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ABSTRACT
With the widespread deployment of Internet of Things across various industries, the
security of communications between different devices is one of the critical concerns
to consider. The lightweight cryptography emerges as a specialized solution to
address security requirements for resource-constrained environments.
Consequently, the comprehensive security evaluation of the lightweight
cryptographic primitives—from the structure of ciphers and cryptographic
components—has become imperative. In this article, we focus on the security
evaluation of rotation parameters in the SPECK32-like lightweight cipher family. We
establish a machine learning-driven security evaluation framework for the rotational
parameter selection principles—the core of SPECK32’s design architecture. To assess
different parameters security, we develop neural-differential distinguishers with
considering of two distinct input difference models: (1) the low-Hamming-weight
input differences and (2) the input differences from optimal differential
characteristics. Our methodology achieves the security evaluation of 256 rotation
parameters using the accuracy of neural distinguishers as the evaluation criteria. Our
results illustrate the parameter (7,3) has stronger ability to resist machine
learning-aided distinguishing attack compared to the standard (7,2) configuration.
To our knowledge, this represents the first comprehensive study applying machine
learning techniques for security assessment of SPECK32-like ciphers. Furthermore, we
investigate the reason for the difference in the accuracy of neural distinguishers with
different rotation parameters. Our experimental results demonstrate that the bit bias
in output differences and truncated differences is the important factor affecting the
accuracy of distinguishers.

Subjects Artificial Intelligence, Cryptography, Data Mining and Machine Learning
Keywords Machine learning, Neural distinguisher, SPECK-like ciphers, Rotation parameters,
Security assessment

INTRODUCTION
Classic differential cryptanalysis (Biham & Shamir, 1991) is one of the most powerful
cryptanalysis techniques used in modern block ciphers. And the core of differential
cryptanalysis to succeed is to search for some high-probability differential characteristics.
These high-probability differential characteristics can be referred to as differential
distinguishers. In recent years, some automatic tools and dedicated heuristic search
algorithms have been used to search for high-probability characteristics. The attackers
transform the cryptanalysis models of search for high-probability characteristics into
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Mixed Integer Linear Programming (MILP) problems (Sun et al., 2014; Bagherzadeh &
Ahmadian, 2020), Constraint Programming (CP) problems (Gérault, Minier & Solnon,
2016; Sun et al., 2017), and Boolean satisfiability problem or satisfiability modulo theories
(SAT/SMT) (Kölbl, Leander & Tiessen, 2015; Song, Huang & Yang, 2016), which can be
handled by some appropriate solvers. The use of automatic tools and heuristic algorithms
improves the ability to analyze block ciphers. However, these machine-assisted
technologies do not help attackers obtain more features of block ciphers than differential
characteristics.

With the development of data-driven learning and computing hardware, machine
learning (ML) has made remarkable progress and is widely used in important research
areas such as computer vision and speech recognition. Just as that the use of automatic
tools speeds up the search for differential characteristics, combining classic cryptanalysis
with deep learning to efficiently and intelligently evaluate the security of block ciphers is
one of the trends of current research. A remarkable work of combining classic
cryptanalysis with machine learning is shown in CRYPTO 2019. In CRYPTO 2019, Gohr
(2019) shows that a simple neural network could be trained to be a superior cryptographic
distinguisher performing a real-or-random cryptographic distinguishing task. Gohr trains
the Residual Network (ResNet) (He et al., 2016) to capture the non-randomness of the
distribution of round-reduced SPECK32/64 (Beaulieu et al., 2015), where the trained neural
networks are known as neural distinguishers (NDs). As a result, NDs of five-, six-,
seven-round SPECK32/64 are trained to distinguish the ciphertext pairs whose
corresponding plaintext differences hold ð0x40; 0x0Þ and the random ones. The obtained
NDs exhibit noticeable advantages over pure differential characteristics. Gohr’s work
brings a new direction of combining classic cryptanalysis with machine-aided methods.
There are many related works built upon Gohr’s work (Hou et al., 2020; Benamira et al.,
2021; Bao et al., 2022; Bacuieti, Batina & Picek, 2022; Chen et al., 2022; Lu et al., 2023).
Moreover, there are some researches showing the different performances using the
different training configurations (Baksi et al., 2021, 2023). Using the different activation
functions, deep learning libraries and network architectures, there is a significant
difference in the accuracy of neural distinguishers.

Motivation: before a new cryptography algorithm is published and used in the Internet
Protocol, it is important to evaluate the security of the primitive from multiple
perspectives, such as differential cryptanalysis, linear cryptanalysis, and other cryptanalysis
(Hong et al., 2006; Suzaki et al., 2012; Koo et al., 2017). With the development of
cryptanalysis theory, an important branch of cryptanalysis theory for cryptographic
primitives is the investigation of the security of cryptographic components. In addition,
more and more researchers are concerned about the influence of the choice of
cryptographic components on the security of ciphers. A notable block cipher is SIMON

(Beaulieu et al., 2015), whose cryptographic components attracted a lot of attention. SIMON

is a lightweight block cipher family published by researchers from the National Security
Agency (NSA) in 2013. And its round function only uses basic arithmetic operations such
as XOR, bitwise AND, and bit rotation, which makes SIMON simple and elegant.
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In CRYPTO 2015, Kölbl, Leander & Tiessen (2015) investigate the general class of
parameters of SIMON-like ciphers and evaluate the security of different rotation parameters
based on differential and linear cryptanalysis. Kölbl, Leander & Tiessen’s (2015) work
opens up new directions, especially the choice and justifications of the parameters for
SIMON-like ciphers. In the Applied Cryptography and Network Security conference
(ACNS) 2016, Kondo, Sasaki & Iwata (2016) classify the strength of each rotation
parameter of SIMON-like ciphers with respect to integral and impossible differential attacks.
In Information Security Practice and Experience conference (ISPEC) 2016, Zhang & Wu
(2016) investigate the security of SIMON-like ciphers against integral attacks. These
investigations enrich the results related to the security of the cryptographic component of
SIMON, and the NSA has not disclosed a parameter selection criterion until now. Although
there is a lot of work on the parameters of SIMON-like ciphers, for SPECK, the twin of SIMON

proposed by the NSA, there is little research on the parameters of SPECK. Compared with
the SIMON cipher designed for optimal hardware performance, the SPECK cipher is tuned for
optimal software performance. And there are a lot of differences, including the encrypt
function and key schedules, which makes it necessary to analyze the choice of parameters
for the SPECK cipher. In the objective case that the choice of parameters leads to different
encrypt functions and further delivers the different security performance for the IoT
services, considering the different attack modes comprehensively, the best parameter
should be offered.

In addition, as a new tool, the neural distinguishers will help researchers obtain more
information about the choice of parameters and perform a more comprehensive security
assessment for cryptographic primitives. Much more research on the parameters of SPECK
using neural distinguishers is essential.

Main contribution: in this article, we investigate both the security of SPECK32-like ciphers
against neural differential cryptanalysis, as well as the design choice of NSA. We show with
experiments that the original choice of rotation parameter is not one of the strongest, and
then several superior candidates are recommended. To our knowledge, this is the first time
to evaluate the security of SPECK32-like ciphers using neural distinguishers. In addition, we
analyze the reason for the difference in accuracy using different rotation parameters. The
contributions of this work are summarized as follows:

. Train neural distinguishers using low-Hamming plaintext differences and evaluate
the security of the rotation parameters. Considering that the low-Hamming weight
input difference usually leads to a better differential characteristic, we train neural
distinguishers of seven-round SPECK32-like using plaintext differences with Hamming
weight at most 21. The accuracy result shows that there is a huge gap in the accuracy of
neural distinguishers for different rotation parameters, which ranges from 50% to 100%.
Then, using the accuracy of neural distinguishers as the security evaluation criterion, we
evaluate the security of 256 rotation parameters. We show that the original rotation
parameter (7,2) in SPECK32 has reasonably good resistance against the distinguishing
attack based on neural distinguishers, but may not be the best alternative. And the

1 In Baksi et al. (2023), the authors utilized
the input differences with Hamming
weight exceeding 2 to train the neural
distinguishers. However, the set of such
input differences possesses substantial
cardinality, rendering it computationally
infeasible to consider all elements. Con-
sequently, the Hamming weight was
restricted to at most 2 in our work.
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SPECK32-like using (2,10) or (7,3) has a lower accuracy of the neural distinguishers than
using other rotation parameters.

. Train neural distinguishers using input differences of optimal truncated
characteristics and evaluate the security of the rotation parameters. Inspired by the
work of Benamira et al. (2021), it is meaningful to train neural distinguishers using input
differences of optimal truncated characteristics. We first build an SAT/SMT model for
searching for differential characteristics of SPECK32-like. And utilizing the automatic tool
Z3-solver (de Moura & Bjørner, 2008), the optimal five-, six-round differential
characteristics are obtained. Then we train neural distinguishers of seven-round
SPECK32-like using these input differences of five-, six-round characteristics. Meanwhile,
we complete the security evaluation of 256 rotation parameters. Similarly, (7,2) is not the
best choice using optimal truncated characteristics. The SPECK32-like using (7,3) has a
stronger ability to resist the distinguishing attack based on neural distinguishers.

. Analyze the reason for the difference in the accuracy of neural distinguishers. We
choose five rotation parameters ð15;1Þ; ð1;7Þ; ð7;8Þ; ð3;12Þ; ð8;11Þf g and the
corresponding plaintext differences to train neural distinguishers of seven-round
SPECK32-like. The five neural distinguishers have different accuracy, which are 97.33%,
85.55%, 76.89%, 66.67% and 54.96% respectively. We also record the bits biases in five-,
six-, seven-round differences for five rotation parameters. It is found that the bit biases in
output differences and truncated differences are related to the accuracy of neural
distinguishers. And the more bits whose frequency is significantly different from 0.5, the
higher the accuracy of neural distinguisher seems to have.

Organisation of the article: the remaining of this article is organized as follows.
“Preliminaries” gives the notations and a brief description of SPECK and introduces the
neural distinguishers and the distinguishing attack. “Evaluate the Security of Different
Rotation Parameters using Neural Distinguishers” introduces the security assessment of
SPECK32-like. “Analysis of the Reason for the Difference in Accuracy” researches the reason
for the difference in the accuracy of neural distinguishers. “Conclusion and Future Work”
gives conclusions and future work.

PRELIMINARIES
Notations
The notations used in this work are shown in Table 1.

A brief description of SPECK

SPECK (Beaulieu et al., 2015) is a family of lightweight block ciphers proposed by the
National Security Agency (NSA). The aim of SPECK is to fill the need for secure, flexible,
and analyzable lightweight block ciphers. It is a family of lightweight block ciphers with
block sizes of 32, 48, 64, 96, and 128 bits. Table 2 makes explicit all the parameter choices
for all versions of SPECK proposed by NSA. As shown in Fig. 1, for ki 2 Fn

2 , the SPECK2n
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round function is the map Rki :Fn
2 � Fn

2 ! Fn
2 � Fn

2 defined by Eq. (1), where a and b are
the rotation parameters. As it is beyond our scope, we refer to Beaulieu et al. (2015) for the
description of the key schedule.

Rki xi; yið Þ ¼ S�axi þ yið Þ � ki; S
byi � S�axi þ yið Þ � ki

� �
: (1)

In this article, we are interested not only in the original SPECK parameters but also in
investigating the entire design space of the SPECK-like function. In addition, only SPECK-like
ciphers with a block size of 32 bits are used in this article. In the rest of this article, we
denote by SPECK32 a;bð Þ the variant of SPECK-like cipher with a block size of 32 bits, where the
round function uses a; bð Þ as the rotation parameter.

Overview of neural distinguishers
Given a fixed plaintext difference D and a plaintext pair P; P0ð Þ, the resulting ciphertext
pair C;C0ð Þ is regarded as s sample. Each sample will be attached with the label Y, which is
shown in Eq. (2).

Table 1 Some notations of this article.

Notation Description

� Bitwise XOR

+ Addition modulo 2n

Sj Left circular shifts by j bits

S�j Right circular shifts by j bits

ki i-round subkey ki ¼ kn�1i jj . . . jjk0i
F2 The finite field consisting of the two elements 0; 1

Fn
2 The n-dimensional vector space over F2

HWðDÞ Hamming weight of

NDt t-round neural distinguisher

SPECK32 a;bð Þ SPECK-like cipher with a block size of 32 bits and using a; bð Þ as the rotation parameter

Table 2 SPECK parameters.

Block size 2n Key size Rot a Rot b Rounds T

32 64 7 2 22

48 72 8 3 22

96 8 3 23

64 96 8 3 26

128 8 3 27

96 96 8 3 28

144 8 3 29

128 128 8 3 32

192 8 3 33

256 8 3 34
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Y ¼ 1; if P � P0 ¼ D
0; else

�
: (2)

A neural network is trained over enough samples labeled 1 and 0. In addition, half of the
training data come from ciphertext pairs labeled 1, and the rest comes from ciphertext
pairs labeled 0. For these samples with label 1, their ciphertext pairs are from a specific
distribution related to the fixed input difference. For these samples with label 0, their
ciphertext pairs are from a uniform distribution due to their random input differences. If a
neural network can obtain a stable distinguishing accuracy higher than 50% in the test set,
we call the trained neural network a neural distinguisher (ND). Gohr (2019) chooses deep
residual neural networks (He et al., 2016) to train neural distinguishers and obtains
effective neural distinguishers of five-round, six-round and seven-round SPECK32 7;2ð Þ.

Gohr (2019) explains the reason for choosing D ¼ 0x40; 0x0ð Þ as the plaintext
difference: it transitioned deterministically to the low-Hamming weight difference
ð0x8000; 0x8000Þ. And Benamira et al. (2021) propose a detailed analysis of the inherent
workings of Gohr’sND. They show with experiments that theND generally relies on the
differential distribution on the ciphertext pairs, but also on the differential distribution in
truncated rounds.

Distinguishing attack
In the differential attack, it is pivotal to distinguish encryption function from a
pseudo-random permutation, which is done with the help of the differential characteristic.
For an r-round differential characteristic Din�2t! Doutð2t > 2�nÞ of a target block cipher
with block size n bits, we calculate the output difference given the fixed input difference

Din. If the ratio of the output difference to Dout is about 2�t , then we can distinguish the
block cipher from a pseudo-random permutation. This is called the distinguishing attack
for block ciphers.

And the ND can also help the adversary to distinguish encryption function from a
pseudo-random permutation. Let F:Fn

2 ! Fn
2 be a permutation. The NDtarget is a neural

distinguisher of the target block cipher and Dtarget is the plaintext difference used by

Figure 1 The round function of speck. Full-size DOI: 10.7717/peerj-cs.3015/fig-1
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NDtarget . The attackers can obtain N ciphertext pairs encrypted by the plaintext difference

Dtarget . Using theN ciphertext pairs as input, theNDwill predict their labels. If the ratio of

samples labeled one exceeds 0.5, the prediction is that F is not a pseudo-random
permutation.

For Gohr’s neural distinguishers, the accuracy of the distinguishing attack is about 60%
for a seven-round SPECK32 7;2ð Þ, if only a pair of ciphertext is used in the distinguishing
attack. And the accuracy of the distinguishing attack using a pair of ciphertext is the same
as the accuracy of ND.

Gohr (2019) proposes the combine-response distinguishers (CRD) using multiple
ciphertext pairs from the same distribution. The CRD uses Eq. (3) and neural
distinguishers to achieve higher accuracy of the distinguishing attack. And the more
ciphertext pairs are used by CRD, the higher the accuracy of the distinguishing attack. The
details of CRD are shown in Bao et al. (2021).

v  
Xm
i¼1

log2
vi

1� vi

� �
: (3)

In addition, it is obvious that the higher the accuracy of the neural distinguisher, the
better the effect of the distinguishing attack. For a SPECK32-like cipher, it is easier to
distinguish cipher data from pseudo-random data, if the neural distinguisher with higher
accuracy is used, which indicates that the rotation parameter used by the SPECK32-like
cipher is not good with respect to the security against neural distinguishers and
distinguishing attacks.

EVALUATE THE SECURITY OF DIFFERENT ROTATION
PARAMETERS USING NEURAL DISTINGUISHERS
The designers of SPECK gave no justification for their choice of rotation parameters. Here,
we compare the security of the rotation parameters using the accuracy of neural
distinguishers as the criterion. We consider all rotation parameters a; bð Þ and check
them from two kinds of plaintext differences models, where a 2 0; . . . ; 15f g and
b 2 0; . . . ; 15f g. And our experiment shows that the origin parameter of SPECK32 is not the
best choice. As a result of our investigation, considering the accuracy of neural
distinguishers, we give a recommendation on the choice of parameters.

Setting
Network Architecture. A neural network is used to train neural distinguishers of
SPECK32 a;bð Þ, and the neural network is similar to the one used in Gohr (2019). The network
comprises three main components: the input layer, the iteration layer, and the output layer,
which is shown in Fig. 2. In this neural network, the input layer mainly converts the data
format to make the iteration layer extract the features of data. And in the iteration layer2, it
learns the features of data from the encryption function or the pseudo-random
permutation. Then the output layer converts the extracted features to output values.

2 Note that we use five residual blocks in
the iteration layer.
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Computing Environment. In this article, a computing server is used to train neural
distinguishers, which is equipped with Intel Xeon (R) Gold 6226R@2.90GHz�2, Nvidia
GeForce RTX3090�8, 512GB RAM. The experiment is conducted by Python 3.8, cudnn
8.1, cudatoolkit 11.2 and Tensorflow 2.5 in Ubuntu20.04.

Hyper-Parameter Setting. The hyper-parameters used in the training neural
distinguishers are shown in Table 3.

Accuracy of ND. The accuracy of the neural distinguisher ND is calculated by
Algorithm 1. In the input of Algorithm 1, the test data set is generated in the same way as
the training set. Half of the test data are labeled 1, and the rest is labeled 0. The Ytest

Figure 2 Network architecture. Full-size DOI: 10.7717/peerj-cs.3015/fig-2
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contains all the real labels of the samples inDatatest . In the Stage 3 of Algorithm 1, Ysample is
the real label of sample. In the Stage 4, the ND will calculate the features of sample and
return a value Y 0sample, which ranges from 0 to 1. And if Y 0sample > 0:5, then IntðY 0sampleÞ ¼ 1,
otherwise IntðY 0sampleÞ ¼ 0. IntðY 0sampleÞ is the predicted label of sample. In the Stage 9, the
size of Datatest is denoted by len Datatestð Þ, and the size of Datatest is 107 in this article.

A perspective of low-Hamming weight plaintext differences
In classic differential cryptanalysis, the researchers prefer to choose the low-Hamming
weight input differences to search for differential characteristics. And these automatic tools
also always return the optimal differential characteristics with the low-Hamming weight
input differences. For the target block cipher, using low-Hamming weight input
differences is more advantageous in the number of rounds of the differential
characteristics. There are existing works about neural distinguishers, and most of them
choose low-Hamming weight plaintext differences to train neural distinguishers. For
seven-round SPECK32 a;bð Þ, all neural distinguishers are trained using the same
low-Hamming weight differences. Then we save the accuracy of all neural distinguishers.
The security of rotation parameters will be evaluated using the accuracy of neural

Table 3 List of hyper-parameters.

Hyper-parameters Value

Batch size 5,000

Epochs 15

Regularization parameter 10�4

Optimizer Adam

Loss function MSE (mean-squared-error)

Algorithm 1 Calculate the accuracy of ND.

Input Neural Distinguishers: ND

Test Data Set: Datatest
Label Set: Ytest

Output Accuracy of ND: AccND

1: flag  0
2: for sample 2 Datatest do
3: Ysample  Ytest:sample
4: Y 0sample  NDðsampleÞ
5: if IntðY 0sampleÞ ¼¼ Ysample then
6: flag  flag þ 1
7: end if
8: end for
9: AccND  flag=len Datatestð Þ
10: return AccND
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distinguishers. In this section, we limit and focus on the plaintext differences with
Hamming weight at most 2.

Training neural distinguishers
Data Generation. Consider a plaintext difference D with HWðDÞ ⩽ 2 and the target
cipher seven-round SPECK32 a;bð Þ. Randomly generate N3 plaintext pairs denoted by Ppair .
The half of plaintext pairs are generated by using D as the plaintext difference. The rest of
the plaintext pairs are generated using N

2 random values as the plaintext differences.
Encrypt N plaintext pairs using seven-round SPECK32 a;bð Þ and obtain N ciphertext pairs
denoted by Cpair . These ciphertext pairs are called the training data set. Each of the training
data is labeled with a value 0 or 1, where 0 means the corresponding plaintext pair uses a
random value as the plaintext difference, and 1 from the plaintext difference D.

Target Cipher. We focus on the seven-round SPECK32 a;bð Þ, where 0 ⩽ a ⩽ 15 and 0 ⩽
b ⩽ 15.

Result
Considering the Hamming weight of the plaintext differences, there are 528 differences
with Hamming weight at most 2. And for the seven-round SPECK32 a;bð Þ, 528 neural
distinguishers are trained using different plaintext differences. For all neural distinguishers
of seven-round SPECK32 a;bð Þ, we choose the neural distinguisher with the highest accuracy
as the representative of all neural distinguishers, and use the accuracy of the representative
as the accuracy of seven-round SPECK32 a;bð Þ, which is shown in Algorithm 2.

Using Algorithm 2, we obtain the neural distinguisher with the highest accuracy, and
choose the neural distinguisher as the representative. For seven-round SPECK32 a;bð Þ, the
accuracy of the representative is denoted by Acc a;bð Þ. It is obvious that the higher Acc a;bð Þ,
the better the effect of the distinguishing attack, and the lower the security of a;bð Þ. The
accuracy of all representative neural distinguishers is shown in Table 4.

As shown in Table 4, the standard rotation parameter (7,2) does not seem to be always
optimal if we only consider the accuracy of the neural distinguishers. And the accuracy is
the lowest using (2,10) as the rotation parameter. Considering that there is a slight
fluctuation in calculating all accuracy, a rotation parameter is considered good if its
accuracy is less than 51%. It is found that SPECK32-like ciphers using (2,10) and (7,3) have
better performance upon distinguishing attack with the accuracy less than 50.5%.

A perspective of truncated differences
Benamira et al. (2021) propose an interpretation of Gohr’s five-round ND. Benamira
et al. (2021) explore the influence of ciphertext pairs and further find the influence of
intermediate states. For five-round ND, the neural distinguisher finds the difference of
certain bits at round 3 and 4. And they give a method about how to choose plaintext
differences to train r-round neural distinguishers, that is to choose the input differences of
r�1- or r�2-round optimal differential characteristics.

Inspired by Benamira et al. (2021), we further investigate the security of the rotation
parameters using the input differences of the optimal truncated characteristics.

3 Note that all neural distinguishers of
SPECK32 a;bð Þ are trained with 107 pairs,
the same number as in Gohr (2019).

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3015 10/25

http://dx.doi.org/10.7717/peerj-cs.3015
https://peerj.com/computer-science/


Algorithm 2 Obtain the representative neural distinguisher of SPECK32 a;bð Þ.

Input Neural Distinguishers Set of SPECK32 a;bð Þ: ND a;bð Þ
Output The representative distinguisher of SPECK32 a;bð Þ: ND a;bð Þ

1: acc 0
2: ND a;bð Þ  fg
3: for ND 2ND a;bð Þ do
4: AccND  Use Algorithm 1 to obtain the accuracy of ND

5: if AccND > acc then
6: ND a;bð Þ  ND

7: acc AccND

8: end if
9: end for
10: return ND a;bð Þ.

Table 4 Acc a;bð Þ using low-Hamming weight difference.

Acc a;bð Þ b

0 1 2 3 4 5 6 7

a

0 100.00%A 99.52%A 99.51%A 99.13%A 97.90%A 93.20%A 91.84%A 92.54%A

1 100.00%A 94.29%A 81.56%B 66.61%D 66.14%D 69.80%D 68.12%D 85.55%B

2 99.95%A 82.89%B 50.55%E 50.62%E 50.54%E 50.60%E 58.86%E 59.68%E

3 99.61%A 68.72%D 50.58%E 50.66%E 50.58%E 53.11%E 50.66%E 51.13%E

4 93.49%A 60.19%D 50.63%E 50.71%E 55.33%E 50.62%E 50.57%E 50.67%E

5 85.31%B 61.86%D 50.55%E 55.40%E 50.63%E 54.53%E 60.14%D 50.70%E

6 84.23%B 59.45%E 54.43%E 50.57%E 50.59%E 57.03%E 50.53%E 50.56%E

7 90.58%A 70.22%C 60.78%D* 50.49%E 50.58%E 50.61%E 50.63%E 50.65%E

8 86.80%B 82.34%B 66.28%D 55.80%E 55.03%E 56.57%E 56.15%E 65.26%D

9 86.29%B 62.37%D 50.59%E 50.53%E 51.78%E 50.58%E 61.49%D 80.97%B

10 89.07%B 61.13%D 50.58%E 50.56%E 50.55%E 54.34%E 69.88%D 63.03%D

11 84.51%B 57.90%E 50.63%E 50.53%E 57.83%E 66.58%D 56.18%E 50.61%E

12 92.26%A 62.62%D 61.80%D 63.92%D 70.32%C 60.22%D 50.61%E 50.61%E

13 96.48%A 77.30%C 75.53%C 76.90%C 65.86%D 50.64%E 50.55%E 50.50%E

14 98.70%A 90.61%A 89.85%B 83.90%B 70.02%C 50.58%E 50.58%E 50.58%E

15 99.22%A 97.33%A 93.88%A 85.95%B 66.34%D 57.42%E 59.04%E 59.86%E

Acc a;bð Þ b

8 9 10 11 12 13 14 15

a

0 92.40%A 94.44%A 92.87%A 87.86%B 98.03%A 99.59%A 99.99%A 100.00%A

1 74.51%C 59.66%E 74.18%C 61.82%D 89.69%B 98.45%A 99.97%A 100.00%A

2 58.39%E 50.57%E 50.49%E 50.58%E 78.10%C 96.38%A 99.93%A 99.97%A

(Continued)
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Training neural distinguishers
Before training the neural distinguishers, we build an SAT/SMT model to search for
differential characteristics of SPECK32 a;bð Þ. Then we search for the exact five-, six-round
differential characteristics of SPECK32 a;bð Þ. The seven-round neural distinguishers of
SPECK32 a;bð Þ are trained using the input difference of five-, six-round differential
characteristics as the plaintext difference of neural distinguishers.

Obtain plaintext differences. The core of searching for differential characteristics of
SPECK32 a;bð Þ is the log-time algorithm of computing differential probability of the addition
shown in Lipmaa & Moriai (2001). We construct the SAT/SMT model for searching for
differential characteristics of SPECK32 a;bð Þ. And the SAT/SMT model is suitable for the
SAT/SMT solver Z3-solver (de Moura & Bjørner, 2008). Then we search for the exact five-,
six-round differential characteristics of SPECK32 a;bð Þ with the help of Z3-solver. The Z3
solver can help judge whether there is a feasible solution to the model under the
constraints, and the solver can return the feasible solutions if the model has feasible
solutions. These feasible solutions are the effective differential characteristics. These input
differences of five-, six-round characteristics will be used as the plaintext differences of
neural distinguishers4.

The details of obtaining plaintext differences are shown in Algorithm 3. The input of
Algorithm 3 is the SAT/SMTmodel for searching for r-round differential characteristics of
SPECK32 a;bð Þ. The model consists of multiple variables and their differential propagation
equations. In the Stage 7, the solver will determine whether there is a feasible solution to
the model under the condition that the differential characteristic is effective and the
differential probability is 2�P. If there is a feasible solution, the solver will return sat,

Table 4 (continued)

Acc a;bð Þ b

8 9 10 11 12 13 14 15

3 54.14%E 50.66%E 50.54%E 50.64%E 66.67%D 89.17%B 94.78%A 99.12%A

4 54.90%E 50.56%E 50.57%E 56.41%E 71.39%C 66.84%D 68.23%D 82.38%B

5 54.91%E 50.55%E 54.59%E 67.10%D 57.91%E 50.51%E 50.62%E 62.67%D

6 59.33%E 59.86%E 67.49%D 57.23%E 50.59%E 50.63%E 50.67%E 66.65%D

7 76.89%C 73.38%C 62.71%D 50.58%E 50.63%E 50.51%E 50.68%E 57.28%E

8 88.26%B 83.74%B 67.21%D 54.96%E 54.68%E 56.71%E 57.33%E 69.90%D

9 71.38%C 50.56%E 50.61%E 50.61%E 52.20%E 51.36%E 60.91%D 81.51%B

10 60.58%D 50.61%E 50.62%E 57.76%E 54.83%E 50.56%E 58.66%E 64.57%D

11 56.64%E 50.58%E 56.59%E 54.93%E 50.68%E 52.54%E 50.60%E 64.67%D

12 55.10%E 50.53%E 50.54%E 50.54%E 54.66%E 50.64%E 50.63%E 61.50%D

13 55.10%E 50.58%E 50.53%E 53.36%E 50.50%E 50.67%E 50.66%E 59.16%E

14 64.97%D 54.73%E 53.20%E 50.59%E 50.64%E 50.55%E 50.66%E 74.60%C

15 85.03%B 69.15%D 58.65%E 61.05%D 65.81%D 70.96%C 79.07%C 91.31%A

Note:
* There is the slight fluctuation in calculating accuracy. So the value is lower than in Gohr (2019).

4 These input differences of five-, six-
round characteristics are saved in github.
com.
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otherwise the solver will return unsat. In Stages 5–8, exhaustive search is used to maximize
the differential probability of r-round SPECK32 a;bð Þ. In Stage 10, the solver returns the
feasible solution, and the feasible solution is the exact differential characteristic of r-round
SPECK32 a;bð Þ. The input difference is saved in Plaintext Difference Set (PDS). In Stage 12, we
add the new constraint (var:input 6¼ S:input) to the model. The var:input refers to the
variables associated with the input difference, and the new constraint makes the solver
search for more input differences.

Data Generation. Consider the plaintext difference D obtained by Algorithm 3 and the
target cipher seven-round SPECK32 a;bð Þ. Randomly generate 107 plaintext pairs denoted by
Ppair . The half of plaintext pairs are generated by using D as the plaintext difference. The

rest are generated using 107
2 random values as the plaintext differences. Encrypt these

plaintext pairs using the seven-round SPECK32 a;bð Þ and obtain 107 ciphertext pairs denoted
by Cpair . These ciphertext pairs are used to train neural distinguishers.

Target Cipher. We focus on the seven-round SPECK32 a;bð Þ, where 0 ⩽ a ⩽ 15 and 0 ⩽ β ⩽
15.

Result
Similar to “A Perspective of Low-Hamming Weight Plaintext Differences”, for each of the
rotation parameters, there are more than 1 neural distinguishers. And we choose the neural
distinguisher with the highest accuracy as the representative. Utilizing these representative
neural distinguishers, the security of seven-round SPECK32 a;bð Þ is evaluated. The accuracy of
seven-round SPECK32-like ciphers is shown in Table 5.

Algorithm 3 Obtain plaintext differences.

Input SAT/SMT model: modelra;bð Þ
Output Plaintext Differences Set: PDS
1: Flag  unsat
2: P  �1
3: PDS fg
4: S fg
5: while Flag ¼¼ unsat do
6: P  P þ 1
7: Flag  modelra;bð Þð2�PÞ
8: end while
9: while Flag ¼¼ sat do
10: S modelra;bð Þð2�PÞ:solution
11: PDS PDSþ S:input
12: modelra;bð Þ  modelra;bð Þ:addðvar:input 6¼ S:inputÞ
13: Flag  modelra;bð Þð2�PÞ
14: end while
15: return PDS
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Similarly, the original SPECK32 rotation parameters (7,2) is not the optimal choice, and
its accuracy is higher than multiple rotation parameters. The accuracy is the lowest using
(3,9) as the rotation parameter. Table 5 shows that there are 60 rotation parameters with
accuracy less than 51%. In the mode of choosing plaintext differences from optimal
differential characteristics, (3,9) is the best choice. Considering of the computational error

Table 5 Acc a;bð Þ using optimal truncated characteristic.

Acc a;bð Þ b

0 1 2 3 4 5 6 7

a

0 100.00%A 99.44%A 99.14%A 97.85%A 89.19%B 77.57%C 77.79%C 71.96%C

1 95.26%A 93.28%A 60.73%D 59.55%E 59.77%E 60.08%D 59.73%E 85.29%B

2 80.97%B 67.23%D 58.17%E 50.44%E 50.29%E 53.04%E 59.66%E 52.07%E

3 72.02%C 53.42%E 50.53%E 52.69%E 50.39%E 52.91%E 50.30%E 50.40%E

4 69.19%D 52.81%E 50.36%E 50.34%E 55.93%E 50.42%E 51.05%E 51.60%E

5 70.67%C 53.34%E 50.44%E 55.22%E 50.40%E 56.52%E 55.49%E 50.31%E

6 69.27%D 53.64%E 54.60%E 51.57%E 53.21%E 53.67%E 52.33%E 50.35%E

7 77.19%C 64.82%D 56.62%E 50.35%E 50.36%E 50.31%E 50.43%E 53.81%E

8 86.65%B 82.18%B 64.63%D 55.36%E 54.47%E 54.51%E 54.04%E 55.30%E

9 66.83%D 55.52%E 50.51%E 50.46%E 50.38%E 50.46%E 51.99%E 70.00%D

10 70.07%C 52.80%E 50.80%E 50.31%E 50.36%E 53.69%E 69.67%D 57.09%E

11 68.76%D 54.29%E 50.42%E 50.20%E 53.89%E 64.56%D 51.19%E 50.46%E

12 76.39%C 53.31%E 52.93%E 53.26%E 70.59%C 55.85%E 51.10%E 50.32%E

13 86.44%B 56.18%E 73.44%C 74.83%C 59.64%E 57.25%E 53.81%E 50.36%E

14 95.49%A 90.65%A 89.26%B 67.42%D 60.43%D 51.27%E 51.38%E 50.30%E

15 97.93%A 96.26%A 89.39%B 73.05%C 62.41%D 57.26%E 56.73%E 56.34%E

8 9 10 11 12 13 14 15

0 92.44%A 83.02%B 79.18%C 73.12%C 73.28%C 72.45%C 75.95%C 89.35%B

1 65.22%D 51.93%E 60.44%D 60.30%D 62.67%D 98.59%A 82.92%B 100.00%A

2 53.79%E 50.26%E 51.63%E 58.94%E 62.33%D 63.86%D 84.06%B 86.86%B

3 53.30%E 50.20%E 54.43%E 51.75%E 53.11%E 76.55%C 56.21%E 85.67%B

4 55.08%E 50.37%E 50.39%E 52.03%E 71.33%C 58.16%E 53.35%E 53.08%E

5 51.94%E 50.30%E 51.87%E 66.74%D 55.27%E 51.22%E 52.10%E 51.40%E

6 53.99%E 52.39%E 65.16%D 51.65%E 50.24%E 50.37%E 50.45%E 55.84%E

7 77.01%C 72.78%C 50.28%E 50.64%E 50.35%E 50.38%E 50.39%E 52.31%E

8 87.81%B 84.20%B 61.57%D 54.46%E 54.02%E 54.68%E 53.89%E 56.30%E

9 68.78%D 54.11%E 50.43%E 50.38%E 50.39%E 53.62%E 56.84%E 73.32%C

10 53.89%E 50.47%E 52.08%E 54.45%E 54.02%E 50.46%E 58.62%E 51.28%E

11 53.60%E 51.72%E 53.56%E 52.75%E 50.34%E 52.72%E 50.35%E 53.65%E

12 54.75%E 50.31%E 51.60%E 50.34%E 56.06%E 50.37%E 50.31%E 51.30%E

13 52.61%E 50.44%E 50.31%E 53.20%E 50.26%E 52.22%E 50.34%E 52.71%E

14 55.93%E 51.64%E 53.66%E 50.47%E 50.31%E 50.40%E 57.05%E 60.47%D

15 84.96%B 65.46%D 57.44%E 57.70%E 57.62%E 67.07%D 74.23%C 85.81%B

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3015 14/25

http://dx.doi.org/10.7717/peerj-cs.3015
https://peerj.com/computer-science/


in calculating the accuracy, other rotation parameters, including (7,3), are also exemplary
parameters, whose accuracy is less than 51%.

Considering the results in Tables 4 and 5, (7,3) is found to be a better choice with a
lower accuracy than 50:5% using two kinds of plaintext differences. The SPECK32ð7;3Þ has a
stronger ability to resist distinguishing attacks based on neural distinguishers.

Table 6 The comparison table about using different kinds of plaintext difference.

Acc a;bð Þ b

0 1 2 3 4 5 6 7

a

0 0.00% 0.08% 0.37% 1.28% 8.71% 15.63% 14.05% 20.58%

1 4.74% 1.01% 20.83% 7.07% 6.38% 9.71% 8.39% 0.26%

2 18.98% 15.66% −7.62% 0.18% 0.24% −2.44% −0.81% 7.62%

3 27.59% 15.29% 0.05% −2.03% 0.19% 0.19% 0.36% 0.73%

4 24.31% 7.38% 0.27% 0.36% −0.60% 0.19% −0.48% −0.93%

5 14.64% 8.52% 0.10% 0.18% 0.23% −1.99% 4.65% 0.39%

6 14.95% 5.81% −0.17% −1.01% −2.62% 3.36% −1.80% 0.20%

7 13.39% 5.40% 4.16% 0.14% 0.22% 0.30% 0.20% −3.16%

8 0.15% 0.16% 1.64% 0.43% 0.56% 2.06% 2.11% 9.96%

9 19.46% 6.85% 0.07% 0.06% 1.40% 0.12% 9.50% 10.97%

10 18.99% 8.34% −0.22% 0.25% 0.19% 0.64% 0.21% 5.94%

11 15.75% 3.61% 0.21% 0.33% 3.94% 2.02% 4.99% 0.15%

12 15.87% 9.32% 8.88% 10.66% −0.27% 4.37% −0.49% 0.28%

13 10.04% 21.12% 2.09% 2.07% 6.23% −6.61% −3.26% 0.15%

14 3.21% −0.04% 0.59% 16.48% 9.59% −0.69% −0.80% 0.27%

15 1.29% 1.07% 4.49% 12.90% 3.93% 0.17% 2.31% 3.51%

8 9 10 11 12 13 14 15

0 −0.03% 11.43% 13.69% 14.74% 24.75% 27.13% 24.04% 10.65%

1 9.29% 7.73% 13.74% 1.51% 27.03% −0.13% 17.05% 0.00%

2 4.60% 0.31% −1.14% −8.36% 15.77% 32.52% 15.86% 13.11%

3 0.84% 0.46% −3.89% −1.10% 13.56% 12.62% 38.57% 13.45%

4 −0.19% 0.19% 0.18% 4.38% 0.06% 8.68% 14.89% 29.31%

5 2.97% 0.25% 2.72% 0.35% 2.64% −0.72% −1.48% 11.26%

6 5.35% 7.47% 2.33% 5.58% 0.35% 0.25% 0.21% 10.80%

7 −0.12% 0.61% 12.43% −0.07% 0.28% 0.14% 0.29% 4.97%

8 0.46% −0.46% 5.65% 0.50% 0.66% 2.03% 3.44% 13.60%

9 2.60% −3.54% 0.18% 0.24% 1.81% −2.26% 4.06% 8.19%

10 6.69% 0.14% −1.47% 3.31% 0.82% 0.10% 0.04% 13.29%

11 3.05% −1.14% 3.03% 2.18% 0.34% −0.17% 0.26% 11.01%

12 0.35% 0.22% −1.06% 0.21% −1.41% 0.28% 0.32% 10.20%

13 2.49% 0.14% 0.22% 0.16% 0.24% −1.54% 0.31% 6.45%

14 9.03% 3.10% −0.46% 0.12% 0.33% 0.15% −6.38% 14.13%

15 0.07% 3.69% 1.21% 3.35% 8.19% 3.89% 4.84% 5.50%
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Discussion
A comparison using two kinds of plaintext differences
In Table 6, we give a comparison of using two types of plaintext differences to trainNDs.
Let Accdifference ¼ Accl � Acco, where Accl is the value shown in Table 4 and Acco is the
value shown in Table 5. As shown in Table 6, for most rotation parameters, the accuracy
using low-Hamming differences is higher. For few rotation parameters, using input
differences from optimal truncated differential characteristics to train neural
distinguishers has more advantages over using low-Hamming-weight plaintext differences.

For using low-Hamming weight plaintext differences, there are more plaintext
differences used to train NDs. In contrast, there are few input differences obtained from
optimal truncated differences, which is the main reason why the accuracy in Table 5 is
lower for most rotation parameters. However, the methods that use input differences from
optimal truncated differentials make sense, which helps designers and attackers to obtain
better ND in some special cases like SPECK32ð13;5Þ.

For an attacker, it is better to use two types of plaintext difference model, if the attacker
has enough time to train NDs.

A comparison using differential characteristics and neural distinguishers

Kölbl, Leander & Tiessen (2015) check all rotation parameters of SIMON for diffusion
properties and optimal differential characteristics. Encouraged by their work, for each of
the SPECK32-like ciphers, we calculate the probability of optimal seven-round differential
characteristics, which is shown in Table 7.

As shown in Tables 4 and 7, the accuracy of neural distinguisher does not have a positive
relationship with the differential probability. The differential probability of a rotation
parameter with higher accuracy is not necessarily lower. For example, considering the
rotation parameters (7,10) and (8,4), the differential probability of using (8,4) is higher
than that of using (7,10). From the perspective of optimal differential probability, it is
obvious that the SPECK32-like cipher using (8,4) as rotation parameters has better
differential diffusion than using (7,10). But the accuracy of (7,10) is higher than the
accuracy of (8,4); that is, the SPECK32-like cipher using (7,10) has a stronger ability to resist
the distinguishing attack based on neural distinguishers.

Benamira et al. (2021) research into the phenomenon related to the accuracy and the
differential probability. And they give an interpretation on why Gohr chooses ð0x40; 0x0Þ
as the plaintext difference to train the five-round neural distinguisher instead of
ð0x2800; 0x10Þ, where ð0x2800; 0x10Þ is the input difference of the best five-round
differential characteristic. They believe that this is explained by the fact that ð0x40; 0x0Þ is
the input difference of the optimal three-round or four-round differential, which has the
most chances to provide a biased distribution one or two rounds later.

With the existence of this phenomenon, it is necessary to evaluate the security using
neural distinguishers, rather than relying solely on the optimal differential probabilities.
The use of neural distinguishers in security evaluation enriches the results of security
evaluation.
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ANALYSIS OF THE REASON FOR THE DIFFERENCE IN
ACCURACY
In this section, we further explore the differences in rotation parameters using the results
in “Evaluate the Security of Different Rotation Parameters using Neural Distinguishers”.
We first select five rotation parameters with accuracies of 50–60%, 60–70%, 70–80%,

Table 7 The probabilities of optimal 7-round differential characteristics.

P a;bð Þ b 0 1 2 3 4 5 6 7
a

0 2�7 2�5 2�7 2�7 2�7 2�7 2�7 2�7

1 2�6 2�10 2�15 2�14 2�13 2�14 2�15 2�11

2 2�7 2�15 2�16 2�20 2�19 2�20 2�16 2�18

3 2�7 2�17 2�20 2�16 2�21 2�16 2�20 2�19

4 2�7 2�18 2�18 2�21 2�9 2�21 2�17 2�19

5 2�7 2�18 2�20 2�16 2�21 2�14 2�16 2�20

6 2�7 2�17 2�16 2�17 2�18 2�16 2�16 2�20

7 2�7 2�14 2�18 2�21 2�21 2�19 2�20 2�16

8 2�4 2�11 2�13 2�13 2�10 2�13 2�13 2�13

9 2�7 2�16 2�20 2�20 2�19 2�21 2�18 2�11

10 2�7 2�17 2�19 2�18 2�19 2�17 2�11 2�18

11 2�7 2�17 2�20 2�17 2�18 2�11 2�18 2�21

12 2�7 2�18 2�17 2�18 2�8 2�18 2�18 2�19

13 2�7 2�17 2�16 2�11 2�19 2�17 2�18 2�20

14 2�7 2�12 2�11 2�17 2�18 2�20 2�19 2�20

15 2�5 2�10 2�15 2�18 2�18 2�18 2�17 2�17

8 9 10 11 12 13 14 15

0 2�4 2�7 2�7 2�7 2�7 2�7 2�7 2�6

1 2�10 2�15 2�15 2�14 2�13 2�13 2�11 2�8

2 2�13 2�19 2�19 2�18 2�18 2�15 2�11 2�12

3 2�13 2�18 2�18 2�19 2�19 2�11 2�14 2�13

4 2�11 2�21 2�18 2�19 2�8 2�19 2�17 2�14

5 2�13 2�21 2�17 2�11 2�19 2�19 2�17 2�14

6 2�13 2�18 2�11 2�17 2�19 2�18 2�19 2�15

7 2�11 2�11 2�19 2�21 2�21 2�18 2�20 2�15

8 2�4 2�11 2�13 2�13 2�10 2�13 2�13 2�12

9 2�13 2�16 2�20 2�20 2�19 2�18 2�18 2�11

10 2�13 2�19 2�16 2�15 2�18 2�20 2�16 2�15

11 2�13 2�18 2�16 2�14 2�21 2�16 2�20 2�14

12 2�11 2�21 2�17 2�21 2�9 2�21 2�18 2�14

13 2�13 2�21 2�18 2�16 2�21 2�16 2�21 2�14

14 2�13 2�18 2�16 2�20 2�19 2�20 2�16 2�14

15 2�11 2�15 2�18 2�18 2�18 2�18 2�15 2�10
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80–90% and 90–100%, respectively. The five rotation parameters with different accuracies
and their plaintext differences are shown in Table 8. Using the five rotation parameters, we
analyze the difference in the accuracies of the neural distinguishers caused by different
rotation parameters, from the perspective of ciphertext pairs and truncated differences.

The difference in ciphertext pairs
We focus on the bit biases of the output difference. To start, we perform the following
experiment (Experiment A):

. Stage 1. Generate 225 plaintext pairs using D as plaintext differences.

. Stage 2. Encrypt 225 plaintext pairs using the seven-round SPECK32 a;bð Þ.

. Stage 3. Calculate the output differences of 225 ciphertext pairs.

. Stage 4. Count the number of output differences in which the value of the jth bit is 1,
denoted by nj.

. Stage 5. The bit bias of the jth bit is nj
225 � 0:5.

The bits biases of the five rotation parameters are shown in Table 9.
As shown in Table 9, for the rotation parameters (15,1), (1,7), (7,8), it is obvious that the

partial bits have a probability of 0 (or 1) higher than 0.6. These bits with a probability of 0
(or 1) higher than 0.6 are denoted by good bits (GBs). For example, for the 29th bit of the
rotation parameters (15,1) with ð0x1000; 0x2000Þ as the plaintext differences, it has a
probability of 0 of about 0.911. For the 18th bit of the rotation parameters (1,7) with
ð0x1; 0x0Þ as plaintext differences, it has a probability of 1 of approximately 0.810.
Analyzing Table 9, (15,1) has more GBs than other rotation parameters. And (1,7) also has
more GBs than (7,8). This phenomenon indicates that the higher the number of GB, the
higher the accuracy of the neural distinguisher seems to have.

However, it is difficult to find the difference between (3,12) and (8,11) in the number of
GB. So we further record the number of GB in truncated differences.

The difference in truncated differences
For the seven-round SPECK32 a;bð Þ, we focus on the bit biases of the truncated differences.
With that, we conduct another experiment (Experiment B):

. Stage 1. Generate 225 plaintext pairs using D as plaintext differences.

. Stage 2. Encrypt 225 plaintext pairs using the seven-round SPECK32 a;bð Þ.

Table 8 List of rotation parameters.

Target cipher Rotation parameters Plaintext difference Accuracy

7-round SPECK32 a;bð Þ ð15; 1Þ ð0x1000; 0x2000Þ 97:33%

ð1; 7Þ ð0x1; 0x0Þ 85:55%

ð7; 8Þ ð0x40; 0x8000Þ 76:89%

ð3; 12Þ ð0x40; 0x8Þ 66:67%

ð8; 11Þ ð0x80; 0x0Þ 54:96%
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Table 9 Bits biases on output differences.

Rotation parameter (15,1) plaintext difference
ð0x1000; 0x2000Þ

Bit position 31 30 29 28 27 26 25 24

0.012 0.024 −0.411 −0.377 −0.334 −0.283 −0.224 −0.161

Bit position 23 22 21 20 19 18 17 16

−0.100 −0.048 −0.011 0.002 −0.002 −0.001 0.002 0.006

Bit position 15 14 13 12 11 10 9 8

0.012 0.024 −0.411 −0.378 −0.335 −0.283 −0.224 −0.162

Bit position 7 6 5 4 3 2 1 0

−0.102 −0.050 −0.019 −0.006 0.003 −0.001 0.002 0.005

Rotation parameter (1,7) plaintext difference
ð0x1; 0x0Þ

Bit position 31 30 29 28 27 26 25 24

−0.058 −0.016 −0.003 −0.003 0.000 0.000 0.146 −0.089

Bit position 23 22 21 20 19 18 17 16

−0.038 −0.010 −0.005 −0.004 −0.000 0.310 −0.282 −0.213

Bit position 15 14 13 12 11 10 9 8

−0.041 −0.009 −0.004 −0.008 −0.014 0.000 −0.157 −0.104

Bit position 7 6 5 4 3 2 1 0

−0.059 −0.010 −0.004 −0.000 0.001 0.000 0.228 −0.174

Rotation parameter (7,8) plaintext difference
ð0x40; 0x8000Þ

Bit position 31 30 29 28 27 26 25 24

−0.026 −0.011 −0.003 −0.000 0.000 0.000 0.054 −0.052

Bit position 23 22 21 20 19 18 17 16

−0.025 −0.010 −0.003 −0.000 0.001 −0.000 0.082 −0.093

Bit position 15 14 13 12 11 10 9 8

−0.029 −0.012 −0.004 −0.000 0.002 −0.000 −0.098 −0.051

Bit position 7 6 5 4 3 2 1 0

−0.028 −0.011 −0.003 −0.000 0.000 −0.000 −0.163 −0.148

Rotation parameter (3,12) plaintext difference
ð0x40; 0x8Þ

Bit position 31 30 29 28 27 26 25 24

−0.000 0.000 0.005 0.001 −0.002 −0.000 0.000 −0.000

Bit position 23 22 21 20 19 18 17 16

−0.000 0.000 0.000 −0.000 0.001 −0.000 −0.001 0.000

Bit position 15 14 13 12 11 10 9 8

−0.001 0.000 0.000 0.000 −0.003 −0.001 −0.001 0.000

Bit position 7 6 5 4 3 2 1 0

−0.001 −0.000 0.000 −0.000 −0.001 −0.000 0.000 0.001

Rotation parameter (8,11) plaintext difference
ð0x80; 0x0Þ

Bit position 31 30 29 28 27 26 25 24

0.000 0.000 −0.003 0.000 0.007 −0.001 0.001 −0.006

Bit position 23 22 21 20 19 18 17 16

−0.000 0.000 −0.004 −0.000 −0.009 −0.002 −0.000 0.006

Bit position 15 14 13 12 11 10 9 8

0.000 −0.000 −0.001 0.000 −0.004 −0.000 −0.000 0.001

Bit position 7 6 5 4 3 2 1 0

0.000 0.000 −0.000 −0.000 −0.003 −0.001 0.000 −0.005
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Table 10 Bits biases on decrypting 1 round.

Rotation parameter (15,1) plaintext difference
ð0x1000; 0x2000Þ

Bit position 31 30 29 28 27 26 25 24

0.006 0.012 −0.462 −0.443 −0.417 −0.382 −0.336 −0.279

Bit position 23 22 21 20 19 18 17 16

−0.212 −0.141 −0.075 −0.016 0.011 −0.004 0.001 0.002

Bit position 15 14 13 12 11 10 9 8

0.006 0.012 −0.462 −0.443 −0.417 −0.382 −0.336 −0.279

Bit position 7 6 5 4 3 2 1 0

−0.213 −0.143 −0.073 −0.026 −0.006 0.004 0.001 −0.498

Rotation parameter (1,7) plaintext difference
ð0x1; 0x0Þ

Bit position 31 30 29 28 27 26 25 24

−0.069 −0.013 0.000 −0.000 0.000 0.245 −0.177 −0.109

Bit position 23 22 21 20 19 18 17 16

−0.048 −0.014 −0.016 0.000 −0.409 −0.377 −0.352 −0.266

Bit position 15 14 13 12 11 10 9 8

−0.048 −0.009 −0.003 0.000 −0.001 0.255 −0.191 −0.128

Bit position 7 6 5 4 3 2 1 0

−0.069 −0.010 −0.014 −0.053 0.000 0.332 −0.282 −0.213

Rotation parameter (7,8) plaintext difference
ð0x40; 0x8000Þ

Bit position 31 30 29 28 27 26 25 24

−0.088 −0.045 −0.017 −0.004 0.000 0.001 −0.000 −0.148

Bit position 23 22 21 20 19 18 17 16

−0.092 −0.048 −0.020 −0.007 −0.000 −0.001 0.000 −0.221

Bit position 15 14 13 12 11 10 9 8

−0.092 −0.049 −0.021 −0.006 −0.001 0.000 0.115 −0.148

Bit position 7 6 5 4 3 2 1 0

−0.095 −0.052 −0.023 −0.008 −0.002 −0.000 0.155 −0.290

Rotation parameter (3,12) plaintext difference
ð0x40; 0x8Þ

Bit position 31 30 29 28 27 26 25 24

−0.045 −0.010 −0.001 0.004 −0.004 −0.000 0.000 0.001

Bit position 23 22 21 20 19 18 17 16

0.000 0.002 0.000 0.000 −0.000 −0.000 0.000 0.251

Bit position 15 14 13 12 11 10 9 8

−0.045 −0.010 −0.001 0.004 −0.002 −0.001 −0.001 0.000

Bit position 7 6 5 4 3 2 1 0

−0.003 −0.001 −0.000 −0.000 −0.011 −0.002 −0.000 0.000

Rotation parameter ð8; 11Þplaintext difference
ð0x80; 0x0Þ

bit position 31 30 29 28 27 26 25 24

−0.002 0.000 0.019 0.000 0.050 −0.012 0.000 −0.029

bit position 23 22 21 20 19 18 17 16

−0.007 −0.000 0.027 −0.018 −0.044 −0.020 −0.002 −0.043

Bit position 15 14 13 12 11 10 9 8

−0.002 −0.000 0.006 0.000 0.023 −0.002 0.000 −0.013

Bit position 7 6 5 4 3 2 1 0

−0.003 −0.000 0.024 −0.016 0.031 −0.011 0.000 0.029
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Table 11 Bits biases on decrypting 2 rounds.

Rotation parameter (15,1) plaintext difference
ð0x1000; 0x2000Þ

Bit position 31 30 29 28 27 26 25 24

0.002 0.005 −0.487 −0.480 −0.468 −0.450 −0.425 −0.389

Bit position 23 22 21 20 19 18 17 16

−0.339 −0.275 −0.198 −0.114 −0.030 0.008 0.000 0.001

Bit position 15 14 13 12 11 10 9 8

0.002 0.005 −0.487 −0.480 −0.468 −0.451 −0.425 −0.389

Bit position 7 6 5 4 3 2 1 0

−0.339 −0.276 −0.196 −0.122 −0.039 −0.008 0.000 0.000

Rotation parameter (1,7) plaintext difference
ð0x1; 0x0Þ

Bit position 31 30 29 28 27 26 25 24

−0.089 −0.000 −0.000 −0.000 0.354 −0.290 −0.213 −0.131

Bit position 23 22 21 20 19 18 17 16

−0.054 0.000 −0.000 −0.480 −0.469 −0.453 −0.438 −0.375

Bit position 15 14 13 12 11 10 9 8

−0.052 −0.003 −0.000 −0.004 0.361 −0.302 −0.232 −0.155

Bit position 7 6 5 4 3 2 1 0

−0.071 −0.013 −0.000 −0.000 −0.437 −0.402 −0.352 −0.266

Rotation parameter (7,8) plaintext difference
ð0x40; 0x8000Þ

Bit position 31 30 29 28 27 26 25 24

−0.232 −0.160 −0.093 −0.041 −0.012 −0.000 0.001 −0.011

Bit position 23 22 21 20 19 18 17 16

−0.221 −0.147 −0.079 −0.027 0.000 0.000 0.000 −0.010

Bit position 15 14 13 12 11 10 9 8

−0.233 −0.162 −0.095 −0.044 −0.014 0.004 −0.001 −0.290

Bit position 7 6 5 4 3 2 1 0

−0.224 −0.152 −0.085 −0.036 −0.008 0.004 0.000 −0.432

Rotation parameter (3,12) plaintext difference
ð0x40; 0x8Þ

Bit position 31 30 29 28 27 26 25 24

0.075 −0.023 0.005 0.002 0.020 0.004 0.002 0.000

Bit position 23 22 21 20 19 18 17 16

0.000 −0.000 0.000 0.002 0.250 −0.250 −0.250 −0.247

Bit position 15 14 13 12 11 10 9 8

−0.075 −0.022 0.005 0.002 −0.022 −0.002 −0.001 0.001

Bit position 7 6 5 4 3 2 1 0

−0.029 −0.008 −0.000 −0.000 −0.251 −0.250 −0.250 −0.262

Rotation parameter (8,11) plaintext difference
ð0x80; 0x0Þ

Bit position 31 30 29 28 27 26 25 24

−0.041 −0.000 −0.077 −0.041 −0.001 −0.097 −0.070 −0.171

Bit position 23 22 21 20 19 18 17 16

−0.068 −0.001 0.063 −0.027 0.000 −0.068 0.000 0.276

Bit position 15 14 13 12 11 10 9 8

−0.008 −0.000 −0.057 −0.032 −0.000 −0.090 −0.064 0.107

Bit position 7 6 5 4 3 2 1 0

−0.034 0.000 0.052 −0.025 −0.000 −0.023 0.000 −0.076
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. Stage 3. For the 225 cipher pairs, decrypt i rounds using their respective keys.

. Stage 4. Compute the corresponding truncated differences.

. Stage 5. Compute the bit bias of the truncated differences.

The bit biases of the five rotation parameters are shown in Tables 10 and 11. Similarly,
(15,1) has more GBs than other rotation parameters in truncated differences. The number
of GB is shown in Table 12. It is found that there is a positive correlation between the
accuracy of the neural distinguishers and the number of GB, which also proves that the
neural network needs more GBs. More GBs, the neural distinguisher appears to have
higher accuracy.

CONCLUSION AND FUTURE WORK
In this work, we present a comprehensive security assessment of SPECK32 variants with
different rotation parameters considering the ability to resist neural-distinguishing attack.
First, we train neural distinguishers for all SPECK32-like ciphers using two distinct plaintext
difference selection strategies. Subsequently, employing neural distinguisher accuracy as
our primary evaluation metric, we conduct a rigorous security assessment of all rotation
parameter configurations.

In particular, our experimental results reveal that the standard parameter (7,2) does not
consistently demonstrate optimal security characteristics. Through comparative analysis,
we identify the parameter configuration (7,3) as exhibiting superior resistance against
neural distinguisher-based distinguishing attacks compared to the standard parameter.
This finding suggests potential security considerations for parameter selection in
SPECK32-like ciphers.

Furthermore, we establish through empirical validation a significant correlation
between ciphertext pair bit biases and neural distinguisher accuracy, particularly in
truncated-round scenarios. Our analysis provides new insights into the interpret ability of
neural cryptanalysis.

Our work is the first time to evaluate the security of the rotation parameters of
SPECK32-like ciphers using neural distinguishers. The use of neural distinguishers enriches
the results of the security evaluation of cryptographic components.

Although machine learning demonstrates significant potential for cryptanalysis, we do
not think that machine learning methods will replace traditional cryptanalysis. Serving as a
powerful complement to classical cryptanalysis, machine learning-aided methods enable

Table 12 The number of GBs.

Target cipher Rotation parameters Plaintext difference Accuracy Output difference Decrypt 1 round Decrypt 2 rounds

7-round SPECK32 a;bð Þ (15,1) ð0x1000; 0x2000Þ 97:33% 14 17 20

(1,7) ð0x1; 0x0Þ 85:55% 8 13 17

(7,8) ð0x40; 0x8000Þ 76:89% 2 6 10

(3,12) ð0x40; 0x8Þ 66:67% 0 1 8

(8,11) ð0x80; 0x0Þ 54:96% 0 0 3
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researchers to identify previously unnoticed vulnerabilities. In further work, an interesting
direction is to utilize the weakness found by the neural distinguishers to enhance classical
cryptanalysis.
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