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ABSTRACT
Accurate temperature and rainfall (T&R) forecasting is vital for the climate-sensitive
regions of Northern India, particularly Jammu, Kashmir, and Ladakh, where volatile
weather patterns significantly affect livelihoods, socio-economic development, and
disaster management efforts. Despite their importance, traditional forecasting
methods often fall short due to their high computational demands and inability to
provide localized, real-time predictions, leaving a critical research gap in addressing
these challenges. This study addresses the need for precise and efficient T&R
forecasting using deep learning-based framework tailored to the unique climatic
conditions of these regions. The major research focus is to develop and evaluate a
model capable of capturing complex temporal dependencies in localized time-series
weather data. Utilizing data from the Indian Meteorological Department (IMD) for
Jammu, Srinagar, and Ladakh stations covering the period from January 1, 2000, to
December 31, 2023, the proposed framework employs recurrent neural networks
(RNN) and long short-term memory (LSTM) architectures, both optimized for
time-series forecasting. Key findings reveal that while both RNN and LSTM models
exhibit robust performance in single input single output (SISO) setups, RNN model
consistently outperforms the LSTM in capturing intricate temporal relationships.
The RNN model in MIMO configuration achieved significantly lower mean absolute
error (MAE), root mean squared error (RMSE), and mean squared error (MSE) for
Jammu, Srinagar, and Ladakh, with respective values of [0.0636, 0.1011, 0.0401] for
Jammu, [0.1048, 0.1555, 0.0455] for Srinagar, and [0.0854, 0.1344, 0.0411] for
Ladakh. These results underscore the RNN model’s precision, making it a practical
tool for real-time weather forecasting. By enhancing the accuracy of T&R predictions
in regions with challenging meteorological conditions, this study contributes to
improved climate adaptation strategies, disaster preparedness, and sustainable
development. Its findings hold broader implications for advancing localized
forecasting technologies in other regions with similar climatic complexities.
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INTRODUCTION
Jammu & Kashmir (J&K) and Ladakh, located in the western Himalayas, are India’s
northernmost union territories characterized by highly variable and extreme weather.
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These unpredictable climatic conditions significantly affect agriculture, infrastructure, and
socio-economic development in the region. Spanning a combined area of 222,236 square
kilometers, these territories lie between latitudes 32�17′N to 37�05′N and longitudes
72�31′E to 80�20′E (Balasubramanian, 2016; P. Office of Additional Director General of
Meteorology (Research), 2014). Topographically, the region is dominated by mountains,
with four major Himalayan ranges: Karakoram, Zanskar, Ladakh, and Pir Panjal. The
Karakoram range in the north includes K2 (8,611 m), the world’s second-highest peak, and
other notable summits like Gasherbrum (8,570 m) and Masharbrum (7,827 m) (Kashmir
Travels, 2024). The Zanskar range, part of the Tethys Himalaya, separates the Indus and
Kashmir valleys, with elevations reaching up to 6,000 m. The Ladakh range, north of the
Indus River, merges with the Kailash range in Tibet and includes peaks above 5,000 m (P.
Office of Additional Director General of Meteorology (Research), 2014). To the south, the
Pir Panjal range (approx. 4,100 m) forms a climatic barrier between the Jammu and
Kashmir regions. Jammu features plains and forested hills merging into the Shivalik and
Pir Panjal ranges (Ali et al., 2023). The Kashmir valley, lying between Pir Panjal and
Zanskar ranges, is surrounded by snow-capped mountains rising up to 4,900 m, and has an
average elevation of 1,615 m (P. Office of Additional Director General of Meteorology
(Research), 2014). Ladakh, a cold desert with elevations averaging above 3,650 m, accounts
for nearly two-thirds of the region’s total area (P. Office of Additional Director General of
Meteorology (Research), 2014). This varied topography results in sharp climatic gradients
over short distances, complicating weather prediction. Several perennial rivers, including
the Indus, Jhelum, and Chenab, originate in these mountains and sustain the region’s
hydrology.

The meteorological profile of the Jammu, Kashmir, and Ladakh regions is marked by
significant spatial and temporal variability due to their diverse topography and altitude
gradients. Jammu experiences a subtropical climate with hot summers, mild winters, and
substantial monsoon rainfall between June and September (Kashmir Travels, 2024). In
contrast, the Kashmir Valley features a temperate climate, characterized by cold winters,
moderate summers, and two major precipitation periods—winter snowfall from western
disturbances (December to March) and moderate rainfall during spring and autumn.
Ladakh, situated at a much higher altitude, falls under a cold desert climate with extremely
low annual precipitation (less than 100 mm on average) and large diurnal temperature
variations (Ali et al., 2023). The region receives minimal monsoonal influence and is
instead affected by western disturbances, particularly in the form of snowfall. Seasonal and
interannual variability in both temperature and precipitation is pronounced across these
regions, presenting significant challenges for reliable forecasting. This meteorological
diversity necessitates models capable of capturing complex, localized patterns in both
short- and medium-term forecasts.

Accurate weather forecast plays a crucial role in various sectors, including agriculture,
tourism, and construction. In addition, will aid famers in crop planning, risk mitigation,
and water resource management for optimized yields and resilience. Numerical weather
prediction (NWP) is a process of simulating weather conditions, integrating observed data
and running simulations to project upcoming weather patterns. This involves solving
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complex systems of non-linear mathematical equations, derived from specific
mathematical models, with the help of powerful supercomputers (Frnda et al., 2022).
Meteorological characteristics like temperature and precipitation gathered from a specific
location over a period of time yield quantitative data. This quantitative data can be utilized
by NWP systems to gain insights into the scientific principles governing atmospheric
processes and to make predictions about future atmospheric conditions. However, the
performance of NWP is restricted by several factors like extensive resource utilization,
inherent uncertainties and limited model resolution. On the other hand, reliability of
statistical methods like auto-regressive moving average (ARMA) and its variants depends
on the data quality and their ability to effectively depict time-series (TS) data with
non-stationary behaviors across seasons (Poornima & Pushpalatha, 2019).

Over the past few decades, deep learning (DL) techniques have proven as a
transformative force in advancing the accuracy and efficiency in weather and rainfall
forecasting (Waqas et al., 2023). According toHayati &Mohebi (2007),Waqas et al. (2024)
data-driven modeling systems can be employed to decrease the computational
requirements of NWP processes. This can be ascribed to their capacity of estimating the
intrinsic patterns and dynamics of TS data even without prior knowledge of the
parameters, while also accounting for the uncertainty present in observations and system
noise. DL techniques such as recurrent neural networks (RNNs) and long short-term
memory (LSTM) models are regarded as better suited for handling weather data due to
their strong capability to effectively process TS data (Kratzert et al., 2018; Kashiwao et al.,
2017). By incorporating input, output, and forget gates, LSTM-RNN achieves a network
that can effectively maintain state and propagate gradients over extended time periods in a
stable manner.

This study proposes a DL based predictive modeling framework for forecasting T&R
that will benefit the local community and stakeholders of J&K and Ladakh by helping them
adapt to the unique weather conditions of the area, making their daily life more predictable
and safe. The model will also aid the governing bodies of J&K and Ladakh by enhancing
foreplanning, risk mitigation, and resource management, ultimately contributing to the
economic growth and development of the local population. The proposed model utilizes
past values of local temperature and rainfall (T&R) of J&K and Ladakh within a defined
time-step as input to forecast the same for the upcoming days. Using weather data of past
23 years from local weather stations will allow the model to capture and model the unique
properties exhibited by the weather of J&K and Ladakh.

Contributions
This work introduces a novel T&R forecasting model that demonstrates robust
adaptability to evolving and extreme weather trends in the climatically complex regions of
Jammu & Kashmir and Ladakh. The proposed approach leverages DL architectures,
specifically Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM)
networks, to effectively model temporal dependencies in weather data. Both single-input
single-output (SISO) and multi-input multi-output (MIMO) frameworks are explored to
assess model performance under varying forecasting scenarios. By reducing reliance on
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traditional Numerical Weather Prediction (NWP) methods, the study significantly lowers
computational costs and addresses the limitations of conventional approaches that often
fail to capture localized climatic variations. In addition, the proposed models are rigorously
benchmarked against existing works, providing valuable insights into their comparative
effectiveness and potential for enhancing region-specific weather forecasting accuracy.

Motivations
RNNs and their advanced variant LSTM networks, have shown promise in time series
forecasting tasks, including weather prediction (Waqas & Humphries, 2024). However,
most existing studies applying these models focus on regions with relatively stable climatic
behavior and less topographical diversity. The union territories of Jammu, Kashmir, and
Ladakh, by contrast, exhibit highly complex terrain and a wide range of weather variability,
posing unique challenges for temporal modeling. In this context, it becomes imperative to
evaluate the suitability and robustness of these sequential DL architectures. This study is
motivated by the need to understand how RNN and LSTM models respond to such
climatic complexity, particularly in capturing long-term dependencies and handling
nonlinear fluctuations inherent in the region’s meteorological data. A comparative analysis
of these models under both SISO and MIMO frameworks is undertaken to provide a
nuanced understanding of their strengths and limitations in geographically and
climatically diverse settings.

RELATED WORK
Over time, various techniques have been developed to forecast weather conditions,
particularly using T&R. A study by Han et al. (2021) trained and tested several neural
networks, including feedforward neural networks (FFNN), recurrent neural networks
(RNN), long short-term memory (LSTM), and gated recurrent units (GRU), to create a
model capable of generating weather predictions reflective of local conditions. Using
airport data from the National Solar Radiation Database (NSRDB) and validating it with
on-site measurements, GRU model achieved the lowest mean squared error (MSE) of 2.96
among all models. In a separate study aiming to improve weather forecasts for five cities in
China, Nketiah et al. (2023) proposed five multivariate time series models specifically
designed for atmospheric temperature prediction, based on RNN architectures. The
experimental results showed that using the LSTM-RNN model yielded the lowest
prediction error for atmospheric temperature compared to baseline models. A new DL
model called the spatial feature attention long short-term memory (SFA-LSTM),
introduced by Suleman & Shridevi (2022), effectively captured both spatial and temporal
relationships among multiple meteorological features for temperature forecasting.
Comparative analysis with baseline models demonstrated that the SFA-LSTM achieves
state-of-the-art prediction accuracy, offering the additional benefit of enhanced
interpretability of spatial features. To capture localized patterns and dependencies
contributing to fluctuations in maximum and minimum temperatures, a study by Karevan
& Suykens (2020) introduced the transductive-LSTM (T-LSTM) model. This approach, by
taking surrounding data points into account, allowed for more accurate temperature
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forecasts by leveraging the context provided by nearby data points. In another study,
Mi (2023) used summer temperature data from Seoul, Korea, spanning from 2013 to 2017,
incorporating input parameters such as average temperature, solar radiation, average
relative humidity, average wind speed, and average latent heat flux. This study compared
the predictive capabilities of linear regression and LSTM models for daily average
temperature forecasting, finding that the LSTM model had a lower mean absolute error of
0.19 compared to the linear regression model’s 0.89. To make use of the rapid data
processing capabilities of CNNs with the memory function of LSTMs for time series
temperature data, Guo (2023) proposed a hybrid CNN-LSTMmodel. Experimental results
showed that this hybrid model outperformed individual CNN and LSTM models,
achieving higher temperature prediction accuracy. A similar study byMung & Phyu (2023)
used three DL models—CNN, LSTM, and a CNN-LSTM ensemble—to predict features
such as minimum temperature, maximum temperature, humidity, and wind speed. Using
root mean square error (RMSE) as the comparison metric, the study found that the
ensemble model achieved the lowest RMSE compared to the individual models. Research
by Nugraha, Ariawan & Arifin (2023) explored LSTM’s application in weather forecasting
using a dataset from the Serang Maritime Meteorological Station, covering variables such
as temperature, humidity, sunshine, and wind speed from January 1, 2018, to October 28,
2023. Their LSTM model achieved an RMSE of 0.37 for temperature, 0.72 for wind speed,
2.79 for sunlight, and 5.05 for humidity In another study, Fan et al. (2022) developed a
generalized CNN-LSTM model using an encoder-decoder architecture to predict
temperature, humidity, rainfall, and wind speed. Trained on the IEEE Big Data IARAI’s
Weather4cast 2021 dataset, the model showed a significant reduction in loss as assessed by
MSE values. The study by Chen, Huang & Yang (2023) proposed an LSTM model
integrating multiple linear regression and Pearson’s correlation coefficients to improve
weather prediction for aviation safety. This model, trained on a numerical dataset of 10
weather parameters with key features (sea pressure, dew point temperature, and relative
humidity) identified through feature selection, improved its forecasting accuracy from an
RMSE of 4.0274 to 2.2215 and a MAPE reduction from 23.0538% to 5.0069%. A
comparison study by Gong et al. (2022) evaluated ConvLSTM (LSTM with convolutional
filters) against an advanced Stochastic Adversarial Video Prediction (SAVP) network for
temperature forecasting. The models were assessed using metrics like MSE, anomaly
correlation coefficient (ACC), and structural similarity index (SSIM), revealing that the
SAVP model outperformed ConvLSTM with an MSE of 2.3, ACC over 0.85, and SSIM
around 0.72. Lastly, study Li et al. (2023) employed LSTM and its deep variant, Deep
LSTM (DLSTM), to forecast daily air temperature. Trained on 1,097 weather data points
from central and southern regions of Tabriz, Iran, from 2017 to 2019, the DLSTM model
achieved an RMSE of 0.08 and an R-squared value of 0.99.

In summary, although prior studies have demonstrated the utility of ML and DL
techniques in weather forecasting, they often lack contextual adaptability, overlook
complex terrains, or fail to comprehensively evaluate different modelling configurations.
This study addresses these limitations by focusing on the climatically diverse Himalayan
regions of Jammu, Kashmir, and Ladakh, and by comparing both SISO and MIMO
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LSTM-based architectures using long-term T&R datasets. In doing so, it offers deeper
insights into model suitability and forecasting performance under highly variable
geographic and climatic conditions.

MATERIALS AND METHODS
The model flowchart used in this study is presented in Fig. 1. It includes T & R data
collection and preprocessing phase, model configuration (Hochreiter & Schmidhuber,
1997; Werbos, 1988), training and evaluation. The final stage of the experimentation
involves assessing and comparing the performance of the trained models.

Data collection
This study utilize meteorological data sourced from the IndianMeteorological Department
(IMD) website (https://mausam.imd.gov.in/), specifically for Jammu & Srinagar and
Ladakh weather stations. The dataset for each station comprises daily time-series data with
8,401 data points, covering the period from January 1, 2000, to December 31, 2023. It
includes various weather variables such as rainfall, minimum temperature, and maximum
temperature. Rainfall is measured in millimeters (mm), while temperatures are recorded in
Celsius. These meteorological features were chosen for their ability to provide valuable
insights into current weather conditions at specific locations and times, aiming to capture
the weather state accurately. The data was obtained by submitting a request via the IMD
Pune Data Supply Service portal “https://dsp.imdpune.gov.in/data_supply_service.php”
specifying the required parameters, such as location, time period, and frequency, following
the standard procedure outlined by IMD.

Data preprocessing
To ensure the quality and suitability of the time-series data for deep learning models,
several preprocessing steps were applied. These steps aimed to reduce noise, handle trends,
normalize scale differences, and prepare structured input-output sequences for model
training and evaluation. Each step is described below along with its rationale.

Smoothing
Rationale: Real-world time-series data often contain short-term fluctuations that can
obscure underlying patterns. Smoothing helps in highlighting long-term trends and
reducing noise.

Method: An exponential moving average (EMA) technique was applied to each time-
series. EMA (Welles, 1978) is the weighted average value where weights are decreased
gradually such that more importance is given to recent data points as compared to the
historical ones, or vice versa. EMA changes at a faster rate and is more sensitive to the data
points. Mathematically, EMA of a data point is calculated using Eq. (1).

EMAt ¼ x0 t ¼ 0
axt þ 1� að ÞEMAt�1 t > 0

�
(1)
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where a is a smoothing factor and its value lies between 0 and 1. It represents the weight
applied to the very recent period. For this study, the value of a has been set as 0.5.

Differencing
Rationale:Most time-series forecasting models assume stationarity. Differencing removes
trends and stabilizes the mean, making the data more suitable for modeling.

Method: The first-order differencing technique was employed to ensure stationarity of the
weather time which involves taking the difference between each data point and its
immediate predecessor, effectively removing underlying trends. By focusing on short-term
changes rather than absolute values, differencing enhances the stability of statistical
properties over time and is mathematically expressed in Eq. (2).

Dyt ¼ yt � yt�1: (2)

Here, Dyt represents the differenced value at time t, yt is the original data point at time t,
and yt−1 is the value at the previous time step.

Normalization
Rationale: The original variables have different units and ranges, which can negatively
affect model convergence and performance. Normalization ensures consistent scale and
helps activation functions in deep learning models to work more effectively.

Figure 1 Proposed methodology. Full-size DOI: 10.7717/peerj-cs.3012/fig-1
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Method: Min–Max scaling was applied to rescale each feature to a [0,1] range between 0
and 1 (Tukey, 1962) Mathematically Min-Max scaling is represented by Eq. (3).

Xt ¼ Xt � Xmin

Xmax � Xmin
(3)

where Xt represents the data point at time ‘t’ in time-series, Xmax and Xmin represent
maximum and minimum data points in the sequence respectively.

Train-test split
Rationale: Separating the dataset into training and testing portions is essential to evaluate
model generalization.

Method: The dataset was split into 80% training and 20% testing subsets. While the
training set allows the model to capture and learn various relationships and patterns in
data, the testing set is used to assess the model’s generalizing ability. Each weather station
training dataset consists of 6,720 rows containing weather data from 2000-01-01 to
2018-05-25, while the testing dataset contains 1,680 rows spanning from 2018-05-26 to
2023-12-31.

Input-output sequence generation
Rationale: Time-series data require conversion into supervised learning format, where the
past values (inputs) are mapped to future predictions (outputs).

Method: A moving window algorithm with a window size of 7 was used to generate
input-output pairs. The window size was set to 7 to reflect a 1-week temporal context,
which is commonly used in meteorological time series to capture short-term climatic
trends. Each sequence included three temperature variables as features. The input
sequence consisted of past 7-day values, while the output predicted the target variable for
the forecast horizon.

Models used in the current study
The proposed T&Rmodel leverages advanced DL techniques, specifically RNN and LSTM,
to improve prediction accuracy. The following subsections offer a detailed explanation of
the RNN and LSTM models.

Recurrent neural network
A traditional recurrent neural network (RNN) (Hochreiter & Schmidhuber, 1997) can be
viewed as an enhanced version of a feed-forward NN, designed with an internal memory
mechanism to process sequential inputs. RNNs are capable of capturing dependencies
from earlier elements in a sequence, allowing them to predict cumulative metrics from
sequences of varying lengths, particularly those involving a time-based component
(Bukhari & Pandit, 2024). They do this by preserving information in a sequential order i.e.,
at each time step, the RNN receives the current input along with contextual information
passed forward through its feedback connections.
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Figure 2 presents a simple RNN architecture, where inputs from time step t to t+1 are
denoted as xt to xt+1, and the corresponding outputs are represented as yt to yt+1. The
hidden states, labeled ft−1 to ft+1, capture the intermediate information, while the weights
for the hidden states, inputs, and outputs are represented by θ, a, and β respectively. RNNs
utilize shared parameters across time steps, meaning the same set of weights is applied
throughout each layer of the network. Despite being shared, these weights are still
refined during training through backpropagation and gradient descent, which helps the
model improve its learning performance over time (Bukhari, 2024). A detailed
explanation of RNN functionality is provided in Algorithm S1. In RNNs, activation
functions are applied solely to the hidden layers. The input layer simply receives and passes
the data forward without performing any computation. Without non-linear activation
functions, even deep NNs would behave like extended linear regression models, lacking the
capability to learn complex patterns from real-world data. To overcome this, commonly
used activation functions include ReLU (Rectified Linear Unit), tanh, Sigmoid, and
Softmax.

. Backpropagation through time

Backpropagation through time (BPTT) is an advanced form of the traditional
backpropagation algorithm, specifically adapted for training RNNs. In BPTT, the RNN is
unfolded across its time steps, allowing gradients to be propagated backward through this
temporal sequence (Bukhari & Pandit, 2024). This approach enables the model to capture
and learn sequential dependencies by adjusting its weights based on the cumulative error
over multiple time steps (Hochreiter & Schmidhuber, 1997). A simplified overview of the
BPTT process is outlined in Algorithm 2 (provided as Algorithm S2). A simplified
breakdown of the steps involved in BPTT is given in Algorithm 2 (provided as
Algorithm S2).

Figure 2 Architecture of RNN. Full-size DOI: 10.7717/peerj-cs.3012/fig-2
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Long short-term memory
The limitations of traditional recurrent neural networks (RNNs) such as the vanishing
gradient problem, which makes it difficult for the network to capture long-term
dependencies, and the exploding gradient problem, which can cause instability during
training are mitigated by the use of LSTM networks. LSTM, an advanced variant of RNN,
was designed specifically to overcome these challenges, allowing the network to effectively
learn from long-term sequential data. LSTM units are structured around a specialized
memory cell, which serves as the core of the architecture. This memory cell allows the
network to maintain and update information over long time periods, enabling it to better
understand the temporal dependencies in the data. The memory cell is updated and
modified by three primary gating mechanisms: the input gate, the forget gate, and the
output gate as shown in Fig. 3. These gates function collectively to control the flow of
information into, out of, and within the memory cell, making LSTM particularly effective
at handling time-series data such as T&R sequences. The input gate controls how much of
the incoming data at each time step (i.e., the current input and the previous hidden state)
should be incorporated into the memory cell. It is a sigmoid function that outputs values
between 0 and 1, determining which values will be updated in the cell state. The stronger
the activation of the input gate, the more new information will be incorporated. The forget
gate, another sigmoid function, determines what portion of the previous cell state should
be discarded or retained. Essentially, it tells the network which past information is still
relevant to be remembered and which can be forgotten. This is particularly important in
time-series forecasting, where certain past events may have a more significant influence on
future outcomes than others. By selectively forgetting less useful information, the LSTM
can focus on more relevant data points. The output gate governs the flow of information
from the memory cell to the output of the LSTM unit. It computes the hidden state, which
is a function of the current memory cell and the output from the input gate. The hidden
state is then passed to subsequent time steps and contributes to the final prediction. It is

Figure 3 Architecture of LSTM. Full-size DOI: 10.7717/peerj-cs.3012/fig-3
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also used in the subsequent layers of the network for further processing. This gating
mechanism enables the LSTM to learn what information to remember and what to forget
across different time scales, making it especially suitable for modelling meteorological time
series data, where both short-term variability and long-term seasonal trends are critical.
The working of LSTM is explained using algorithm 3 (provided as Algorithm S3).

Model configuration and development
The proposed models have been trained using two distinct configurations: SISO and
MIMO (Oduro-Gyimah & Boateng, 2019). In a SISO setup, the model uses a single input
variable to predict its future values, requiring separate models for each parameter. MIMO,
in contrast, processes multiple inputs simultaneously and forecasts all outputs at once,
making it more efficient with only one model per weather station is needed. Based on this,
three RNN and three LSTM models were built using MIMO for three stations, while nine
RNN and nine LSTM models were trained using SISO (three per station for different
temperature variables). Each model was trained with carefully tuned hyperparameters like
layers, hidden units, and learning rate which, unlike model parameters, remain fixed
during training but greatly influence performance (Bukhari, 2024). The hyperparameters
tuned in this study include number of epochs (epochs), batch size (batch_size),
optimization algorithms (optimizer) and activation functions (activation). The technique
chosen for tuning hyperparameters is GridSearchCV that automates the process of trying
various hyperparameter configurations. For both RNN and LSTM models epochs
represent the number of times the model sees the full dataset during training each
involving a forward and backward pass. Fewer epochs can lead to underfitting, while too
many may cause overfitting. To ensure a fair comparison, both models were trained using
50 to 300 epochs, a range selected through preliminary testing and GridSearchCV tuning
(Bukhari & Pandit, 2024). While LSTM generally benefits from longer training, early
stopping was applied when needed to prevent overfitting. The batch size, which defines
how many samples are processed per update, was also tuned to optimize performance.

To achieve an optimal balance between performance and efficiency, experiments were
conducted using batch sizes of 16, 32, 64, and 128. Different activation functions, including
ReLU, tanh, and sigmoid, were evaluated to determine the most effective nonlinear
transformation for each model. Both RNN and LSTM architectures were configured with a
single hidden layer, and the number of units in this layer ranged from 32 to 128 (Bukhari,
2024). The Adam optimizer was primarily chosen due to its strong convergence properties,
with the learning rate tuned within the range of 0.001 to 0.01. For comparative purposes,
additional training runs were performed using the SGD optimizer (with momentum set to
0.9) and the RMSprop optimizer (Bukhari & Pandit, 2024). To prevent overfitting and
promote better generalization, dropout regularization was applied, with dropout rates
varying from 0.1 to 0.3 depending on the model’s complexity and configuration. Final
model configurations were selected based on their best performance on the validation set
and were subsequently assessed using standard error metrics such as MSE, MAE, RMSE,
and MAPE as described in the next section.
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Computing environment
The experiments were conducted on a computing system equipped with an Intel Xeon
Silver 4,214 processor, 128 GB RAM, and an NVIDIA RTX 3090 (24 GB VRAM) GPU.
The operating system used was Windows 11 Pro (64-bit), and all DL models were
implemented using Python 3.8 with TensorFlow 2.9.

Performance metrics
The models underwent repeated training on the training data and were then evaluated
using the testing data. The RNN and LSTM models, in both SISO and MIMO
configurations, were tested on a test dataset consisting of 1,680 input sequences. These
models process test data in a sequential manner, one time step at a time, update their
internal states and generate predictions for future time step. The generated output that
represents the future value of the temperature variables has been compared against the
actual output values present in test dataset using various statistical measures. For
evaluating TS regression models the commonly used metrics are mean absolute error
(MAE), mean squared error (MSE), root mean squared error (RMSE) and mean absolute
percentage error (MAPE) (Kumar, Kumar & Kumar, 2020) which are calculated using Eqs.
(4), (5), (6) and (7), respectively. MAE is simply the average of differences between
predicted value and actual value of the observations in test set. It helps in evaluating the
overall performance of the model. MSE refers to the average of squared differences
between predicted and actual value of observations while as RMSE can be determined by
taking the root of MSE. Due to square function, both MSE and RMSE emphasize larger
errors, providing insights into model’s reliability. Additionally these metrics are in the
same unit as the data and hence can be easily interpreted in the context of the problem
domain. MAPE is calculated by dividing the MAE by actual value of the observation and
helps in comparing different forecasting models based on their relative performance.

MAE ¼ 1
N

XN
i¼1

yt � �ytj j (4)

MSE ¼ 1
N

XN
i¼1

yt � �ytð Þ2 (5)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 yt � �ytð Þ2
n

s
(6)

MAPE ¼
XN
i¼1

yt � �yij j
yi

(7)

where yt and �yt are the actual and predicted values of temperature variables at time step ‘t’.

RESULTS AND DISCUSSION
Result analysis
As mentioned previously, the RNN and LSTM models have been trained using different
sets of hyperparameters and tested using various evaluation metrics. The performance of
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models in MIMO and SISO configurations has been recorded individually for each weather
station using a set of evaluation metrics mentioned in the above sub-section. Table 1
presents a comparison between MIMO LSTM and RNN models based on various metrics
for predicting T&R of Jammu station. Tables 2 and 3 provide similar information of other
two weather stations- Srinagar and Ladakh, respectively. For each station it has been
observed that RNN model outperforms LSTM model in multivariate prediction using
MIMO configuration. From Tables 1, 2 and 3 it can be clearly seen that the LSTM
consistently exhibited losses approximately double as compared to those exhibited by
RNN. The results indicate that RNN in MIMO configuration performs significantly well in
capturing the temporal relationships of weather data in contrast to LSTM in same
configuration. Analogous observations were recorded when the models were tested in
SISO configuration. Table 4 provides a comparison between RNN and LSTM models
assessed separately for the three weather parameters of Jammu station. Tables 5 and 6 offer
a similar comparative analysis for weather stations of Srinagar and Ladakh respectively.
From Tables 5 and 6 it can be observed that for each temperature variable RNN
demonstrated superior performance and reduced loss values as opposed to LSTM in the
same configuration. All reported errors for the T&R variables are presented in their
respective units: MAE and RMSE in degrees Celsius (�C) for temperature, and millimeters
(mm) for rainfall; MSE in square degrees Celsius (�C2) for temperature, and square
millimeters (mm2) for rainfall; and MAPE as a percentage (%), enabling clear
interpretation of the forecasting accuracy. Furthermore, it has been noticed that both
models perform noticeably well in the SISO configuration across all weather stations. This
indicate that the variables present in weather data are relatively univariate and do not
possess strong interdependencies between them. Such relationships can be adequately
represented using a single input variable to forecast a single output variable.

Performance analysis with existing techniques
In addition to intra-model comparisons, the best-performing architecture i.e., RNN in the
SISO configuration was evaluated against benchmark models reported in the literature, as
shown in Table 7. The LSTM-based model proposed in Mi (2023) achieved a minimum
MAE of 0.19 for daily temperature forecasting. In contrast, our RNN model achieved a
substantially lower MAE of 0.0085 for maximum temperature prediction at the Ladakh
station. Similarly, the multi-parameter forecasting model in Nugraha, Ariawan & Arifin
(2023), which utilized LSTM for temperature, humidity, rainfall, and wind speed

Table 1 Comparison of RNN and LSTM in MIMO configuration for Jammu station.

Metric LSTM RNN

MAE 0.1856 0.0636

MSE 0.0805 0.0401

RMSE 0.2594 0.1011

MAPE 0.6710 0.3990
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Table 2 Comparison of RNN and LSTM in MIMO configuration for Srinagar station.

Metric LSTM RNN

MAE 0.2098 0.1048

MSE 0.0959 0.0455

RMSE 0.2957 0.1555

MAPE 0.7843 0.4398

Table 3 Comparison of RNN and LSTM in MIMO configuration for Ladakh station.

Metric LSTM RNN

MAE 0.1732 0.0854

MSE 0.0800 0.0411

RMSE 0.2697 0.1344

MAPE 0.6511 0.3229

Table 4 Comparison of RNN and LSTM in SISO configuration for Jammu station.

Metric Tmin Tmax Rainfall

LSTM RNN LSTM RNN LSTM RNN

MAE 0.1482 0.0751 0.1820 0.0690 0.1043 0.0124

MSE 0.0374 0.0095 0.0593 0.0095 0.2084 0.0257

RMSE 0.1934 0.0977 0.2436 0.0091 0.0434 0.0006

MAPE 1.6089 0.1863 2.2200 0.1638 1.7320 0.1229

Table 5 Comparison of RNN and LSTM in SISO configuration for Srinagar station.

Metric Tmin Tmax Rainfall

LSTM RNN LSTM RNN LSTM RNN

MAE 0.2014 0.0658 0.1830 0.0696 0.0327 0.0210

MSE 0.0690 0.0073 0.0605 0.0926 0.0047 0.0018

RMSE 0.2627 0.0854 0.2459 0.0085 0.0687 0.0429

MAPE 5.4845 0.1436 1.9646 0.1696 0.8092 0.1363

Table 6 Comparison of RNN and LSTM in SISO configuration for Ladakh station.

Metric Tmin Tmax Rainfall

LSTM RNN LSTM RNN LSTM RNN

MAE 0.1597 0.0666 0.1733 0.0085 0.0152 0.0640

MSE 0.0421 0.0075 0.0558 0.0015 0.0079 0.0078

RMSE 0.2052 0.0866 0.2362 0.0393 0.0660 0.0887

MAPE 5.0699 0.1547 0.9305 0.0588 0.0453 0.1623
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prediction, reported an RMSE of 0.37 for temperature. The proposed RNN model
outperformed existing benchmarks by achieving an exceptionally low RMSE of 0.0006 for
the rainfall variable at the Jammu station. In comparison, the study conducted by Li et al.
(2023) employed a deep LSTM (DLSTM) model to forecast air temperature and reported
an RMSE of 0.08 which is significantly higher than the RMSE of 0.0006 achieved by the
proposed model. Similarly, Han et al. (2021) explored various NN models for weather
forecasting and reported the lowest MSE of 0.296 using the GRU model. In contrast, the
proposed model delivered a far superior performance with an MSE of just 0.0015. The
results indicate that the SISO configuration, which forecasts one output variable at a time,
allows models to specialize in learning the dynamics of each specific target (e.g.,
temperature or rainfall), making it suitable when variable-specific error minimization is
desired. Conversely, the MIMO approach enables the model to jointly predict multiple
time steps or variables in one forward pass, which can be particularly useful for capturing
interdependencies and reducing the accumulation of forecast errors over time. Although
LSTMs are generally known for capturing long-term dependencies effectively, but through
results it is clear that RNN model consistently outperformed LSTM in both SISO and
MIMO settings across all stations. This could be attributed to the relatively simpler
architecture of RNNs, which are computationally less intensive and sometimes more
effective when dealing with moderate-length sequences, especially when training data is
limited or exhibits low signal complexity. The LSTM architecture, while powerful for
handling long-term dependencies, may require extensive hyperparameter tuning and
longer training epochs to yield optimal results, which might not be practical in scenarios
with constrained computational resources or noisy input sequences. These observations
suggest that while the choice between SISO andMIMO should be guided by the forecasting
objective and data characteristics, simpler RNN architectures can offer robust performance
even in multi-output scenarios. This reinforces the practical value of RNNs for real-world
deployment where model efficiency and interpretability are equally important
considerations.

While it is observed that RNN consistently outperformed LSTM across various metrics
(MAE, MSE, RMSE), the reasons for this performance difference require a more nuanced
understanding of the models’ inherent characteristics, training dynamics, and data
characteristics.

Table 7 Comparative analysis of proposed models with existing techniques.

Study Metric Values achieved by existing studies Values achieved by the proposed model

Nketiah et al. (2023) MAE 0.19 0.0085

Mi (2023) MSE 0.37 0.0006

Fan et al. (2022) RMSE 0.08 0.0006

Kratzert et al. (2018) MAPE 0.296 0.0015
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RNN performance
The RNNmodel performed better in this context primarily due to its simpler architecture,
which was able to capture the essential short-term temporal patterns present in the T&R
data. Given that the training data for this study consisted of moderate-length time series
with relatively low noise, RNNs, with fewer parameters, were able to generalize better
without overfitting to the training data. The shorter training times also contributed to
more efficient model convergence, which may not always be the case for LSTMs.

RNN performance
LSTM, by design, excels at capturing long-term dependencies due to its gating
mechanisms. However, this strength was less pronounced in this case. The data used in this
study might not have exhibited complex long-range dependencies, thus rendering the
LSTM’s advanced architecture less beneficial. Moreover, LSTM models are generally more
prone to overfitting when the dataset is relatively small or when the number of training
epochs is not sufficient. This could explain the gap in performance observed, as LSTM
requires longer training times to reach its full potential, especially for more volatile
datasets.

Condition-specific performance

The gap in performance between the two models became more evident under certain
conditions:

. SISO vs MIMO
In both SISO and MIMO configurations, RNN outperformed LSTM. This can be
attributed to RNN’s ability to handle simpler relationships between input and output
variables effectively. The MIMO configuration, where multiple variables were forecasted
simultaneously, didn’t introduce significant cross-variable dependencies, which could
have benefitted LSTM’s advanced architecture. Therefore, the simplicity and efficiency of
RNN in this scenario provided it with a clear advantage.

. Station-specific variations
Performance differences were also observed across stations. For instance, in regions with
more stable weather patterns (such as Ladakh), the RNN model was able to quickly and
effectively adapt to forecast data without the need for more complex LSTMmechanisms.
In contrast, Srinagar, with its more dynamic and volatile weather conditions, might have
benefited more from the capabilities of LSTM had longer training periods been available
to optimize its parameters.

The repeated performance gains of RNN over LSTM reflect not only the model
complexity but also the alignment of the model architecture with the underlying data
patterns. The relatively shorter training time of the RNN allowed it to adapt faster and
more effectively to the task at hand. However, it is important to note that this does not
necessarily indicate that RNN is superior to LSTM in all forecasting scenarios; it simply
underscores the importance of model selection based on data characteristics.
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Moreover, the dataset used in this study inherently includes seasonal variations, such as
the summer monsoon and winter dry periods typical of the region. The model
performance patterns observed particularly the strong performance of the RNN model for
rainfall prediction can be attributed to its ability to capture short-term fluctuations
prevalent in monsoon-heavy months. Conversely, during drier months represented in the
data, where weather patterns tend to be more stable, the performance gap between RNN
and LSTM narrows, especially for temperature forecasting. These outcomes suggest that
the models responded differently across seasonal dynamics embedded within the training
and test sets, highlighting RNN’s better adaptability to volatile input sequences commonly
found in monsoonal data.

CONCLUSION
This study presents an innovative approach to T&R forecasting, specifically tailored for the
Jammu & Kashmir, and Ladakh regions of India, where volatile weather patterns have a
significant impact on local livelihoods, socio-economic development, and disaster
preparedness. The proposed DL-based model, utilizing RNN and LSTM, demonstrated
promising results in accurately predicting short-term variations in T&R. Through the
comprehensive analysis of meteorological data obtained from IMD and the application of
advanced DL algorithms, this research addresses the unique weather challenges faced by
these regions, characterized by extreme and unpredictable weather conditions. By
providing more accurate and localized weather forecasts, the proposed model empowers
decision-makers, agricultural practitioners, tourism operators, and other stakeholders to
better adapt to the region’s weather dynamics. Moreover, the model shall aid governing
bodies in enhancing foreplanning, risk mitigation, and resource management, ultimately
contributing to the economic growth and development of the local population. The
comparative analysis between RNN and LSTM models offers valuable insights into their
effectiveness for weather forecasting applications. While both models demonstrate strong
performance, particularly in the SISO configuration, the RNN model consistently
outperforms the LSTM model in capturing the temporal relationships of weather data.
This finding highlights the importance of selecting appropriate model architectures based
on the specific characteristics of the data and the forecasting objectives. Furthermore, the
validation of the proposed model against existing benchmark models displays its
superiority in terms of accuracy and performance. The proposed RNN model achieves
significantly lower MAE, RMSE and MSE values compared to previous studies, indicating
its efficacy in capturing the intricate patterns of T&R variations. The applicability of this
research extends beyond academic inquiry, offering practical benefits to various sectors,
including agriculture, tourism, construction, and disaster management. Accurate T&R
forecasting enables stakeholders to make informed decisions, optimize resource allocation,
and mitigate risks associated with adverse weather conditions. By enhancing the resilience
of communities and supporting sustainable development initiatives, the proposed models
shall contribute to the overall well-being and prosperity of the J&K and Ladakh regions.
Future research directions may include further refinement of the proposed model,
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integration of additional meteorological variables, and exploration of ensemble forecasting
approaches for enhanced predictive accuracy and reliability.

While the study focused on continuous rainfall prediction using regression-based
metrics, assessing model performance from a classification perspective such as
distinguishing rain from no-rain events or evaluating accuracy across rainfall intensity
categories remains equally important, particularly for operational applications in water
resource management and disaster preparedness. Incorporating such event-based metrics,
including probability of detection (POD) and critical success index (CSI), is an important
direction for extending this research and enhancing the practical utility of DL models in
hydrometeorological forecasting.

Despite the encouraging performance of the proposed models across various stations,
several limitations warrant consideration. This study focused exclusively on historical
univariate time series data, without incorporating spatial or contextual meteorological
inputs, which may limit the generalizability of the findings across broader climatic regions.
Moreover, the effectiveness of DL models is inherently influenced by the volume and
consistency of data; stations with comparatively sparse records may have constrained
model learning. Although both SISO and MIMO forecasting configurations were
evaluated, their real-world application would benefit from further validation under more
diverse temporal and spatial scenarios. Addressing these limitations through the inclusion
of spatially distributed features, richer datasets, and exploring hybrid architectures such as
CNN-LSTM present a promising direction for future research.
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