
Enhancing credit card fraud detection with
a stacking-based hybrid machine learning
approach
Eyad Abdel Latif Marazqah Btoush1, Xujuan Zhou1, Raj Gururajan1,2,
Ka Ching Chan1 and Omar Alsodi1

1 School of Business, University of Southern Queensland, Brisbane, QLD, Australia
2 School of Computing, Indian Institute of Technology, Kharagpur, Chennai, India

ABSTRACT
The swift progression of technology has increased the complexity of cyber fraud,
posing an escalating challenge for the banking sector to reliably and efficiently
identify fraudulent credit card transactions. Conventional detection approaches fail
to adapt to the advancing strategies of fraudsters, resulting in heightened false
positives and inefficiency within fraud detection systems. This study overcomes these
restrictions by creating an innovative stacking hybrid machine learning (ML)
approach that combines decision trees (DT), random forests (RF), support vector
machines (SVM), XGBoost, CatBoost, and logistic regression (LR) within a stacking
ensemble framework. This method uses stacking to integrate diverse ML models,
enhancing predictive performance, with a meta-model consolidating base model
predictions, resulting in superior detection accuracy compared to any single model.
The methodology utilizes sophisticated data preprocessing techniques, such as
correlation-based feature selection and principal component analysis (PCA), to
enhance computing efficiency while preserving essential information. Experimental
assessments of a credit card transaction dataset reveal that the stacking ensemble
model exhibits higher performance, achieving an F1-score of 88.14%, thereby
efficiently balancing precision and recall. This outcome highlights the significance of
ensemble methods such as stacking in attaining strong and dependable cyber fraud
detection, emphasizing its capacity to markedly enhance the security of financial
transactions.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Emerging Technologies
Keywords Credit card fraud, Machine learning, Ensemble techniques, Fraud detection

INTRODUCTION
Credit cards have become the preferred payment method by virtue of the exponential
development of online transactions, which has resulted in an estimated global transaction
volume exceeding $20 trillion annually. However, this expansion has also propelled an
increase in cyber fraud, which results in financial institutions incurring billions of dollars
in annual losses. Recent projections indicate that the global losses from credit card fraud
exceeded $32 billion in 2023 and could increase to $43 billion by 2026 if effective measures
are not implemented (Merchant Cost Consulting, 2023). This ongoing obstacle has
necessitated the urgent implementation of sophisticated fraud detection systems in the

How to cite this article Marazqah Btoush EAL, Zhou X, Gururajan R, Chan KC, Alsodi O. 2025. Enhancing credit card fraud detection
with a stacking-based hybrid machine learning approach. PeerJ Comput. Sci. 11:e3007 DOI 10.7717/peerj-cs.3007

Submitted 30 January 2025
Accepted 12 June 2025
Published 2 September 2025

Corresponding author
Eyad Abdel Latif Marazqah Btoush,
EyadAbdelLatif.A.Q.
MarazqahBtoush@usq.edu.au

Academic editor
Elizabeth Churchill

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj-cs.3007

Copyright
2025 Marazqah Btoush et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.3007
mailto:EyadAbdelLatif.�A.�Q.�MarazqahBtoush@�usq.�edu.�au
mailto:EyadAbdelLatif.�A.�Q.�MarazqahBtoush@�usq.�edu.�au
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.3007
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

financial sector. These systems must be capable of combating the increasing sophistication
of fraudulent strategies, which compromise consumer trust and result in substantial
financial losses on a global scale.

Machine learning (ML) techniques to resolve these challenges have been demonstrated
through their capacity to process large datasets, capture complex patterns, and provide
superior predictive accuracy (Btoush et al., 2023). These methods have been demonstrated
to be effective in distinguishing between legitimate and fraudulent activities by learning
from historical transaction data. Nevertheless, the detection of fraud is still a complex
process due to the computational requirements of analyzing vast transaction data and the
highly imbalanced datasets. Models that are biased toward predicting legitimate
transactions are frequently the result of the scarcity of fraudulent instances, which
increases the probability of missing fraud cases.

Among ensemble learning strategies, stacking has emerged as a particularly promising
solution due to its theoretical advantage of meta-model synthesis. By combining the
outputs of multiple heterogeneous base learners, stacking enables the meta-learner to
capture complementary predictive patterns, reducing both model bias and variance
(Dal Pozzolo et al., 2014; Abdelghafour et al., 2024). Unlike simpler ensemble approaches
such as bagging or boosting, stacking facilitates more sophisticated integration of diverse
model predictions, making it well-suited for complex, imbalanced fraud datasets.

A plausible solution has emerged in the form of ensemble learning approaches,
particularly stacking, which combine multiple models to capitalize on each model’s unique
strengths while minimizing individual weaknesses. In environments where the data is
diverse and complex, this strategy is particularly advantageous for improving predictive
performance.

This study is motivated by the requirement for a sophisticated, scalable fraud detection
system that can improve the accuracy and robustness of credit card fraud detection. Our
present research work suggests a composite stacking ensemble model that incorporates a
variety of ML algorithms, such as decision trees (DT), random forests (RF), support vector
machines (SVM), XGBoost, CatBoost, and logistic regression (LR). The selection of these
models is strategic in nature, as RF and DT are particularly adept at managing imbalanced
data and offer interpretability. LR functions as a benchmark model that provides a simple
classification approach, enabling a comparative analysis of more intricate methodologies.
Additionally, SVM is incorporated due to their ability to effectively manage high-
dimensional, non-linear data. The selection of XGBoost and CatBoost is based on their
exceptional capabilities in managing large datasets with categorical features. This makes
them particularly effective in identifying subtle fraud patterns that conventional models
may overlook.

Our stacking ensemble enhances detection performance by aggregating predictions
from these diverse models through a meta-model, surpassing the capabilities of any
particular model. The meta-model effectively integrates the assets of the individual base
learners. We employ data preprocessing techniques, including principal component
analysis (PCA) and correlation-based feature selection, to further enhance efficiency and
accuracy. This study emphasizes the potential of ensemble learning to improve the security

Marazqah Btoush et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3007 2/25

http://dx.doi.org/10.7717/peerj-cs.3007
https://peerj.com/computer-science/

of financial transactions by introducing a fraud detection model that is adaptable and
robust, and that is capable of overcoming the intricate and dynamic challenges associated
with cyber fraud. In accordance with the changing financial cybersecurity landscape, this
present research work is a fundamental step in the development of more effective fraud
detection systems that can adapt to the evolving strategies of cybercriminals, thereby
enhancing the overall resilience of the financial sector.

The remainder of this present research work is organized as follows. ‘Related Work’
presents the related work, and ‘Methodology’ presents the methodology used in this
study. ‘Proposed Stacking Hybrid ML’ introduces the proposed stacking model. ‘Results
and Discussion’ presents the results and discussion, and ‘Conclusion’ presents the
conclusions.

RELATED WORK
Machine learning (ML) has become a potent tool for identifying anomalous
behaviors and predicting risks, particularly in the domain of credit card fraud detection
(Btoush et al., 2024). Its capacity to analyze large-scale, high-dimensional datasets
makes ML highly suitable for recognizing fraudulent patterns in transactional data
(Ozkan-Ozay et al., 2024).

Supervised learning approaches, which rely on labeled datasets, are central to fraud
detection efforts. Among them, classification algorithms are critical for determining
whether a transaction is legitimate or fraudulent (Gupta et al., 2023). Reddy & Sriramya
(2023) compared SVM and DT, reporting higher accuracy for SVM (98.59%) than DT
(94.86%). Nama, Obaid & Alrammahi (2023) enhanced SVM performance with multilayer
perceptron (MLP), while SVM retained a marginal lead. Mukherjee et al. (2021)
demonstrated that DTs can achieve up to 99% accuracy, and Amusan et al. (2021) showed
that RF outperformed other classifiers on distorted data. Hema & Muttipati (2020) further
improved results by combining RF with CatBoost, achieving 99.5% accuracy, while Ileberi,
Sun &Wang (2022) achieved 99.98% accuracy using a genetic algorithm–RF hybrid model.

Beyond individual classifiers, ensemble techniques have emerged as powerful solutions
due to their ability to integrate multiple model predictions. Among these, stacking is a
prominent approach that combines the outputs of several base learners into a meta-
classifier. Faraj, Mahmud & Rashid (2021) found that XGBoost outperformed other
ensemble models in credit card cyber fraud prediction. Similarly, Muaz, Jayabalan &
Thiruchelvam (2020) reported improved detection rates using layered ensemble
architectures.

Several studies have explored stacking-based models in greater depth. Awoyemi,
Adetunmbi & Oluwadare (2017) combined LR, RF, and gradient boosting, reporting
enhanced precision despite higher computational demands. Dal Pozzolo et al. (2014)
emphasized that while stacking improves rare-event prediction, it requires careful
resampling to mitigate bias. However, most existing works do not rigorously justify their
meta-learner choices and often rely on limited combinations of base classifiers, reducing
ensemble diversity and limiting generalizability.

Marazqah Btoush et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3007 3/25

http://dx.doi.org/10.7717/peerj-cs.3007
https://peerj.com/computer-science/

Recent studies have introduced advanced stacking models with robust designs. For
instance, a study published in Results in Engineering by Gupta et al. (2025) integrated
Synthetic Minority Oversampling Technique and Edited Nearest Neighbors (SMOTE-
ENN), autoencoders, and a particle swarm optimization (PSO)-optimized stacking
ensemble, achieving 99.97% accuracy, 99.59% precision, and 99.9% recall on a real-world
dataset. However, their reliance on synthetic sampling may introduce artificial patterns,
potentially compromising real-world validity. Similarly, Chagahi et al. (2024) proposed an
attention-based ensemble system that achieved 99.95% accuracy and an area under the
curve (AUC) of 1. While the model demonstrates high performance, its complexity may
hinder real-time deployment.

Additionally, many recent models continue to use LR or deep learning models as
meta-learners by default, without evaluating alternative structures like tree-based learners.
This is problematic, as LR may not effectively capture non-linear relationships, especially
in complex, high-dimensional fraud data. Furthermore, base learners in many stacking
studies often stem from similar algorithm families, reducing the ensemble’s ability to
model diverse fraud patterns. Limited metric evaluations and overreliance on synthetic
techniques like SMOTE also restrict the practical deployment of these models.

This present research work addresses these limitations through a diversified stacking
ensemble framework that incorporates DT, RF, SVM, XGBoost, CatBoost and LR as base
learners, capturing both tree-based and margin-based learning paradigms. It employs RF
as the meta-learner, diverging from the common reliance on LR, and offering superior
performance in modeling complex, non-linear decision boundaries.

Crucially, this approach avoids over-dependence on synthetic oversampling methods
like SMOTE, instead emphasizing robust model architecture and multi-metric evaluation
(precision, recall, F1-score, and AUC-ROC) to address data imbalance. The proposed
ensemble is computationally efficient, interpretable, and scalable, making it suitable for
real-world deployment where fraudulent instances are rare yet consequential.

Overall, this work contributes a more generalizable and practically viable stacking
strategy that bridges the gap between academic experimentation and deployment-ready
fraud detection systems.

METHODOLOGY
This section explores the credit card dataset employed in the study and provides a
comprehensive explanation of the various algorithms and strategies utilized in formulating
the suggested credit card cyber fraud detection methodology.

Dataset
To assess the effectiveness of the suggested ML models, a widely recognized dataset was
chosen for both training and testing. This dataset is available at https://www.kaggle.com/
mlg-ulb/creditcardfraud. The dataset consisted of client transactions at a European bank in
2013. The real-world dataset consists of 284,807 credit card transactions.

Marazqah Btoush et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3007 4/25

https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kaggle.com/mlg-ulb/creditcardfraud
http://dx.doi.org/10.7717/peerj-cs.3007
https://peerj.com/computer-science/

Programming language
Python, an interpreted and high-level programming language, was used to develop the
system. NumPy 1.26.0 and Pandas 2.1.1 handled data manipulation, while Scikit-learn
1.3.2 supported preprocessing, PCA, and machine learning models. Imbalanced-learn
0.11.0 addressed class imbalance, and CatBoost 1.2, XGBoost 1.7.6, and LightGBM 4.1.0
implemented gradient boosting methods. Data visualization used Seaborn 0.13.0. All work
was conducted using Python 3.11.4 in Jupyter Notebook on a 3.3 GHz Intel Core
i7 machine with 16 GB RAM.

Classification techniques
Multiple ML models were trained using RF, DT, LR, SVM, XGBoost, and CatBoost
algorithms on the dataset. After training the model, its performance was evaluated, and a
visual representation was created to show the differences between the algorithms.

Evaluation and reflection
This present research work evaluates machine learning algorithms for cyber fraud
detection using five-fold cross-validation, a robust approach for mitigating class imbalance
and ensuring generalizable results. Model performance was primarily assessed using the
F1-score, which balances precision and recall. Additional evaluation metrics, including
accuracy, confusion matrix, recall, precision, and Area Under the Receiver Operating
Characteristic (AUC-ROC), were employed to offer a comprehensive understanding of
each model’s selectivity, specificity, and overall predictive power. To rigorously validate the
observed performance differences between the proposed stacking ensemble and individual
base classifiers, paired t-tests were conducted across the cross-validation folds. In terms of
computational efficiency, training time was measured for each model to assess the
practicality of deploying complex ensembles.

PROPOSED STACKING HYBRID ML
This section describes the successful development of a hybrid ML approach that integrates
DT, RF, SVM, XGBoost, CatBoost, and LR with an ensemble learning technique. This
approach addresses the current challenges of detecting cyber fraud in credit card
transactions by combining numerous base models. Stacking is an ensemble learning
technique that combines multiple base models to improve predictive performance. In this
implementation, base models include diverse ML algorithms. The meta-model (or final
estimator) makes the ultimate prediction by aggregating predictions from the base models.
The meta-model used in this approach is RF. The hyperparameters for this meta-model are
chosen to optimize performance, including:

n_estimators = 100 (number of trees in the forest)

max_depth = 10 (limits tree depth to prevent overfitting)

min_samples_split = 2 (minimum number of samples to split a node)

Marazqah Btoush et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3007 5/25

http://dx.doi.org/10.7717/peerj-cs.3007
https://peerj.com/computer-science/

min_samples_leaf = 1 (minimum samples required at a leaf node)

random_state = 42 (to ensure reproducibility).

The stacking process begins by training the base models (DT, RF, SVM, XGBoost,
CatBoost, and LR) independently on the dataset. Each base model outputs predictions for
the test set. These predictions are then fed as features into the meta-model, which makes
the final prediction based on these aggregated outputs.

Step 1: Train base models

base_model1 = DT().fit(X_train, y_train)

base_model2 = RF().fit(X_train, y_train)

base_model3 = SVM().fit(X_train, y_train)

base_model4 = XGBoost().fit(X_train, y_train)

base_model5 = CatBoost().fit(X_train, y_train)

base_model6 = LR().fit(X_train, y_train)

Step 2: Make predictions using base models

predictions_base_models = [
base_model1.predict(X_test),
base_model2.predict(X_test),
base_model3.predict(X_test),
base_model4.predict(X_test),
base_model5.predict(X_test),
base_model6.predict(X_test)]

Step 3: Combine predictions into a new dataset for the meta-model

stacked_features = np.column_stack(predictions_base_models) # Combine base model
predictions

Step 4: Train meta-model (random forest)

meta_model = RF(n_estimators = 100, max_depth = 10, min_samples_split = 2,
min_samples_leaf = 1, random_state = 42)

meta_model.fit(stacked_features, y_test) # Train meta-model on stacked predictions

Step 5: Make final prediction using meta-model

final_prediction = meta_model.predict(stacked_features) # Meta-model predicts final
output

The present research work applies the publicly available credit card transaction dataset
to train the algorithm and subsequently detect cyber fraud. To attain this, a

Marazqah Btoush et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3007 6/25

http://dx.doi.org/10.7717/peerj-cs.3007
https://peerj.com/computer-science/

correlation-based feature selection technique was implemented to identify and extract the
most relevant features for predicting the target variable. To improve the computational
efficiency of the algorithm, the full dataset was reduced to only the most significant input
features by applying principal component analysis (PCA), and the outputs of the selected
features were then transferred to the new model that combines ML techniques using
stacking ensemble techniques.

The stacking arrangement is theoretically motivated by the principle of combining
diverse learners to maximize generalization. Tree-based models (DT, RF, XGBoost,
CatBoost) capture non-linear relationships and feature interactions, SVM is effective for
margin-based separation, and logistic regression adds probabilistic reasoning. Their
combined predictions are fed into a random forest meta-learner, which benefits from
ensemble aggregation and is capable of modeling complex patterns without overfitting. RF
also handles noisy or redundant base-level outputs well, making it particularly suited for
imbalanced and high-dimensional fraud detection problems.

The novelty of this present research work lies in the development of a hybrid ML
model capable of simultaneously performing feature extraction and classification to
distinguish between cyber fraud and non-fraud transactions. This present research work
contributes by developing efficient algorithms for dimensionality reduction that
prioritize key features using correlation-based analysis, random forest, XGBoost, and
permutation feature importance methods. It also introduces a stacking hybrid ML
approach to automatically classify transactions as fraud or not. Algorithm 1 presents
the stacking hybrid ML model. This model integrates both feature extraction and
classification steps into a unified stacking procedure to achieve accurate detection of
credit card fraud.

This study proposes a novel stacking ensemble framework that combines six
diverse base learners and uses random forest as a meta-classifier. This configuration
allows modeling both linear and complex nonlinear patterns while maintaining
robustness. Unlike many existing works that rely on logistic regression at the
meta-level, our use of a tree-based learner adds modeling depth. Furthermore, we apply
targeted preprocessing and prioritization of fraud-relevant evaluation metrics such as
F1-score and AUC-ROC, avoiding over-reliance on synthetic resampling. These
design choices distinguish our method from prior stacking-based fraud detection
systems and contribute to its superior performance in detecting fraudulent transactions.
Figure 1 illustrates a block diagram of the proposed modeling framework developed in
this article.

Data processing
A dataset of 284,807 real-world credit card transactions was used to develop the cyber
fraud detection model. It contains 31 columns: 30 features and one target class indicating
whether a transaction is fraudulent or genuine. The dataset shows a significant class
imbalance, with only 492 fraudulent transactions (0.173%) and 284,315 non-fraudulent
transactions (99.827%). Figure 2 shows the percentage of fraudulent vs. non-fraudulent
transactions. Due to this imbalance, raw data may not yield accurate results. The dataset

Marazqah Btoush et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3007 7/25

http://dx.doi.org/10.7717/peerj-cs.3007
https://peerj.com/computer-science/

provides anonymized and transformed feature values; specifically, the original
attributes have been processed using PCA by the dataset creators. The pre-processing tasks
have been accomplished by utilizing the Python data manipulation package pandas and
the machine learning module Scikit-learn. The sequential process is visually depicted
in Fig. 3.

Data cleaning
Python imported the credit card dataset using the proper import command. A thorough
data cleansing followed. Twomain data cleansing activities are typically used. The first step
is removing null and absent values from the dataset. Management of outliers—data points
that differ significantly from the majority—is the second responsibility. The dataset has
284,807 transactions. Null values were absent from the dataset imported the credit card
dataset using the proper import command. A thorough data cleansing followed. The first
step is removing null and absent values from the dataset. Management of outliers is the
second responsibility.

Algorithm 1 Stacking hybrid ML model.

1: ProcedureProcedure StackingClassifierTraining (X, y, test_size, random_state)

2: Pre-processPre-process (X, y)

4: SplitSplit dataset into (X_train, X_test, y_train, y_test)

5: NormalizeNormalize (X_train, X_test)

6: ModelModel ← Create stacking classifier with RandomForestClassifier

as meta-classifier()

7: (‘Random Forest’, rf_classifier)
8: (‘SVM’, svm_classifier)
9: (‘Logistic Regression’, lr_classifier)
10: (‘Decision Tree’, dt_classifier)
11: (‘XGBoost’, xgb_classifier)
12: (‘CatBoost’, catboost_classifier)
13: Cross-validation: StratifiedKFold with cv_folds

14: forfor k ← 0 to n-1 dodo

15: TrainTrain StackingClassifier (X_train, y_train)

16: PredictPredict y_pred on (X_test)

17: EvaluateEvaluate Model:

18: Accuracy ← accuracy_score(y_test, y_pred)

19: Precision ← precision_score(y_test, y_pred)

20: Recall ← recall_score(y_test, y_pred)

21: F1-score ← f1_score(y_test, y_pred)

22: ROC AUC Score ← roc_auc_score(y_test, y_pred)

23: PrintPrint Evaluation Metrics

24:end forend for

25:End ProcedureEnd Procedure

Marazqah Btoush et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3007 8/25

http://dx.doi.org/10.7717/peerj-cs.3007
https://peerj.com/computer-science/

Feature scaling
Data pre-processing includes the step of normalizing a dataset’s independent variables to
ensure consistent scales across features. This process centers the data around 0 or scales it
between 0 and 1, depending on the scaling method used. Feature scaling improves model

Figure 1 The novel hybrid stacking ML model. Full-size DOI: 10.7717/peerj-cs.3007/fig-1

Figure 2 Fraudulent vs non-fraudulent transactions. Full-size DOI: 10.7717/peerj-cs.3007/fig-2

Marazqah Btoush et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3007 9/25

http://dx.doi.org/10.7717/peerj-cs.3007/fig-1
http://dx.doi.org/10.7717/peerj-cs.3007/fig-2
http://dx.doi.org/10.7717/peerj-cs.3007
https://peerj.com/computer-science/

performance by ensuring that all features contribute equally to the model’s learning
process. In this study, we utilized the existing Standard Scaling technique. The
StandardScaler was applied to the training data (X_train) and the test data (X_test) to scale
their features accordingly.

Feature correlation and selection

Feature selection is essential for enhancing model performance, reducing computational
complexity, and improving interpretability. In this study, we combined statistical
correlation analysis and machine learning-based feature importance techniques to
systematically identify the most relevant features for cyber fraud detection.

Initially, Pearson correlation coefficients were calculated to assess the linear
relationships between features and the target variable ‘Class’. Although the principal
components (V1–V28) were generally uncorrelated with each other, several exhibited
strong associations with the target. To further refine feature selection, feature
importance scores were computed using random forest, XGBoost, and permutation
importance methods. The results from these analyses were consolidated and visualized
in Fig. 4.

Seventeen features were ultimately selected (V17, V14, V12, V10, V16, V3, V7, V11, V4,
V18, V1, V9, V5, V2, V6, V21, and V19) based on their consistently high importance
across different methods. The choice of 17 features was further validated through internal
comparisons, where models using 10, 17, and all 30 features were evaluated. Using 17
features provided the best balance between predictive accuracy, generalization ability, and
computational efficiency. This rigorous selection process ensured that the final model was
both effective and interpretable.

Figure 3 The data pre-processing steps. Full-size DOI: 10.7717/peerj-cs.3007/fig-3

Marazqah Btoush et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3007 10/25

http://dx.doi.org/10.7717/peerj-cs.3007/fig-3
http://dx.doi.org/10.7717/peerj-cs.3007
https://peerj.com/computer-science/

Figure 4 Feature selection. Full-size DOI: 10.7717/peerj-cs.3007/fig-4

Marazqah Btoush et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3007 11/25

http://dx.doi.org/10.7717/peerj-cs.3007/fig-4
http://dx.doi.org/10.7717/peerj-cs.3007
https://peerj.com/computer-science/

Feature extraction
Feature extraction is a critical pre-processing step in ML that transforms data into a set of
informative features, thereby improving model performance, efficiency, and
interpretability. Techniques like PCA are used for dimensionality reduction, helping to
reduce noise, prevent overfitting, and lower computational costs. Although the dataset
features were already transformed through PCA by the original providers, we applied an
additional PCA using Scikit-learn’s default parameters to further reduce dimensionality for
improved model performance and visualization. PCA demonstrated acceptable
discrimination between classes and was thus selected as the feature extraction technique
for subsequent training and testing phases.

Data splitting
This method serves two crucial purposes: mitigating the risk of overfitting and verifying
the performance of the model in real-world situations. The complete dataset is partitioned
into a training set comprising 80% of the data and a test set including the remaining 20%.

Hyperparameter tuning
Following data pre-processing, hyperparameter tuning was conducted using
GridSearchCV. The grid search was applied with 5-fold cross-validation on the training
data to optimize model performance while avoiding overfitting. For each machine learning
algorithm (DT, RF, SVM, XGBoost, CatBoost, and LR), key hyperparameters were tuned
across predefined ranges, including learning rate, number of estimators, maximum depth,
and regularization parameters, depending on the model. Specifically, the ranges considered
for hyperparameters like n_estimators, max_depth, learning_rate, C, and subsample were
systematically tested. The best-performing hyperparameter combinations were then used
to retrain the models.

Machine learning techniques
Decision tree
DT is a supervised ML algorithm used for classification tasks. In this specific
implementation, the DT classifier is configured with the following hyperparameters;
‘max_depth’: 70, ‘min_samples_split’: 8, ‘min_samples_leaf’: 10, and ‘criterion’: “entropy”.
The ‘max_depth’ parameter controls the maximum depth of the decision tree, limiting its
complexity and preventing overfitting. ‘Min_samples_split’ specifies the minimum
number of samples required to split an internal node, while ‘min_samples_leaf’ sets the
minimum number of samples required to be at a leaf node. These parameters help regulate
the size of the tree and improve its generalization capability. Additionally, the ‘criterion’
parameter determines the function used to measure the quality of a split. In this case,
“entropy” is chosen, which computes the information gain based on the entropy.

Random forest
RF is a powerful ensemble learning technique that builds multiple decision trees and
outputs their classification mode or regression mean. Key hyperparameters include
n_estimators (set to 100 to reduce overfitting risk), max_depth (limited to 10 to control

Marazqah Btoush et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3007 12/25

http://dx.doi.org/10.7717/peerj-cs.3007
https://peerj.com/computer-science/

complexity and prevent overfitting), min_samples_split (set to 2 for balanced splits), and
min_samples_leaf (set to 1 to prevent low-sample nodes). A random_state of 42 ensures
reproducibility. These hyperparameters balance generalization and model complexity,
effectively capturing data patterns without overfitting. Adjustments should consider
dataset characteristics and the bias-variance trade-off.

Support vector machine
SVM is a popular supervised learning type. A dataset separates features (X) and target
attribute (y). Data for model evaluation is 80/20 training and testing. A
hyperparameter-based SVM start kernels: SVM kernels provide a higher-dimensional
space with more input-data separable classes. RBF kernel ‘rbf’. Helpers: Support vectors
move the decision border near the hyperplane. Main causes limit choice. Data point
margin is decision boundary-to-nearest class. SVM margins reduce overfitting and
demonstrate classifier prediction confidence. Category margin and error are limited by
regularization parameter ‘C’. Making ‘C’ 1.0 balances goals. Individual training examples
alter gamma. Automatically calculate 1/(n_features � X.var ()) with ‘gamma’ set to ‘scale’
for training data. Values match data kernel coefficient scale. SVMs predict by labelling new
data points by decision boundaries. Hyperplane data point signed distance is calculated by
a binary classification decision function. Negative and positive distances distinguish
classes. When classifying binary data, SVM maximizes feature space margin.

XGBoost
Gradient boosting, specifically XGBoost, builds decision trees that iteratively improve each
other to classify binary events. The objective function, set to ‘binary: logistic,’ uses logloss
to evaluate model performance by penalizing inaccurate predictions. The learning rate
(‘eta’) controls the step size for each iteration, with a lower value preventing overfitting but
requiring more iterations. The ‘max_depth’ parameter limits tree complexity by setting the
depth to 6. Subsampling training instances and features (with values of 0.8 for ‘subsample’
and ‘colsample_bytree’) improves model performance and reduces overfitting. A random
seed of 42 ensures reproducibility of results.

CatBoost
CatBoost is a powerful gradient boosting algorithm that efficiently handles categorical
variables internally, eliminating the need for one-hot or label encoding and reducing data
pre-processing errors. Its default ‘Logloss’ objective function achieves high accuracy. Key
hyperparameters—iterations, learning_rate, depth, and l2_leaf_reg—allow for fine-tuning.
Iterations control the number of boosting rounds; learning_rate adjusts weight changes for
smooth convergence; depth balances complexity; and l2_leaf_reg applies regularization to
prevent overfitting. These settings allow customization of CatBoost to match data
characteristics and optimization goals.

Logistic regression
LR is an effective classification method, particularly suitable for binary classification tasks.
The ‘liblinear’ solver, chosen for small to medium datasets, efficiently manages model

Marazqah Btoush et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3007 13/25

http://dx.doi.org/10.7717/peerj-cs.3007
https://peerj.com/computer-science/

complexity and multicollinearity through L1 and L2 regularization. L1 regularization
(Lasso) promotes model sparsity by penalizing large coefficients, simplifying feature
selection and enhancing model interpretability. L2 regularization (Ridge) prevents
overfitting by limiting the growth of coefficients. To ensure reproducibility, the
‘random_state’ is set to 42, enabling consistent model behavior for debugging, validation,
and comparison.

RESULTS AND DISCUSSION
Initially, we assess the performance of ML algorithms individually and in the absence of
employing ensemble techniques. The outcomes derived from this evaluation are
comprehensively depicted in Table 1, illustrating a comparative analysis of the algorithms.
Figure 5 shows the performance of ML algorithms without ensemble techniques. Figures 6,
7, 8, 9, 10, and 11 show the confusion matrix for ML techniques.

Comparison between ML techniques before ensemble
The decision tree (DT) model demonstrates high accuracy (99.93%) and precision
(89.89%), but its recall (81.63%) for fraudulent transactions indicates that it may
miss some instances of fraud, reflected in its F1-score of 85.56%. The recall suggests
that the model could improve in detecting all instances of fraud. The AUC-ROC score
of 0.9079 indicates a good ability to discriminate between fraudulent and
non-fraudulent transactions, though there’s room for improvement in capturing
more positive instances.

The RF model achieves exceptional accuracy (99.96%) and precision (97.40%), but its
recall (76.53%) for fraudulent transactions is lower, meaning it misses a substantial
number of fraudulent transactions. The F1-score of 85.71% shows a balanced performance.
Its AUC-ROC score of 0.9725 is excellent, highlighting its strong discrimination ability
and suggesting that RF is good at distinguishing between the two classes, but improving
recall could enhance its fraud detection capability further.

The SVM model achieves 99.94% accuracy and 97.02% precision, but its recall of
66.33% for fraudulent transactions results in a lower F1-score of 78.79%. This lower recall
suggests that SVM struggles to capture fraudulent transactions, and its AUC-ROC score of
0.9513 supports this, showing that while SVM is effective, it is not as strong at
differentiating between classes, particularly for fraud detection.

XGBoost excels with 99.95% accuracy and 95.00% precision, with a recall of 77.55% for
fraudulent transactions, which is higher than SVM and RF in detecting fraudulent
transactions. Its F1-score of 85.39% shows a strong balance between recall and precision.
The AUC-ROC score of 0.9783 is also very high, indicating that XGBoost has a strong
ability to discriminate between fraudulent and non-fraudulent transactions. While not the
top performer in recall, its strong AUC-ROC score and solid F1-score make it a reliable
model for fraud detection.

CatBoost performs excellently with 99.96% accuracy, 97.46% precision, and a strong
recall of 77.55% for fraudulent transactions, leading to the highest F1-score of 86.35%. Its
AUC-ROC score of 0.9837 is the highest among all models, indicating superior

Marazqah Btoush et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3007 14/25

http://dx.doi.org/10.7717/peerj-cs.3007
https://peerj.com/computer-science/

ability to discriminate between the classes. The high precision, recall for fraudulent
transactions, and AUC-ROC score make CatBoost the top performer in fraud detection,
providing an excellent balance in identifying fraudulent transactions without sacrificing
precision.

LR achieves high accuracy (99.92%) but has lower precision (88.06%) and recall
(60.20%) for fraudulent transactions, leading to a moderate F1-score of 71.52%. Its
AUC-ROC score of 0.9701 further suggests that while LR performs well in terms of
accuracy, it struggles to distinguish fraudulent transactions, especially when compared to
other models. The low recall and AUC-ROC indicate that LR is less effective at identifying
the minority class of fraud.

Table 1 Algorithm performance.

ML Accuracy (%) Precision (%) Recall (%) F1-score (%) AUC (%) p-value (vs Stacking) 95% CI of F1 difference

DT 99.93 89.89 81.63 85.56 90.80 0.2027 [−0.0161 to 0.0550]

RF 99.96 97.40 76.53 85.71 97.25 0.0199 [−0.0450 to −0.0067]

SVM 99.94 97.02 66.33 78.79 95.13 0.0225 [0.0083–0.0635]

XGBoost 99.95 95.00 77.55 85.39 97.83 0.0628 [−0.0261 to 0.0011]

CatBoost 99.96 97.44 77.55 86.36 98.37 0.0315 [−0.0423 to −0.0033]

LR 99.92 88.06 60.20 71.52 97.01 0.0047 [0.0593–0.1727]

Figure 5 Algorithms performance before applying ensemble techniques. Full-size DOI: 10.7717/peerj-cs.3007/fig-5

Marazqah Btoush et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3007 15/25

http://dx.doi.org/10.7717/peerj-cs.3007/fig-5
http://dx.doi.org/10.7717/peerj-cs.3007
https://peerj.com/computer-science/

All models exhibit high accuracy, but their performance differs when considering
precision, recall for fraudulent transactions, F1-score, and AUC-ROC. Given the
importance of detecting fraudulent transactions, recall is particularly critical, and F1-score
is prioritized as it provides a balanced assessment of precision and recall. The AUC-ROC
scores provide an additional measure of how well each model can discriminate between
classes.

In terms of performance, CatBoost leads with the highest F1-score of 86.35%, followed
by random forest (85.71%) and XGBoost (85.39%), all of which show excellent balance

Figure 6 Confusion matrix-DT. Full-size DOI: 10.7717/peerj-cs.3007/fig-6

Figure 7 Confusion matrix-RF. Full-size DOI: 10.7717/peerj-cs.3007/fig-7

Marazqah Btoush et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3007 16/25

http://dx.doi.org/10.7717/peerj-cs.3007/fig-6
http://dx.doi.org/10.7717/peerj-cs.3007/fig-7
http://dx.doi.org/10.7717/peerj-cs.3007
https://peerj.com/computer-science/

between precision and recall. Their AUC-ROC scores (CatBoost: 0.9837, RF: 0.9725,
XGBoost: 0.9783) reinforce their strong ability to discriminate between fraudulent and
non-fraudulent transactions. DT (85.56%) also performs well, with an AUC-ROC score of
0.9079, though it lags behind in recall. Meanwhile, SVM (78.79%) and LR (71.52%) have
lower F1-scores and AUC-ROC scores, reflecting their challenges in identifying fraudulent
transactions.

Overall, CatBoost and random forest stand out as the top performers, with CatBoost
also leading in terms of AUC-ROC score. These models offer strong fraud detection

Figure 8 Confusion matrix-SVM. Full-size DOI: 10.7717/peerj-cs.3007/fig-8

Figure 9 Confusion matrix-XGBoost. Full-size DOI: 10.7717/peerj-cs.3007/fig-9

Marazqah Btoush et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3007 17/25

http://dx.doi.org/10.7717/peerj-cs.3007/fig-8
http://dx.doi.org/10.7717/peerj-cs.3007/fig-9
http://dx.doi.org/10.7717/peerj-cs.3007
https://peerj.com/computer-science/

capabilities, balancing recall and precision effectively. Figure 12 illustrates the F1-scores for
the various machine learning techniques, while the AUC-ROC scores further confirm the
models’ ability to differentiate between fraudulent and non-fraudulent transactions.

Ensemble techniques
Ensemble techniques in ML enhance predictive accuracy by combining the strengths of
multiple models. These methods address the limitations and biases of individual models,
producing more robust and accurate outcomes by aggregating their predictions. Ensemble
methods such as stacking, bagging, voting, and random subspace, combine multiple
models to enhance predictive performance. Stacking uses a meta-learner to integrate base

Figure 10 Confusion matrix-CatBoost. Full-size DOI: 10.7717/peerj-cs.3007/fig-10

Figure 11 Confusion matrix-LR. Full-size DOI: 10.7717/peerj-cs.3007/fig-11

Marazqah Btoush et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3007 18/25

http://dx.doi.org/10.7717/peerj-cs.3007/fig-10
http://dx.doi.org/10.7717/peerj-cs.3007/fig-11
http://dx.doi.org/10.7717/peerj-cs.3007
https://peerj.com/computer-science/

model predictions, capturing complex relationships but requiring more computational
resources. Bagging trains base learners on random data subsets to reduce variance and
overfitting, especially for high-variance models like decision trees. Voting combines model
predictions through majority voting or averaging and works well when models are diverse
and complementary. The Random Subspace method creates base models by randomly
selecting feature subsets, encouraging specialization and diversity in the ensemble, leading
to improved overall predictions.

The results revealed that the stacking ensemble outperformed individual base classifiers
in terms of overall predictive performance. The stacking ensemble effectively classified
both fraudulent and non-fraudulent transactions, as evidenced by its elevated accuracy,
precision, recall, and F1-score. The findings provide evidence that stacking is an excellent
strategy for ensemble learning, showing the potential of this technique to improve the
resilience and reliability of predictive models in applications that are used in the real world.
Table 2 shows the results after applying Stacking ensemble method. Figure 13 shows the
F1-score for stacking ensemble model.

To validate the observed performance differences between stacking and individual base
models, paired t-tests were conducted across the cross-validation folds. Results showed
that stacking significantly outperformed SVM and Logistic Regression in terms of F1-score
(p < 0.05), with 95% confidence intervals (CIs) for the F1 difference being entirely positive.
In contrast, stacking performed slightly worse than random forest and CatBoost, as
indicated by negative CIs and significant p-values. No statistically significant differences
were found between stacking and Decision Tree or XGBoost (p > 0.05). These findings
suggest that while stacking generally improves predictive performance over weaker
models, it is not universally superior across all classifiers. As a future extension, validating
stacking on multiple datasets would provide further generalizability to the results.

The results presented in the table offer a nuanced comparison between the stacking
hybrid ML model and other individual ML algorithms in the context of credit card
transaction cyber fraud detection, with a particular emphasis on the F1-score. Comparing

Figure 12 F1-score for ML techniques. Full-size DOI: 10.7717/peerj-cs.3007/fig-12

Marazqah Btoush et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3007 19/25

http://dx.doi.org/10.7717/peerj-cs.3007/fig-12
http://dx.doi.org/10.7717/peerj-cs.3007
https://peerj.com/computer-science/

the F1-scores of the stacking hybrid ML with those of individual algorithms reveals a
notable disparity. The Stacking ensemble model exhibits a significantly higher F1-score
compared to all individual algorithms, underscoring the effectiveness of the ensemble
approach in bolstering predictive accuracy and robustness. For instance, the Stacking
ensemble model achieved an F1-score of 88.14%, surpassing the F1-scores of individual
algorithms such as DT (85.56%), RF (85.71%), SVM (78.79%), LR (71.52%), XGBoost
(85.39%), and CatBoost (86.36%). This substantial difference highlights the superiority of
the Stacking ensemble model in achieving a balanced trade-off between precision and
recall, thereby enhancing its capability in accurately detecting fraudulent transactions.
Although ensemble stacking typically enhances predictive performance, in this present
research work, the stacking model showed a slightly lower AUC-ROC compared to some
individual models. This may be due to meta-model overfitting or complex feature

Figure 13 F1-score for stacking ensemble model. Full-size DOI: 10.7717/peerj-cs.3007/fig-13

Table 2 Results after applying stacking ensemble.

ML Accuracy (%) Precision (%) Recall (%) F1-score (%) AUC (%) p-value (vs Stacking) 95% CI of F1 difference

DT 99.93 89.89 81.63 85.56 90.80 0.2027 [−0.0161 to 0.0550]

RF 99.96 97.40 76.53 85.71 97.25 0.0199 [−0.0450 to −0.0067]

SVM 99.94 97.02 66.33 78.79 95.13 0.0225 [0.0083–0.0635]

XGBoost 99.95 95.00 77.55 85.39 97.83 0.0628 [−0.0261 to 0.0011]

CatBoost 99.96 97.44 77.55 86.36 98.37 0.0315 [−0.0423 to −0.0033]

LR 99.92 88.06 60.20 71.52 97.01 0.0047 [0.0593–0.1727]

Stacking hybrid 99.96 98.73 79.59 88.14 89.80 —— ——

Voting 99.95 97.37 75.51 85.06 97.45 —— ——

Subspace Random 99.95 95.95 72.45 82.56 86.22 —— ——

Bagging 99.95 97.30 73.47 83.72 86.73 —— ——

Marazqah Btoush et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3007 20/25

http://dx.doi.org/10.7717/peerj-cs.3007/fig-13
http://dx.doi.org/10.7717/peerj-cs.3007
https://peerj.com/computer-science/

interactions among base classifiers, particularly under severe class imbalance. Future work
could explore simpler meta-models or stronger regularization to improve generalization.

In addition to the promising performance of the stacking model, the success of stacking
is largely attributed to the diversity of the base models used. Each base classifier—ranging
from decision trees to more complex algorithms like CatBoost and XGBoost—captures
different aspects of the data. The meta-learner, which aggregates these individual
predictions, is able to synthesize a more generalized and robust model that mitigates the
biases or weaknesses of any single classifier. This synergy enhances the stacking model’s
ability to detect fraudulent transactions with high accuracy, while maintaining a
well-balanced trade-off between precision and recall.

To evaluate the computational feasibility of the proposed stacking ensemble model, we
compared the training times of individual base classifiers with the full ensemble. Simpler
models such as logistic regression (6.4 s) and decision tree (44 s) demonstrated rapid
training times. In contrast, more complex classifiers like random forest (25 min 48 s) and
support vector machine (14 min 31 s) required substantially longer. The full stacking
ensemble, incorporating six base models (DT, RF, SVM, XGBoost, CatBoost, LR) and a
meta-classifier, required approximately 1 h and 33 s for training.

Despite the increased training time, the ensemble model achieved superior classification
performance, with an F1-score of 0.88 on the minority (fraud) class—outperforming all
individual models in terms of recall and overall balance. Since model training is an offline
process, the computational cost does not affect real-time deployment. Furthermore, once
trained, the model performs predictions efficiently, making it suitable for deployment in
large-scale, high-transaction environments such as financial fraud detection systems.
These findings support the trade-off between training complexity and improved model
generalization in high-stakes, data-intensive applications.

However, while stacking enhances performance, it also introduces a computational
overhead due to the need for training multiple models. This can lead to increased
training time and resource consumption, particularly when working with large datasets.
This trade-off should be considered, particularly when real-time fraud detection is
required, as deployment of such models in production may need more computational
resources. Future studies may focus on optimizing the meta-model selection or employing
faster base models to reduce these computational costs without compromising
performance.

The choice of stacking as the ensemble technique for the novel hybrid model stems from
its inherent advantages over other ensemble methods. Stacking allows for the combination
of diverse base classifiers, each capturing unique aspects of the data, leading to a more
comprehensive understanding of the underlying patterns. By leveraging the collective
intelligence of multiple models, Stacking synthesizes a robust predictive model that is less
prone to individual model biases and overfitting. Moreover, Stacking fosters a collaborative
synergy among constituent algorithms, enabling them to complement each other’s
strengths and mitigate weaknesses.

Marazqah Btoush et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3007 21/25

http://dx.doi.org/10.7717/peerj-cs.3007
https://peerj.com/computer-science/

Comparison with other ensemble techniques
In addition to the stacking hybrid ML model, this present research work delves into the
exploration of several other ensemble techniques, aiming to thoroughly evaluate their
comparative performance. These alternative methodologies comprise a diverse array,
including the application of Voting, Subspace Random ensemble, and Bagging ensemble
approaches. The empirical findings derived from these experiments are systematically
documented in Table 2. Figure 14 shows comparison with other ensemble techniques.

When comparing the ensemble techniques based on F1-score, the stacking hybrid ML
emerges as the top performer. With an F1-score of 88.14%, the Stacking model achieves the
highest balance between minimizing false positives and false negatives among all the
techniques evaluated. This indicates its effectiveness in accurately classifying both
fraudulent and non-fraudulent transactions. Following the Stacking model, the Voting
ensemble demonstrates a respectable F1-score of 85.06%. The Subspace Random ensemble
and Bagging ensemble techniques exhibit F1-scores of 82.56% and 83.72%,
respectively. While these scores indicate reasonable performance, they are notably
lower compared to both the stacking model and the Voting ensemble. In summary,
based on F1-score comparison, The stacking hybrid ML model is the most effective
technique for detecting credit card cyber fraud among the ensemble methods that have
been evaluated.

The proposed stacking hybrid ML in this present research work advances the state-of-
the-art in credit card fraud detection by outperforming prior models in both accuracy and
F1-score. Leveraging a diverse ensemble of algorithms—CatBoost, XGBoost, DT, SVM,
LR, and RF—this model achieves a high F1-score of 88.14%, surpassing notable
benchmarks in the literature. For instance, while models like those by Hema & Muttipati
(2020) with RF and CatBoost achieved accuracy as high as 99.5% the stacking model here
goes further by balancing both false positives and negatives in a way that exceeds
conventional ensemble methods. This model’s precision is especially pronounced when
contrasted with single and ensemble methods reviewed in the literature, such as Faraj,

Figure 14 Comparison with other ensemble techniques. Full-size DOI: 10.7717/peerj-cs.3007/fig-14

Marazqah Btoush et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3007 22/25

http://dx.doi.org/10.7717/peerj-cs.3007/fig-14
http://dx.doi.org/10.7717/peerj-cs.3007
https://peerj.com/computer-science/

Mahmud & Rashid (2021), where XGBoost led with a maximum score of 0.78%. The
stacking model’s superior F1-score highlights its robust ability to detect both fraudulent
and legitimate transactions with minimal misclassification, marking it as a more effective
option for fraud detection.

CONCLUSION
This research work introduces a novel stacking-based hybrid ML framework specifically
designed for cyber fraud detection in credit card transactions. By integrating a diverse
ensemble of base classifiers including RF, SVM, LR, DT, XGBoost, and CatBoost, the
model harnesses algorithmic diversity to enhance detection robustness. Comprehensive
attention was given to data preprocessing, feature engineering, and rigorous model
evaluation. Among individual models, CatBoost demonstrated superior performance with
an F1-score of 86.36%, effectively minimizing both false positives and false negatives.

The proposed stacking model, which combines base model predictions via a meta-
classifier, achieved the highest F1-score of 88.14%, outperforming not only the standalone
classifiers but also alternative ensemble techniques such as Voting (85.06%), Subspace
Random (82.56%), and Bagging (83.72%). These findings underscore the superior
discriminative power and generalization capacity of stacking in accurately classifying both
fraudulent and legitimate transactions. The results further reinforce the importance of
using F1-score as a primary metric when dealing with skewed datasets, where precision–
recall trade-offs must be carefully balanced.

Despite its promising results, the study recognizes limitations stemming from the use of
a single public dataset, which may introduce biases due to anonymization, class imbalance,
or limited diversity in transaction behaviors. These factors may constrain the model’s
ability to generalize across different financial ecosystems. Future research should therefore
include cross-validation on multiple heterogeneous datasets. Additionally, while this work
focused on classical ML models, future studies may benefit from incorporating advanced
deep learning architectures such as convolutional neural networks (CNNs) and long
short-term memory (LSTM) networks to capture temporal and high-dimensional fraud
patterns. Finally, although developed for credit card fraud detection, the proposed stacking
hybrid framework offers broad applicability across domains such as anomaly detection,
cybersecurity, and healthcare diagnostics, demonstrating its versatility as a powerful tool
for complex classification tasks.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Marazqah Btoush et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3007 23/25

http://dx.doi.org/10.7717/peerj-cs.3007
https://peerj.com/computer-science/

Author Contributions
. Eyad Abdel Latif Marazqah Btoush conceived and designed the experiments, performed
the experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

. Xujuan Zhou conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the article, and approved the final draft.

. Raj Gururajan analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.

. Ka Ching Chan performed the computation work, authored or reviewed drafts of the
article, and approved the final draft.

. Omar Alsodi analyzed the data, prepared figures and/or tables, and approved the final
draft.

Data Availability
The following information was supplied regarding data availability:

The raw measurements are available in the Supplemental Files.
This dataset is available at Kaggle: https://www.kaggle.com/mlg-ulb/creditcardfraud.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.3007#supplemental-information.

REFERENCES
Abdelghafour EB, Mohamed C, Noura A, Abdelhamid B. 2024. Enhancing credit card fraud

detection using a stacking model approach and hyperparameter optimization. International
Journal of Advanced Computer Science and Applications (IJACSA) 15(10):1080
DOI 10.14569/IJACSA.2024.01510110.

Amusan EA, Alade OM, Fenwa OD, Emuoyibofarhe JO. 2021. Credit card fraud detection on
skewed data using machine learning techniques. Lautech Journal of Computing and Informatics
2(1):49–56.

Awoyemi JO, Adetunmbi AO, Oluwadare SA. 2017. Credit card fraud detection using machine
learning techniques: a comparative analysis. In: 2017 International Conference on Computing
Networking and Informatics (ICCNI), 1–9 DOI 10.1109/ICCNI.2017.8123782.

Btoush E, Zhou X, Gururajan R, Chan KC, Alsodi O. 2024. Optimising security: a hybrid
CNN-BiLSTM model for credit card cyber fraud detection. In: 2024 Twelfth International
Conference on Advanced Cloud and Big Data (CBD). Piscataway: IEEE, 380–385
DOI 10.1109/CBD65573.2024.00074.

Btoush EALM, Zhou X, Gururajan R, Chan KC, Genrich R, Sankaran P. 2023. A systematic
review of literature on credit card cyber fraud detection using machine and deep learning. PeerJ
Computer Science 9(1):e1278 DOI 10.7717/peerj-cs.1278.

Chagahi MH, Delfan N, Dashtaki SM, Moshiri B, Piran MJ. 2024. An innovative attention-based
ensemble system for credit card fraud detection. ArXiv DOI 10.48550/arXiv.2410.09069.

Dal Pozzolo A, Caelen O, Le Borgne YA, Waterschoot S, Bontempi G. 2014. Learned lessons in
credit card fraud detection from a practitioner perspective. Expert Systems with Applications
41(10):4915–4928 DOI 10.1016/j.eswa.2014.02.026.

Marazqah Btoush et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3007 24/25

http://dx.doi.org/10.7717/peerj-cs.3007#supplemental-information
https://www.kaggle.com/mlg-ulb/creditcardfraud
http://dx.doi.org/10.7717/peerj-cs.3007#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.3007#supplemental-information
http://dx.doi.org/10.14569/IJACSA.2024.01510110
http://dx.doi.org/10.1109/ICCNI.2017.8123782
http://dx.doi.org/10.1109/CBD65573.2024.00074
http://dx.doi.org/10.7717/peerj-cs.1278
http://dx.doi.org/10.48550/arXiv.2410.09069
http://dx.doi.org/10.1016/j.eswa.2014.02.026
http://dx.doi.org/10.7717/peerj-cs.3007
https://peerj.com/computer-science/

Faraj AA, Mahmud DA, Rashid BN. 2021. Comparison of different ensemble methods in credit
card default prediction. UHD Journal of Science and Technology 5(2):20–25
DOI 10.21928/uhdjst.v5n2y2021.pp20-25.

Hema A, Muttipati AS. 2020. Machine learning methods for discovering credit card fraud.
International Research Journal of Computer Science 8:1–6.

Gupta RK, Hassan A, Majhi SK, Parveen N, Zamani AT, Anitha R, Ojha B, Singh AK, Muduli
D. 2025. Enhanced framework for credit card fraud detection using robust feature selection and
a stacking ensemble model approach. Results in Engineering 26:105084
DOI 10.1016/j.rineng.2025.105084.

Gupta P, Varshney A, Khan MR, Ahmed R, Shuaib M, Alam S. 2023. Unbalanced credit card
fraud detection data: a machine learning-oriented comparative study of balancing techniques.
Procedia Computer Science 218(1):2575–2584 DOI 10.1016/j.procs.2023.01.231.

Ileberi E, Sun Y, Wang Z. 2022. A machine learning based credit card fraud detection using the
GA algorithm for feature selection. Journal of Big Data 9(1):24
DOI 10.1186/s40537-022-00573-8.

Merchant Cost Consulting. 2023. Credit card fraud statistics (2024). Available at https://
merchantcostconsulting.com/lower-credit-card-processing-fees/credit-card-fraud-statistics/#
(accessed 12 December 2023).

Muaz A, Jayabalan M, Thiruchelvam V. 2020. A comparison of data sampling techniques for
credit card fraud detection. International Journal of Advanced Computer Science and
Applications (IJACSA) 11(6):477–485 DOI 10.14569/IJACSA.2020.0110660.

Mukherjee U, Thakkar V, Dutta S, Mukherjee U, Bandyopadhyay SK. 2021. Emerging approach
for detection of financial frauds using machine learning. Asian Journal of Research in Computer
Science 9–22.

Nama FA, Obaid AJ, Alrammahi AAH. 2023. Credit card fraud detection and classification using
deep learning with support vector machine techniques. In: International Conference on Data
Analytics & Management. Singapore: Springer Nature, 399–413.

Ozkan-Ozay M, Akin E, Aslan Ö, Kosunalp S, Iliev T, Stoyanov I, Beloev I. 2024. A
comprehensive survey: evaluating the efficiency of artificial intelligence and machine learning
techniques on cyber security solutions. IEEE Access 12:12229–12256
DOI 10.1109/access.2024.3355547.

Reddy STS, Sriramya P. 2023. Comparison of the support vector classifier algorithm with the
decision tree algorithm for credit card fraud detection with the goal of improving accuracy.
Journal of Survey in Fisheries Sciences 10(1S):2304–2313.

Marazqah Btoush et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.3007 25/25

http://dx.doi.org/10.21928/uhdjst.v5n2y2021.pp20-25
http://dx.doi.org/10.1016/j.rineng.2025.105084
http://dx.doi.org/10.1016/j.procs.2023.01.231
http://dx.doi.org/10.1186/s40537-022-00573-8
https://merchantcostconsulting.com/lower-credit-card-processing-fees/credit-card-fraud-statistics/#
https://merchantcostconsulting.com/lower-credit-card-processing-fees/credit-card-fraud-statistics/#
http://dx.doi.org/10.14569/IJACSA.2020.0110660
http://dx.doi.org/10.1109/access.2024.3355547
http://dx.doi.org/10.7717/peerj-cs.3007
https://peerj.com/computer-science/

	Enhancing credit card fraud detection with a stacking-based hybrid machine learning approach
	Introduction
	Related work
	Methodology
	Proposed stacking hybrid ml
	Results and discussion
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

