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ABSTRACT

Incorporating social information in the recommendation algorithm based on graph
neural network (GNN) alleviates the data sparsity and cold-start problems to a
certain extent, and effectively improves the recommendation performance of the
model. However, there are still shortcomings in the existing studies: on the one hand,
the potential effect of noise in the raw data is ignored; on the other hand, only relying
on the single interaction information between the user and the item and failing to
make full use of the rich multi-aided information. These factors lead to an
unsatisfactory learning effect of the model. To address the above problems, we
propose a social recommendation model based on adaptive residual graph
convolutional networks (Social GCNRI). Specifically, we use the idea of fast Fourier
transform (FFT), a filtering algorithm in the field of signal processing, to attenuate
the raw data noise in the frequency domain, followed by utilizing the user-social
relations, item-association relations, and user-item-interaction relations to form a
heterogeneous graph to supplement the model information, and finally using a graph
convolution algorithm with an adaptive residual graph to improve the expressive
power of the model. Extensive experiments on two real datasets show that

Social GCNRI outperforms state-of-the-art social recommendation methods on a
variety of common evaluation metrics.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning,
Data Science, Social Computing, Neural Networks

Keywords Social recommendation, Fast fourier transform, Heterogeneous graph,
Graph convolutional algorithm

INTRODUCTION

Recommender systems effectively mitigate the information overload problem and greatly
improve users’ web experience (Aljunid ¢ Huchaiah, 2021; Koren, Rendle ¢~ Bell, 2021,
Wang et al., 2019b). However, the recommendation algorithms themselves face data noise
and cold-start problems that are difficult to alleviate (Chen et al., 2019; Ma et al., 2008).
With the rapid development of information technology and the Internet, social software
such as Wechat, Amazon, Facebook, etc. are growing, which greatly enriches the social
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information among users, and people gradually realize that they can be used to optimize
the performance of recommendation systems. In essence, social behavior is an inherent
part of human activities, and the viewpoints of friends often have a significant impact on
users’ decisions (Lewis, Gonzalez & Kaufman, 2012; Iyengar, Han & Gupta, 2009). As a
result, social recommendation algorithms have emerged, which take social information
among users as an important supplement to enrich user information from multiple
dimensions, thus significantly improving the performance of recommender systems and
attracting widespread attention (Zhao et al., 2017; Yu et al., 2019).

In recent years, graph neural networks (GNNs) have achieved remarkable success in
node classification and link prediction tasks. Benefiting from its ability to effectively
encode graph-structured data, GNNs are able to dig deeper into the interrelationships
between nodes (such as users and items) as well as the overall structural features of the
graph, a property that has led to the increasing application of graph neural network
technology in the field of recommender systems (Kipf ¢» Welling, 2016). In the context of
social recommendation, the social network topology among users and the interaction
records between users and items can be mapped into graph data form. Therefore, social
recommendation algorithms relying on GNN architecture have gradually become the
research hotspot and mainstream trend in this field. This type of methods dramatically
improves the accuracy and generalization ability of reccommendation systems by accurately
identifying the interconnections between nodes and the deep structural information in the
graph. For example, GraphRec (Fan et al., 2019) learns embedding functions in user social
graphs and user-item interaction graphs using GNN, which greatly enriches user and item
information. Some other researchers combine implicit friends with similar preferences as
supplemental information with explicit social information to form a heterogeneous social
network, which expresses user preferences more accurately. Social LGN (Liao et al., 2022)
designs a component to fuse the rich user information in a heterogeneous social network,
which improves the recommendation accuracy. SlightGCN (Jiang et al., 2022) designs
different perspectives in the heterogeneous network as auxiliary information to improve
the embedding quality and enhance the model accuracy. These studies have significantly
improved the recommendation accuracy by incorporating social information in different
ways, but there are still some challenges: (1) The noise problem in the initial information
greatly affects the recommendation performance; (2) the auxiliary information in the
existing data has not been sufficiently mined; (3) the current model architecture makes it
difficult to mine the higher-order connections between nodes.

To address these problems, we propose a social recommendation model based on
adaptive residual graph convolutional networks (Social GCNRI). The model constructs
sufficient input information for the model through multiple auxiliary information, and
uses an adaptive residual graph convolution algorithm to better learn user representation
information, which greatly improves the recommendation performance. Specifically, we
modify the fast Fourier transform (FFT) algorithm in the signal processing domain so that
it can be applied to the recommendation domain to alleviate the noise problem in the
initial information. Then, the original information is supplemented by mining additional
user social relationships and item associations through the interaction information
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between users and items. Finally, we design an adaptive residual graph convolution
algorithm to fully explore the deep connections between the nodes in the graph, so that the
model can be more fully expressed and the accuracy of the model can be substantially
improved.

The main contributions of this article are as follows:

(1) We propose a new social recommendation model based on GNN. The model targets
noisy information in the data and complements the information sources by mining the
user item interaction graph.

(2) We apply the idea of FFT in the signal processing field to the recommendation field,
through the combination of FFT and filter to deal with the noise information in the
original data, to reduce the impact of the noise problem on the accuracy of the
recommendation.

(3) We design an adaptive residual graph convolution algorithms. In the process of graph
convolution, the similarity between the current embedding layer and the initial
embedding layer is used to adaptively supplement the initial embedding information,
effectively delaying the occurrence of graph smoothing phenomenon, mining the deep
connection between the nodes, and providing higher-quality recommendations for the
target users.

(4) Social GCNRI is applied to two real datasets to compare and validate with different
baseline methods, and the experimental results demonstrate the superiority of the
model on three metrics, Recall, Precision, and NDCG, and further ablation
experiments validate the effectiveness of the model components.

The remainder of the article is organized as follows. “Related Work” presents the related
work in this article. “Proposed Model” describes the design details of the proposed model.
“Experiments” reports the experimental findings. “Conclusion” summarizes the article.

RELATED WORK

In this section, we first introduce denoising algorithms among recommender systems, and
then provide a detailed overview of related work in social recommendation.

Cold-start recommendation models

In the development of recommendation algorithms, the cold-start problem has always
been one of the directions that researchers focus on. When the number of user-item
interactions is too small, the recommender system will reach a cold start state when it
cannot effectively make personalized recommendations for the user. For this
phenomenon, Generative Adversarial Recommendation (GAR) (Chen et al., 2022) uses
generative adversarial modeling to generate user interaction data, and distinguishes
between generated and real data in the form of fine-tuning during recommendation
ranking, thus mitigating the cold-start problem. In difference, Huang et al. (2023) think
that this model is not effective in mitigating the variability between hot and cold items, and
they propose the Aligning Distillation (ALDI) model, which reduces these differences by
tailoring the rating alignment and identifying alignment losses, and using a weighting
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structure to ensure that the model learns accurately with respect to the information. For
the cold-start problem in large-scale online recommendation, Huang et al. (2025)
proposed the large language model (LLM) simulator framework, which reduces the
number of candidate recommendation users by coupling filters, and uses a LLM to
simulate the interaction of cold-start users, which not only successfully alleviates the
cold-start problem, but also reduces the complexity of the model. On this background,
Zhang et al. (2025) further analyzes the effectiveness of LLM for the cold-start problem in
large-scale online recommendation, which aims to provide new insights for the related
workers. The above methods effectively mitigate the cold-start problem in
recommendation through generative models or LLM, but generative models tend to make
the recommendation of the model too polarized, while LLM have the problem of excessive
complexity. In contrast, Social GCNRI builds a heterogeneous graph to enrich the
user-item interaction information by means of user social information, which not only can
effectively alleviate the occurrence of the cold start phenomenon, but also ensures that only
the user-item and user social matrices will be used in the process of building the
heterogeneous graph, so that the complexity of the model can be ensured to be within the
controllable range.

De-biasing algorithms on recommendations

GNN greatly improve the accuracy and robustness of recommendation models by
modeling users and items, but may amplify item bias during graph aggregation, which
makes the model’s recommendations result in a long-tail phenomenon. Noting this kind of
problem, Chen et al. (2020a) defines seven types of bias in recommendation, and detailed
the role of different loss functions for removing bias. In contrast, Zhou et al. (2023) thinks
that the way of modifying the loss function does not completely solve the problem of bias
in the model, and they propose a novel graph aggregator, the adaptive popularity debiasing
aggregator (APDA), to learn the weights of each edge and the aggregation popularity bias,
and use the weight scaling mechanism and residual connection to eliminate the bias. We
also believe that the use of aggregators is one of the ways to address the problem of bias,
and in Social GCNRI, we propose an adaptive residual map convolutional network to
remove bias, and use a multilayer perceptron (MLP)-based aggregator to further mitigate
the emergence of long-tail phenomenon in the model.

De-noising algorithm on recommendation

The impact of uncertainties such as mis-touchs, false comments, sample bias, and so on
during user interactions makes it inevitable that user log files will contain noisy data. It is
worth noting that noise in recommendation algorithms is very similar to the Sybil attack,
which is an attack in which a malicious user gains undue influence by creating a large
number of false identities and using those identities to participate in system operations,
both of which cause the model to react adversely by injecting false information. The
presence of noisy data often leads to large fluctuations in model performance, thus
reducing the accuracy of recommendations. To address this problem, more and more
scholars have began to design denoising algorithms to mitigate the negative impact of
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noisy data on model performance (Wang et al., 2021; Joorabloo, Jalili ¢ Ren, 2022). In
order to extract effective features in implicit interactions, the Stacked Discriminative
Denoising Auto-Encoder based Recommender System (SDDRS) (Wang et al., 2019a)
designs a stacked discriminative denoising auto-encoder to remove noisy data from
interactions, effectively combining implicit interaction information with rating
information. In the multi-modal recommendation task, collaborative denoised graph
contrastive learning (CDGCL) (Xu et al., 2024) designs a multi-strategy denoising module
to filter out irrelevant interaction information as a means of accurately and precisely
reflecting the user’s true interests. In summary, different ways of denoising the raw data
can effectively improve the accuracy of recommendation.

Social recommendation with graph neural networks

In traditional recommender systems, the interaction data between users and items are
often sparse, and this characteristic limits the accuracy of the recommendation results. To
alleviate this phenomenon, researchers have proposed social recommendation algorithms
based on the social influence theory, which take the social information between users as
supplemental information to alleviate the limitations of traditional recommendation
algorithms. Most of the early social recommendation models used matrix factorization
(MF) techniques and fused social information into the recommendation model through
various strategies with a view to improving the recommendation performance (Tang et al.,
2016; Zhang et al., 2018; Yang et al., 2016; Parvin et al., 2019). For example, SocialMF
(Jamali ¢ Ester, 2010) cleverly incorporates social influences into the recommendation
model by considering user feature vectors as weighted combinations of their friends’
feature vectors. On the other hand, Social Bayesian Personalized Ranking (SBPR) (Zhao,
McAuley ¢ King, 2014) constructs a Bayesian framework aimed at filtering out more
similar friends for the user, thus skillfully integrating social information into the
collaborative filtering process. Although social recommendation models based on matrix
factorization overcome some of the shortcomings of traditional recommendation to a
certain extent, they are still deficient in capturing complex social network structures and
utilizing node attribute information.

In recent years, more and more researchers have used GNN techniques to solve
problems among social recommendations (Yu et al., 2018; Zhao et al., 2019). The
GNN-based social recommendation learns target node embedding by aggregating
neighbor information in the user-item interaction graph and social network graph
(Salamat, Luo & Jafari, 2021). GraphRec (Fan et al., 2019) combines social information
with GNN for the first time, and utilizes GNN technology to enrich the attribute
information of user nodes by analyzing their first-order neighbor relationships. DiffNet
(Wu et al., 2019a) designs a hierarchical propagation mechanism to realize the dynamic
propagation of social influence in social networks, and as a result captures a multilevel
representation of user information in different graphs. The light graph convolution
network for social recommendation (SocialLGN) (Liao et al., 2022) employs light graph
convolution operation to extract attribute information about user nodes in different
graphs. In addition, the model is designed with a specialized fusion component for

Chen et al. (2025), PeerdJ Comput. Sci., DOI 10.7717/peerj-cs.3010 5/26


http://dx.doi.org/10.7717/peerj-cs.3010
https://peerj.com/computer-science/

PeerJ Computer Science

combining the extracted social information with other features of the user. The robust
social recommendation based on contrastive Learning and dual-stage graph neural
network (CLDS) (Ma et al., 2024) utilizes comparative learning techniques to extract deep
features of users and items, and capture the influences in social networks to improve the
performance of graph neural networks in social recommendation tasks.

The above methods utilizes a GNN approach to capture users’ preferences for different
items, which significantly improves the model performance, but cannot effectively capture
the higher-order connections between nodes. Different from them, we design a graph
convolution network based on adaptive residuals, by adaptively adjusting the weight of the
user’s initial embedding to continuously update the user’s attribute information, we can
more accurately infer the user’s preference for different items and improve the model
accuracy.

PROPOSED MODEL

In this section, we first provide an overview of the general framework of the Social GCNRI,
and then describe each component of the model in detail.

Overall framework of the Social GCNRI

The overall framework of Social GCNI is shown in Fig. 1, which mainly consists of
embedding layer, filter layer, residual graph convolutional layer and prediction layer.
When the user-item interaction graph and the user social graph are inputted into the
model, it goes through a series of processing steps to finally generate a set of reccommended
items for the target user.

Taking the target user as an example, Social GCNRI first generates the user’s ID
embedding through the embedding layer. This embedding is used as an input to the
filtering layer, where the FFT is used to filter the noisy data in the user interaction
sequence, and the dropout operation is used afterwards to prevent over-fitting.
Subsequently, in the residual graph convolution layer, an adaptive residual graph
convolution operation is used in the user interaction graph and the user social graph to
further extract the user’s preference representations, and in the prediction layer the
predicted score of user u, for item i), is computed.

Embedding layer

At the embedding layer, we project the high-dimensional one-hot representations of the
user and the project into a fixed-length low-dimensional dense representation: E, € R"*¢
and E; € R™, respectively.

E, = leu,€u,--- €, Ei = lei, €, ..., 6] (1)

where E,, is a matrix consisting of n user elements and d is a hyper-parameter denoting the
length of a single user embedding vector. E; is a matrix consisting of m item elements and d
is a hyper-parameter denoting the length of a single item embedding vector. Specifically,
given a one-hot representation of the target user u,, the embedding layer performs
indexing and outputs the transpose of the a-th row of the user embedding matrix
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E,. Similarly, given a one-hot representation of the target item i, the embedding layer
performs indexing and outputs the transpose of the b-th row of the item embedding
matrix E;.

Filter layer

Social recommendation algorithms based on graph convolutional networks (GCN) predict
user preferences by analyzing the user’s interaction history and the influence of social
friends. However, the user’s interaction history generates noisy data due to a series of
misoperations such as user’s mis-touch, mis-submission, and mis-entry, which makes the
model unable to accurately predict the user’s preference. To alleviate the impact of this
noisy data on recommendation accuracy, we employ the FFT in the field of signal
processing to eliminate the noisy data (Zhou et al., 2022). Specifically, we apply the FFT
after the embedding layer to transform the vectors into the frequency domain, perform
noise attenuation through a filter, then use the inverse FFT to transform the
noise-attenuated data back into vectors again, and finally use the Dropout operation to
prevent overfitting. We will describe the operation of the filtering layer from the user’s
point of view, and for the item embedding, we will perform the same operation to obtain
the filtered embedding representation.

Fast Fourier transform
Given the user’s ID embedding matrix E, € R"*%, we will perform an FFT operation along
the item dimension to transform each user’s interaction vector into the frequency domain:

E = F(E,) e C™ )

where F/ is a complex tensor denoting the spectrum of E,. F(-) denotes a one-dimensional
FFT operation, and for user u, = (xo, X, ..., X4—1 ), the FFT is formulated as:

d—1
F()=Ce=) xXnojp.....0<k<d—1 (3)
m=0

where C, denotes the representation of user u, in the frequency domain wj, . For each k,
the FFT generates a new representation C,. }:, = —iZ*mk denotes the rotation factor
generated by the Cooley-Tukey algorithm (Shirbhate, Panse ¢ Ralekar, 2015), and i
denotes the imaginary numbers. User-item interaction signals represented in the
frequency domain can reveal features that are difficult to observe in the time domain,
which facilitates the use of filters to suppress noise:

E=wF (4)

where W € C"*“ is a learnable filter. It can be optimized by stochastic gradient descent
(SGD) to adaptively attenuate noisy data in the spectral domain.

Inverse fast Fourier transform
The inverse FFT is used to reconvert the complex tensor processed in the frequency
domain into a real tensor, and to update the embedding representation:
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E,=F\(F) (5)

where F~1(+) denotes the inverse FFT in one dimension. The formula for performing the
inverse FFT on the user u, spectral domain representation C, is expressed as:

-1 1 = km
F() =22 Cu(=alh). (6)
n=0

Through the combined operation of FFT and filter, the filter layer of Social GCNRI can
effectively reduce the noisy data in the original user-item interactions, so as to obtain
embedded representations that better fit the user’s preferences. Considering the problems
of gradient vanishing and training instability, we use dropout operation after inverse FFT:

EY = E, 4 dropout(E,). (7)

It is noteworthy that the construction of the FFT component is based on the MLP
architecture, which has a more simplified architecture than other comparable models
(such as CLEA (Qin, Wang ¢ Li, 2021), BERT4Rec (Sun et al., 2019), and SRGNN (Wu
et al., 2019b)), and is simple and efficient in real-world model training.

Residual graph convolutional layer

The propagation mechanism in GNN mines the relationships of nodes in the graph
through information transfer between nodes, and uses this as a basis for accurately
capturing user preferences. Most of the current recommendation algorithms based on
GCN use LightGCN to accomplish the information propagation between nodes in the
graph, and this graph convolutional algorithm removes linear transformations and
nonlinear activation operations, which greatly reduces the computational complexity and
simplifies the traditional graph convolutional network architecture (He et al., 2020).
However, the simple propagation process makes the convolutional layer fall into the
smoothing problem prematurely and fails to extract the higher-order relationships among
nodes effectively. Inspired by GCNII (Chen et al., 2020b), in order to alleviate the problem
of node representations falling into the smoothing problem as they are diluted by the
neighbor information during the propagation process, we design an adaptive residual
graph convolutional network performed in heterogeneous graphs to mine the node
information in the graphs more effectively.

User-item heterogeneous graph construction

In social recommendation situations, user nodes are influenced by friends and historical
interaction items, while item nodes are influenced by similar items and historical
interaction users. However, the information in the original user-item interaction matrix
tends to be sparse. Inspired by SLightGCN (Jiang et al., 2022), we use meta-path

@ user (User-item-user) to generate user friend information, generate item association

relations via meta-path ¢,,,,, (item-user-item), and integrate them with user-item

item
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interactions in the form of edges into a heterogeneous graph G, based on which the
generated matrix is defined as:

A:<RST S"}) (8)

where S = RRT is the user friend relationship generated through meta-path ¢

user-
ST = RTR is the item association relationship generated through meta-path ¢,,,.-
The construction of heterogeneous graph A is mainly based on the friendship matrix §
between users and the association matrix S between items, the smallest unit of the
composition matrix is R € R™*™ then the time of composing S is #%, and the time
complexity of composing ST is m?, then the time complexity of heterogeneous graph A is
about equal to O(n?). In the face of the expansion of large-scale graphs, the heterogeneous
graphs are able to integrate the characteristics of different data types in the graphs and
more comprehensively portray the complex relationships in the recommended scenarios,

but the graphs construction time complexity still needs to be further compressed.

Information propagation between nodes

For user embedding, we generate user representation ¢, through user item isomorphism
graph G, and user representation G, through user social relationship graph p,, and then
fuse the user representations under different perspectives to obtain the final embedding
vector of the user. In a graph convolutional network with k propagation layers, the formula
for the construction of user information in the /-th layer are defined as:

q¥ = aAq™) + (1 - a)q¥ )
p = adopll ™V + (1 — 2)p¥ (10)

where qg,l) and p&l) denote the user information at [-layer obtained under different

viewpoints, and q,(JO) = p,(f)) = E” denotes the embedded information at layer 0 of the user.

A =DAD is the laplace operator constructed via the user-item heterogeneous graph,
and D denotes the degree of the matrix A. Similarly, A, = DA,D 7 is the laplace operator
constructed via the user social graph and A, denotes the user social matrix. o is a learnable
tuning parameter, it controls the weight of the initial connection information by
calculating the similarity between the current user embedding and the original user
embedding through the Pearson’s correlation coefficient, which is defined as follows:

o = max(pearson(E'"V E®), 0) (11)

u

where 0 is to prevent a negative condition of the adjustment parameter. Through the
learning of «, the residual graph convolution layer can adaptively adjust the proportion
occupied by the original layer, effectively delaying the occurrence of graph smoothing
phenomenon. After k propagations, we obtain the embedded representation of the user in
each view by accumulating them:

qu = sum(q,(lo), ...,ql(f*l))/k, (12)
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pu = sum(pl”, ..., pk= V) /K. (13)
Compared with LightGCN, Sicial GCNRI in the time complexity of the extra part of the
adaptive residual operation, each layer of the graph convolution operation after the
adaptive residual operation of the time complexity of O(n), I layers of convolution under
the extra time complexity of O((I — 1)n), the increase in time complexity of the same order
of magnitude, fully adaptable to the expansion of the operation of the large-scale graph.
Following the strategy in SocialLGN (Liao et al., 2022), we use a multi-layer perceptron
(MLP) fusion-based component to generate a final embedded representation of the user,
which is defined as:
P W3 (tanh(wiq,) || (tanh(wyp,))
u= (14)
| Ws(tanh(wiqu) || (tanh(wapu)) |,
where tanh denotes the nonlinear activation function. Wy, W, € R™4, W; € R¥*?? are the

trainable weight matrices. For the item representation, we use the user-item isomorphism

graph G; to perform the item embedding propagation operation, and obtain the final item
representation by accumulation, which are defined as:

EY = AE"Y + (1 — )EY (15)
E = sum(EEO), ...,E,(k_l))/k (16)
where Ei(l) denotes the embedded representation of the item obtained in the [-th layer, and

Ei(l) denotes the final embedded representation of the item obtained through the
propagation layer.

Prediction layer and model optimization

Prediction layer

With the propagation operation of adaptive residual graph convolution, we can obtain the
final embedding vector e, for user u and the final embedding vector ¢; for item i. In this

way, we can predict the ranking score y,; of user u for item i by means of the inner product,
which is defined as:

jj\ui = /e\uT/éi (17)
Model optimization

We use a Bayesian personalized ranking (BPR) loss function for model optimization,
which not only optimizes the user’s ranking of items with known preferences, but also
takes into account the user’s potential preferences for unobserved items, this greatly

improves the model’s ability to discriminate between similar positive and negative samples.

We define the BPR loss to optimize the model parameter ® = {e&o), ego)\u ceU,iel },

which is defined as:
1

Lossppr = 7 Z —J@ui —?uj) + M@Hg (18)
| | (u,ij)ens
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where A" C {(u,i,j)|(u,i) € RP, (u,j) € R"} denotes the sampling data of the mini-batch.
R? denotes the positive sampling data observed in the user-item interaction graph, and R"
denotes the negative sampling data not observed in the user-item interaction graph. o
denotes the Sigmoid activation function. ||-||5 denotes the regularization function, and 7 is
the hyper-parameter used to control the regularization of L,.

EXPERIMENTS

In this section, we apply the Social GCNRI model to two real datasets for a series of
experiments and compare the results with other baseline models, mainly verify the
following questions:

(1) The advantages of Social GCNRI in terms of recommendation performance.
(2) Social GCNRI effectively mitigates noisy data and cold start problems.

(3) Impact of the FFT algorithm and adaptive residual graph convolutional algorithm on
recommendation performance.

(4) Impact of the number of layers of adaptive residual graph convolutional algorithm on
recommendation performance.

Datasets

We employ the LastFM and Ciao datasets, which are commonly used in social
recommendation, to evaluate the performance of Social GCNRI as well as the benchmark
model. These datasets vary greatly in number and sparsity, and the specific statistics are
shown in Table 1. LastFM is a widely used music recommendation datasets, which includes
user music preference networks and social network. The Ciao datasets is derived from the
famous online shopping platform Ciao, which contains a large number of product reviews
and ratings from consumers around the world. We consider the movie part of the datasets,
which includes users’ movie preferences and social networks. In the data preprocessing, in
order to effectively extract the user-item interaction information, we delete the data nodes
in the datasets with less than 20 interactions to constitute the normal datasets, and call the
data nodes with less than 20 interactions as the cold-start data nodes, so as to construct the
cold-start datasets.

Evaluation metrics
We use Precision@k, Recall@k, and Normalized Discounted Cumulative Gain (NDCG@Kk)
to evaluate model performance. These metrics are described in detail as:

Precision@k calculates the weight of correct recommendations among all
recommendations to evaluate the quality of the recommendation results, which is defined
as:

. Tpak
PrecisionQk = TPGk £ FPOR (19)

where TP@k denotes the number of recommendation items selected by the user, and FP@k
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Table 1 Statistics of the LastFM and Ciao datasets.

Datasets Number of Number of  Number of user-item Density of Number of social Density of
users item interaction interaction connections connections

LastFM 1,892 17,632 92,834 0.028% 25,434 0.711%

Ciao 7,375 105,114 284,086 0.037% 57,544 0.016%

denotes the number of recommendation items not selected. With this evaluation, we can
visualize the accuracy of the model.

Recall@k measures the proportion of the recommender system that includes items of
interest to the user in the first K items it recommends, which is defined as:

R(u)@k N T(u)Qk
T(u)Qk

Recall@k = (20)
where R(u)@k denotes the top K items recommended for the user. T(u)@k denotes the
items that are actually of interest to the user as determined by the test datasets. Recall@k is
used to calculate the proportion of user-interested items in the first K recommended items
among all the items, and a higher value indicates that the recommender system is able to
capture the user’s interest more effectively.

NDCG@k considers the relevance of the recommendation items and their position in the
recommendation list, which is defined as:

DCGQk
IDCGQk

where DCG@k denotes the weighted accumulation of the top k items in the
recommendation list, and IDCG@k denotes the DCG values of the top k items ideally
sorted according to relevance from highest to lowest. NDCG@k uses the normalized scores
of IDCG@k to DCG@k to assess the overall quality of the top-k items in the
recommendation list.

NDCGQk = (21)

Baseline models
We use mainstream baseline models under different types as a contrast to evaluate the
performance of the Social GCNRI.

SBPR (Zhao, McAuley & King, 2014): This is a Bayesian personalized ranking algorithm
based on similar friends in social networks, which is mainly used to solve the problem of
data sparsity and single-class collaborative filtering in recommender systems.

DiffNet (Wu et al., 2019a): This model uses a graph neural network to model the
recursive social diffusion process of each user, capturing the diffusion of influence hidden
in higher-order social networks during user embedding.

NGCF (Wang et al., 2019b): It extends the idea of collaborative filtering to the field of
graph neural networks, and designs a novel propagation mechanism to fuse the
higher-order neighbor embedding information of nodes.
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LightGCN (He et al., 2020): A light recommendation model that removes linear
operations and nonlinear activation functions from NGCF, greatly simplifying model
complexity.

Social LGN (Liao et al., 2022): A social recommendation model that incorporates social
information into the composition of LightGCN. It designs a graph fusion component to
compute the embedded representations from different perspectives of the user.

DSL (Wang, Xia & Huang, 2023): A social recommendation model for contrastive
learning. It designs a cross-view to filter out noisy social influences based on the interaction
preferences of different users, thus improving the model accuracy.

CLDS (Ma et al., 2024): A recommendation model based on two-stage comparative
learning. It uses a graph aggregation algorithm to mitigate the noise in the user-item
interaction graph, and compares the user interaction representation with the user social
representation to enhance the accuracy and robustness of the recommendation model.

Experiment setup

Following the strategy described in recent experiments (Long et al., 2021), we divide the
datasets into training, testing, and validation sets in the ratio of 8:1:1. We use the Python
framework to build the Social GCNRI model, and the model optimizer is Adam. For the
hyper-parameters in the model, we set the Dropout to 0.5, the learning rate Ir to 0.01, the
number of iterations epoch to 10,000 (terminate the training early if the model has no
metrics growth for 30 consecutive times), the batch size to 100, the item embedding
dimensions d to {32, 64,128,256}, and the number of graph convolution layers to
{2,3,4}. To ensure the fairness of the experimental data, we adopt the same parameter
settings for the other baseline models.

Overall performance

Tables 2 and 3 show the performance of our method using the Precision@k, Recall@k, and
NDCG@k evaluation metrics on both datasets compare to the other baseline models under
normal conditions and cold start, respectively, where the k value is set to {10, 20}. The
experimental results for some of the baseline models are derived from the values given by
SocialLGN.

From the overall experimental results, it can be seen that Social GCNRI achieves the
optimal performance metrics in 18 out of the 24 evaluated metrics, which demonstrate that
Social GCNRI possesses a favorable recommendation performance. In the experimental
comparison of various baselines, it can be found that the performance metrics of SBPR in
both standard and cold-start situations are much smaller than those of the other baseline
models (DiffNet, NGCF, LightGCN, Social LGN, DSL, CLDS), which illustrates that the
graph neural network-based recommendation model is able to more accurately capture the
user’s personalization than the traditional MF model preferences. In the recommendation
model based on graph neural networks, DSL uses contrastive learning to mitigate the noisy
information in the network connections, but it does not consider the interaction between
the corresponding nodes, which makes the cross-views biased with information.

Social LGN incorporates social information based on LightGCN, and designs a method to
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Table 2 Comparison of recommendation performance on normal datasets. (where P is Precision, R is Recall, and N is NDCG).

Dataset Metric SBPR DiffNet NGCF LightGCN Social LGN DSL CLDS Social GCNRI

LastFM P@10 0.1398 0.1727 0.1766 0.1961 0.1972 0.1974 0.1779 0.2005
P@20 0.1011 0.1215 0.1269 0.1358 0.1368 0.1399 0.1388 0.1391
R@10 0.1442 0.1779 0.1796 0.2003 0.2026 0.1995 0.2030 0.2045
R@20 0.2071 0.2488 0.2576 0.2769 0.2794 0.2823 0.2834 0.2837
N@10 0.1749 0.2219 0.2287 0.2536 0.2566 0.2383 0.2593 0.2621
N@20 0.1978 0.2474 0.2563 0.2788 0.2883 0.2812 0.2868 0.2891

Ciao P@10 0.0179 0.0238 0.0228 0.0271 0.0276 0.0208 0.0287 0.0303
P@20 0.0141 0.0182 0.0179 0.0202 0.0205 0.0217 0.0217 0.0225
R@10 0.0259 0.0341 0.0343 0.0410 0.0430 0.0560 0.0413 0.0651
R@20 0.0412 0.0527 0.0531 0.0591 0.0618 0.0560 0.0621 0.0651
N@10 0.0266 0.0359 0.0359 0.0437 0.0441 0.0436 0.0436 0.0478
N@20 0.0307 0.0403 0.0407 0.0478 0.0486 0.0488 0.0488 0.0521

Note:

Values in bold represent the best performance observed across all models.

Table 3 Comparison of recommendation performance on cold-start datasets. (where P is Precision, R is Recall, and N is NDCG).

Dataset Metric SBPR DiffNet NGCF LightGCN Social LGN DSL CLDS Social GCNRI

LastFM P@10 0.0292 0.0417 0.0333 0.0417 0.0458 0.0553 0.0667 0.0645
P@20 0.0333 0.0271 0.0292 0.0313 0.0333 0.0374 0.0417 0.0438
R@10 0.1123 0.1713 0.1169 0.1727 0.1974 0.2273 0.2676 0.2561
R@20 0.2467 0.2407 0.2141 0.2416 0.2663 0.2936 0.2911 0.3140
N@10 0.0709 0.1107 0.1074 0.1374 0.1419 0.1749 0.1887 0.1972
N@20 0.1159 0.1309 0.1411 0.1560 0.1643 0.1813 0.1939 0.1864

Ciao P@10 0.0070 0.0104 0.0104 0.0131 0.0134 0.0137 0.0141 0.0147
P@20 0.0060 0.0081 0.0085 0.0096 0.0097 0.0100 0.0101 0.0104
R@10 0.0234 0.0339 0.0341 0.0429 0.0441 0.0356 0.0452 0.0448
R@20 0.0384 0.0539 0.0557 0.0616 0.0630 0.0567 0.0684 0.0655
N@10 0.0165 0.0248 0.0245 0.0319 0.0328 0.0241 0.0343 0.0345
N@20 0.0219 0.0316 0.0319 0.0384 0.0394 0.0309 0.0417 0.0419

Note:

Values in bold represent the best performance observed across all models.

fuse user interaction information and social information, but it ignores the link between

friendships and preferences, which makes Social LGN underperform in cold starts although

it achieves good performance in normal datasets. CLDS combines comparative learning

and social information to construct the core information of social networks, and uses a

heterogeneous graph neural network aggregation method to reduce the noisy data in the

user interaction network, this method achieves good recommendation performance in

different network environments, but the complex network architecture makes CLDS

increase time loss when facing large data or complex networks. In contrast, Social GCNRI

significantly enhances information quality through the application of the FFT algorithms.

Moreover, the model designs an adaptive residual graph convolution mechanism, which is
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Table 4 SocialGCNRI ablation experimental results on normal datasets.

Dataset Metric SocialIGNRI Variant-P Variant-G Variant-F

LastFM Precision@10 0.2005 0.1457 0.1957 0.2002
Precision@20 0.1391 0.1081 0.1387 0.1390
Recall@10 0.2069 0.1500 0.2002 0.2045
Recall@20 0.2837 0.2204 0.2381 0.2832
NDCG@10 0.2643 0.1845 0.2546 0.2641
NDCG@20 0.2891 0.2087 0.2848 0.2882

Ciao Precision@10 0.0303 0.0170 0.0270 0.0299
Precision@20 0.2252 0.0142 0.0207 0.2225
Recall@10 0.0442 0.0209 0.0408 0.0440
Recall@20 0.0651 0.0466 0.0620 0.0650
NDCG@10 0.0478 0.0242 0.0432 0.0472
NDCG@20 0.0521 0.0332 0.0488 0.0520

Note:
Values in bold represent optimal performance.
Table 5 SocialGCNRI ablation experimental results on cold-start datasets.

Dataset Metric Social GCNRI Variant-P Variant-G Variant-F

LastFM Precision@10 0.0645 0.0416 0.0500 0.0458
Precision@20 0.0438 0.2292 0.0375 0.0333
Recall@10 0.2561 0.1745 0.2143 0.1974
Recall@20 0.3140 0.1847 0.2709 0.2663
NDCG®@10 0.1697 0.1310 0.1647 0.1419
NDCG@20 0.1864 0.1280 0.1855 0.1643

Ciao Precision@10 0.0147 0.0081 0.0131 0.0134
Precision@20 0.0104 0.0072 0.0099 0.0097
Recall@10 0.0448 0.0264 0.0428 0.0441
Recall@20 0.0655 0.0483 0.0631 0.0630
NDCG@10 0.0345 0.0189 0.0318 0.0328
NDCG@20 0.0419 0.0282 0.0394 0.0394

Note:

Values in bold represent optimal performance.

integrated into a heterogeneous GNN to deeply mine and analyze the complex interactions

among users. In different network environments, Social GCNRI has shown excellent

recommendation performance, which fully proves its wide applicability and high efficiency

in the real world application scenarios.

Ablation study and analyses
The core innovative components of the Social GCNRI model are two:

(1) The use of FFT and filter to process the original data for denoising.

(2) The proposal of an adaptive residual graph convolutional network to capture

higher-order connections between users and items in the graph.
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Figure 2 (A and B) Impact of the number of convolution layers on recommendation performance (in normal datasets).

Full-size K&l DOL: 10.7717/peerj-cs.3010/fig-2

To justify these components, we set up three variants for comparison to show the
impact of each component on the model. Variant-F denotes the Social GCNRI model with
filtering operations such as FFT removed, Variant-G denotes the Social GCNRI model with
adaptive residual graph convolution operations removed, and Variant-P denotes the
Social GCNRI model after removing the two core components. Tables 4 and 5 show the
experimental results of Social GCNRI and its three variants on the normal and cold-start
datasets, respectively (the bold font indicates optimal performance).

We can see that all the performance metrics of the Variant-G model are improved to a
certain extent compared with Variant-P, indicating that the user social relationship and
item association relationship can be used to improve the recommendation performance by
removing the noisy data. In addition, the Variant-F model, which includes an adaptive
residual graph convolution algorithm, also exhibits a great improvement in performance
compared to the Variant-P model, which shows that adaptive residual graph convolution
algorithm can capture the higher-order connections between users and items more
effectively. However, there is no significant difference between Variant-F and Variant-G in
terms of recommendation performance, which indicates that the two core components
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Figure 3 (A and B) Impact of the number of convolution layers on recommendation performance (in cold-start datasets).

Full-size K&l DOT: 10.7717/peerj-cs.3010/fig-3

have the same importance for recommendation performance improvement. Social GCNRI
employs FFT to filter out the noisy data of social relations and user interactions, and uses
an adaptive residual graph convolutional algorithm to further extract the effective
information of the nodes in the graph and accurately capture the user’s preferences, which
demonstrates the optimal performance in comparison experiments on both datasets.

Imapct of the number of convolutional layers
In this section, we take Social LGN as a control (which uses LightGCN algorithm for the
graph convolutional layers of the model), and analyze the effect of different number of
convolutional layers in Social GCNRI on the performance of the model by using
Precision@k, Recall@k and NDCG@k as the evaluation metrics. Figure 2 shows the
experimental results under the normal datasets, and Fig. 3 shows the cold start
experimental results under the datasets.

As can be seen in Figs. 2 and 3, the performance of the Social GCNRI model rises solidly
as the number of convolutional layers increases. It can be further found that the
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Figure 4 (A and B) Impact of hyperparameters on recommendation performance on the lastfm datasets.
Full-size k&l DOI: 10.7717/peerj-cs.3010/fig-4

Social GCNRI reaches its optimal performance at layers = 4 and is much larger than at
layers = 2, which indicates that our proposed adaptive residual graph convolution
algorithm effectively mitigates the graph smoothing phenomenon and deepens the
number of convolutional layers. The same can be seen in the comparison with Social LGN,
the performance of the two graph convolution algorithms is basically equal when the
number of layers = 2. When the number of layers = 4, the overall effect of the adaptive
residual graph convolution algorithm is much better than that of LightGCN, and this
discrepancy is even more significant in the cold-start datasets. We think the possible
reason for this is that, the increase in adaptive residual connectivity allows the nodes in the
graph to always incorporate a certain amount of their own information during the
convolution operation, which greatly slows down the emergence of the smoothing
phenomenon in the graph, and makes the model more effective in capturing the deeper
connections between the nodes.

Impact of hyperparameters on recommendation performance
During the training process of the model, different hyperparameter settings can directly
affect the performance of the model. We evaluate the impact of key hyperparameters such
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as learning rate (Ir) and weight decay coefficient (decay) on the recommendation
performance of the Social GCNRI model in this section. The experimental results are
shown in Fig. 4.

The weight decay coefficient is an important parameter to regulate the strength of the L,
regularization penalty. As this coefficient increases, the penalty for larger weights increases,
driving the model weights towards smaller values. However, over-increasing the coefficient
may lead to underfitting of the model, meaning that the model is too simplified to capture
the complex structure behind the data. Conversely, if the weight decay coefficients are too
small, the weights are not penalized enough and the model may be at risk of overfitting.
Therefore, selecting an appropriate weight decay coefficient is crucial for the generalization
ability of the model, which is directly related to the performance of the model. In this
section of experiments, we set the size of the weight decay coefficient coefficients to {le-1,
le-2, le-3, le—4, le-5}, and analyze the effect of different sizes of weight decay
coefficients on the model performance through the experiments conducted on Lastfm
datasets. From the experimental results shown in Fig. 4, it can be seen that the
Social GCNRI model exhibits the best performance when the weight decay coefficient is set
to le—4.

The learning rate refers to the magnitude of the model weight update during the
optimization process, and the difference in the size of the learning rate value will directly
affect the final performance of the model. Too small a learning rate makes the training
process slow, which may cause the model to fall into local minima and reach only
sub-optimal solutions. While a higher learning rate allows for fast convergence, the
training process may be unstable and prone to overfitting. In our experiments, we set the
size of the learning rate to {le—1, le-2, le-3, le—4} and analyze the effect of different
learning rate sizes on the model performance. From the experimental results shown in
Fig. 4, it can be seen that the model exhibits the best performance when the learning rate
is 1e-3.

CONCLUSION

In this article, we propose a social recommendation model based on adaptive residual
graph convolutional network (SocialGCNRI). We mine the friend relationships between
users and the correlations between items from the user-item interaction matrix, and fuse
this information into a heterogeneous graph to alleviate the problem of data sparsity. In
addition, the FFT algorithm is used to remove the noise data in the heterogeneous graph
and user social information. Subsequently, we design an adaptive residual graph
convolution algorithm to accurately extract user and item representations in both views.
Finally, the information fusion is performed by MLP to achieve accurate personalized
recommendation. A series of experiments on two publicly available datasets
demonstrate that Social GCNRI achieves excellent recommendation performance in
different situations.

In future research, we will further focus on the noisy data in the model. For example, by
incorporating timestamps for more accurate denoising, and we also consider the use of
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Table 6 Statistics of the Douban datasets.

Datasets Number of Number of  Number of user-item Density of Number of social Density of
users item interaction interaction connections connections
Douban 2,848 39,586 894,887 0.793% 35,770 0.441%

Table 7 Comparison of recommendation performance on normal datasets.

Dataset Metric LightGCN SocialLGN DSL Social GCNRI

Douban Precision@10 0.1398 0.1727 0.1766 0.1961
Precision@20 0.2238 0.2345 0.2365 0.2821
Recall@10 0.1965 0.2035 0.2054 0.2213
Recall@20 0.0508 0.0628 0.0524 0.0625
NDCG@10 0.2437 0.2579 0.2335 0.2783
NDCG@20 0.2269 0.2405 0.2275 0.2571

Note:

Values in bold represent optimal performance.

Table 8 Comparison of recommendation performance on cold-start datasets.

Dataset Metric LightGCN SocialLGN DSL Social GCNRI

Douban Precision@10 0.0162 0.0261 0.0212 0.0262
Precision@20 0.0131 0.0205 0.0193 0.0213
Recall@10 0.0722 0.1073 0.0854 0.1131
Recall@20 0.1128 0.1672 0.1380 0.1659
NDCG@10 0.0464 0.0608 0.0556 0.0763
NDCG@20 0.0594 0.0908 0.0720 0.0921

Note:

Values in bold represent optimal performance.

contrastive learning to create more perspectives for the user to further improve the quality
of node embedding and recommendation performance.

APPENDIX

To further demonstrate the generalizability of the models, we selected LightGCN,
Social LGN and DSL as the baseline models, and conducted comparative experiments with
Social GCNRI on the douban datasets. The dataset statistics are shown in Table 6.
Tables 7 and 8 show the performance of our method using the Precision@k, Recall@k,
and NDCG@k evaluation metrics on douban datasets compare to the baseline models
under normal conditions and cold start, respectively, where the k value is set to {10, 20}.
According to the performance metrics on the normal Douban datasets, the
Social GCNRI model improves on Precision@10/20 by 11.04% and 19.28%, respectively,
compared to optimal baseline model. Similarly, the Social GCNRI model improves 7.74%
and 19.27% on Recall@10/20 and 19.18, and 13.01% on NDCG@10/20, respectively. Even
when tested on the cold-start datasets, the Social GCNRI model significantly outperforms
other baseline models.
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