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ABSTRACT

Predicting the outcomes of sports events is inherently difficult due to the
unpredictable nature of gameplay and the complex interplay of numerous
influencing factors. In this study, we present a deep learning framework that
combines a one-dimensional convolutional neural network (1D CNN) with a
Transformer architecture to improve prediction accuracy. The 1D CNN effectively
captures local spatial patterns in structured match data, while the Transformer
leverages self-attention mechanisms to model long-range dependencies. This hybrid
design enables the model to uncover nuanced feature interactions critical to outcome
prediction. We evaluate our approach on a benchmark sports dataset, where it
outperforms traditional machine learning methods and standard deep learning
models in both accuracy and robustness. Our results demonstrate the promise of
integrating convolutional and attention-based mechanisms for enhanced
performance in sports analytics and predictive modeling.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and Machine
Learning, Data Science, Neural Networks
Keywords Sports outcome prediction, Sports analytics, Deep learning, CNN, Transformers

INTRODUCTION

Predicting the outcomes of sports events has become an expanded area of study and
application with the improvement of data analysis and machine learning. In addition to
being interesting, accuracy of prediction is also useful for coaches, players, and sports
organizations. With data analysis, coaches can optimize game strategies for matches,
enhance players’ performance, and guide the selection of the lineup and strategy. This
multi-aspect sports prediction encompasses many variables, including player fitness,
weather, and tactics, all of which contribute to the uncertainty of sporting outcomes.
The determinants of the result of a sports match are numerous and interrelated. Player
condition is an important determinant since players’ performance levels of players may
shift due to numerous factors such as injury, tiredness, and mental reasons (Huang ¢ Li,
2021). Moreover, team strategies can influence match results. For instance, formation
choice, playing style, and game adaptation are all variables that may influence the success
of a team’s strategy (Tadesse et al., 2022). Coaches must therefore have to be cautious and
adaptable, utilizing predictive analytics in forecasting how these factors will affect the
performance of their team. Weather is also a factor that determines sporting events.
Studies have indicated that poor weather can influence player performance, especially in
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outdoor sports like soccer and cricket (Sankaranarayanan, Sattar ¢ Lakshmanan, 2014).
The environmental conditions should be considered by analysts and coaches in planning
games and making lineup decisions. For instance, heavy rain may demand a defensive
approach by maintaining control over the ball without taking unnecessary risks. By
integrating weather conditions into model forecasts, teams can better plan for the issues of
changing conditions. Beyond these climatic factors, sports performance must also be
addressed on psychological aspects. The mental state of athletes can greatly contribute to
their level of performance, with stress, motivation, and confidence being principal factors
(Malloy, Kavussanu & Yukhymenko-Lescroart, 2022). Coaches can utilize predictive
analytics to analyze the mental readiness of their players, then schedule preparation and
training based on the findings. By having a general overview of their players, they can
generate improved performance outcomes and greater overall team success.

One of the most primary applications of sports outcome prediction is in the field of
coaching. Coaches can utilize predictive models to assess the potential performance of
their teams under different conditions. For instance, Wilkens (2021) emphasizes the role of
machine learning techniques, in modeling sports outcomes, with a particular application
being tennis, where players’ fitness varies significantly on a weekly basis. This adaptability
allows coaches to develop individualized plans based on predicted player performance and
optimize their chances of winning in competitions. Furthermore, the integration of
contextual factors, such as the psychological state of athletes and their interpersonal
dynamics, can enhance the understanding of team performance (Tadesse et al., 2022).
Optimization of competition strategies based on data is not limited to use in individual
sports. For team sports, it is essential to know the interaction among players and how
outside factors, such as weather and game location, affect the game. Research indicates that
various parameters, including game location and refereeing can significantly influence
game outcomes (Bunker & Susnjak, 2022). With the application of advanced statistical
methods and machine learning algorithms, coaches are able to model such variables in
order to develop better game strategies. For example, the utilization of fuzzy logic-based
models has been shown to improve predictive accuracy by addressing the complexity and
uncertainty of sporting data (Liu, 2024).

The development of machine learning (ML) in sports outcome prediction has evolved
into a revolutionary force, transforming how analysts and teams approach performance
analysis and strategy formulation (Bunker ¢ Susnjak, 2022). The integration of big data
and artificial intelligence (AI) in sports analytics has enabled the processing of vast
amounts of data, allowing for more accurate predictions and insights into player
performance, team cohesion, and match outcomes (Beal, Norman ¢ Ramchurn, 2019).
Traditional methods, such as expert analysis and basic statistical techniques, have
increasingly been supplemented or replaced by sophisticated ML models that leverage
complex algorithms to analyze patterns and make predictions based on historical data. The
role of big data in sports analytics cannot be overstated. With the advent of advanced
tracking technologies, teams now have access to more information than ever, ranging from
player movement to in-game statistics and even biometric data. This wealth of data
provides a fertile ground for machine learning applications, which can identify trends and
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correlations that are not as apparent when using traditional methods of analysis. For
instance, Soto Valero (2016) showed that ML techniques can outperform conventional
statistical methods in predicting outcomes in various sports, including baseball and
basketball, by utilizing comprehensive datasets that encompass multiple variables
influencing game results.

Although traditional machine learning methods, such as decision trees and boosting
algorithms, have shown promise in sports event forecasting, they often struggle to capture
the intricate dependencies and sequential nature of sports data. These limitations
necessitate the exploration of more advanced deep learning techniques capable of
effectively encoding rich relationships in structured data. Recent advances in deep
learning, particularly the emergence of Transformer-based architectures (Vaswani et al,
2017), have revolutionized many fields, including natural language processing and
time-series forecasting. In this study, we leverage the power of Transformers and 1D
convolutional neural networks (1D CNN) to enhance the accuracy of sports event outcome
prediction. The self-attention mechanism of the Transformer enables it to capture
long-range dependencies and complex feature interactions, while 1D CNN efficiently
processes structured tabular data by extracting crucial spatial and temporal patterns from
the dataset. By combining these architectures, our approach aims to address the limitations
of traditional methods and provide a robust framework for sports prediction. This research
seeks to bridge the gap between state-of-the-art deep learning models and practical
applications in sports analytics, offering valuable insights for analysts, teams, and
stakeholders.

RELATED WORK

Traditional methods of predicting sport outcomes have a high reliance on rating systems
and statistical models. One of the most widely used techniques is the Elo rating system
(Elo, 1966), which was originally developed for ranking chess players and was later on
extended to other types of sports such as football and basketball. The Elo system updates
team or player ratings based on game results and makes a probabilistic prediction of future
game outcomes. In 2010, Hvattum ¢» Arntzen (2010) imporeved the basic Elo model
including modifications that incorporate margin of victory and home advantage for
predicting football result. Another common approach involves regression-based models,
such as Poisson regression, Dixon ¢ Coles (1997) introduced an adjustment to the Poisson
model to better capture low-scoring events in football. In 2010, Baio ¢ Blangiardo (2010)
explored to incorporate prior knowledge and uncertainty in predictions by using Bayesian
approaches. Moreover, Markov Chain (Frigessi ¢ Heidergott, 2011) models have been
applied to model the progression of matches over time and improve predictive
performance (Koopman ¢ Lit, 2012). Other studies have explored hybrid approaches, for
example, Lasek, Szldvik & Bhulai (2013) combined Elo ratings with Bayesian models to
enhance prediction accuracy. Statistical models, while interpretable and effective, often
struggle with capturing complex interactions between variables and adapting to dynamic
changes in team performance, which has led to the adoption of machine learning-based
approaches.
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Deep learning algorithms have been recently employed with remarkable success in
making sports outcome predictions. For instance, convolution neural networks (CNNs)
have been employed to analyze video recordings to check for movement detection and
performance evaluation (Cust et al., 2018; Moodley, Van der Haar ¢ Noorbhai, 2022). The
models can automatically discover features from raw data, thus reducing the need for
manual feature engineering. Experiments have verified the potential of deep learning
models in accurately predicting the results of games such as basketball and baseball
(Huang & Li, 2021; Atta Mills et al., 2024). These advancements in technology enable
coaches and analysts to process large amounts of data, uncovering patterns and insights
that can inform decision-making processes. The interplay between various factors that
affect the result of sports shows the intricacy of prediction in this field. As highlighted by
Tadesse et al. (2022), psychological needs fulfillment as well as contextual variables play
crucial roles in shaping the developmental outcome of sports players. This suggests that a
comprehensive understanding of the multifaceted nature of sports performance is essential
for effective prediction. By taking into account a wide range of factors, including morale of
players, team cohesion, and conditions of the environment, coaches can optimize their
predictive power and optimize their teams’ potential for achievement. Additionally,
ensemble methods that combine multiple algorithms have shown promise in improving
prediction accuracy by leveraging the strengths of different models (Bunker ¢ Thabtah,
2019; Imbach et al., 2022). Sun (2022) explored the use of chaos theory in conjunction with
machine learning to enhance prediction models by analyzing the dynamic nature of sports
performance. Machine learning models can utilize past injury information as well as
performance records to calculate risk factors and predict potential injuries, allowing teams
to implement preventive measures (Li ef al., 2023). This method is not only safe for athletes
but also enhances training programs as well as match planning. The integration of
machine learning into sports analytics has also led to the development of smart sports
platforms that utilize real-time data for decision-making. These are based on cloud
computing and mobile technology to provide coaches and analysts with real-time insights
during the game, so they can effect real-time changes in strategy (Gong, 2023). The ability
to analyze data in real-time is a significant advantage over traditional methods, which often
rely on post-game analysis.

MATERIALS AND METHODS

Dataset

The European Soccer Database from Kaggle is a comprehensive dataset that provides
detailed information on European football matches, teams, and players, making it a
valuable resource for predictive modeling and sports analytics. It includes data from 11
European countries across seasons 2008 to 2016, covering over 25,000 matches and 10,000
players. This dataset includes some key features:

e Match Data: includes match results, team formations, player line-ups, and detailed
in-game events such as goals, assists, fouls, and possession statistics.
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 Player & Team Attributes: extracted from EA Sports’ FIFA series, offering insights into
player skills, team strengths, and performance trends.

* Betting Odds: collected from up to 10 providers, allowing analysis of market expectations
vs. actual outcomes.

 Event-Level Match Data: includes goal types, corners, crosses, fouls, and other in-game
occurrences for over 10,000 matches.

This dataset can be used to develop machine learning models to predict match results
(Win, Draw, Defeat). By leveraging these features, the dataset supports research in sports
analytics and team performance evaluation.

Data preprocessing

To build a match outcome prediction model, data from the European Soccer Database is
processed and extracted into key features. This process includes labeling match results,
aggregating player information, computing team performance statistics, integrating and
combining all these data into a complete training dataset. Initially, each match is labeled
based on the number of goals scored by the home team (home_team_goal) and the away
team (away_team_goal). The label represents the home team’s result in three possible
states:

» Win: if the home team’s goals exceed the away team’s goals.
e Draw: if both teams have the same number of goals.

o Defeat: if the home team’s goals are fewer than the away team’s goals.

Next, to assess team quality in each match, FIFA data is used to extract the overall rating
(overall_rating) of players. For each player, the closest rating before the match date is
selected as the representative value. For a given match with a set of players from both
teams, player information is extracted using the following formula:

rating(p;) = max(overall_rating(p;,d)) with d<D, (1)

where d is the match date and represents previous time points. In addition, key statistics
from their past matches are analyzed. These include the number of goals scored, goals
conceded, and matches won over a specific period. The goal difference is also considered,
providing insight into a team’s overall strength by comparing goals scored against goals
conceded. By aggregating these metrics, we obtain valuable performance indicators that
help in predicting future match outcomes. This approach ensures that both offensive and
defensive capabilities are factored into the analysis, leading to more accurate predictions.
After extracting individual player ratings, they are aggregated to create a feature set
representing the team’s lineup quality. Once all features are collected, they are merged to
form a complete dataset by combining team performance statistics, head-to-head history,
and FIFA player ratings based on the match identifier. After extracting individual player
ratings, they are aggregated to create a feature set representing the team’s lineup quality.
Once all features are collected, they are merged to form a complete dataset by combining
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Figure 1 Kernel density estimation (KDE) plots of selected features in the dataset, grouped by match outcome labels: Win, Draw, and Defeat.

Full-size K&l DOT: 10.7717/peerj-cs.3011/fig-1

team performance statistics, head-to-head history, and FIFA player ratings based on the
match identifier. To effectively process the data for predictive modeling, we apply different
encoding techniques for categorical and numerical variables.

Categorical Feature Processing (x): categorical variables, such as league identifiers,
cannot be directly used in mathematical models as they lack numerical meaning.
Therefore, we employ an embedding layer to map these categorical values into a
lower-dimensional numerical space while preserving semantic relationships among
different categories. The use of embeddings not only enhances model interpretability but
also mitigates the sparsity issue inherent in categorical variables when fed into predictive
models.

Continuous Feature Processing (xn¢): continuous variables contain critical numerical
information, such as goals scored, shots on target, and ball possession percentage. To
ensure that these variables do not introduce scale discrepancies among different features,
we apply either normalization or standardization techniques, depending on the
distribution of each variable. Additionally, to maintain data integrity and avoid potential
biases in the model, we remove rows with missing values rather than using imputation
techniques, as filling in missing values (e.g., with mean or median) could introduce
distortions in model interpretation. To visualize the distribution of continuous variables
based on the target labels (Win, Draw, Defeat), we present the probability density plots
using Kernel Density Estimation (KDE). Figure 1 illustrates the differences in feature
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Table 1 Description of the training, validation, and test datasets.

Dataset Duration Win Defeat Draw Total
Training 2009-01-03 to 2013-12-29 6,105 3,707 3,343 13,155
Validation 2014-01-01 to 2014-12-28 1,305 864 718 2,887
Test 2015-01-01 to 2015-12-31 1,354 919 779 3,052
Total 2009-01-03 to 2015-12-31 8,764 5,490 4,840 21,374

distributions across different outcome groups, highlighting the relationship between
input features and predicted results.

Data splitting

To ensure that the inherent temporal structure of the time-series data remains intact, we
carefully partitioned the dataset into three distinct subsets: a training set, a validation set,
and a test set. This approach preserves the chronological order of observations, preventing
any potential data leakage from future time points into past observations, which could
otherwise compromise the model’s ability to generalize to unseen data.

The training set includes a total of 13,155 data samples, systematically collected over a
period spanning from January 3, 2009, to December 29, 2013. This subset serves as the
foundational dataset for model learning, allowing the predictive model to recognize
underlying patterns and relationships within the data. Following this, the validation set
consists of 2,887 samples recorded between January 1, 2014, and December 28, 2014. The
primary role of this subset is to fine-tune hyperparameters and assess the model’s
performance on previously unseen data before making final adjustments. It provides an
unbiased evaluation of the model’s learning progress and helps mitigate the risks of
overfitting. Lastly, the test set is composed of 3,052 samples covering the period from
January 1, 2015, to December 31, 2015. This dataset remains completely separate from the
training and validation phases and is utilized exclusively for evaluating the final model’s
predictive performance in real-world scenarios.

In total, the dataset spans nearly seven years, from January 3, 2009, to December 31,
2015, with a cumulative count of 21,374 samples. A detailed breakdown of the data
distribution across these subsets is provided in Table 1, offering a comprehensive overview
of the dataset division for training, validation, and testing purposes.

Model architecture

Model selection rationale

In this study, we introduce a hybrid deep learning model that integrates Transformer
layers with a residual one-dimensional convolutional neural network (1D CNN) for
forecasting sports event outcomes. As shown in Fig. 2, continuous features are processed
through a 1D CNN block to capture local patterns, while categorical features are encoded
via column embeddings to generate learnable parametric representations. These
embeddings are then passed through Transformer layers (Vaswani et al., 2017) to model
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long-range dependencies. The resulting representations from both feature types are
concatenated and passed through a fully connected (FC) layer for dimensionality
reduction, followed by a softmax activation to produce the final outcome predictions.

The selection of the hybrid model architecture combining a residual 1D CNN with
Transformer layers was guided by the complementary strengths of these techniques in
handling structured sequential data. The 1D CNN was chosen for its ability to effectively
capture local spatial patterns and short-term dependencies within continuous features,
which are common in sports event data. Meanwhile, the Transformer architecture was
selected for its superior capacity to model long-range interactions through self-attention
mechanisms, making it well-suited for capturing complex contextual relationships among
categorical and embedded features. This combination enables the model to learn both
low-level and high-level feature interactions, which are critical for accurate outcome
prediction. Alternative approaches, including standalone CNNss, recurrent neural
networks (RNNs), and traditional machine learning models, were initially considered and
evaluated in preliminary experiments. However, they demonstrated inferior performance
in capturing global dependencies or exhibited limitations in scalability. Therefore, the
proposed hybrid design was selected for its balance of expressiveness, interpretability, and
empirical performance.

Data encoding
Before being forwarded into the model, both categorical and continuous features need
preprocessing steps that include encoding and normalization to ensure the data is in a
suitable format for effective learning.

Specifically, categorical features are transformed into dense vector representations
through learnable embedding layers. Let the set of categorical features be denoted as
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{c1,¢2, ..., cn}, where each categorical feature ¢; assumes discrete values from a predefined
vocabulary V;. The vocabulary V; contains all possible unique values that the feature ¢; can
take, and its cardinality is represented by |V;|. For each categorical feature ¢;, an embedding
matrix E; € RIVi*4 is defined, where d is the dimension of the dense embedding vectors.
This matrix E; is learnable and can be optimized during the model training.

For continuous features, we apply only a normalization layer to standardize the input
data. This normalization step is crucial to ensure that the range and distribution of
continuous features do not negatively impact the model training. After normalization, the
continuous features are directly fed into 1D CNN, which can effectively learn from the
standardized continuous inputs.

Transformer

Transformer is a groundbreaking neural network architecture that has fundamentally
reshaped the landscape of natural language processing (NLP) and deep learning.
Transformers leverage self-attention mechanisms to capture long-range dependencies in
data efficiently. This architecture eliminates the need for recurrent computations, enabling
parallelization and significantly improving training efficiency. At the core of the
Transformer model is the self-attention mechanism, which computes contextualized
representations of input tokens based on their relationships with all other tokens in a
sequence. Given an input sequence represented as a matrix X, self-attention is
computed as:

Attention(Q, K, V) = softmax (Q—KT> V, (2)
Vi

where Q, K, V are query, key, and value matrices derived from X, and dj is the dimension

of the key vectors. The multi-head attention mechanism extends this by applying multiple

attention heads in parallel:

MultiHead(Q, K, V) = Concat(head,, ..., head,) W©, (3)

where each attention head computes independent self-attention, followed by a linear
transformation with weight matrix W. The Transformer also incorporates position-wise
feedforward layers and layer normalization to stabilize training.

1D CNN block

The 1D CNN layer is an effective architecture for processing one-dimensional sequential
data, such as time series, sensor readings, and speech signals. 1D CNN applies
convolutional filters across the temporal axis, capturing local dependencies and feature
patterns efficiently. The key operation in a 1D CNN layer is the 1D convolution, expressed
as:

k-1
yi= YW Xig, (4)
=0

where x is the input sequence, w represents learnable filter weights, k is the filter size, and
y is the output feature map.
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In this paper, due to continuous features being represented as a one-dimensional vector,
we design a residual network architecture combined with a 1D CNN as shown in Fig. 3.
First, the continuous features are reshaped to serve as input to the 1D CNN. Here, the data
passes through two consecutive 1D CNN layers, each followed by a Leaky Rectified Linear
Unit (ReLU) activation function and Batch Normalization to enhance stability and
convergence speed during training. After passing through the 1D CNN layers, the data is
fed into a Max Pooling layer to reduce dimensionality and is finally flattened into a
one-dimensional vector.

Parallel to the main branch, the residual branch helps preserve the original information
by passing the input data through an FC layer to ensure it has the same dimensions as the
output of the main branch. Then, the output from the residual branch is directly added to
the output of the main branch to produce the final output. The residual connection acts as
a shortcut mechanism, allowing the original information to be transmitted to later layers
without losing important features, thereby mitigating the gradient vanishing problem as
the network becomes deeper.

Evaluation metrics

To evaluate the performance of our models, multiple assessment metrics were calculated,
including Accuracy (ACC) with threshold of 0.5, Weighted Recall, Weighted Precision,
Matthews Correlation Coefficient (MCC), and the Weighted F1-score. These metrics are
mathematically defined as follows:

TP;

Weighted Recall = P X 5
eighted Reca Zw TP, 1 FN, (5)
TP;
Weighted Precision = Z w; X m, (6)
2 X Precision; x Recall;
Weighted FI — ZWiX x Precision; ecall; )

Precision; + Recall;
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TP+ TN

ACC = 9
cC TP+ TN+ FP+FN’ ©)

where TP (true positives) represents correctly predicted positive instances, TN (true
negatives) denotes correctly predicted negative instances, FP (false positives) corresponds
to incorrectly predicted positive cases, and FN (false negatives) accounts for incorrectly
predicted negative cases.

Model training and evaluation

The training procedure was designed to enable all models to learn from the data in a
sequential manner (Fig. 4). Initially, each model was trained on the full training set and
validated using data from the first month. In Step 1, the first month’s data was
incorporated into the training set, and the models were re-trained on this updated dataset.
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This process was repeated iteratively, with each subsequent month’s data added to the
training set and used to validate the model, continuing up to Month 12. As a result, the
models were re-trained a total of 12 times during the training and validation phase.

Following this phase, a similar training and evaluation procedure was applied to the test
set. In this second stage, the models were again created, updated, and evaluated using the
same rolling window approach. Since the test set comprises data from the final 12 months,
the models were updated and evaluated 12 times accordingly.

The duration for one training epoch is about 152 s. In the training and validating
process, the model (Step 1) was trained for over 50 epochs at a learning rate of 0.0005. The
following updated models were trained using three additional epochs. At the training and
evaluation state, the original model was retrained with a second training set of all training
and validation samples. After the first models were obtained, the following updated models
were retrained with one additional epoch and tested with the data of the following month.
The training process in the second phase was stopped after 12 steps.

Design of experiments for model benchmarking

Computing infrastructure

All experiments in this study were conducted on a workstation equipped with an NVIDIA
GeForce RTX 3070 GPU with 12 GB of GDDR6 VRAM, which enabled efficient training
of deep learning models. The system also featured an AMD Ryzen 7 5800X processor with
eight cores and 16 threads, supported by 32 GB of DDR4 RAM running at 3,200 MHz,
ensuring smooth multitasking and data processing. A 1'TB NVMe SSD was used for
high-speed storage and rapid data access. The experiments were performed in a Windows
11 environment, which provided a stable and compatible platform for running the
necessary machine learning libraries and frameworks.

Performance comparison with machine learning and deep lerning models
To evaluate the performance of our proposed model in predicting sports event outcomes,
we establish a comparative analysis with traditional machine learning and deep learning
models. As baseline machine learning approaches, we consider decision trees (Rokach ¢»
Maimon, 2005), random forests (Breiman, 2001), k-nearest neighbors (Kramer, 2013),
gradient boosting (Friedman, 2001), XGBoost (Chen ¢ Guestrin, 2016), and CatBoost
(Dorogush, Ershov & Gulin, 2018).

In addition, deep learning models are explored due to their ability to learn complex
patterns within data. We compare our approach against state-of-the-art architectures,
including multi-layer perceptrons (MLP) (Taud ¢ Mas, 2017), recurrent neural networks
(RNNs) (Marhon, Cameron ¢ Kremer, 2013), long short-term memory (LSTM)
(Hochreiter ¢» Schmidhuber, 1997), TabNet (Arik ¢ Pfister, 2019), TabTransformer
(Huang et al., 2020), and TabPFN (Hollmann et al., 2022). This experimental setup allows
us to assess the effectiveness of our model in capturing key predictive features while
addressing challenges such as data scarcity and overfitting.
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Figure 5 Preprocessing pipeline for categorical and continuous features across different model
types. Full-size K&l DOT: 10.7717/peerj-cs.3011/fig-5

Input preprocessing for different models
The input features are divided into categorical features and continuous features, with
different preprocessing techniques applied depending on the model type (Fig. 5).

e For traditional machine learning models, categorical features are transformed using
one-hot encoding, while continuous features are normalized to maintain numerical
stability. The processed categorical and continuous features are then concatenated and
fed into the machine learning model for prediction.

o Similarly, deep learning models such as MLP, RNN, and TabNet follow the same
preprocessing approach as traditional machine learning models. The categorical features
undergo one-hot encoding, and continuous features are normalized before being
concatenated and used as input to the deep learning architectures.

e In contrast, TabTransformer processes categorical and continuous features differently.
Categorical features are passed through an embedding layer to transform them into
dense vector representations. Meanwhile, continuous features are normalized. Both
processed categorical and continuous feature representations are then input into
TabTransformer, which leverages attention mechanisms to model interactions between
features effectively.

By standardizing the input preprocessing techniques across different models, we ensure
a fair and meaningful comparison of their predictive performance.

Hyperparameter tuning

To optimize machine learning model performance, hyperparameter tuning is essential.
Grid search is used to explore various parameter combinations and determine the best set
of hyperparameters for each model. Table 2 summarizes the key hyperparameters tuned
for each model. By systematically evaluating different hyperparameter values using grid
search, the models can achieve better predictive accuracy and generalization, ultimately
improving the reliability of sports event outcome predictions.
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Table 2 Hyperparameter tuning details for machine learning models.

Algorithm Parameter Range of values
Decision tree criterion ‘gini’, ‘entropy’
max_depth 6, 8, 10
Random forest min_samples_leaf 58
max_depth 6,8, 10
k-Nearest neighbor n_neighbors 3,57
max_depth 5,7, 10
Gradient boost min_samples_leaf 58
max_depth 5,7, 10
XGBoost learning rate 0.01, 0.05, 0.1
CatBoost learning rate 0.01, 0.05, 0.1
depth 57,9

Table 3 Hyperparameter tuning details for deep learning models.

Model Parameter Range of values

MLP hidden_size 64, 128, 256
num_layers 3,4
learning_rate 0.001, 0.005, 0.01
batch_size 64, 128

RNN hidden_size 64, 128
num_layers 3,4
learning_rate 0.001, 0.005, 0.01
batch_size 64, 128

LSTM hidden_size 64, 128
num_layers 3,4
learning_rate 0.001, 0.005, 0.01
batch_size 64, 128

TabNet n_steps 3,57
learning_rate 0.001, 0.005
batch_size 64, 128

TabTransformer transformer_layers 2,4
attention_heads 4,6
d_model 64, 128
learning_rate 0.001, 0.005

TabPEN softmax_temperature 0.9, 0.5
balance_probabilities True, False

Next, to ensure fair and competitive performance among the deep learning models, we
conducted hyperparameter tuning by adjusting several key parameters for each deep
learning architecture as shown in Table 3. These parameters significantly influence
convergence speed, stability, and overall model performance.
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Ablation study on model component contributions

To investigate the effectiveness of each component in our proposed hybrid model, we
conducted an ablation study by systematically modifying or removing key modules and
analyzing their impact on performance. The study examines three primary aspects: (1) the
Transformer component, (2) the residual 1D CNN block, and (3) categorical feature
embeddings. For the Transformer module, we replaced it with a fully connected network
that directly processes categorical embeddings. To assess the role of the residual 1D CNN
block, we substituted it with an MLP layer and removed the residual connections. To
evaluate categorical embeddings, we replaced them with one-hot encoded vectors and
measured changes in model complexity and predictive performance. The results of the
ablation study across multiple experiments show variations in model performance under
different configurations, providing insights into the contribution of each component.

RESULTS AND DISCUSSION

Comparison results with machine learning models

As shown in Table 4, our proposed model outperformed all baseline approaches in result
prediction of sports events. Specifically, it achieved the best accuracy of 54.73% and MCC
of 0.2666, demonstrating its ability to distinctly capture major patterns in the data and
enhance generalization.

Tree-based models exhibited varying performance levels. The decision tree model,
prone to overfitting, recorded the lowest accuracy among tree-based methods at 41.31%
with an MCC of 0.0910. In comparison, random forest improved upon this, achieving an
accuracy of 50.20% and an MCC of 0.1875. The ensemble nature of random forest
mitigates overfitting and enhances model generalization; however, its limitations in
capturing strong feature relationships hinder further performance gains. Likewise, the
k-nearest neighbors model performed similarly to the decision tree, with an ACC of
40.65% and an MCC of 0.0790, likely due to its sensitivity to hyperparameters such as k
and distance metrics, as well as its tendency to overfit in pre-match prediction scenarios.

Boosting techniques provided notable performance enhancements over conventional
methods. Gradient boosting, for instance, showed significant improvement, achieving an
ACC of 53.76% and an MCC of 0.2482, underscoring the effectiveness of iterative
learning in identifying complex data patterns. XGBoost and CatBoost, both advanced
boosting frameworks, demonstrated strong results, with XGBoost reaching an ACC of
51.02% and an MCC of 0.2006, whereas CatBoost slightly surpassed it with an ACC of
52.54% and an MCC of 0.2263. CatBoost’s superior performance can be attributed to its
efficient handling of categorical features, which plays a crucial role in sports event
prediction.

Opverall, our proposed method consistently outperformed all prior approaches, securing
the highest ACC and MCC. The improved precision and recall metrics show the model’s
capability in maintaining the essential predictive features. These outcomes highlight the
capability of ensemble and boosting methods in addressing the challenges of sports event
prediction. Nevertheless, the moderate accuracy levels across all models suggest that
predicting sports events remains a challenging task due to inherent uncertainties and
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Table 4 Test set performance comparison with machine learning models. Best results are shown in

bold.
Model ACC MCC Weighted recall ~ Weighted precision =~ Weighted F1
Decision tree 0.4131 0.0910 0.4131 0.4182 0.4155
Random forest 0.5020 0.1875 0.5020 0.4577 0.4639
k-Nearest neighbor ~ 0.4065 0.0790 0.4065 0.4099 0.4081
Gradient boost 0.5376 0.2482 0.5376 0.4846 0.4822
XGBoost 0.5102 0.2006 0.5102 0.4777 0.4685
CatBoost 0.5254 0.2263 0.5254 0.4759 0.4772
Ours 0.5550 0.2750 0.5550 0.5180 0.4720

Table 5 Test set performance comparison with deep learning models. Best results are shown in bold.

Model ACC MCC Weighted recall Weighted precision Weighted F1
MLP 0.4024 0.0736 0.4024 0.4053 0.4038
RNN 0.4939 0.1745 0.4939 0.4487 0.4546
LSTM 0.5101 0.1926 0.5092 0.4618 0.4598
TabNet 0.5152 0.2072 0.5152 0.4742 0.4610
TabTransformer 0.5234 0.2197 0.5234 0.3875 0.4399
TabPFN 0.5183 0.2103 0.5183 0.4164 0.4385
Ours 0.5550 0.2750 0.5550 0.5180 0.4720

dynamic factors. Future research should focus on incorporating additional contextual
information and refining model architectures to further enhance predictive accuracy and
reliability.

Comparison results with deep learning models

As described in Table 5, different deep learning architectures demonstrate varying levels of
predictive performance in sports event outcome prediction. Among the models evaluated,
our proposed approach achieved the highest performance across all metrics, underscoring
its capability to effectively capture complex relationships within the dataset.

MLP exhibited the lowest ACC of 40.24% and an MCC of 0.0736, indicating its limited
ability to generalize well for this task. This suggests that while MLP is effective for tabular
data, it may struggle to capture intricate dependencies without extensive hyperparameter
tuning. RNNs outperformed MLP, achieving an ACC of 49.39% and an MCC of 0.1745.
This aligns with expectations, as RNNs are designed to model sequential dependencies,
which can be beneficial in sports event data with temporal aspects. However, RNNs still
face challenges in overall predictive performance, likely due to issues such as the vanishing
gradient problem, which impedes learning long-term dependencies.

TabNet, a model specifically designed for tabular data, demonstrated improved
performance over both MLP and RNNs, achieving an ACC of 51.52% and an MCC of
0.2072. The incorporation of attention mechanisms likely enhances feature interaction
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Table 6 Effect of component replacements on validation results. Best results are shown in bold.

Method ACC MCC  Weighted recall Weighted precision Weighted F1
No transformer 0.4890 0.1520  0.4890 0.4505 0.4598
No residual CNN 0.5120 0.1984 0.5120 0.4721 0.4675
No embeddings (One-hot) 0.4730 0.1352  0.4730 0.4308 0.4412
Ours (Full model) 0.5632 0.2821 0.5632 0.5203 0.4786

modeling, contributing to better generalization. TabPEN achieved an ACC of 51.83% and
an MCC of 0.2103. Its probabilistic transformer-based framework enables robust
predictions with minimal hyperparameter tuning, proving especially useful for smaller
datasets, though it does not surpass the proposed model. Similarly, TabTransformer
further improved upon this, reaching an ACC of 52.34% and an MCC of 0.2197, with its
self-attention mechanism playing a key role in capturing complex feature dependencies,
making it particularly effective for structured sports event data.

Our proposed method consistently delivered the highest results across all performance
metrics, with an ACC of 54.73% and an MCC of 0.2666. The enhanced weighted recall of
54.73% and weighted precision of 51.07% contribute to an improved weighted F1-score of
46.40%, reflecting a balanced trade-off between sensitivity and specificity. This suggests
that our model effectively identifies relevant patterns within the dataset, leading to superior
predictive capabilities.

These findings emphasize the importance of model selection in sports event prediction.
While traditional deep learning models such as MLP and RNNs provide a foundational
benchmark, specialized architectures like TabNet and TabPFN offer significant
improvements tailored for structured data. The superior performance of our proposed
model highlights the potential of advanced deep learning methodologies in enhancing
predictive accuracy within this domain.

Ablation study findings
The results in Table 6 demonstrate that replacing the Transformer with a fully connected
network resulted in a significant drop in ACC across all datasets, with an ACC of 0.4890
compared to 0.5632 in our full model. This highlights the importance of self-attention
mechanisms in capturing dependencies between categorical features, which contribute to
improved generalization. In addition, removing the 1D CNN block and replacing it with
an MLP led to an ACC of 0.5120, indicating a noticeable performance decline. This
suggests that convolutional layers are effective in extracting meaningful representations
from continuous features, while residual connections stabilize training and mitigate the
vanishing gradient problem. Finally, replacing learned embeddings with one-hot encoding
resulted in the largest performance degradation, with an ACC drop to 0.4730. This
indicates that learned embeddings provide a more compact and informative representation
of categorical features, outperforming the traditional one-hot encoding approach.
Overall, each component of the model plays a crucial role in enhancing accuracy. The
Transformer module enables the model to capture relationships between categorical
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features, the residual CNN improves feature extraction from continuous data, and
categorical embeddings offer a more efficient and expressive representation than one-hot
encoding.

Limitations and future work

Although our proposed deep learning model demonstrates strong predictive capabilities
for sports event outcomes, certain limitations persist. The first challenge is modeling rare
and unexpected events, such as last-minute game-changing plays or major upsets, which
are inherently difficult to predict. While the Transformer architecture enhances the
learning of long-range dependencies, sports outcomes are influenced by numerous
real-time variables that may not be adequately captured in structured datasets. As a result,
relying solely on historical match data can limit predictive accuracy in high-variance sports
settings. Additionally, computational complexity remains a concern. The use of
Transformer and 1D CNN architectures improves predictive performance, these models
require significant computational power, especially when training on large datasets. This
could pose challenges for organizations with limited resources.

Future work could explore the integration of dual-channel or collaborative transformer
architectures, as proposed by Cai et al. (2025), to enhance the model’s capability for
continual learning and adaptation to evolving sports data. Additionally, leveraging
text-assisted spatial and temporal attention networks, similar to the TASTA framework by
Wang et al. (2023), may enable the incorporation of textual data, such as match reports or
player commentary-alongside structured numerical inputs for richer predictions.

To further improve generalization across diverse sports and seasons, incorporating
multilevel distribution alignment techniques for multisource domain adaptation, as
demonstrated by Ning et al. (2025), could be highly beneficial. Insights from advanced deep
neural network applications in logical and activity learning, such as those by Li, Ortegas ¢
White (2023), may also inspire new directions in modeling complex decision-making and
event dynamics in sports.

Moreover, building hybrid models that combine deep learning and classical approaches
(Nguyen et al., 2021) offers a promising pathway to boost model robustness and
interpretability. Finally, the application of pretrained transformer-based representations
(Nguyen-Vo et al., 2021) could provide more powerful sequence encoding strategies for
sports outcome prediction tasks, especially when dealing with heterogeneous and
sequential event data.

CONCLUSIONS

This study introduces a novel deep learning approach for predicting sports event
outcomes, combining 1D CNN and Transformer architectures to capture complex feature
relationships and long-range dependencies. By leveraging advanced deep learning
techniques, our model demonstrates improved accuracy and robustness compared to
traditional machine learning methods. The results highlight the effectiveness of deep
learning in uncovering meaningful patterns within structured sports data, contributing
valuable insights to predictive sports analytics. Through the integration of self-attention
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mechanisms and feature gating, the model enhances feature representation and
generalization across various sports events. This research bridges the gap between
cutting-edge deep learning innovations and practical applications in sports analytics,
offering a data-driven tool for analysts, and strategists.
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