peerj.com/computer-science/

PeerJ Computer Science

where A represents the learning rate of the local model training, and the symbol r;
represents the gradient of the current model parameter W. If client I generates A’ sample
logits in Tth local training, then eventually it will upload the average value of these sample

logits, as G |,

t+1 —ZGI/A/

The edge federation learning based on knowledge distillation can use both hard label

to the edge server, which is defined as follows:

and soft label knowledge in model training. The prediction model should adhere not only
to the hard label of the local dataset sample, but also to the corresponding soft label.
During the local training of each client in federated learning, the model loss function is
computed to evaluate the model’s performance in approximating hard and soft labels.

Loss(W) = 0Ly(ly, G) + (1 — 9)Li(L,]| G).

G represents the prediction result of the model and ¢ is a hyperparameter in the interval
(0,1), where I, represents the soft label and I, represents the hard label. L() represents the
cross entropy loss function, which measures the difference between the model prediction
and the hard label. Meanwhile, Li() represents the divergence loss function, which
measures the difference in distribution between the model prediction and the soft label. If
in the ith client, the number of local data sets is d,, then the calculation of the loss function
can be deduced as follows:

d;

d exp)
Zba Zbl N

; ,exp(G)

©16) i exp (G >, exp(l;fl)
‘— p(5,") > exp(G¥)

Through derivation, the optimization function of this work can be calculated as follows:
mm()= FBL(W) + (1 —5)Lk(W))>,
s.t.fi =

A;
ThiA

From the optimization function, we can observe that the hyperparameter 6 plays a
decisive role in the knowledge distillation process, which regulates the proportion of hard
label loss and soft label loss in the total loss. Therefore, the value of ¢ has a profound
influence on the training effect of the model.

In the initial stage and early stage of model training, the information of hard labels plays
an absolutely leading role in improving model performance due to the relatively little
knowledge contained in soft labels. However, in the later stage of model training, when the
model has fully absorbed the knowledge of hard labels and begins to converge gradually,
the introduction of soft label knowledge will further promote the improvement of model
performance.

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3021 11/21

http://dx.doi.org/10.7717/peerj-cs.3021
https://peerj.com/computer-science/

PeerJ Computer Science

Based on the above considerations, we design a dynamic value method for
hyperparameter 6. In the early stage of model training, we let the value be relatively large,
so that the model can make full use of the hard label information. Subsequently, we
gradually reduce the value until it reaches a minimum threshold. The purpose of this
design is to make the model effectively use the hard label information in the training
process, and introduce the soft label knowledge at the appropriate time, so as to improve
the performance of the model.

Implementation of KECO
The implementation of knowledge distillation in the edge-federated learning method can
be carried out by the following process:

Step 1: initialize the global model and the local model (the local model per client). Then
select a batch of data D as the dataset of the teacher model.

Step 2: the server sends the global model to each client.

Step 3: each client is trained on the local data set using the global model to get the local
model. After the local model is trained, the parameters of the local model are uploaded to
the server.

Step 4: the server collects the local model parameters uploaded by all clients. Use
integration techniques such as weighted averaging to aggregate all local models into a new
global model.

Step 5: soft labels are generated using the teacher model (the original global model) and
the integrated model. Through teacher model and integration model, soft labels are
obtained respectively. The knowledge distillation (KD) divergence loss between soft labels
is calculated, and the global model is optimized.

Step 6: the global model is optimized according to the loss function and updated to a
new global model. The updated global model is sent to each client to begin the next round
of training.

By distilling multiple local models into one global model, the overhead of model
transmission can be significantly reduced. Ensemble learning technology can integrate
multiple local models with poor performance into a global model with good performance,
thereby improving the overall efficiency. By distilling knowledge using unlabeled data or
generated data, models can be trained without exposing client data, protecting user
privacy. Through the above steps and strategies, knowledge distillation can effectively
improve the performance of the model in the edge-federated learning method, while
reducing transmission overhead and protecting user privacy.

Additive homomorphic encryption

To ensure the security of private data, additive homomorphic encryption technology is
adopted in this study. This technique can effectively prevent the leakage of task
information, and at the same time, it can provide corresponding algorithm support for
elements in plain text space. In this article, a method is proposed, which can not only
encrypt two numbers, but also calculate the encryption results of these numbers. For
illustration purposes, we set the real number a to be encrypted in the form <a>. Based on

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3021 12/21

http://dx.doi.org/10.7717/peerj-cs.3021
https://peerj.com/computer-science/

PeerJ Computer Science

this setting, for any two unencrypted numbers a and b, their encryption sum satisfies the
relationship <a> + = <a + b>. In addition, we also implement the multiplication
between ciphertext and plaintext, i.e., b-<a> = <ba>, where b remains unencrypted. In this
way, we can calculate the sum product of plaintext and ciphertext without leaving the
encrypted digital environment.

Further, we extend this operation mechanism to the operation of vectors and matrices.
Specifically, we can use b'<a> = <b"a> to compute the inner product of vectors of
plaintexts aand b,and bo <a> = <boa> to compute their component product. As for
the specific details of matrix operation, because of its similarity with vector operation, we
will not go into details here. It is worth noting that our approach enables the sharing of
parameters without exposing information from the edge computing center. Relying on our
federated learning model, we are able to efficiently aggregate task request data while
ensuring privacy.

During the initialization stage of the federated learning system, a trusted third party (or
coordination server) generates a homomorphic encryption public-private key pair. The
public key is distributed to all participating clients, while the private key is kept by the
designated party. Subsequently, the server issues the initial teacher model (or the locally
pre-trained teacher model on the client side), and the architecture of the student model is
customized by each client. In the local knowledge extraction stage, the client uses local data
to generate probabilistic outputs (logits) through the teacher model, and softens the
distribution through a temperature parameter. Subsequently, the client encrypts the soft
labels using the homomorphic public key, and may also choose to encrypt intermediate
features. In the secure knowledge aggregation stage, the client uploads the encrypted
knowledge representation to the aggregation server. The server performs the aggregation
operation on the ciphertext, utilizing the homomorphic addition property. In the
distributed distillation stage, the authorized party decrypts the aggregated result using the
private key, or directly distributes the ciphertext for the client to decrypt. The client trains
the student model based on the decrypted global knowledge using the KL divergence loss.
Finally, in the model iteration optimization stage, the parameters of the student model are
updated to the global model through federated averaging (FedAvg) or other aggregation
algorithms. Then, the temperature parameter and the homomorphic encryption level are
adaptively adjusted according to the convergence situation.

DISCUSSION

In the MEC scenario, the teacher-student model based on federated knowledge distillation
achieves efficient knowledge transfer through hierarchical collaboration: the teacher model
deployed in the cloud or high-performance nodes generates soft labels or feature
mappings, which are encrypted and aggregated to guide the training of the student model
at the edge device end, forming a privacy-protected heterogeneous model collaboration
framework. Its advantages are reflected in three aspects: (1) by distilling and compressing,
the computing load at the edge end is reduced, such as a significant reduction in parameter
quantity; (2) the federated mechanism ensures that data does not leave the domain,
meeting the privacy requirements of users; (3) dynamic temperature parameters and

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3021 13/21

http://dx.doi.org/10.7717/peerj-cs.3021
https://peerj.com/computer-science/

PeerJ Computer Science

block-level distillation techniques are adapted to network fluctuations. This method has
theoretical scalability that can support horizontal expansion of thousands of nodes and
cross-modal knowledge transfer, and its adaptability is manifested in robust processing of
non-IID data (such as through attention weighting) and elastic deployment in

resource-constrained scenarios (single-round/incremental distillation is optional).

RESULTS

In this section, in order to validate the capabilities of the proposed MEC task offloading
algorithm based on federated knowledge distillation in task processing and system energy
saving, as with the validation process of our previous work (Li ¢ Yang, 2024), we combine
the proposed KECO algorithm with two other task offloading algorithms (including
decision-based offloading strategies such as MDP and DDPG (Lillicrap et al., 2015)), and
predict-based offloading strategies such as convolutional neural network (CNN)-based or
time series (Krizhevsky, Sutskever ¢ Hinton, 2012), hereinafter referred to as DDPG-based,
CNN-based is compared in the following aspects:

(1) energy consumption
(2) system external service performance

(3) task offloading failure rate.

Experimental setup
In the model training session, the first convolution layer is configured with 32 convolution
cores, the size of each convolution kernel is set to 6 x 6, and the step size is set to 1. The
matrix size of the maximum pooling layer is set to 2 x 2, and the step size is also 2. As for
the second convolution layer, it is equipped with 64 convolution cores, and the remaining
parameters are consistent with the first layer. The training cycle of the designed model is
usually between 1.5 and 2 h. We set the learning rate of the model to 0.001 and introduced
Adam optimization algorithm to achieve dynamic updating of step size. In the early
training phase, we set the weight loss ratio at 1:3 to achieve knowledge transfer. While in
the later training stage, we adjusted the ratio to 3:1 to accomplish the learning of the
specific task objectives. To simulate the scenario where multiple users jointly participate in
the training of a federated model, it is set that this deep model has five participants. The
dataset is randomly divided into five parts and sent to the five parties. Each party then
trains its local model locally and conducts 50 rounds of iterative training
simultaneously. The dataset is divided into a training dataset and a test dataset, so as to
achieve the cross-validation during training. As the number of training sessions increases,
the method gradually improves its performance in terms of accuracy and other metrics,
and its results stabilize in the final few rounds of training. The overall training time
remains generally between 30 and 58 min, ranging from 25 to 50 rounds, while ensuring
the security of the data.

In terms of experimental environment construction, we create a virtualization scenario
using OpenStack and deployed Spark, a big data processing framework. All experiments
are performed on the same Linux workstation with an Intel Xeon processor, three 3.4 GHz

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3021 14/21

http://dx.doi.org/10.7717/peerj-cs.3021
https://peerj.com/computer-science/

PeerJ Computer Science

30000

25000

20000

15000

10000

Energy Consumption of Task Computing

5000

- CNN-based
4| I DDPG-based

500 2500

22500

] - CNN-based

20000 -DDPG-based

17500 F-mmemmme e
15000 -
12500 - e - D -
10000 —- rrr - -

7500 o

5000

Energy Consumption of Data Transmission

2500 A

0 -
8500 10500 12500 14500 500 2500 4500 6500 8500 10500 12500 14500

The Number of Tasks The Number of Tasks

Figure 4 The performance comparison of three methods in terms of energy consumption. Energy consumption for local computing & energy

consumption for data transmission.

Full-size K&l DOT: 10.7717/peerj-cs.3021/fig-4

CPU cores and 512 GB of RAM. We create 32 processing nodes with different
configurations to simulate MEC nodes and resource pools.

Comparison of energy consumption

In this section, we compare the performance of two task offloading methods based on
DDPG and CNN with the method proposed in this work in terms of system energy
consumption. In this work, the local computing power consumption (Shi et al., 2023) and
data transmission power consumption during the offloading of MEC tasks are used to
measure the energy saving advantages. As can be seen from the Fig. 4A, in terms of local
calculation, the energy consumption of each method gradually increases with the increase
of data scale. On the whole, the energy consumption of the method proposed in this work
is always lower than the other two methods. The energy saving effect of the system
proposed in this work is basically equal to the other two methods in the initial stage of task
offloading, and its performance is gradually superior to the other two methods in the later
stage. In the data transmission process, as shown in the Fig. 4B, we can observe that the
three methods produce less system energy consumption in the case of smaller task scale.
However, communication costs for all three are increasing as missions scale up. However,
the communication energy consumption of CNN method in the later stage is gradually
higher than that of the other two methods. For DDPG method, the communication energy
consumption in mobile edge environment is higher when the task scale is small, but its
value in the later stage is lower than CNN, and it is always greater than the cost of the
method proposed in this work. For the method proposed in this work, the energy
consumption value is not much different from the other two methods in the early stage,
and gradually lower than the other two methods in the later stage.

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3021 15/21

http://dx.doi.org/10.7717/peerj-cs.3021/fig-4
http://dx.doi.org/10.7717/peerj-cs.3021
https://peerj.com/computer-science/

PeerJ Computer Science

35 35
—M®— CNN-based B— CNN-based
—®— DDPG-based —®— DDPG-based A K
.
30 - —A—KECO Aa 3.0 —A—KECO AT 000
2 ___A _——9 2 /A/'* =N
=3 e [2 /./
2 = 0— @] 0 ——n
2 s /‘ M —a g,
= 7 /‘ n = 2
2 A m— 2
= =
2 / 2
20 20 A
g / s 20
2 : £
A
/ /
- -
£ 15 —// rr £ 15 4 //
= = |
z /o z A/‘/
a A/I a .7
1.0 A/ & / 100 = == e e me e e e s s e
o
| |
0.5 LA L IR BN L R B LA BN B R | 0.5 —Tr T T T 1T 1 1T T T 1T 717"
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Time(Sec) Time(Sec)

Figure 5 The performance comparison of three methods in terms of system external service performance. Task volume = 8,500 & task volume =
10,500. Full-size Kal DOL: 10.7717/peerj-cs.3021/fig-5

This is mainly because the method proposed in this work can realize the guidance based
on the global soft label knowledge according to the parameters and sample logic learned
during model training, so as to calculate the effect and total energy consumption of each
feasible scheme. In the process of searching for the optimal scheme, the current optimal
scheme obtained by each iteration is taken as the basis. Gradually search and try to find a
solution that consumes less energy and costs less computing resources, so as to find a
suitable task processing node for the corresponding computing task. This effectively
ensures the resource utilization of the whole field to a great extent. In general, we can
observe that the method proposed in this work has a good performance in system energy
saving. It reduces the extra consumption of valuable computing resources, realizes the
reasonable offloading of distributed computing tasks, and improves the overall benefits of
the system in the long run.

Comparison of external service performance

In this section, the method proposed in this work is compared with the other two methods
in terms of system performance to external services. This work takes system throughput as
the main evaluation criterion of external service performance. As shown in Fig. 5A, when
the task volume is 8500, the external service performance effects of each of the three
methods used for comparison are different. For the CNN method, the external service
performance of the system seems to be relatively good in the early stage, but the
performance is not very stable in the later stage. For DDPG, the throughput value is low in
the initial phase. With the passage of time, its system performance gradually becomes
stable, and gradually exceeds the CNN method. The algorithm proposed in this work can
reasonably analyze the computing task requirements and make a reasonable resource

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3021 16/21

http://dx.doi.org/10.7717/peerj-cs.3021/fig-5
http://dx.doi.org/10.7717/peerj-cs.3021
https://peerj.com/computer-science/

PeerJ Computer Science

- CNN-based
|| Il DDPG-based
I KECo

Failure Rate of Task Offloading

500 2500 4500 6500
The Number of Tasks The Number of Tasks

I C\N-based
- DDPG-based
4| I KECO

0.15 4

0.10

0.05

Failure Rate of Task Offloading

0.00
8500 10500 12500 14500 500 2500 4500 6500 8500 10500 12500 14500

Figure 6 The performance comparison of three methods in terms of the number of task offloading failures. Performance under CPU pressure &

performance under memory pressure.

Full-size K&] DOT: 10.7717/peerj-cs.3021/fig-6

allocation strategy, and its external service performance is generally better than the other
two methods. With the passage of external service time, its throughput value gradually
tends to be stable, and it is slightly higher than the throughput value of CNN and DDPG in
the later stage. In another group of experiments, when the task volume is 10,500, as shown
in Fig. 5B, in general, the throughput value of the method proposed in this work is
gradually higher than that of the other two methods in the later period. For CNN method,
in the MEC environment, its external service performance is obvious in the initial stage,
but its value is always lower than DDPG. When t = 500 s, the throughput growth rate of
these two methods begins to decrease gradually.

As for the method proposed in this work, its performance of external service is not
much different from the other two methods in the early stage, and gradually exceeds the
other two methods in the later stage. On the whole, we can conclude that the method
proposed in this work is relatively efficient and stable in terms of external service effects,
which helps to efficiently perform large-scale distributed tasks.

Comparison of humber of task offloading failures

In the actual scenario of MEC tasks offloading, some distributed computing tasks often fail
to be uninstalled because some selected computing task processing nodes cannot meet the
corresponding task requests. In this section, we use simulation tools to simulate some
dynamic node failures, take CPU and memory pressure (Li, Chen ¢ Song, 2023) as
examples to simulate the impact of real pressure environment on task offloading, and
compare with the other two methods in terms of the number of task offloading failures. As
shown in Figs. 6A and 6B, with the expansion of task scale, the number of task offloading
failures of CNN and DDPG increases rapidly during task deployment. For the algorithm

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3021 17/21

http://dx.doi.org/10.7717/peerj-cs.3021/fig-6
http://dx.doi.org/10.7717/peerj-cs.3021
https://peerj.com/computer-science/

PeerJ Computer Science

proposed in this work, with the expansion of task scale, the number of task offloading
failures increases significantly slower than that of the other two methods, and the number
of task deployment failures remains at a minimum.

This is mainly because the other two methods are difficult to carry out a reasonable and
thorough analysis of the current remaining resource information in each computing task
processing node and the MEC task requirements in the MEC network. If the resource
requirement of a computing task is greater than or equal to the remaining resources of the
node that processes the computing task, the computing task may fail to be uninstalled. On
the contrary, the method proposed in this work uses the federated knowledge
distillation network model to reasonably guide the selection of the current task offloading
strategy according to labels and logical values, which can ensure that the remaining
resources of each selected node are greater than the resource demand of the corresponding
task and obtain certain system benefits under the condition of ensuring effective
calculation and communication. Therefore, to a large extent, it can dynamically and
adaptively find the appropriate task processing node from the cluster for most mobile
computing task requests, so as to complete the efficient execution of collaborative
computing tasks.

CONCLUSIONS

This work investigates the combination of federated knowledge distillation learning and
distributed task offloading strategies in MEC environments. In this article, (1) an
optimized task offloading method based on federated knowledge distillation in MEC
environment is proposed; (2) a federation model of MEC task offloading based on
knowledge distillation framework is designed. A federation model and a deep
convolutional network model trained by updating parameters and sample logic values
between edge computing models are used to achieve reasonable offloading of computing
tasks and system energy saving; (3) compared with the most advanced methods, the
superiority of the proposed method in collaborative task offloading is evaluated. The
experimental results show that it can unload the task reasonably in the direction of
minimizing the system energy consumption and reduce the task execution consumption.

Because the choice of the number of layers of the neural network in the deep network
model is an open problem, the number of layers of the deep neural network should be
adjusted in the process of exploring the optimal task offloading strategy. The method
proposed in this article opens a new door for future research on cooperative processing of
mobile tasks. We plan to extend it to large-scale task processing in larger experimental
settings, taking into account the total cost of federal learning.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by “Artificial Intelligence Software and Hardware to Adapt
Migration Technology and Tools”, grant number NIVY227201160. The funders had no

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3021 18/21

http://dx.doi.org/10.7717/peerj-cs.3021
https://peerj.com/computer-science/

PeerJ Computer Science

role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

Artificial Intelligence Software and Hardware to Adapt Migration Technology and Tools:
NIVY227201160.

Competing Interests
Zhuang Liu is employed by Guangzhou Human Resources and Social Security Data Service
Center.

Author Contributions

 Zhuang Liu conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, authored or reviewed drafts of the
article, and approved the final draft.

» Dong Li performed the experiments, prepared figures and/or tables, and approved the
final draft.

» Panfei Yang conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:
The code is available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.3021#supplemental-information.

REFERENCES

Alzubi JA, Alzubi OA, Singh A, Alzubi TM. 2023. A blockchain-enabled security management
framework for mobile edge computing. International Journal of Network Management
33(5):e2240 DOI 10.1002/nem.2240.

Chauhan VK, Zhou J, Lu X, Molaei S, Clifton DA. 2024. A brief review of hypernetworks in deep
learning. Artificial Intelligence Review 57(9):250 DOI 10.1007/s10462-024-10862-8.

Chen Z, Tian Pu, Liao W, Chen X, Xu G, Yu W. 2023. Resource-aware knowledge distillation for
federated learning. IEEE Transactions on Emerging Topics in Computing 11(3):706-719
DOI 10.1109/tetc.2023.3252600.

Chen Y, Zhao J, Hu X, Wan S, Huang J. 2024. Distributed task offloading and resource
purchasing in NOMA-enabled mobile edge computing: hierarchical game theoretical
approaches. ACM Transactions on Embedded Computing Systems 23(1):1-28
DOI 10.1145/3597023.

Chen Z, Zhou C, Zhou Y. 2023. A hierarchical federated learning model with adaptive model
parameter aggregation. Computer Science and Information Systems 20(3):1037-1060
DOI 10.2298/CS15220930026C.

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3021 19/21

http://dx.doi.org/10.7717/peerj-cs.3021#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3021#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3021#supplemental-information
http://dx.doi.org/10.1002/nem.2240
http://dx.doi.org/10.1007/s10462-024-10862-8
http://dx.doi.org/10.1109/tetc.2023.3252600
http://dx.doi.org/10.1145/3597023
http://dx.doi.org/10.2298/CSIS220930026C
http://dx.doi.org/10.7717/peerj-cs.3021
https://peerj.com/computer-science/

PeerJ Computer Science

Darban Z, Zahra GIW, Pan S, Aggarwal C, Salehi M. 2024. Deep learning for time series anomaly
detection: a survey. ACM Computing Surveys 57(1):1-42 DOI 10.1016/j.patcog.2024.110874.

Dong S, Tang J, Abbas K, Hou R, Kamruzzaman J, Rutkowski L, Buyya R. 2024. Task offloading
strategies for mobile edge computing: a survey. Computer Networks 254(6):110791
DOI 10.1016/j.comnet.2024.110791.

Han S, Park S, Wu F, Kim S, Wu C, Xie X, Cha M. 2022. FedX: unsupervised federated learning
with cross knowledge distillation. In: European Conference on Computer Vision. Cham: Springer
Nature Switzerland, 691-707.

He Y, Yang M, He Z, Guizani M. 2023. Computation offloading and resource allocation based on
DT-MEC-assisted federated learning framework. IEEE Transactions on Cognitive
Communications and Networking 9(6):1707-1720 DOI 10.1109/TCCN.2023.3298926.

Hu Z, Niu J, Ren T, Liu X, Guizani M. 2024. SITOff: enabling size-insensitive task offloading in
D2D-assisted mobile edge computing. IEEE Transactions on Mobile Computing
24(3):1567-1584 DOI 10.1109/TMC.2024.3483951.

Huang N, Wang T, Wu Y, Wu Q, Quek TQS. 2022. Integrated sensing and communication
assisted mobile edge computing: an energy-efficient design via intelligent reflecting surface. IEEE
Wireless Communications Letters 11(10):2085-2089 DOI 10.1109/LWC.2022.3193706.

Krizhevsky A, Sutskever I, Hinton G. 2012. ImageNet classification with deep convolutional
neural networks. Advances in Neural Information Processing Systems 25(2):84-90
DOI 10.1145/3065386.

Lee J, Solat F, Kim TY, Poor HV. 2024. Federated learning-empowered mobile network
management for 5G and beyond networks: from access to core. IEEE Communications Surveys
& Tutorials 26(3):2176-2212 DOI 10.1109/COMST.2024.3352910.

Li L, Chen X, Song C. 2023. NonPC: non-parametric clustering algorithm with adaptive noise
detecting. Intelligent Data Analysis 27(5):1347-1358 DOI 10.3233/IDA-220427.

Li R, Wang C, Zheng Z, Huang H. 2024. Enhancing federated learning with self-determining
mechanism in MEC. In: 2024 International Conference on Computing, Networking and
Communications (ICNC). Piscataway: IEEE, 1006-1010
DOI 10.1109/ICNC59896.2024.10556194.

Li D, Yang P. 2024. Distributed unmanned aerial vehicle cluster testing method based on deep
reinforcement learning. Applied Sciences 14(23):11282 DOI 10.3390/app142311282.

Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D. 2015.
Continuous control with deep reinforcement learning. ArXiv DOI 10.48550/arXiv.1509.02971.

Liu X, Liu J, Li W. 2024. Truthful mechanism for joint resource allocation and task offloading in
mobile edge computing. Computer Networks 254:110796 DOI 10.1016/j.comnet.2024.110796.

Liu Q, Mo R, Xu X, Ma X. 2024. Multi-objective resource allocation in mobile edge computing
using PAES for internet of things. Wireless Networks 30(5):3533-3545
DOI 10.1007/s11276-020-02409-w.

Loutfi SI, Shayea I, Tureli U, El-Saleh AA, Tashan W. 2024. An overview of mobility awareness
with mobile edge computing over 6G network: challenges and future research directions. Results
in Engineering 23(2):102601 DOI 10.1016/j.rineng.2024.102601.

Ma Y, Xie Z, Wang J, Chen K, Shou L. 2022. Continual federated learning based on knowledge
distillation. In: IJCAI, 2182-2188 DOI 10.24963/ijcai.2022/303.

Nguyen DC, Pham Q-V, Pathirana PN, Ding M, Seneviratne A, Lin Z, Dobre O, Hwang W-].
2022. Federated learning for smart healthcare: a survey. ACM Computing Surveys 55(3):1-37
DOI 10.1145/3501296.

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3021 20/21

http://dx.doi.org/10.1016/j.patcog.2024.110874
http://dx.doi.org/10.1016/j.comnet.2024.110791
http://dx.doi.org/10.1109/TCCN.2023.3298926
http://dx.doi.org/10.1109/TMC.2024.3483951
http://dx.doi.org/10.1109/LWC.2022.3193706
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/COMST.2024.3352910
http://dx.doi.org/10.3233/IDA-220427
http://dx.doi.org/10.1109/ICNC59896.2024.10556194
http://dx.doi.org/10.3390/app142311282
http://dx.doi.org/10.48550/arXiv.1509.02971
http://dx.doi.org/10.1016/j.comnet.2024.110796
http://dx.doi.org/10.1007/s11276-020-02409-w
http://dx.doi.org/10.1016/j.rineng.2024.102601
http://dx.doi.org/10.24963/ijcai.2022/303
http://dx.doi.org/10.1145/3501296
http://dx.doi.org/10.7717/peerj-cs.3021
https://peerj.com/computer-science/

PeerJ Computer Science

Shah Z, Javed U, Naeem M, Zeadally S, Ejaz W. 2023. Mobile edge computing (MEC)-enabled
UAYV placement and computation efficiency maximization in disaster scenario. IEEE
Transactions on Vehicular Technology 72(10):13406-13416 DOI 10.1109/tvt.2023.3274107.

Sharma H, Budhiraja I, Consul P, Kumar N, Garg D, Zhao L, Liu L. 2022. Federated learning
based energy efficient scheme for MEC with NOMA underlaying UAV. In: Proceedings of the 5th
International ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G
and Beyond. New York: ACM, 73-78.

Shi M, Liang F, Chen Y, He Y. 2023. A local cost simulation-based algorithm to solve distributed
constraint optimization problems. Peer] Computer Science 9:¢1296 DOI 10.7717/peerj-cs.1296.

Sun W, Zhao Y, Ma W, Guo B, Xu L, Duong TQ. 2023. Accelerating convergence of federated
learning in MEC with dynamic community. IEEE Transactions on Mobile Computing
23(2):1769-1784 DOI 10.1109/tmc.2023.3241770.

Wu G, Wang H, Zhang H, Zhao Y, Yu S, Shen S. 2023. Computation offloading method using
stochastic games for software-defined-network-based multiagent mobile edge computing. IEEE
Internet of Things Journal 10(20):17620-17634 DOI 10.1109/JI0T.2023.3277541.

Wu C, Wu F, Lyu L, Huang Y, Xie X. 2022. FedKD: communication efficient federated learning
via knowledge distillation. Nature Communications 13:2032 DOI 10.1038/s41467-022-29763-x.

Xiao X, Ma Y, Xia Y, Zhou MC, Luo X, Wang X, Fu X, Wei W, Jiang N. 2022. Novel
workload-aware approach to mobile user reallocation in crowded mobile edge computing
environment. IEEE Transactions on Intelligent Transportation Systems 23(7):8846-8856
DOI 10.1109/tits.2021.3086827.

XuX, Li M, Tao C, Shen T, Cheng R, Li X, Xu C, Tao D, Zhou T. 2024. A survey on knowledge
distillation of large language models. ArXiv DOI 10.1109/COMST.2024.3352910.

Yadav S, Nanivadekar S. 2023. Hybrid optimization assisted green power allocation model for
QoS-driven energy-efficiency in 5G networks. Cybernetics and Systems 56(5):1-16
DOI 10.1080/01969722.2023.2175147.

Yao D, Pan W, Dai Y, Wan Y, Ding X, Yu C, Xi H, Xu Z, Sun L. 2023. FedGKD: towards
heterogeneous federated learning via global knowledge distillation. IEEE Transactions on
Computers 73(1):3-17 DOI 10.1109/tc.2023.3315066.

Yuan Y, Shi J, Zhang Z, Chen K, Zhang X, Stoico V, Malavolta I. 2024. The impact of knowledge
distillation on the energy consumption and runtime efficiency of NLP models. In: Proceedings of
the IEEE/ACM 3rd International Conference on Al Engineering-Software Engineering for AL
Piscataway: IEEE, 129-133.

Zhu], Cao J, Saxena D, Jiang S, Ferradi H. 2023. Blockchain-empowered federated learning:
challenges, solutions, and future directions. ACM Computing Surveys 55(11):1-31
DOI 10.1145/3570953.

Liu et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3021 21/21

http://dx.doi.org/10.1109/tvt.2023.3274107
http://dx.doi.org/10.7717/peerj-cs.1296
http://dx.doi.org/10.1109/tmc.2023.3241770
http://dx.doi.org/10.1109/JIOT.2023.3277541
http://dx.doi.org/10.1038/s41467-022-29763-x
http://dx.doi.org/10.1109/tits.2021.3086827
http://dx.doi.org/10.1109/COMST.2024.3352910
http://dx.doi.org/10.1080/01969722.2023.2175147
http://dx.doi.org/10.1109/tc.2023.3315066
http://dx.doi.org/10.1145/3570953
http://dx.doi.org/10.7717/peerj-cs.3021
https://peerj.com/computer-science/

	KECO: toward efficient task offloading in mobile edge computing with federated knowledge distillation
	Introduction
	Related work
	Formalization
	The proposed algorithm
	Discussion
	Results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

