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ABSTRACT

Masked autoencoders (MAE) have emerged as a powerful framework for
self-supervised learning by reconstructing masked input data. However, determining
the optimal masking ratio requires extensive experimentation, resulting in significant
computational overhead. To address this challenge, we propose CurriMAE, a
curriculum-based training approach that progressively increases the masking ratio
during pretraining to balance task complexity and computational efficiency. In
CurriMAE, the training process spans 800 epochs, with the masking ratio gradually
increasing in four stages: 60% for the first 200 epochs, followed by 70%, 80%, and
finally 90% in the last 200 epochs. This progressive masking approach, inspired by
curriculum learning, allows the model to learn from simpler tasks before tackling
more challenging ones. To ensure stable convergence, a cyclic cosine learning rate
scheduler is employed, resetting every 200 epochs, effectively dividing the training
process into four distinct stages. At the end of each stage, corresponding to one
complete cycle of the learning rate schedule, a snapshot model is saved, resulting in
four pretrained models. These snapshots are then fine-tuned to obtain the final
classification results. We evaluate CurriMAE on multi-labeled pediatric thoracic
disease classification, pretraining the model on CheXpert and ChestX-ray14 datasets,
and fine-tuning it on PediCXR. Experimental results show that CurriMAE
outperforms ResNet, ViT-S, and standard MAE, achieving superior performance
while reducing computational cost. These findings establish CurriMAE as an
effective and scalable self-supervised learning framework for medical imaging
applications.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Data
Mining and Machine Learning, Neural Networks

Keywords Self-supervised learning, Masked autoencoders, Snapshot ensemble, Multi-labeled
problem, Pediatric CXR, Curriculum learning

INTRODUCTION

The automated detection of various chest-related disorders in children’s X-ray images is a
critical area of medical research. Respiratory illnesses such as pneumonia, bronchitis, and
bronchiolitis rank among the primary reasons for illness and death in young patients,
especially in areas with limited healthcare resources (Unicef and World Health
Organization, 2006). Timely and precise diagnosis plays a vital role in starting effective
treatments and preventing serious health issues.
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In recent times, deep learning techniques, particularly convolutional neural networks
(CNNs), have shown great potential in this field by delivering impressive results in
analyzing chest X-ray images (Irvin et al., 2019; Wang et al., 2017). Research involving
specific pediatric datasets has confirmed the possibility of identifying multiple chest
conditions simultaneously through supervised learning methods (Pham et al., 2023).
However, these approaches often demand extensive labeled datasets, which are hard to
obtain for pediatric cases due to ethical issues, high costs of data labeling, and the relative
rarity of certain diseases. Moreover, many existing models are pretrained on ImageNet,
which do not adequately reflect the unique anatomical and pathological characteristics
present in pediatric chest X-rays. This discrepancy can result in reduced accuracy and
challenges in applying these models across diverse medical environments. To tackle such
challenges, recent studies have explored self-supervised learning (SSL) approaches, which
mitigate the need for labeled data by extracting patterns directly from the data itself (Chen
et al., 2020; He et al., 2022, 2020).

SSL has gained significant attention in recent years, particularly for its ability to learn
useful representations from unlabeled data. For example, SSL methods have been
successfully applied in natural language processing to pretrain language models, such as
bidirectional encoder representations from transformers (BERT), by predicting masked
words in a sentence, enabling them to capture contextual relationships (Devlin et al., 2019;
Huang et al., 2017). In computer vision, SSL has been widely utilized to learn feature
representations without requiring extensive labeled datasets. Methods such as contrastive
learning (e.g., SimCLR, MoCo) leverage instance discrimination to distinguish positive and
negative pairs, while predictive modeling approaches, including masked image modeling
(MIM), reconstruct missing parts of an image to enhance feature learning (Bao et al., 2022;
Chen et al., 2020; He et al., 2020). These techniques have demonstrated strong performance
in various tasks by enabling models to capture hierarchical and semantic structures from
image patches. These methods significantly reduce the dependency on large labeled
datasets, making them especially valuable in fields like medical imaging, where annotating
data is often time-consuming and requires domain expertise (Bozorgtabar, Mahapatra &
Thiran, 2023; Cai et al., 2022; Wang et al., 2024).

Among the various SSL techniques, masked autoencoders (MAE) have shown
remarkable performance in multiple domains, including medical imaging and computer
vision. By masking portions of the input data and reconstructing the missing parts, MAE
effectively learns meaningful features in an unsupervised manner. For instance, in medical
imaging, MAE can be applied to reconstruct missing regions of X-ray, helping the model
focus on critical features such as anatomical structures or pathological markers (Saeed
Shurrab, 2022; Xiao et al., 2023; Yoon & Kang, 2024b). In computer vision, MAE has been
used to pretrain vision transformers by reconstructing pixel-level details of masked image
patches, enabling robust feature extraction for downstream tasks like image classification,
object detection, and segmentation (Dai et al., 2023; He et al., 2022; Xie et al., 2023). These
capabilities allow MAE to generalize across diverse datasets, making it a powerful tool for
high-dimensional and complex data scenarios.
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Despite their promise, MAE models face a critical challenge: the computational burden
associated with identifying an optimal masking ratio. Determining the best masking ratio
typically requires extensive experimentation, which involves training multiple models with
different masking ratios. This process is not only resource-intensive but also
time-consuming for large-scale datasets and high-dimensional tasks. To address this
limitation, we propose CurriMAE, a novel curriculum-based training strategy for MAE.
Inspired by the principles of curriculum learning (Bengio et al., 2009), where tasks are
structured in increasing order of difficulty, CurriMAE introduces a progressive masking
ratio schedule during pretraining. Instead of fixing a masking ratio or exhaustively
searching for an optimal masking ratio, CurriMAE begins with simpler tasks (lower
masking ratios) and gradually transitions to more challenging ones (higher masking
ratios). That is, CurriMAE pushes the model to handle highly challenging tasks with
minimal input visibility. This approach enables efficient learning while alleviating the
computational complexity associated with standard MAE. To further optimize the
learning process, we employ a cyclic cosine learning rate scheduler (Huang et al., 2017),
which helps the model converge efficiently at each phase.

The contributions of this research are summarized as follows:

» We address the computational inefficiencies of MAE by eliminating the need for
exhaustive masking ratio tuning through a progressive masking strategy.

» We propose CurriMAE, a curriculum-based training framework that gradually increases
the masking ratio during pretraining, effectively balancing task difficulty and
computational efficiency.

e We evaluate CurriMAE on multi-labeled pediatric thoracic disease classification,
demonstrating superior performance over ResNet, ViT-S, and standard MAE, while
maintaining computational efficiency.

e We compare fixed-epoch and adaptive-epoch training strategies, showing that
progressively allocating training epochs based on task complexity can further enhance
model performance.

RELATED WORKS

Pediatric thoracic disease classification has recently gained attention due to the clinical
importance of early detection of respiratory illnesses in children. Several studies have
employed deep learning approaches on pediatric chest X-rays such as PediCXR (Pham
et al., 2023) and shown significant advancements through the integration of large-scale
datasets, deep learning, and refined clinical guidelines. Chen et al. (2021) developed a deep
learning model for classifying pediatric chest X-rays based on World Health
Organization’s standardized methodology. The model utilized transfer learning from a
large adult CXR dataset and was fine-tuned on a pediatric dataset. The model achieved
performance comparable to or exceeding that of radiologists and pediatricians, particularly
excelling in cases with high inter-observer agreement, and demonstrated the potential for
automated, standardized interpretation of pediatric CXRs in clinical and epidemiological
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studies. Tran et al. (2021) developed a CNN framework for multi-label classification of
pediatric chest radiographs, addressing challenges such as limited annotated datasets and
severe class imbalance by introducing a modified distribution-balanced loss function.
Their approach, validated on a large, expert-annotated pediatric CXR dataset,
outperformed previous state-of-the-art methods for detecting ten common thoracic
diseases and demonstrated the effectiveness of tailored loss functions in improving
diagnostic performance on imbalanced pediatric data. Yoon ¢ Kang (2024a) proposed a
dual-masked autoencoder (dual-MAE) framework for multi-label classification of
pediatric thoracic diseases, which leverages pretraining on large adult chest X-ray datasets
followed by fine-tuning on pediatric data to overcome the challenge of limited pediatric
samples. Their dual-MAE model outperformed conventional architectures and other
pretraining strategies, achieving the highest mean AUC in multi-label pediatric thoracic
disease classification, and demonstrated robust performance even with only half of the
labeled pediatric data available.

Curriculum learning has long been a foundational concept in machine learning,
emphasizing the benefits of structured learning progression from simpler to more complex
tasks. The curriculum-based methodology aligns closely with human cognitive learning
processes, providing a foundation for more bio-inspired machine learning paradigms
(Azimi et al., 2021). Bengio et al. (2009) introduced curriculum learning by formalizing the
idea that training machine learning models with examples organized in increasing order of
difficulty can improve both generalization and convergence speed. They hypothesized that
curriculum learning operates as a continuation method, where simpler tasks help guide
optimization toward better local minima of non-convex training objectives. Through
experiments in tasks like shape recognition and language modeling, the authors
demonstrated that curriculum learning not only accelerates convergence but also improves
generalization by reducing the learner’s initial exposure to noisy or overly complex
examples. These findings present the adaptive advantage of gradually increasing task
complexity during training. Tan ¢ Le (2021) introduced EfficientNetV2, which
incorporated various techniques to enhance training efficiency and accuracy. Among
them, a curriculum learning-inspired progressive learning approach was applied to
optimize the training process. The training began with smaller image sizes and weaker
regularization, allowing the model to quickly learn simple representations. As training
progressed, image sizes were gradually increased, and stronger regularization techniques,
such as dropout, data augmentation, and mixup, were introduced to increase complexity.
This gradual adjustment aligns with the principles of curriculum learning, where models
first learn easier tasks before progressing to more difficult ones, facilitating better
optimization and improved generalization. Experiments on ImageNet demonstrated that
this progressive learning strategy not only accelerated training but also maintained or
improved accuracy compared to previous methods.

Masked image modeling (MIM) has emerged as a powerful SSL paradigm, particularly
in vision tasks. Vision Transformers (ViT) paved the way for MIM approaches by
demonstrating the effectiveness of patch-based input representations (Dosovitskiy et al.,
2021). Bao et al. (2022) introduced Bidirectional Encoder representation from Image
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Transformers (BEiT), which established MIM as a self-supervised pretraining task for ViT,
inspired by BERT’s masked language modeling in NLP. In BEiT, images were represented
as discrete visual tokens generated by a tokenizer based on a discrete variational
autoencoder (dVAE). During pretraining, BEiT randomly masked a portion of image
patches and learned to predict the corresponding visual tokens instead of reconstructing
raw pixels. This approach addressed the limitations of pixel-level autoencoding by focusing
on high-level abstractions rather than short-range dependencies. BEiT demonstrated
strong performance on downstream tasks such as image classification and semantic
segmentation, emphasizing the effectiveness of MIM in learning robust visual
representations. Xie et al. (2022) proposed SimMIM, a simple yet effective framework for
MIM that learns visual representations by reconstructing raw pixel values in masked image
patches. Unlike previous methods that relied on complex mechanisms such as tokenization
via dVAEs (Bao et al., 2022) or clustering (Caron et al., 2018), SimMIM employed a
straightforward approach: random patch masking, a lightweight linear prediction head,
and pixel regression with an [; loss. This method demonstrated that raw pixel regression
aligned effectively with the continuous nature of visual signals, enabling the model to
achieve competitive results without requiring intricate pretext tasks. Despite its simplicity,
SimMIM outperformed more complex methods on benchmarks such as ImageNet-1K and
scaled effectively to larger models like SwinV2-H, highlighting the potential of MIM as an
efficient and robust self-supervised learning strategy.

Recent research has explored the integration of curriculum learning with MIM to
enhance SSL frameworks. Madan et al. (2024) introduced curriculum-learned masked
autoencoders (CL-MAE), CL-MAE integrated curriculum learning with MIM to enhance
self-supervised representation learning. The approach employed a novel learnable masking
module that generated masks of increasing complexity throughout training. Initially, the
module produced easy masks to simplify the reconstruction task, gradually transitioning to
harder masks by dynamically adjusting a curriculum loss factor. This easy-to-hard
progression allowed the MAE to progressively adapt to more challenging reconstruction
tasks, leading to better generalization and robust feature learning. Experimental results
demonstrated that this curriculum-based masking strategy significantly improved
representation quality compared to standard MIM techniques, validating the synergy
between curriculum learning and MIM. Lin et al. (2024) proposed a prototype-driven
curriculum learning framework for MIM to address optimization challenges during early
training stages. Instead of exposing the model to the full complexity of natural image
distributions from the start, the approach began with prototypical examples representing
essential visual patterns for each semantic category. As training progresses, the curriculum
gradually incorporated more complex variations, enabling stable and efficient learning
trajectories. The proposed framework improved training efficiency and representation
quality, achieving superior performance on ImageNet-1K compared to standard MAE
training strategies. This demonstrated that curriculum learning principles can effectively
enhance MIM by structuring the learning process from simple to complex examples.

Table 1 summarizes the differences between CurriMAE and recent curriculum-based
MIM approaches.
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Table 1 Comparison of CurriMAE with existing curriculum-based MIM methods.

Method CL-MAE (Madan et al., 2024) Prototype-CL (Lin et al., 2024) CurriMAE (ours)
Curriculum strategy Dynamic/self-paced Fixed, data-driven Fixed-stage
Curriculum target Mask complexity Data semantic complexity Masking ratio
Curriculum progression Learnable mask complexity From prototypes to general samples Predefined
(60% to 90%)
Masking strategy Learnable masking module Sampling based on clustering + annealing Random masking with progressive difficulty
Pretraining snapshots ~ No No Yes (4 snapshots)
Fine-tuning required No No Yes (per snapshot)
Application domain Natural image benchmarks ImageNet-1K Pediatric thoracic disease

MATERIALS AND METHODS

Datasets

In this study, we evaluated CurriMAE on a multi-labeled pediatric chest X-ray dataset. Due
to the limited size of the PediCXR dataset (Pham et al., 2023), CurriMAE was not
pretrained directly on PediCXR. Instead, pretraining was conducted on the CheXpert
dataset (Irvin et al., 2019) and ChestX-ray14 dataset (Wang et al., 2017), which contain
adult chest X-rays that share structural, morphological, and textural similarities with
pediatric chest X-rays (Yoon ¢» Kang, 2024b). The overall experimental pipeline involved
pretraining CurriMAE on the CheXpert and ChestX-rayl4 datasets, followed by
fine-tuning on the PediCXR dataset, which comprises multi-labeled pediatric thoracic
disease cases.

The CheXpert dataset consists of 224,316 chest radiographs, including 191,229 frontal
view images and 33,087 lateral view images. These radiographs are categorized into
fourteen classes, covering twelve pathologies, the presence of medical support devices, and
normal cases. In this study, only the 191,229 frontal view images were utilized, while lateral
view images were excluded. Similarly, the ChestX-ray14 dataset comprises 112,120 frontal
chest X-ray images, among which 51,708 are annotated with at least one pathology
spanning fourteen categories, while 60,412 represent normal cases. In total, 303,349 images
from the CheXpert and ChestX-ray14 datasets were used for pretraining, as summarized in
Table 2.

After pretraining, the PediCXR dataset was used to fine-tune the models for pediatric
thoracic disease classification. This dataset contains 9,125 pediatric chest X-ray images,
officially divided into 7,728 training images and 1,398 test images. The training set
originally included fifteen disease classes, but four diseases—congenital emphysema,
diaphragmatic hernia, lung tumor, and pleuro-pneumonia—were absent in the test set. To
maintain consistency, these diseases were merged into the “other diseases” class.
Additionally, five disease classes—CPAM, hyaline membrane disease, mediastinal tumor,
situs inversus, and tuberculosis—had fewer than twenty training samples each. These were
also incorporated into the “other diseases” class. Consequently, the PediCXR dataset was
restructured into six final classes: no finding, bronchitis, broncho-pneumonia,
bronchiolitis, pneumonia, and other diseases, as detailed in Table 2.
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Table 2 Overview of datasets used for pretraining and fine-tuning in multi-labeled pediatric thoracic
disease classification, including the number of samples for each class.

Data Dataset Class Pretraining samples Test samples
Pretraining data CheXpert - 191,229 -
ChestX-rayl4 - 112,120 -
Fine-tuning data PediCXR No finding 5,143 907
Bronchitis 842 174
Broncho-pneumonia 545 84
Bronchiolitis 497 90
Pneumonia 392 89
Other diseases 485 85

For model fine-tuning and training from scratch with randomly initialized weights, 80%
of the training data was used for training, while the remaining 20% was allocated for
validation. Given that chest X-rays often exhibit multiple co-occurring medical conditions,
this classification task was treated as a multi-labeled problem, allowing each image to be
associated with multiple disease labels. The samples used for pretraining on adult chest
X-rays (first row) and fine-tuning on pediatric chest X-rays (second row) are illustrated in
Fig. 1.

The PediCXR dataset includes chest radiographs from patients younger than ten years.
However, detailed metadata such ICU admission status, and disease severity levels are not
provided in the public release of the dataset.

Ethical review and approval were not required, as the study exclusively analyzed
anonymized clinical open data.

Pretraining CurriMAE model

The CurriMAE framework is designed to mitigate the computational inefficiencies
associated with standard MAE training by incorporating a progressive masking ratio
schedule alongside a cyclic cosine learning rate scheduler. The core methodology consists
of pretraining the MAE model on unlabeled data, followed by fine-tuning the pretrained
encoder, specifically the ViT-S model, using labeled data as depicted in Fig. 2. This
approach was applied to the multi-labeled pediatric thoracic disease task.

As illustrated in Fig. 2A, CurriMAE began by dividing input images into
non-overlapping 16 x 16 patches. Each patch was flattened, projected into a
low-dimensional token via linear projection, and added with positional embeddings. A
subset of these tokens was randomly selected based on predefined masking ratios, and the
selected tokens were masked.

To enhance representation learning, CurriMAE employs a progressive masking strategy
over 800 epochs. Training started with a 60% masking ratio for the first 200 epochs,
allowing the model to focus on relatively simpler reconstruction tasks. At the end of this
phase, the model was saved as a snapshot. The masking ratio was then gradually increased
to 70%, 80% and 90% over subsequent 200-epoch intervals, progressively increasing the
task complexity. At the end of each phase, corresponding to every 200 epochs, model
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Figure 1 Sample images from CheXpert and ChestX-ray14 datasets (first row) and PediCXR dataset
(second row). Each image may present multiple conditions: (A) No finding. (B) Atelectasis & Pleural
Effusion. (C) Effusion & Infiltration. (D) Lung Opacity & Atelectasis. (E) No finding. (F) Bronchiolitis &
Pneumonia. (G) Other disease and (H) Pneumonia & Other disease.

Full-size k&l DOTI: 10.7717/peerj-cs.3019/fig-1

snapshots were saved and later used for fine-tuning. This curriculum learning approach
gradually exposes the model to increasingly challenging tasks, enhancing representation
learning and improving generalization capabilities.

To complement the progressive masking approach, CurriMAE employed a cyclic cosine
learning rate scheduler instead of conventional monotonic schedulers. The cyclic cosine
scheduler dynamically oscillated the learning rate between a minimum and maximum
value following a cosine function, enabling more effective exploration of the parameter
space (Huang et al., 2017). The learning rate schedule is defined as in Eq. (1):

o(t) = % (cos <nmod(t{;/x[%T/M})> + 1>, (1)

where o represents the initial learning rate, ¢ is the iteration number, T denotes the total
number of training iterations, and M is the number of cycles. This study employed a
training regimen of 800 epochs with an initial learning rate (¢) of 1.5e—4, number of
cycles (M) of 4. This approach periodically increases the learning rate, allowing the model
to escape shallow local minima and explore alternative optimization paths, resulting in
improved convergence speed and stability.

For each masking ratio, the unmasked tokens were processed by a Transformer encoder,
which comprised multi-head self-attention layers, feed-forward neural networks, layer
normalization, and residual connections, ensuring stable training. The encoder extracts
global representations from partially visible tokens. These encoded tokens were then
passed to the decoder, where they were combined with learnable masked tokens, applied
positional embeddings, and used to reconstruct the missing patches. The decoder then
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dataset.

reshaped the output into a fully reconstructed image, leveraging both visible and masked

tokens to restore the missing patches.
CurriMAE was trained to minimize the mean squared error (MSE) loss between the
original unlabeled images (X) and their reconstructions (Y), focusing exclusively on the
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masked patches. Given an input image divided into non-overlapping patches (X;), with
masked blocks (B), the MSE loss was formulated as in Eq. (2):

MSE loss = iZHX,»—m@. )
1Bl 5

The AdamW optimizer was used to minimize the MSE loss, with parameters 5, = 0.9,
f, = 0.99, and a weight decay of 0.05. During pretraining, weak data augmentations such
as resizing, cropping, and horizontal flipping were applied to prevent bias in clinically
significant lesions or anatomical structures. The images were first resized to 256 x 256
pixels, then cropped to 224 x 224 pixels, and standardized using ImageNet dataset statistics
(mean and standard deviation). The Transformer blocks in CurriMAE were initialized
using Xavier uniform initialization and the batch size was 256. Pretraining was conducted
over 800 epochs using a progressive masking ratio schedule in conjunction with a cyclic
cosine learning rate scheduler. This framework effectively integrates curriculum learning
principles into MAE, allowing CurriMAE to learn robust representations while
maintaining computational efficiency. The pretrained models can then be fine-tuned using
labeled data, enabling adaptation to various downstream tasks and demonstrating
versatility across diverse domains.

Fine-tuning ViT-S network

In this study, the pretrained encoder of the CurriMAE model is based on the ViT-S
network, which is fine-tuned for downstream tasks using labeled data in an end-to-end
manner, as illustrated in Fig. 2B. After the pretraining phase, models saved at every 200
epochs were utilized for fine-tuning. Similar to the pretraining stage, input images were
divided into 16 x 16 non-overlapping patches. However, during fine-tuning, all patches
were retained without masking. Each patch was flattened, projected into an embedding
space through linear projection, and combined with positional embeddings to maintain
spatial information. These embeddings were then processed by the pretrained Transformer
encoder. Following the methodology in Dosovitskiy et al. (2021), a linear classifier was
attached to the class token output of the ViT-S network to obtain predictions.

For the pediatric thoracic disease classification task, a multi-labeled classification
approach was employed, allowing each input image to be assigned multiple disease labels,
as illustrated in Fig. 1. To accommodate this, the final fully connected layer of the ViT-S
network was adjusted to generate a six-dimensional output with an elementwise sigmoid
activation, representing the probability of each disease. The model was trained using the
mean of binary cross-entropy (BCE) losses to effectively handle the multi-labeled
classification setting (Chen, Bai & Zhang, 2024; Zhang ¢ Zhou, 2013). Predicted
probabilities were obtained through sigmoid functions. For robust and stable performance,
an ensemble method was employed, where predictions from all snapshot models were
averaged, as expressed in Eq. (3):

1 M
hensemble = E Z hj(x)’ (3)
=1
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where x represents a test sample, and /;(x) denotes the sigmoid score from the jth snapshot
model. In multi-labeled classification, a threshold was applied to determine whether a class
was present. This ensemble model, hgpsemple, leverages the strengths of multiple models,
leading to improved overall performance (Benzorgat, Xia ¢ Benzorgat, 2024).

For pediatric thoracic disease classification, the ViT-S network was trained using the
AdamW optimizer with parameters ;, = 0.9, 5, = 0.99, and a weight decay of 0.05. The
initial learning rate was set to 2.5e—3 and adjusted using a cosine scheduler, with a batch
size of 128. Fine-tuning was conducted over 75 epochs, including a 5-epoch warm-up
period. To enhance training stability and performance, a layer-wise learning rate decay of
0.55, a RandAug magnitude of 6, and a DropPath rate of 0.2 were utilized, following
recommendations from Xiao et al. (2023). To ensure robustness, each experiment was
repeated three times using different random seeds for weight initialization. The pretraining
and fine-tuning hyperparameters for CurriMAE are summarized in Table 3. The code for
CurriMAE is available at: https://github.com/xodud5654/CurriMAE.

Performance measures

To assess the performance of our diagnostic models, we measured area under the curve
(AUCQ), sensitivity, precision, and F1-score, while accuracy was excluded for specific cases.
In the pediatric thoracic disease classification task, the dataset exhibited severe class
imbalance, with the “no finding” class accounting for approximately 65% of the samples.
Given this imbalance, accuracy was deemed an unsuitable metric and was therefore
excluded from the evaluation for this task.

Since pediatric thoracic disease classification is a multiclass problem, AUC was
computed separately for each class. To ensure a balanced evaluation across all classes,
weighted averaging was applied to AUC, sensitivity, precision, and F1-score. This
technique is particularly effective for imbalanced datasets, as it assigns weights to each class
based on its relative frequency, preventing dominant classes from disproportionately
influencing the overall performance (Grandini, Bagli ¢» Visani, 2020). The weighted
averaging metric is calculated as following Eq. (4):

Zil(wi X m)

N ’ (4)

D i Wi

where N represents the total number of classes, w; is the weight assigned to class i (typically

weighted averaging metrics =

the number of samples in that class), and m; denotes the performance metric for class i,
such as sensitivity, precision, and F1-score.

Implementation details and computational analysis

We systematically evaluate the computational requirements and training efficiency of

CurriMAE while providing full implementation specifications to ensure reproducibility.
All experiments were conducted on a Linux workstation (Ubuntu 24.04) with an Intel

Core Ultra 7 265KF CPU, 128 GB RAM, and an NVIDIA RTX 5090 GPU (32 GB VRAM).

The framework was implemented using PyTorch 2.7.0 with CUDA 12.8 acceleration and
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Table 3 Summary of CurriMAE pretraining and fine-tuning hyperparameters.

Phase Parameters Value
Pretraining Epochs 800
Masking ratios 60%, 70%, 80%, 90% (200 epochs each)
Learning rate (o) 1.5e-4
Scheduler Cyclic cosine learning rate scheduler
Optimizer AdamW (f, = 0.9, 8, = 0.99, weight decay = 0.05)
Batch size 256
Augmentation Resize to 256 x 256, crop to 224 x 224, flip
Fine-tuning Epochs 75 (5 warm-up)
Learning rate 2.5e-3
Optimizer AdamW (8, = 0.9, 5, = 0.99, weight decay = 0.05)
Batch size 128
Layer-wise learning rate decay 0.55
RandAug 6
DropPath 0.2

timm 0.3.2 for model components. Full hardware/software specifications are detailed in
Table S1.

To support the claim that CurriMAE reduces computational burden compared to
training multiple separate MAE models with different masking ratios, we profiled four
architectures under identical conditions: ResNet-34, ViT-S, standard MAE, and
CurriMAE. Key profiling metrics include the number of parameters, FLOPs per sample,
model size, maximum GPU memory usage, and average training time per epoch. Table 4
summarized these results. As shown in Table 4, CurriMAE maintains the same
architectural structure and computational characteristics as standard MAE. However, it
eliminates the need to retrain multiple MAE models with different masking ratios, instead
generating intermediate snapshot models within a single, continuous pretraining cycle.
While fine-tuning is subsequently required for each snapshot model, this step is
significantly less expensive compared to pretraining multiple full MAE models, as the
fine-tuning process involves a small dataset (7.7K images for 75 epochs) compared to
pretraining phase (303K images for 800 epochs per masking ratio). Thus, CurriMAE
achieves a favorable balance between performance and training efficiency.

RESULTS

For the multi-labeled pediatric thoracic disease classification task, a comparative analysis
was conducted to evaluate the effectiveness of the proposed CurriMAE framework. The
models compared with CurriMAE include MAE, ViT-S, and ResNet-34. Among various
model architectures, ViT-S was chosen as a benchmark due to its identical encoder
framework to both MAE and CurriMAE, ensuring a fair and relevant comparison.
ResNet-34 was included as a representative CNN model, given that its parameter size
(approximately 22 million parameters) is comparable to ViT-S (He et al., 2016). The MAE
model was also evaluated against CurriMAE to directly assess the impact of progressive
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Table 4 Comparative profiling metrics for different models.

Metric ResNet-34 ViT-S MAE CurriMAE
FLOPs per sample (G) 7.36 6.44 1.78 1.78
Parameters (Millions) 21.30 21.67 22.14 22.14
Model Size (MB) 81.37 82.73 84.89 84.89

Max GPU Memory Usage (MB) 2,512.33 1,149.13 1,639.89 1,639.89
Training time per epoch (min:sec) 2:29 3:55 4:36 4:30

masking and curriculum learning strategies employed during pretraining. Additionally,
the final CurriMAE results were obtained by applying a simple averaging ensemble to the
four snapshot models.

The terms “random,” “IN,” and “X-ray” appended to the model names indicate the
pretraining methods used. Specifically, “random” refers to models trained from scratch
with randomly initialized weights on the CheXpert and ChestX-rayl4 datasets, “IN”
denotes pretraining on ImageNet, and “X-ray” indicates pretraining performed directly on
X-ray datasets. This nomenclature facilitates a clear distinction between different
pretraining strategies.

Table 5 presents the performance metrics for the multi-labeled pediatric thoracic
disease classification task, including AUC, sensitivity, precision, and F1-score, across
various models and pretraining approaches.

Among all models, CurriMAE (X-ray) achieved the highest performance, with an AUC
of 0.756, sensitivity of 0.759, precision of 0.556, and F1-score of 0.622, emphasizing its
effectiveness in handling multi-labeled classification tasks with imbalanced data. Among
the MAE models, the 60% masking ratio delivered strong results, achieving an AUC of
0.746, sensitivity of 0.747, precision of 0.550, and F1-score of 0.609, demonstrating the
robustness of progressive masking strategies. ResNet-34 (X-ray) outperformed both
ResNet-34 (FS) and ResNet-34 (IN), with an AUC of 0.712, sensitivity of 0.746, precision
of 0.520, and F1-score of 0.599. Similarly, ViT-S (X-ray) achieved an AUC of 0.669,
outperforming its ViT-S (FS) and ViT-S (IN), yet still trailing behind CurriMAE and MAE
models. Models trained from scratch, such as ResNet-34 (FS) and ViT-S (FS), exhibited
lower performance, with ResNet-34 (FS) achieving an AUC of 0.675 and ViT-S (ES)
scoring 0.648. These findings validate the superiority of CurriMAE over ResNet-34, and
ViT-S, showing its effectiveness in multi-labeled pediatric thoracic disease task.

In previous CurriMAE pretraining experiments, the masking ratio was adjusted
progressively every 200 epochs (60%, 70%, 80%, 90%), with the model being saved at each
stage and the cyclic cosine learning rate being reset. This uniform pretraining schedule,
referred to as the fixed-epoch approach, applies the same number of epochs (200) to each
masking ratio stage, regardless of task difficulty. However, since reconstructing masked
patches at a 60% masking ratio is inherently easier than at 90%, we explored an adaptive
epoch strategy that assigns fewer epochs to easier tasks and more epochs to harder tasks.

To test this hypothesis, we designed an incremental pretraining schedule, where the
model was trained for 125 epochs at 60% masking, 300 epochs at 70%, 525 epochs at 80%,
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Table 5 Performance comparison of various models for multi-labeled pediatric thoracic disease

classification (highest values are bolded; standard deviations are in parentheses).

AUC

Sensitivity

Precision

F1-score

ResNet-34 (FS)
ViT-S (ES)
ResNet-34 (IN)
ViT-S (IN)
ResNet-34 (X-ray)
ViT-S (X-ray)
MAE (X-ray) 60%
MAE (X-ray) 70%
MAE (X-ray) 80%
MAE (X-ray) 90%
CurriMAE (X-ray)

0.675 (0.005)
0.648 (0.006)
0.698 (0.048)
0.643 (0.001)
0.712 (0.023)
0.669 (0.005)
0.746 (0.005)
0.685 (0.053)
0.737 (0.017)
0.741 (0.009)
0.756 (0.002)

0.680 (0.012)
0.649 (0.009)
0.698 (0.023)
0.674 (0.022)
0.746 (0.008)
0.674 (0.014)
0.747 (0.009)
0.696 (0.035)
0.723 (0.004)
0.734 (0.006)
0.759 (0.005)

0.510 (0.002)
0.504 (0.009)
0.518 (0.013)
0.489 (0.003)
0.520 (0.010)
0.510 (0.010)
0.550 (0.006)
0.516 (0.028)
0.547 (0.011)
0.550 (0.009)
0.556 (0.004)

0.560 (0.011)
0.539 (0.009)
0.591 (0.016)
0.559 (0.008)
0.599 (0.018)
0.557 (0.007)
0.609 (0.008)
0.572 (0.027)
0.593 (0.003)
0.601 (0.003)
0.622 (0.006)

and 800 epochs at 90%, progressively increasing the number of epochs by 50 at each stage.
This incremental strategy was then compared to the fixed-epoch approach (200, 400, 600,
800 epochs per stage) to evaluate its impact on model performance.

As illustrated in Fig. 3, the fixed-epoch approach generally outperformed the
adaptive-epoch approach across most masking ratios in terms of AUC, sensitivity,
precision, and F1-score. This suggests that allocating an equal number of training epochs
per stage allows for more stable learning in earlier phases, where the reconstruction task is
relatively straightforward. However, at a 90% masking ratio, the adaptive-epoch approach
exhibited higher performance across all metrics, indicating that allocating more training
epochs to harder tasks helps the model learn meaningful representations despite having
significantly less visible information. This finding suggests that a hybrid approach,
optimizing epoch allocation based on task complexity, could further enhance CurriMAE’s
performance.

To further assess the effectiveness of these approaches, we compared their ensemble
results by aggregating model snapshots from all stages. The ensemble from the fixed-epoch
approach (200, 400, 600, and 800 epochs) achieved an AUC of 0.756, sensitivity of 0.759,
precision of 0.556, and F1-score of 0.622. In contrast, the adaptive-epoch ensemble (125,
300, 525, and 800 epochs) resulted in an AUC of 0.747, sensitivity of 0.753, precision of
0.548, and F1-score of 0.617. Although the adaptive-epoch approach demonstrated
superior performance at a 90% masking ratio, the overall ensemble results favored the
fixed-epoch approach, suggesting that a balanced distribution of training epochs across all
stages contributes to more stable and effective learning.

In addition to the overall results, we present per-class classification performance of
CurriMAE in Table 6 to better understand its behavior across individual disease categories.
Among the six classes, pneumonia achieved the highest performance, with an AUC of
0.834, sensitivity of 0.879, precision of 0.924, and F1-score of 0.898. This was followed
closely by broncho-pneumonia and bronchiolitis, both of which showed strong
classification performance across all metrics. The no finding class exhibited moderate
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Figure 3 Performance comparison of fixed-epoch and adaptive-epoch training strategies for multi-labeled pediatric thoracic disease

classification.

Full-size K&l DOT: 10.7717/peerj-cs.3019/fig-3

performance with an AUC of 0.761 and F1-score of 0.724. The other disease class, which
includes rare and low-sample conditions, had relatively lower AUC (0.664) and sensitivity
(0.681), reflecting the difficulty of learning from infrequent or heterogeneous labels. These
results confirm that CurriMAE is capable of handling disease-specific variation in
performance while maintaining overall robustness in a multi-label setting.

To enhance the interpretability of CurriMAE’s predictions and provide qualitative
insight into its decision-making process, we visualized both correctly classified and
misclassified examples from the PediCXR test set using attention maps, as shown in Fig. 4.
The first row of Fig. 4 displays ground truth images for representative cases, including
(A) pneumonia, (B) bronchitis & other diseases, and (C, D) bronchitis & broncho-
pneumonia. The second row presents the corresponding CurriMAE attention maps and
predicted labels for each case: (E) pneumonia and (F) bronchitis & other diseases, which
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Table 6 Per-class classification performance for CurriMAE on the multi-labeled pediatric thoracic
disease task.

AUC Sensitivity Precision F1-score
No finding 0.761 (0.002) 0.739 (0.002) 0.732 (0.002) 0.724 (0.008)
Bronchitis 0.720 (0.005) 0.701 (0.012) 0.841 (0.003) 0.748 (0.009)
Broncho-pneumonia 0.819 (0.005) 0.838 (0.012) 0.921 (0.002) 0.872 (0.007)
Bronchiolitis 0.712 (0.005) 0.804 (0.021) 0.900 (0.003) 0.844 (0.013)
Pneumonia 0.834 (0.012) 0.879 (0.011) 0.924 (0.003) 0.898 (0.008)
Other disease 0.664 (0.008) 0.681 (0.046) 0.908 (0.005) 0.765 (0.032)

were correctly classified, and (G) bronchitis and (H) bronchitis, broncho-pneumonia,
bronchiolitis, other diseases, which were misclassified. These visualizations demonstrate
that CurriMAE can highlight clinically relevant regions associated with its predictions,
even in challenging multi-label scenarios.

DISCUSSION

This study presents CurriMAE, a curriculum-based MAE framework designed to
progressively increase masking ratios during pretraining to enhance representation
learning while reducing computational cost. The experimental results demonstrate that
CurriMAE outperforms standard MAE, ViT-§, and ResNet-34 models in the multi-labeled
pediatric thoracic disease classification task, achieving the highest AUC, sensitivity,
precision, and F1-score. These findings validate the effectiveness of the progressive
masking strategy combined with a cyclic cosine learning rate scheduler, enabling efficient
self-supervised learning in medical imaging.

Several previous studies have applied curriculum learning to MIM, similar to
CurriMAE. One such approach is CL-MAE (Madan et al., 2024), which, like CurriMAE,
incorporates curriculum learning into MAE to enhance self-supervised representation
learning by progressively increasing task difficulty. Both methods share the fundamental
principle that gradually exposing the model to increasingly challenging tasks improves
learning efficiency and generalization. They address the critical challenge of selecting an
optimal masking ratio, a key factor in MAE training, and both demonstrate improved
performance over standard MAE across various tasks. However, their implementations
differ significantly. CurriMAE follows a predefined progressive masking schedule,
systematically increasing the masking ratio at fixed intervals (60%, 70%, 80%, and 90%)
while utilizing a cyclic cosine learning rate scheduler to ensure stable training at each stage.
This structured strategy simplifies the training process and enhances learning stability. In
contrast, CL-MAE employs a learnable masking module that dynamically adjusts masking
complexity based on a self-paced learning strategy. Initially, the module generates easier
tasks to facilitate early-stage learning, but as training progresses, it introduces increasingly
difficult tasks by optimizing a curriculum loss function that shifts from cooperative to
adversarial learning. While this adaptive mechanism enables CL-MAE to generalize
effectively across diverse datasets, it also introduces additional computational overhead
due to the need for jointly training the masking module. The primary distinction between
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Figure 4 Attention maps and sample images illustrating correct and incorrect classifications by
CurriMAE on the PediCXR dataset. The first row shows ground truth images: (A) Pneumonia.
(B) Bronchitis & Other diseases. (C) Bronchitis & Broncho-pneumonia, and (D) Bronchitis & Broncho-
pneumonia. The second row displays the corresponding CurriMAE attention maps and predicted labels:
(E) Pneumonia (correctly classified). (F) Bronchitis & Other diseases (correctly classified). (G) Bronchitis
(misclassified), and (H) Bronchitis, Broncho-pneumonia, Bronchiolitis, Other diseases (misclassified).
Full-size k&l DOI: 10.7717/peerj-cs.3019/fig-4

these approaches lies in the structured vs. dynamic nature of their curriculum learning
strategies.

Another related approach is the prototype-driven curriculum learning framework for
MIM proposed by Lin et al. (2024). While CurriMAE progressively increases the masking
ratio in stages from 60% to 90% over the course of training, allowing the model to
gradually adapt to more difficult reconstruction tasks, the prototype-driven curriculum
learning framework begins with simpler, prototypical examples and progressively expands
to more complex and diverse instances within the dataset using a temperature-annealed
sampling strategy. The key difference lies in the focus of curriculum learning. CurriMAE
applies curriculum learning at the masking level, progressively challenging the model by
increasing the proportion of masked patches while maintaining the dataset unchanged. In
contrast, the prototype-driven curriculum learning framework structures learning at the
data level, first training the model on visually representative prototypes and then gradually
introducing greater diversity in the training samples. This approach is designed to mitigate
early-stage optimization difficulties by preventing the model from being overwhelmed by
highly complex samples at the beginning of training. A notable difference also exists in
training complexity. CurriMAE generates multiple snapshot models at different masking
ratios, requiring separate fine-tuning for each, which increases computational costs during
fine-tuning. In contrast, the prototype-driven approach relies on clustering and
temperature-based sampling, introducing additional preprocessing overhead but
eliminating the need for multiple pretraining snapshots.
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Although CurriMAE enhances learning efficiency through progressive masking and
reduces the need for exhaustive masking ratio tuning, this study has certain limitations.
First, the predefined masking schedule may not be optimal for all tasks, and a dynamic
masking strategy that adjusts based on loss convergence could further improve
performance. Additionally, this study focused on pediatric thoracic disease classification,
and further validation across other medical imaging domains (e.g., MRI, CT) and general
computer vision tasks is necessary. Another limitation is that fine-tuning is required for
each snapshot model generated during pretraining. In this study, four snapshots were
produced, requiring four separate fine-tuning processes, which increases the
computational burden in the fine-tuning stage. However, compared to pretraining
multiple models with different masking ratios, fine-tuning multiple snapshots is still
computationally more feasible. For example, in this study, pretraining required training
303,349 images over 800 epochs, which is significantly more resource-intensive than
fine-tuning 7,728 images for 75 epochs. To mitigate the fine-tuning burden in future work,
we aim to explore alternative methods for aggregating snapshot models without
individually fine-tuning each one, such as employing techniques like model soups
(Wortsman et al., 2022), which combines multiple models without additional fine-tuning.
Last limitation of this study is the lack of access to patient-level metadata such as ICU
status, or disease severity in the PediCXR dataset. These factors may affect anatomical
presentation and, consequently, model performance. Future work should examine
stratified performance when such data become available.

CONCLUSIONS

This study introduces CurriMAE, a novel curriculum-based pretraining framework that
progressively adjusts masking ratios to improve learning efficiency in MAEs. By
combining progressive masking with cyclic cosine learning rate scheduling, CurriMAE
achieves higher classification performance while mitigating the computational burden of
manually tuning masking ratios.

Our experimental results demonstrate that CurriMAE yielded the highest performance
among all evaluated models, including MAE, ViT-§, and ResNet-34, for the multi-labeled
pediatric thoracic disease classification task. Specifically, CurriMAE attained an AUC of
0.756, sensitivity of 0.759, precision of 0.556, and an F1-score of 0.622, demonstrating its
effectiveness, particularly with imbalanced data. Furthermore, we investigated the impact
of different epoch allocation strategies during CurriMAEFE’s pretraining. The
adaptive-epoch strategy demonstrated significant advantages at higher masking ratios,
while the fixed-epoch approach showed more stable results. Ensemble models further
enhanced classification performance, validating the benefits of multi-stage training.

Although CurriMAE effectively improves SSL, future research will focus on adaptive
masking policies and broader validation in medical imaging and other high-dimensional
datasets. These findings contribute to the advancement of curriculum learning in SSL in
vision tasks, paving the way for more efficient and scalable deep learning applications. By
bridging the gap between computational efficiency and performance, CurriMAE not only
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enhances the practicality of MAE but also offers insights into scalable and effective SSL
techniques for a wide range of applications.
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