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ABSTRACT

Accurate identification of fishing vessel operations is vital for sustainable fishery
management. Existing methods inadequately exploit spatiotemporal contextual
information in vessel trajectories and fail to effectively fuse multimodal data. To
address this, this study proposes a novel framework integrating Geohash-based
geocoding with embedding techniques inspired by natural language processing to
extract spatiotemporal features from trajectory sequences. We develop a
multi-branch 1D convolutional neural network (MB-1dCNN) to minimize feature
engineering dependency while enhancing operational-type recognition. Comparative
experiments evaluate Geohash encoding lengths and network architectures (single-
branch vs. multi-branch, fully-connected vs. 1D-CNN). Results indicate optimal
Geohash encoding at length 5. The multi-branch structure significantly outperforms
single-branch counterparts, and MB-1dCNN demonstrates superior performance
over multi-branch model with fully connected layers (MB-FCNN), achieving
additional gains in accuracy and F1-score. Key findings reveal: (1) 1D-CNN
processing surpasses fully-connected networks in sequential feature extraction, (2)
Multi-branch architectures enhance information fusion capabilities. The proposed
MB-1dCNN establishes state-of-the-art performance for trajectory-based fishing
operation recognition, offering valuable insights for spatial computing applications
in maritime surveillance.
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Additional Information and As terrestrial aquatic resources are increasingly exploited, oceans, which cover over 70% of

Declarations can be found on the Earth’s surface, are gaining attention. Consequently, the exploitation of marine
page 18 resources has accelerated. Scientific progress has been made in fish stock planning and
DOI 10.7717/peerj-cs.3020 utilization (FAO, 2020; Xu et al., 2021). Various fishing methods impact marine fishery
€ Copyright resources differently; particularly, excessive fishing activities severely damage specific
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marine populations (Rousseau et al., 2019). To conduct commercial activities, fishing
vessel owners must apply for permits and register their operational types (i.e., fishing
methods) with competent authorities. However, fishing vessels often operate illegally,
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violating local or international rules and harming fishery resources and the marine
ecological environment (Kassawmar et al., 2018; Rockstrom, Barron & Fox, 2002).
Traditionally, marine officers on patrol boats monitor fishing violations through boarding
and inspecting fishing vessels. Yet, the large number of active fishing vessels, their
unpredictable movements, and long operational periods make such monitoring
challenging and expensive, requiring a substantial marine patrol workforce. Consequently,
practical management of fishing vessel operations is limited. In this context, accurate
identification of fishing operational types or activities using technology is critical for
promoting better management of commercial fishing vessels and the sustainable
development of fishery resources.

Vessel tracking provides location information, increasing transparency in fishing
activities (Orofino et al., 2023). Vessel monitoring systems (VMSs) and automatic
identification systems (AISs) have been applied in fishing vessel management (Mesquita
et al., 2024; Iacarella et al., 2023). However, existing methods fail to fully utilize the
spatiotemporal contextual information contained in the fishing-vessel trajectories, and
poorly fuse multiple information of inputs for fishing-vessel operational-type
identification. Considering the different ways in which input features are processed, the
research motivation of the study is to reduce the dependence of previous methods on
feature engineering and exploiting extra spatiotemporal contextual information to build a
new and relatively good acceptable neural network model to do the recognition of fishing
vessel operation-types. The approach proposed in this research utilizes the spatioltemporal
contextual feature extraction of trajectory sequences. Additionally, it contributes to the
extraction and fusion of multiple-input feature information, which may be advantageous
for applications of spatial computation and analysis.

RELATED WORK

Fishing vessel trajectory data from VMSs or AISs, in combination with expert knowledge
and machine learning techniques, can facilitate the identification of various fishing
operational types or activities. VMSs record real-time data for fishing vessel trajectory
points, including longitude, latitude, speed, heading, and timestamp. This enables the rapid
acquisition of positional data over large areas (Walker & Bez, 2010; Vermard et al., 2010;
Zhou et al., 2015), making VMSs crucial for monitoring and managing fishing efforts. The
speed and fishing activity of a single vessel vary across different statuses, such as sailing and
operation. Natale et al. (2015) and Zheng et al. (2016) conducted analyses of VMS
trajectory data to identify patterns. Similarly, Gao et al. (2020) and Huang et al. (2019)
extracted features from VMS trajectory data and employed classical machine learning
algorithms—Ilike XGBoost, support vector machines, random forests, and k-nearest
neighbors—to recognize fishing activity patterns. Li et al. (2021b) applied a Gaussian
mixture model to mine characteristic thresholds based on the statistical frequency
distribution of fishing vessel operating speeds. Yang et al. (2022) constructed
17-dimensional vessel characteristics related to spatial, temporal, and behavioral
parameters and used a three- layer bidirectional long short-term memory (BiLSTM)
network to classify fishing and non-fishing vessels. Li ef al. (2021a) extracted a
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42-dimensional feature vector based on a Light GBM-BIiLSTM model to effectively identify
fishing activity patterns. Natale et al. (2015) developed a Gaussian mixture model to
identify fishing behavior from AIS data. By setting speed distribution thresholds, they
categorized trajectories into navigation, fishing, and anchoring behaviors, thereby
distinguishing fishing from non-fishing states. Zhang et al. (2021) analyzed fishing vessel
behavior using vessel speed, sailing time, trajectory, and fishing effort. This allowed for the
direct identification of fish stock locations and the statistical analysis of fishing output and
resource distribution. Ashrafi, Tessem ¢ Enberg (2023) utilized AIS data along with several
deep learning architectures to detect likely unreported fishing activities, with a particular
focus on bottom trawlers.

All these approaches rely on statistical analyses of the fishing industry’s state to obtain
parameters such as possible thresholds. Furthermore, feature engineering is performed to
identify different fishing operational types. Over 10 features are constructed from
trajectory data. Vermard et al. (2010) proposed a Bayesian hierarchical model based on
hidden Markov processes. Using speed and movement transfer as parameters, this
model predicts vessel states of different behaviors, including fishing, sailing, and docking.
Feng et al. (2019) used VMS data and BP neural networks, with direction angle and speed
changes as inputs, to effectively identify fishing behaviors. Gao et al. (2020) developed a
feature fusion algorithm by extracting features from VMS data to determine the
operation type.

However, these methods are highly dependent on thresholds or feature engineering.
The accuracy of pattern identification is determined by reasonable threshold settings and
valid feature extraction. Determining these thresholds or features requires a certain level of
expert knowledge, as parameters vary with different fishing activity patterns.
Consequently, these methods have limitations that hinder their generalized application.

Compared to classical machine learning, which requires the manual construction of
multiple features, deep learning offers the advantage of end-to-end learning (LeCun,
Bengio & Hinton, 2015). Deep-learning models can automatically learn features from
datasets using network structures, thereby reducing reliance on expert knowledge
(Janiesch, Zschech ¢ Heinrich, 2021). As a result, deep learning is increasingly being
applied to various tasks. Notably, Kim ¢» Lee (2020) used convolutional neural network
(CNN) models trained on vessel trajectory data to distinguish fishing from non-fishing
vessels. Additionally, Tang et al. (2020) generated a track map of vessel trajectory data and
classified gillnet and trawl-net types using the Visual Geometry Group (VGG)-16 model.
All these methods demonstrated plausible performance in fishing-activity pattern
identification.

A trajectory sequence consists of continuous track points in time and space. In addition
to the spatial and temporal information of the track points, the trajectory sequence
contains spatiotemporal contextual information (Garani ¢ Adam, 2020). However, the
methods mentioned above do not fully utilize this contextual information when classifying
fishing activity patterns. If the geographic location of a track point can be converted into a
literal representation, then the trajectory sequence can be expressed as a piece of text, with
a certain point regarded as a word within the text. This allows for the extraction of
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contextual information to facilitate geographical analysis and achieve spatial “semantic”
information. Consequently, techniques used to extract contextual information in natural
language word processing can be applied to process trajectory sequences. Previously,
Yin et al. (2019) used Universal Transverse Mercator coordinates to discretize the Earth’s
surface. They then applied geographical units of different granularities to perform GPS
encoding and finally trained a neural network to learn the spatial contextual information of
global geographical coordinates. Mai et al. (2020) obtained the absolute locations and
spatial relationships of encoded locations using the Space2Vec representation learning
model. Tian et al. (2022) employed the GCN aided Location2Vec (GCN-L2V) model to
learn the contextual semantic relationships between locations. Therefore, the
representation of trajectory sequences can also be applied to the identification of fishing
vessel operation types.

In summary, existing methods fail to fully utilize the spatiotemporal contextual
information contained in fishing-vessel trajectories and exhibit poor fusion of multiple
input information for fishing-vessel operational-type identification.

MATERIALS AND METHODS

In this study, a new adaptive recognition method based on a convolutional neural network
was designed employing 1D convolutions and a multi-branch structure. The proposed
algorithm, called a multi-branch convolutional neural network (MB-1dCNN), realizes
operational type recognition through the enhancement processing of fishing vessel
trajectories. This method was applied in experiments to identify fishing-vessel activity
patterns for three fishing-vessel operational types: purse seine, trawl net, and gillnet
fishing. And in the comparative experiments, the spatial contextual information, the
influence of Geohash encoding length and different convolutional neural network
structures, such as fully connected network and 1D convolutions, as well as single-branch
and multi-branch, on the recognition effect is explored. A single-branch neural network,
primarily composed of fully connected layers (SB-FCNN), serves as a benchmark.

This section provides an overview of the Geohash algorithm, embedding, and fully
connected neural networks (FCNN) and 1D-CNNs. The structure of single- and
multi-branch are also explained, as these components form the basis of the proposed and
comparative models explored in this study. In the subsequent section, we compare the
results of the MB-1dCNN model with those of a single-branch model with fully connected
layers (SB-FCNN), a multi-branch model with fully connected layers (MB-FCNN), and a
single-branch structure with 1D convolutions (SB-1dCNN). All architectures can be found
in Fig. 1. Figure 1D represents the model structure proposed and recommended in this
article, while Figs. 1A, 1B, and 1C respectively represent the model structures of SB-FCNN,
SB-1dCNN, and MB-FCNN. The constituent modules of the models are shown in Table 1.
Additionally, the datasets and evaluation metrics used in this study are also presented in
this section.

The contributions of this study are summarized as follows:

(1) The Geohash location encoding algorithm converts 2D geographic coordinates of the
trajectory points into compact 1D alphanumeric strings, combined with the
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Figure 1 The architectures of different neural networks. (A) SB-FCNN (B) SB-1dCNN (C) MB-FCNN (D) MB-1dCNN.
Full-size &) DOT: 10.7717/peerj-cs.3020/fig-1

embedding technique to capture the spatiotemporal contextual information from
trajectory sequences.

(2) A multi-branch convolutional neural network architecture utilizing 1D convolutions
for fishing vessel operational-type recognition.

(3) Experimental validation demonstrating that Geohash encoding with length 5 achieves
optimal recognition accuracy.

(4) Empirical evidence showing that 1D convolutional architectures outperform fully
connected networks, and multi-branch designs surpass single-branch counterparts in
this task.

Geohash
The Geohash algorithm, which was proposed by Gustavo Niemeyer in 2008, is a geocoding
method in the public domain (Yin ¢ Chen, 2022; Zhou et al., 2021). What’s particularly
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Table 1 The constituent modules of the neural networks.

SB-FCNN MB-FCNN S$B-1dCNN MB-1dCNN
Input 800 800 800 800
Embedding 20,000, 50 20,000, 50 20,000, 50 20,000, 50
GlobalAvgPool1D v v X X
Concatenate 4 X 4 X
Dense 128 128 X X
Dense 64 64 X X
Dense 32 32 X X
Dense 16 16 X X
ConvlD X X 4,5 4,5
MaxPoolingl D X X 2 2
ConvlD X X 8,5 8,5
MaxPooling1 D X X 2 2
ConvlD X X 16, 5 16, 5
MaxPoolingl D X X 2 2
ConvlD X X 32,5 32,5
MaxPooling1 D X X 2 2
Flatten X X y V
Concatenate X 4 X 4
Dropout 0.5 0.5 0.5 0.5
Dense 8 8 128 128
Dropout 0.5 0.5 0.5 0.5
Output 3 3 3 3

elegant about this algorithm is that it follows the pattern of “left is 0, right is 1; bottom is 0,
top is 17, which is used to represent the area after subdivision, achieved by continuously
and alternately dichotomizing the global longitude [-180°, 180°] [-180°, 180°] and
latitude [-90°, 90°] ranges. In the Geohash approach, the corresponding binary value is
recorded until the encoding length reaches the required accuracy. The longitude and
latitude are then rearranged into a new binary string. Finally, the corresponding Geohash
string is obtained using Base32, which encodes every five binary digits (Suwardi et al,
2015; Li et al., 2020). The alphabetically ordered Geohashes trace out a Z-order curve. As
shown in Fig. 2, at the first level of Geohash encoding, different global ranges can be
represented by separate 32 American Standard Code for Information Interchange (ASCII)
characters. If the positions of the characters are connected with curves in the usual order,
the curves appear Z-shaped. This is so called as a Z-order filling curve.

Thus, the Geohash algorithm converts the 2D longitude and latitude coordinates of a
point into a 1D string to represent the corresponding geographical location (Zhou et al.,
2022, 2020). The length of the Geohash string depends on the encoding accuracy; a
longer string provides higher accuracy, and vice versa. A Geohash is generally encoded at
Levels 1-12, corresponding to a grid range from 5,000 x 5,000 km?* to 0.000000372 x
0.000000186 km” like Table 2. Each Geohash code represents a grid region on Earth and is
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Figure 2 Illustration of the level 1-3 of Geohash geocoding.
Full-size K&l DOT: 10.7717/peerj-cs.3020/fig-2

Table 2 Precision correspondence between the GeoHash encoding level and geospatial size.

Geohash Precision in Precision in Precision expressed in Grid width in Grid height in
level latitude longitude kilometers kilometers kilometers
1 +23 +23 +2,500 5,000 5,000

2 +2.8 +5.6 +630 1,250 625

3 +0.7 +0.7 +78 156 156

4 +0.087 +0.18 +20 39.1 19.5

5 +0.022 +0.022 +2.4 4.89 4.89

6 +0.0027 +0.0055 +0.61 1.22 0.61

7 +0.00068 +0.00068 +0.076 0.153 0.153

8 +0.000086 +0.000172 +0.01911 0.0382 0.0191

9 +0.000021 +0.000021 +0.00478 0.00477 0.00477

10 +0.00000268 +0.00000536 +0.0005971 0.00119 0.000596

11 +0.00000067 +0.00000067 +0.0001492 0.00000149 0.00000149
12 +0.00000008 +0.00000017 +0.0000186 0.000000372 0.000000186
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the same for all coordinate points within that grid. As the Geohash string length
increases, the extent of the grid it represents decreases (Irshaid et al., 2021; Jin et al., 2019;
Guo et al., 2019).

Embedding

Embedding techniques were initially used in natural language processing tasks to convert
string text into numeric vectors, primarily focusing on representation of words and
documents (Mikolov et al., 2013; Zhao et al., 2020; Sonbol, Rebdawi ¢» Ghneim, 2022). This
method can be used to convert a word into a vector; that is, the text is converted into a
fixed-length vector of consecutive real numbers. Words in a vocabulary are mapped to a
potential vector space that summarizes their syntactic and semantic information. The basic
assumption of the embedding technique is that words with the same meaning in a text
should have similar representations and, thus, embedding vectors that are closer in the
vector space are more similar in textual meaning. Therefore, the embedding representation
can reveal the background information, that is the textual semantic information (Babic,
Martincic-Ipsi¢ & Mestrovic, 2020; Wang, Nulty ¢ Lillis, 2021). Current implementations
of embedding methods for natural language processing include Word2vec, a static
embedding method based on local semantic information (Mikolov et al., 2013), and
Embeddings from Language Models (ELMo), a method based on dynamic semantic
information (Wang et al., 2020).

In this study, embedding is implemented using the TensorFlow embedding layer. We do
not directly use functions from the Gensim library, which is a popularly used library for
Word2vec algorithm’s implementations. The embedding layer in TensorFlow being used
to process text sequences can be considered an implement of the Word2vec algorithm. An
embedding layer is primarily used to encode a sentence to produce a distributed
representation of a word or character. After a sentence passes through this layer, the word
vector of each word or character can be obtained, where k denotes the dimensions of the
word vector and X; denotes the i-th word. A sentence of length 7 can then be expressed as

Xin=X10Xy- - DX, (1)

where @ denotes the concatenation operator and X;,;;; denotes the matrix of feature
vectors formed by the word vectors Xj, Xiy1 ..., Xy

In the proposed model, the convolutional, pooling, and fully connected layers for the
classification task are positioned behind the embedding layer. This design enables the
embedding layer to process semantic information for weight adjustment considering both
the contextual information of the word and the classification task, thereby improving the
semantic information extraction performance. Then the embedding layer is realized using
the function tf.keras.layers.Embedding in TensorFlow to establish the spatiotemporal
contextual features of the trajectory segment by an end-to-end method. Table 1 lists the
parameters used in this study.
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Neural network model construction and comparison

Fully connected neural networks and one-dimensional convolutional neural
networks

An FCNN is a classical artificial neural network structure that comprises multiple neurons
connected according to a hierarchical structure (Liu et al., 2018). FCNNs typically
comprise an input layer, several hidden layers, and an output layer. The input layer
receives raw data as input, the hidden layers extract higher-order data features, and the
output layer outputs the corresponding results based on the task requirements. Each
hidden and output layer contains multiple neurons, and the number of neurons and layers
in each hidden layer can be adjusted according to the task complexity and data
characteristics. During the training process, the FCNN continuously adjusts the
connection weights through a back-propagation algorithm and optimizer so that the
network output is as close as possible to the real value and the loss function is minimized.
By using a large number of training samples and iterative optimization, the FCNN can
learn the complex patterns and laws of the supplied data. Further, FCNNs have strong
generalization ability (Liu et al., 2019; Lu et al., 2021). An FCNN can be expressed as

y=fO_wix; +b) (2)
where x; denotes the input, w; denotes the weight, b denotes the bias, f denotes the
activation function, and y denotes the output.

A CNN is a model structure that gradually learns data features from low- to high-level
patterns (Yamashita et al., 2018). The basic CNN structure comprises input, convolutional,
pooling, fully connected, and output layers. The first stage involves the continuous
extraction of features from the input data through alternations between the convolutional
and pooling layers, as well as data dimensionality reduction through the use of a fully
connected layer when approaching the output layer (Zhow, Jin ¢» Dong, 2017). A
one-dimensional convolution (1D-CNN) is typically used to process 1D sequential data.

In a 1D-CNN model structure, 1D data are used as input and the data features are
continuously extracted using 1D convolution and pooling (Qazi, Almorjan & Zia, 2022).
In the convolutional layer, the kernel performs a convolution operation on the
feature-vector output of the previous layer. The output feature vector is then constructed
using a nonlinear activation function. The output of each layer is the result of the
convolution of multiple-input features. The mathematical model can be expressed as

X' =F (EMJ XX kg + b}) (3)
where M; represents the set of input features or receptive field for the j-th output neuron in
a convolutional layer; [ denotes the I™ network layer; k denotes the convolution kernel; b
denotes the network bias; X! and X'~! denote the I™-layer output and input, respectively;
and F(-) denotes the activation function.
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Single- and multi-branch structures

Single- and multi-branch strategies are two alternative model-building strategies. For a
model with a single-branch structure, multiple factors are stitched together and fed into
the model. When a multi-branch structure is employed, factor information is extracted
using a separate substructure; the extracted information is then combined and fed into the
subsequent network for learning.

In this study, we developed a new MB-1dCNN model based on the Geohash algorithm,
word embedding, and CNN deep learning methods. The model was designed to identify
the activity patterns of commercial fishing vessels. The model structure is illustrated in
Fig. 1D. Additionally, we constructed the SB-FCNN (Fig. 1A), MB-FCNN (Fig. 1C), and
SB-1dCNN (Fig. 1B) models.

The MB-FCNN model can be expressed as

Xt — C()A/17...,)A/n) (4)

where 7, and j, denote the outputs of the first and n™ layers, respectively; C(-) denotes
multiple-value splicing; and X; denotes the layer after splicing.

The proposed MB-1dCNN model extracts the features of each input factor separately
through convolution and pooling and then combines the extracted information in a fully
connected layer before output. Compared to a CNN, into which all factors are input, the
MB-1dCNN can extract the features of each factor more efficiently. The mathematical
model can be expressed as

X, = C| FA(MP(X))), ... (5)
—

1
X].

where MP(-) denotes the pooling operation, FA(-) denotes the flattening function, C(-)
denotes the splicing of multiple values, and X; denotes the layer after splicing.

Opverall, the SB-FCNN model comprises an input layer, five dense layers, two dropout
layers, and an output layer; the MB-FCNN model comprises an input layer, four dense
layers for separate extraction of each input feature, two dropout layers, one dense layer for
extraction of the combined feature information, and an output layer; the SB-1dCNN
model comprises an input layer, four ConvlD layers, MaxPooling1D layer modules, two
dropout layers, a dense layer, and an output layer; and the MB-1dCNN model comprises
an input layer, four ConvlD layers and MaxPooling1D layer modules for separate
extraction of each input feature, two dropout layers, a dense layer for extraction of the
combined feature information, and an output layer. The parameters of the four models are
listed in Table 1.

All of these models have four inputs: the location data through embedding processing
after Geohash geocoding transformation, the embedding time data, speed and heading.
Since the representation method of words in natural language processing is referenced, the
vector obtained after embedding processing after Geohash transformation can be
considered to contain the spatiotemporal contextual information of the trajectory. Except
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that the activation function used in the last layer of the models is SoftMax, the activation
function used in other layers is rectified liner unit (ReLu) activation function. The
Adam optimizer was implemented with a learning rate of 0.001; CategoricalCrossentropy
was used as the loss function. The GPU was a GeForce RTX 2080 Ti run on a
Windows operating system. The MB-1dCNN model was built using Python 3.7 and
TensorFlow 2.4.1.

Datasets

Experimental data were obtained from the 2020 Digital China Innovation Competition
(https://tianchi.aliyun.com/competition/entrance/231768/introduction), which provided
trajectory data for three fishing-vessel operational types: trawl net, purse seine, and gillnet
fishing. In these datasets, a trajectory segment comprises several track points of the vessel
at sea based on a unique vessel ID, along with the fishing type corresponding to that track
segment.

In this study, these data were preprocessed to remove operational track segments having
fewer than five track points and heading directions outside the range of 0-360°. The final
data volume was 8,163. The data fields comprised the fishing vessel ID, longitude, latitude,
speed, heading, timestamp, and registered fishing method or operational type. The
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Table 3 The amount of data in the datasets for different fishing operation types.

Purse seine Trawl net Gillnet Total data
Train 2,479 2,302 933 5,714
Validation 708 658 266 1,632
Test 354 329 134 817
Total data 3,541 3,289 1,333 8,163

Note:
Accuracy, Precision, Recall, and F1 values in the table are the weighted averages of the three operation types. The weight
is the proportion of each operation type to the total samples.

longitude, latitude, speed, and direction ranges were [0°, 127.803°], [0°, 44.824°], [0, 11]
knots, and [0°, 360°], respectively. The distribution of each feature value domain in the
dataset is shown in Fig. 3. The length distribution of the single operational trajectories and
the data volumes for the different fishing behaviors are shown in Fig. 4. The track-point
sequence length of a single-vessel trajectory segment ranged from 21 to 5,841, with an
average length of ~598. From Fig. 4, it is evident that the majority of trajectory
sequences have a length of less than 800. Consequently, the trajectory length for the
model’s input has been determined to be 800. The dataset was divided into training,
validation, and test datasets at a ratio of 7:2:1. The details of the dataset division are
presented in Table 3.

The spatiotemporal contextual features of the fishing vessel trajectories were extracted
from the original dataset and used as inputs for the recognition model. The model input
features included the tensors of the spatiotemporal contextual features of the fishing vessel
trajectories, times, speeds, and headings. The spatiotemporal context tensor of the
fishing-vessel trajectories was obtained by encoding the longitude and latitude data using
the Geohash method and performing extraction by embedding using natural language
processing. The time feature was obtained by converting the “Month-Day” data to a
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character string; this information was then represented by a vector obtained by embedding
of nature language processing. The maximum-minimum normalisation method (Bhanja
¢ Das, 2018) is used to preprocess the data on speed and direction of heading, so as with
the non-geohash transformation geolocation data for the comparison.

Evaluation metrics

Learner or model generalizability is a performance metric that requires valid and feasible
experimental estimation methods and evaluation criteria. The performance metrics reflect
the task requirements, and different metrics can often yield different results when the
capabilities of different models are compared.

Following the construction of the complete classifier, we used a series of evaluation
metrics to determine its effectiveness. Accuracy is one of the most commonly used
performance measures in traditional classifier evaluation metrics, calculated as the ratio of
correctly classified samples to the total number of samples. Typically, this metric can be
applied to standard balanced data having a positive-to-negative sample ratio of 1:1.
However, the number of samples is usually inconsistent between categories. In such cases,
Accuracy should not be the only metric used to evaluate the classifier. For example, for a
sample with a positive-to-negative sample ratio of 999:1, the model Accuracy can reach
99.9% even if the classifier predicts only the negative sample as positive. However, only the
negative-sample information must be considered.

Consequently, another evaluation metric F1I is introduced, for which a more significant
value indicates better model classification. FI takes into account both Recall and Precision.
Recall denotes the proportion of all positive samples predicted to be correct in the
classification process, as well as Precision denotes the proportion of samples predicted to be
in the positive class by the model during classification, calculated as the percentage of the
correct predictions made by the model.

To reduce the resulting instability caused by the randomization of the neural network
parameters, for both Accuracy and F1, we used the mean + standard deviation values of the
maximum and minimum values obtained after 12 training sessions under the same
conditions for the same model.

RESULTS AND DISCUSSION

Influence of spatiotemporal contextual information on the
classification accuracy of fishing vessel operation types

To investigate the impact of spatiotemporal contextual information on the classification
accuracy of fishing vessel operation types, the comparison experiment using two different
sets of trajectories data was designed. One set utilized latitude and longitude data directly
for model training and prediction. The other set incorporated the spatiotemporal context
information of the trajectories for the same purpose. The spatial contextual feature
extraction of the trajectory were extracted using the GeoHash and Embedding techniques.
Subsequently, the MB-1dCNN model was employed for training and prediction, achieving
accuracy and F-score of 86.93% and 83.84% respectively on the test set.
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Table 4 Spatiotemporal contextual information effect on the fishing operation type recognition.

Features Accuracy F-score
Lon&Lat 0.7280 + 0.0045 0.6148 + 0.0110
GH—EM (Lon&Lat) 0.8693 + 0.0040 0.8384 + 0.0053
1.0
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Figure 5 Model results of MB-1dCNN based on different lengths of geohash encoding.
Full-size k4] DOT: 10.7717/peerj-cs.3020/fig-5

As shown in Table 4, the comparison of these two experimental sets reveals that the
classification accuracy and F-score improved by 14.13% and 22.36% respectively when
using the Embedding method based on GeoHash transformation of vessel trajectories,
compared to the model without spatiotemporal contextual information. This demonstrates
that incorporating spatial contextual information from trajectories into the fishing vessel
operation type classification model (MB-1dCNN) is highly effective in enhancing
classification accuracy. Consequently, the spatiotemporal contextual information of
trajectories promises to play a significant role in identifying fishing vessel types.

Impact of different Geohash lengths on results

To address the issue of identifying fishing vessel operation types, we examined the effect of
varying Geohash lengths on the MB-1dCNN model’s ability to identify operation types
using the spatiotemporal contextual features of fishing vessel trajectories by comparing the
accuracy. Figure 5 illustrates a plot of the change in recognition accuracy with the Geohash
length. As the Geohash length increased, both the weighted Accuracy and weighted F1
scores of the model exhibited an upward trend followed by a decline. The highest
classification accuracy was achieved at a Geohash length of 5; the weighted Accuracy was
0.8595 + 0.0082 and weighted FI being 0.8573 + 0.0085. The corresponding spatial extent
was approximately 4.89 x 4.89 km®.

As previously noted, each Geohash code represents a grid region on Earth, with the code
length denoting the grid-region size. Figure 6 presents results for the gillnet, trawl net, and
purse seine fishing operations in columns from left to right, respectively. The first row of
Fig. 6 shows the original fishing vessel trajectories for each of these operations. The second

Jiang and Zhou (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.3020 14/22


http://dx.doi.org/10.7717/peerj-cs.3020/fig-5
http://dx.doi.org/10.7717/peerj-cs.3020
https://peerj.com/computer-science/

PeerJ Computer Science

) 27°4'N
............ -é ;
4 >
23°40'N } .
3 27°N
i |24°50N ™
T 0%
e e " :
© $[26°56'N
23°20N 3
24°45'N
26°52'N
118°E 118°20'E 118°40'E 118°50'E 118°55'E 119°E 119°5'E
30°N 30°N
35°N
30°N
25°N 25°N -
25°N
-
20°N
115°E 120°E 125°E 115°E 120°E 125°E
27°4'N
SR 3
oA() % oot =y
23°40'N { ¥ [24°50N a0 P
i i S % i "! .
"‘Wm“"' ..’:'v 5 o 26°56'N
090" et < &
23°20N - 24945
26°52'N
117°40'E 118°E 118°20'E 118°40'E 118°50'E 118°55'E 119°E 119°5'E
27°4'N
>
23°40'N IS St o
FD4050N {
i £126°56N
23°20'N "'
24°45'N =
— ‘ — 26°52'N
118°E 118°20'E 118°40'E 118°50'E 118°55'E 119°E 119°5'E
- Trajectory Points "~ GeoHash Encode Grid

27°N i

125°28'E 125°32'E

125°E 130°E 135°E

-

)

¥

125°28'E 125°32'E

N

125°28'E 125°32'E

Figure 6 Trajectories of different fishing types overlaid with the grids represented by the different geohash encoding lengths. From left to right:
gillnet, trawl net, and purse seine. From top to bottom: original trajectory; overlay of original trajectory points with geohash grid when the encoding
length is 2, 5, and 6 respectively.

Full-size Kal DOI: 10.7717/peerj-cs.3020/fig-6

to fourth rows (from top to bottom) present overlays of the Geohash geographic grids on

the vessel trajectories when the Geohash lengths were 2, 5, and 6, respectively. When the

Geohash length was too short (as seen in the second row of Fig. 6, with length = 2), the

geospatial region was larger, with most of the trajectory points enrolled in one region. This

led to information loss under the Geohash coding, thereby reducing the model
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Table 5 Evaluation metrics of different neural networks for the recognition effect of fishing

operations type.

Model

Accuracy

Precision

Recall

F1

SB-FCNN
MB-FCNN
SB-CNN
MB-CNN

0.7841 + 0.0334
0.8365 + 0.0341
0.8660 + 0.0037
0.8671 + 0.0058

0.7178 + 0.0907
0.8187 = 0.0714
0.8648 = 0.0041
0.8669 * 0.0059

0.7841 + 0.0334
0.8365 + 0.0341
0.8660 + 0.0037
0.8671 + 0.0058

0.7362 + 0.0601
0.8197 + 0.0580
0.8636 + 0.0038
0.8651 + 0.0058

classification accuracy. As the Geohash length gradually increased, the region size became
more reasonable, and the specific fishing behavioral characteristics of the different fishing
vessel types became evident after sequence encoding. Consequently, model classification
accuracy improved (see the third row of Fig. 6, with length = 5). However, when the
Geohash length was excessively long, the region division granularity became too fine,
introducing noise and reducing model classification accuracy (see the fourth row of Fig. 6,
with length = 6).

Impact of different network structures on the model

We examine the recognition accuracies of the different models for the three fishing vessel
operational types under investigation in this study. As noted previously, we utilized the
trajectory-point latitude and longitude to construct the spatiotemporal contextual feature.
It was then used as input feature for the models, alongside embedded-time, speed, and
heading. As depicted in Table 5, the SB-1dCNN model achieved a weighted average
Accuracy of 0.8660 + 0.0037 and FI score of 0.8636 + 0.0038. The MB-1dCNN model
showed slightly higher values, with a weighted average Accuracy of 0.8671 + 0.0058 and F1I
score of 0.8651 + 0.0058. Both models demonstrated superior performance to the
SB-FCNN and MB-FCNN models.

The SB-1dCNN and MB-1dCNN models outperformed their SB-FCNN and
MB-FCNN counterparts. This indicates that CNN models are better suited for
fishing-vessel operational types recognition than FCNN models. The success of CNN
models may be due to their ability to mitigate the impact of noise between neighboring
trajectory points, which can arise from becalmed scenarios or missed reports in certain
trajectory segments. By using a convolution kernel of a specific size to extract features from
trajectory segments, CNN models effectively reduce the influence of such noise, unlike
FCNN models, which are more susceptible to noise-induced classification accuracy
reductions. Thus, the results confirm that 1D-convolution is superior to fully connected
networks for feature extraction in sequential data.

Effect of single- and multi-branch structures on model performance
As previously illustrated in Fig. 1, two distinct model-building strategies have been
developed for 1D-sequence data: single- and multi-branch strategies. In the single-branch
approach, multiple factors are concatenated and fed into the model sequentially as
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depicted in Figs. 1A and 1B. In contrast, the multi-branch method involves inputting
multiple factors into separate substructures, and then combining the extracted information
before feeding it into the subsequent network for learning as depicted in Figs. 1C and 1D.

The experimental results presented in Table 3 indicate that, for both the FCNN and
CNN structures, the multi-branch-based models exhibit higher classification accuracy
than the single-branch models. Specifically, the MB-1dCNN model demonstrated
improvements of 0.0011 in weighted Accuracy and 0.0015 in weighted FI score compared
to the SB-1dCNN model. Similarly, the MB-FCNN model showed enhancements of 0.0524
in weighted Accuracy and 0.0835 in weighted FI score in comparison to the SB-FCNN
model. This difference may be due to the number of neural networks used to handle
feature extraction. The multi-branch structure allows for separate feature extraction and
tusion of inputs, avoiding the noise impact that occurs when inputs are directly
concatenated in the single-branch structure. Consequently, when dealing with multiple
types of different inputs, a multi-branch structure can more effectively extract the features
of the inputs and enhance the model classification accuracy. Overall, this outcome further
demonstrates the advantages of the proposed MB-1dCNN model in identifying fishing
vessel operational types.

CONCLUSIONS

Accurate identification of the activity patterns or operational types of commercial fishing
vessels is essential for the conservation and sustainable development of fishery resources.
In this study, the MB-1dCNN model was developed to identify fishing vessel operation
types using vessel trajectory data. The MB-1dCNN model is an end-to-end one-stage deep
learning model that optimizes the overall objective of a task during the training process,
and reduces the reliance on feature engineering common in traditional methods.
Consequently, it reduces human intervention and is more suitable for the analysis of
feature importance than existing alternatives. The Geohash geocoding algorithm was used
to convert the geographic location of a track point into a literal representation and
embedding techniques were used to extract spatio-temporal context information from
trajectory sequences.

The MB-1dCNN model was compared with the SB-1dCNN, SB-FCNN, and MB-FCNN
models in terms of recognition accuracy, and the proposed model exhibited better
recognition performance for the three types of fishing operations considered in this study:
trawl net, purse seine, and gillnet fishing. Overall, the 1D-CNN models exhibited better
performance than the FCNN models when classifying the fishing vessels by operational
type. Moreover, because multiple model input features were considered, both the 1D-CNN
and FCNN models exhibited better performance under a multi-branch structure than a
single-branch structure. Therefore, the combination of multi-branch structure and 1D-
CNN has achieved superior results.

The influence of the Geohash length on the model accuracy was also explored. The
weighted Accuracy and weighted FI scores of the model tended to increase before
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decreasing with increasing Geohash length. The highest classification accuracy was
obtained when the Geohash length was 5, with a weighted Accuracy of 0.8595 + 0.0082 and
a weighted FI score of 0.8573 + 0.0085. The spatial range represented by this Geohash
encoding was approximately 4.89 x 4.89 km®.

Overall, the MB-1dCNN model proposed in this article effectively realized fishing-vessel
operational-type recognition by using the Geohash and embedding techniques and
employing a convolutional neural network. Consequently, it reduces human intervention
and is more suitable for the analysis of feature importance than existing alternatives. In the
future, the authors will consider the importance or contribution of different features for
the recognition effect using this method, and will compare this method with other methods
such as LSTM to screen out a better model. Because vessels of different fishing operational
types have different trajectory patterns in temporal and spatial distribution, better ways to
obtain or identify these patterns will be explored in the future, possibly considering
transformer models or graph neural networks.
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