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ABSTRACT

This study proposes an enhanced deep learning framework for accurately estimating
the state of health (SOH) of lithium-ion batteries (LIBs), leveraging a refined
Convolutional Neural Network (CNN)-Long Short-Term Memory
(LSTM)-Attention architecture. To improve prediction accuracy and robustness, a
novel Multi-Scale Adaptive Wasserstein-Huber Loss (MSAWH Loss) is introduced,
which combines the strengths of Huber loss and multi-scale Wasserstein distance to
effectively handle outliers and capture complex degradation patterns. Furthermore,
an Uncertainty-Guided Adaptive Bayesian Optimization (UGABO) algorithm is
employed to optimize model hyperparameters, achieving efficient convergence in
high-dimensional and noisy parameter spaces while maintaining a balance between
exploration and exploitation. To enhance generalization, four complementary data
augmentation techniques—linear interpolation, data slicing, sequence flipping, and
cross-sample mixing—are applied to the National Aeronautics and Space
Administration (NASA) charge-discharge dataset, significantly enriching the
training data. Additionally, a Model Predictive Control (MPC) mechanism is
integrated to correct long-horizon prediction errors, dynamically refining outputs
based on recent deviations and maintaining consistency with real-world battery
constraints. Experimental results demonstrate that the proposed framework
outperforms baseline models, achieving a 20.6% reduction in mean absolute error
(MAE), an 18.6% reduction in root mean squared error (RMSE), and a 0.1%
improvement in R-squared (R®). These findings highlight the effectiveness of
integrating adaptive loss design, automated hyperparameter optimization, strategic
data augmentation, and feedback-based error correction in advancing SOH
prediction performance for lithium-ion batteries.
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INTRODUCTION

The growing global concern over climate change is primarily driven by severe
environmental degradation caused by fossil fuel combustion and the depletion of
non-renewable energy resources. This situation underscores the urgent need for clean
energy alternatives and high-efficiency energy storage systems. Lithium-ion batteries
(LIBs) have emerged as a cornerstone in energy storage solutions and electric vehicles due
to their wide operational temperature range, long cycle life, high energy density, and
eco-friendly characteristics during use (Rial, 2024). Their superior lifespan, energy
efficiency, and low environmental impact have made LIBs indispensable components in
electric vehicles (EVs) (Li et al., 2019). Meanwhile, artificial intelligence (AI) has been
increasingly applied in a wide range of energy-related fields, including the design of novel
materials and smart devices, highlighting its interdisciplinary potential beyond battery
health prediction. In practical applications, the health of lithium-ion batteries directly
influences the driving range, reliability, and safety of electric vehicles, making accurate
state estimation essential for both users and manufacturers. However, LIBs are not without
limitations. Vulnerabilities to external factors, such as temperature and current
fluctuations, coupled with rapid aging, remain significant challenges. A critical issue arises
during repetitive battery cycles, where phenomena like lithium-ion deposition on the
anode lead to the loss of active lithium, increased impedance, and a noticeable reduction in
battery capacity. For example, uncontrolled degradation can reduce a battery’s capacity to
hold charge, resulting in frequent recharging and reduced travel distances. If improperly
managed, these issues can shorten the operational duration of EVs and pose potential
safety risks. Therefore, it is crucial to develop techniques that can accurately and promptly
assess and forecast the degradation behavior of LIBs (Guo et al., 2023).

Currently, most research on battery longevity and expected lifespan focuses on
predicting battery capacity and internal resistance (Wang et al., 2021). Batteries are
generally considered no longer suitable for use when their capacity drops to 80% of the
initial value or when internal resistance doubles. However, both capacity and internal
resistance are not directly measurable, making accurate and real-time state of health
(SOH) estimation a key challenge. Accordingly, obtaining precise assessments of
degradation states and remaining useful life (RUL) using measurable signals such as
voltage, current, and temperature has become essential (Li et al., 2021).

In recent years, numerous researchers have explored the degradation characteristics and
prediction of the RUL of LIBs, with data-driven models emerging as one of the most widely
adopted approaches (Amiri et al., 2024). These models utilize historical data and advanced
algorithms to predict and analyze battery behavior. Depending on the application
scenarios and algorithms, data-driven models are generally classified into machine
learning models, deep learning models, and statistical models (Ali et al., 2024).

Machine learning models have been extensively applied to battery SOH estimation,
demonstrating specific strengths and limitations. For example, Tu ef al. (2023) proposed a
physics-informed hybrid model, in which a neural network leveraged outputs from a
physical model to deliver accurate voltage predictions with low computational overhead.
Similarly, Zhang et al. (2024b) introduced a cloud-based, in-situ battery life prediction
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framework that used a moving-window technique to extract aging-related features, thereby
enabling reliable SOH predictions. Additionally, to determine the most effective method
for SOH estimation, Korkmaz (2023) compared 18 machine learning methods for SOH
estimation and identified optimal combinations for different scenarios. However,
traditional machine learning methods often require manual feature extraction related to
battery characteristics, which risks overlooking critical patterns. These methods also face
challenges in modelling complex nonlinear relationships and handling large-scale datasets,
limiting their predictive accuracy. More recent algorithms, such as Random Vector
Functional Link (RVFL) and Active State Tracking Long Short-Term Memory (AST-
LSTM), have attempted to overcome these constraints. Nevertheless, limitations remain:
RVFL lacks strong feature extraction capabilities and struggles with modelling long-term
dependencies (Sajid et al., 2024), while AST-LSTM’s performance heavily depends on the
availability of high-quality datasets and task-specific parameters (Zhang et al., 2024b).
These insights emphasize the need for more robust and adaptive solutions to address the
complexities of SOH estimation.

With the rise of powerful Graphics Processing Units (GPUs), deep learning-based SOH
estimation has shown great promise due to its capacity to model complex nonlinear
systems adaptively to model complex nonlinear systems adaptively (Park et al., 2023).
These advancements have driven significant progress in battery research and other fields
(Ding et al., 2024). For instance, Van ¢ Quang (2023) employed LSTM networks to predict
the SOH and internal resistance of LIBs using experimental charging and discharging data,
including voltage, current, temperature, and impedance. Building on this, Jia et al. (2024)
proposed a hybrid Convolutional Neural Network (CNN)-Bidirectional Long Short-Term
Memory (BiLSTM) model to estimate the RUL of LIBs, effectively addressing the issue of
limited historical data. Chen et al. (2023) further proposed a Fusion-Fission Optimization
(FuFI) method that integrates CNN with Bi-LSTM to capture both spatial and temporal
data features, significantly improving SOH prediction accuracy.

Expanding on these advances, Mazzi, Sassi ¢ Errahimi (2024) designed a hybrid deep
learning model integrating CNN and Bidirectional Gated Recurrent Unit (BiGRU)
networks for SOH estimation. In their framework, the 1D CNN processed input data
(current, voltage, temperature) to extract essential features, while the BIGRU component
captured temporal dependencies in sequential data. Despite these advancements, such
deep learning models often focus on short-term data fluctuations and are limited in their
capacity to model long-term dependencies effectively. To address this, Li et al. (2024)
introduced a digital twin architecture leveraging Backpropagation Neural Network
(BPNN) and CNN-LSTM-Attention networks for real-time capacity degradation tracking.
The CNN-LSTM-Attention framework offers distinct advantages by combining CNNs for
feature extraction from raw data, LSTMs for modelling long-term temporal dependencies,
and attention mechanisms for identifying critical time steps and enhancing the model’s
focus on key patterns. These components make CNN-LSTM-Attention particularly
suitable for handling complex nonlinear relationships, massive datasets, and sequential
data in battery SOH prediction. However, a key drawback of this model is its reliance on
large volumes of high-quality data to fully capture the characteristics and behavior of LIBs.
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Insufficient or low-quality data can significantly hinder its performance, limiting its
practical application. To mitigate this, data augmentation techniques were employed in
this study, expanding the training dataset to improve the model’s ability to learn from both
short- and long-term patterns, even under limited data conditions. These enhancements
significantly improve the robustness and predictive accuracy of the CNN-LSTM-Attention
framework.

Hyperparameter tuning is another pivotal factor that influences model effectiveness.
Since their performance and generalization ability depend heavily on parameters such as
the number of layers, learning rate, and batch size (Hanifi, Cammarono ¢ Zare-Behtash,
2024). The model’s performance and generalization ability are greatly influenced by their
specific configuration (Jiralerspong et al., 2023). Finding the optimal combination of these
hyperparameters through simple manual tuning is often impractical. Because of the
extensive hyperparameter space, manually tuning the model is not only labour-intensive
and time-consuming but also likely to overlook the optimal configuration (Fakhouri et al.,
2024). In deep learning, Bayesian optimization constructs a surrogate model and uses
acquisition functions to select hyperparameter combinations, iteratively optimizing them
to efficiently and automatically find the best hyperparameter settings (Baratchi et al.,
2024). This approach can greatly improve the generalization ability and performance of
deep learning models. Selvaraj & Vairavasundaram (2024) utilized hyperparameter tuning
techniques based on Bayesian optimization algorithms to address the drawbacks of
manually setting network parameters. However, traditional Bayesian optimization
struggles in high-dimensional spaces and balancing exploration with exploitation, which
can lead to either computational inefficiency or local optima. To address this, our work
proposes a novel Uncertainty-Guided Adaptive Bayesian Optimization (UGABO), which
dynamically balances exploration and exploitation and significantly improves convergence
in noisy environments.

Equally important is the choice of loss function, which directly impacts prediction
stability and error sensitivity (Mushava ¢ Murray, 2024). Standard options such as mean
squared error (MSE), mean absolute error (MAE), Huber, and Wasserstein loss each offer
distinct benefits (Terven et al., 2023). Huber Loss combines the advantages of MSE and
MAE, making it suitable for scenarios where both small errors and outliers need to be
handled (Yang et al., 2024). Zhang et al. (2024d) presented a Wasserstein distance-based
Quantile Huber (QH) loss function, integrating Huber and quantile regression losses,
outperforms conventional MAE and MSE in optimizing SOH estimation. Although this
loss function combines the advantages of MSE and MAE, it does not account for the
influence of the 0 parameter in the Huber loss function. Additionally, selecting the
appropriate quantile parameter 7 requires experience and experimentation, which
significantly impacts the model’s predictive ability. Building upon this, we introduce the
Multi-Scale Adaptive Wasserstein-Huber Loss (MSAWH Loss) to deliver superior
performance across varying error distributions.

In addition to improvements in deep model architectures, some researchers have also
studied error correction mechanisms in lithium battery state prediction. In the article by
Zhang et al. (2024c), the author proposed a novel algorithm called Cascaded Robust
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Control-Supportive Hybrid Extended Kalman Filter (CRC-SHEKF), which combines Sage
Husa adaptive methods with enhanced Cauchy robust correction to improve SOH
estimation for lithium-ion batteries, addressing noise estimation inaccuracies. However,
lithium battery systems face multiple physical constraints, such as voltage, current, and
temperature limits (Zheng et al., 2024). Traditional prediction methods often struggle to
simultaneously account for these constraints, and errors can accumulate over long-term
predictions, causing deviations from true values. This study addresses error correction
challenges using a novel method based on MPC. Our solution introduces a MPC strategy
with a lookahead mechanism to dynamically revise prediction trajectories, ensuring
physical consistency and long-term stability.

In light of the latest developments in SOH estimation frameworks, several studies
have introduced novel learning paradigms. For instance, one recent work proposed a
global-local context embedding learning strategy that integrates multiscale
convolutional streams to extract deep spatial features and guide time series prediction
without relying on sequence dependency (Bao ef al., 2023). Another study introduced a
multiple aging factor interactive learning framework that models feature correlations in an
interactive manner and encodes aging-related information using an enhanced
perceptron network (Bao et al., 2025). These works underscore the growing emphasis on
integrating multi-dimensional relationships and structural innovations in battery SOH
estimation.

To better position our study within the broader research landscape, Table 1 presents a
comparative summary of eight representative SOH estimation methods, highlighting their
core techniques, advantages, and limitations.

Inspired by the aforementioned research advancements and existing challenges, this
study proposes significant enhancements to the CNN-LSTM-Attention framework,
focusing on dataset processing, hyperparameter optimization, loss function design, and
error correction mechanisms. The primary innovations of this work are as follows:

(1) Comprehensive Dataset Augmentation: Based on the widely used National
Aeronautics and Space Administration (NASA) charge-discharge dataset, this study
constructs enriched training datasets through the integration of four distinct
augmentation techniques—linear interpolation, data slicing, data flipping, and
cross-validation sampling. Compared to previous works that typically adopt only one
augmentation strategy, our approach combines these complementary methods to
significantly improve the diversity, generalizability, and robustness of the training
process.

(2) Uncertainty-Guided Adaptive Bayesian Optimization (UGABO): To address the
challenge of noisy and uncertain objective functions in hyperparameter tuning, we
introduce UGABO—an adaptive optimization algorithm that dynamically balances
exploration and exploitation. This method enables more efficient convergence in high-
dimensional, noise-prone parameter spaces, leading to consistently superior model
performance. To the best of our knowledge, this is the first application of UGABO in
the SOH prediction domain.
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Table 1 Horizontal comparison of representative SOH estimation methods for lithium-ion batteries, highlighting their modeling strategies,
optimization techniques, feature handling, main limitations. The proposed CNN-LSTM-Attention framework with UGABO, MSAWH loss, and
MPC is also included for benchmarking.

Author Methodology Feature Time-series  Uncertainty = Data Optimization Main limitation
extraction  modeling handling requirements
Tu et al. (2023) Hybrid physics-ML Engineered  No No Low Fixed Low flexibility
Jia et al. (2024) Digital twin Automatic + Yes No High Manual Dataset
(CNN-LSTM-Attn) Feature dependency
selection
Chen et al. (2023)  CNN + BiLSTM + FuFi  Automatic Yes (BiLSTM) No Medium Manual Lacks uncertainty
modeling
Mazzi, Sassi e CNN-BiGRU Automatic Yes (BiGRU) No Medium Bayesian Opt. Short-term bias
Errahimi (2024)
Li et al. (2024) CNN-LSTM-attention Automatic ~ Yes (LSTM +  Partially High Grid search  Needs clean
Attn) long-term data
Selvaraj & CNN-BO Automatic  Yes No Medium UGABO BO efficiency in
Vairavasundaram high-dim
(2024)
Zhang et al. (2024d) QH-Loss based CNN Automatic Partial (CNN) Yes (Quantile) Medium Grid Search  Weak
interpretability
Zhang et al. (2024c) CRC-SHEKF Engineered  No Yes (Noise) Low Fixed Low adaptability
Our work CNN-LSTM-Attn + Automatic ~ Yes Yes Medium Adaptive BO  High performance,

UGABO + MSAWH +
MPC

but complexity

(3) Multi-Scale Adaptive Wasserstein-Huber Loss (MSAWH Loss): A novel loss
function is proposed that fuses the strengths of Huber loss (for outlier robustness) with

multi-scale Wasserstein distance (for distribution-aware sensitivity). This hybrid

formulation allows for adaptive penalization of prediction errors at multiple scales,

resulting in enhanced accuracy, stability, and resilience against distribution shifts or

sensor noise.

(4) Error Correction with Model Predictive Control (MPC): To mitigate long-horizon

prediction drift and accumulation of deviation errors, this study incorporates an

MPC-based correction mechanism. By leveraging feedback control, the model

dynamically adjusts its predictions based on recent errors, ensuring trajectory

smoothness and consistency with real-world battery constraints (e.g., voltage, current,

temperature), thus improving practical reliability.

MATERIALS AND METHODS

Materials
The proposed model was implemented using Python 3.11.5 with TensorFlow as the

primary deep learning framework. All experiments were conducted in an

Anaconda-managed environment. The experiments were executed on a high-performance
cloud computing platform (AutoDL), equipped with a 16-core Intel Xeon(R) Gold 6430
CPU, 120 GB of RAM, and an NVIDIA RTX 4090 GPU with 24 GB memory. This setup
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ensured efficient training and evaluation of deep learning models under large-scale battery
data. All dependencies are documented in the provided GitHub repository at https://
github.com/Benmoshangsang/SOH-predict-2025. The repository includes modular code
for each experimental task, including baseline training, loss function comparison,
hyperparameter tuning, ablation studies, and data augmentation. Utility scripts for
preprocessing, parameter configuration, and model definition are also included. The raw
battery dataset used in this study was sourced from NASA, comprising voltage, current,
and temperature measurements under various operating conditions. To improve model
robustness and generalization, three augmentation strategies—slicing, flipping, and linear
interpolation—were applied to generate synthetic data. All raw and augmented datasets,
along with model outputs and results, are accessible via Zenodo at https://doi.org/10.5281/
zenodo.15239011.

Model performance was rigorously evaluated using a comprehensive suite of
regression-based metrics, including: MAE, MSE, mean absolute percentage error (MAPE),
root mean square error (RMSE), R-squared (R?), centered root mean square difference
(CRMSD), median absolute difference (MAD), and normalized RMSE (nRMSE). These
metrics were carefully selected to capture both absolute and relative prediction accuracy,
and were uniformly applied across all experimental modules to ensure consistency and
comparability.

The following sections detail the core methodological components employed in this
study, including the data augmentation pipeline, the CNN-LSTM architecture enhanced
with attention mechanisms, the ablation strategy, and the hyperparameter optimization
process.

Data augmentation

Linear interpolation is a widely used technique for estimating missing values in
lithium-ion battery datasets by generating intermediate data points between existing
observations (Xiong et al., 2024). For SOH prediction, given two known data points (ty, Vo)
and (t;, V1), representing voltage at times #, and t;, the linear interpolation formula is:

(Vi — Vo)
(t1 —to)

where ¢ is a time point between #; and t;, and V) is the predicted voltage value. V;

Viey = Vo + - (t — 1) (1)

represents the voltage at the starting time t;, and V; represents the voltage at the ending
time t;. This technique is applied to various parameters including voltage, current,
capacity, and temperature to produce more continuous and smooth data. This enhanced
dataset contributes to improving the model’s SOH estimation accuracy by providing a
more thorough depiction of battery behaviour over time.

Slicing is a data preprocessing technique particularly effective for time series analysis. It
involves segmenting the original long-sequence data into multiple fixed-length
subsequences, thereby enabling downstream machine learning models to more efficiently
process and analyse the temporal patterns within these segments (Xie et al., 2024).
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Given the original time series data X = [x;,x,, ..., x7], where T indicates the length of
the sequence, the subsequence X; after slicing is defined as:

X = [xis+1, Xis+2y - - 7xi5+L] "

where L represents the slicing length, which indicates the length of each subsequence after
slicing. S indicates slicing step, representing the number of steps to move forward in the
original sequence each time a new subsequence is created. X; is the i-th subsequence
obtained after slicing. X511, Xis42, . . . , Xis11 represent elements of the i-th subsequence,
extracted from the original sequence X according to the slicing step S and slicing length L.

This method facilitates the identification of localized patterns and trends within specific
time windows, enabling the model to more effectively learn temporal dynamics. It is
particularly valuable for detecting short-term variations in battery performance that may
signal longer-term degradation trajectories.

Flipping is a data augmentation technique that involves reversing the order of a time
series sequence. This technique helps to create additional training samples from the
original data, enhancing the diversity and robustness of the training set (Chou ¢ Nguyen,
2024).

Given the original time series data, for a time series data X = [x1, x,, . . ., x7], the flipped
sequence Xgj;p is:

Xflip - [xT,thl, R 7x1] (3)

where X represents the original time series data, and T is the length of the sequence,
indicating the total number of elements in the sequence. Xjy;, is the flipped or reversed
sequence of X, starting from the last element and going to the first.

This method applies to all parameters (voltage, current, temperature) to mimic various
charging and discharging cycles. Flipping increases the dataset’s diversity, providing the
model with a wider range of scenarios to learn from, which enhances its generalization
capability and robustness in real-world applications.

Cross-validation is a technique for assessing model performance by partitioning the
dataset into several subsets. The model is methodically trained and validated on various
combinations of these subsets. This approach helps evaluate the model’s effectiveness and
its ability to generalize to new, unseen data (Ahmadzadeh, Zahrai ¢ Bitaraf, 2024).

Given a dataset D with N samples, and K folds, cross-validation involves:

(1) Split the D into K equally sized subsets Dy, D, ..., Dy.

(2) For each fold k (wherek=1,2, ..., K), designate Dy as the validation set and utilize
the remaining K — 1 subsets as the training set.

(3) Compute the evaluation metric, such as MAE or MSE, for each fold, and then
average the results across all folds.

This method is applied across all relevant parameters—voltage, current, and
temperature—to construct a composite dataset that captures a diverse range of operational
conditions. The crossing strategy enhances the model’s ability to generalize by exposing it
to mixed behavioural patterns, enabling better adaptation to different battery states and
environmental scenarios. By integrating characteristics from multiple data sequences, this
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technique introduces greater variability and complexity, which in turn improves the deep
learning model’s capacity to manage heterogeneous real-world conditions with enhanced
robustness and predictive accuracy.

Uncertainty-guided adaptive Bayesian optimization (UGABO)

UGABO is a strategy that combines uncertainty estimation with adaptive
exploration-exploitation trade-offs in Bayesian optimization. The core idea is to
dynamically adjust the balance between exploration and exploitation by guiding the
process based on uncertainty estimates, thereby achieving more efficient optimization
(Zangirolami & Borrotti, 2024). UGABO begins with initial hyperparameter settings
and iteratively adjusts them using optimization algorithms. This approach gradually
converges to an optimal configuration, balancing accuracy, robustness, and computational
efficiency.

Gaussian process regression (GPR) is commonly used to model the objective function in
Bayesian optimization. It provides a probabilistic framework to estimate the function and
its uncertainty (Li et al., 2024).

Given a set of observed data points D = {(x;, ;) }_,, where each pair (x;, y;) represents
an input x; and its corresponding observed output y;.x; represents the i-th input in the
observed dataset, and y; is the corresponding function value or observed output for input
x;. The corresponding function value, a gaussian process assumes that the function f(x)
follows a multivariate normal distribution over any finite set of points:

f(x) ~ GP(:u(x)v k(x7 x/)) (4)

where f(x) represents the target function, representing the function value at the input x.
GP(u(x), k(x,x")) denotes that f(x) is modeled as a Gaussian process with a mean
function u(x) and a covariance function k(x, x’). u(x) represents Mean function (often
assumed to be zero) and k(x, x’) indicates Covariance function (kernel function), such as
the Radial Basis Function (RBF) kernel.

Acquisition functions guide the selection of the next evaluation point by balancing
exploration and exploitation (Duankhan et al., 2024). The Upper Confidence Bound
(UCB) acquisition function incorporates both the mean and the uncertainty of the
prediction, controlled by a parameter x:

aycs(x) = py(x) + KG4(x) (5)

where oycp(x) represents the UCB acquisition function value, which evaluates the
potential of selecting point x. 41, (x) denotes the predicted mean at point x. o,,(x) represents
the predicted uncertainty (standard deviation) at point x. k is a parameter that controls
the trade-off between exploration and exploitation, higher values of k encourage
exploration by giving more weight to the uncertainty term ¢,(x), and lower values of
favor exploitation by focusing more on areas with high predicted mean g, (x).

UGABO dynamically adjusts the exploration-exploitation balance based on the
uncertainty estimates. This ensures that the algorithm focuses more on exploration in
regions of high uncertainty and on exploitation (Daliri et al., 2024).
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The trade-off parameter k can be dynamically adjusted using the maximum uncertainty

O max-

Ky = Ko - % (6)
Tn(x)

where k() represents the trade-off parameter at iteration step ¢, controlling the
balance between exploration and exploitation during the optimization process.
indicates initial trade-off parameter, 7,,,, denotes the maximum uncertainty observed in
the current iteration, guiding the adjustment of the trade-off parameter to favor
exploration when uncertainty is high. ,(x) represents the uncertainty associated
with the prediction at point x during the n-th iteration, used to normalize the trade-off
adjustment.

The complete UGABO process is illustrated in Fig. 1.

Multi-scale adaptive Wasserstein-Huber loss (MSAWH loss)
MSAWH is a method that dynamically adjusts the 6 parameter of the Huber loss and
incorporates multi-scale Wasserstein distances, aiming to build a more robust and flexible
loss function by combining the strengths of both components, the specific workflow is
shown in Fig. 2.

The Huber loss function is defined as:

1
Eaz if |a| <o

Ls(a) = 1 (7)
5<|a|—55> if |a|>9d

where Ls(a) denotes the Huber loss function, a is the error term, the difference between
the predicted value and the true value, and 0 is the threshold that determines whether the
loss behaves quadratically (for small errors) or linearly (for larger errors).

During training, the parameter 0 is dynamically adjusted based on the statistical
properties of the errors, allowing it to adaptively change to provide more appropriate
penalties across different error ranges. By dynamically adjusting the ¢ parameter of the
Huber loss, the model can handle outliers more robustly.

Calculation of the Wasserstein distance at different scales to capture distributional
differences at various levels is given as follows (You, Shung & Giuffre, 2024).

The Wasserstein distance is defined as:

W(p,q) = infyeﬂ(p,q)E(x,y)Nv[d(x,)/)] (8)

where W (p, q) represents the Wasserstein distance between the probability distributions p
and q, inf denotes the infimum (greatest lower bound). It is used here to find the minimum
value of the expected distance over all possible joint distributions. 7 represents a joint
distribution over the product space of x and y, where the marginals are p and q
respectively. I1(p, q) denotes the set of all joint distributions with marginals p and g.
E(y,)~, represents the expected value (expectation) with respect to the joint distribution y.

Liao et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3006 10/30


http://dx.doi.org/10.7717/peerj-cs.3006
https://peerj.com/computer-science/

PeerJ Computer Science

Figure 1 Detailed workflow of the uncertainty-guided adaptive Bayesian optimization (UGABO)
algorithm for hyperparameter tuning. The complete process of UGABO. It includes steps such as
initialization of observation points, modeling the objective function using Gaussian process regression
(GPR), evaluating acquisition functions, selecting optimal points, and iteratively updating until reaching
the stopping criterion for hyperparameter optimization. Full-size K&l DOT: 10.7717/peerj-cs.3006/fig-1

It is the average value of the function d(x, y) when pairs (x, y) are sampled according to vy,
and d(x, y) is the distance metric between points x and y.

Multi-scale Wasserstein distances capture distributional differences at various scales,
enhancing the model’s sensitivity to information across different levels.

Combine the multi-scale Wasserstein distance with the adaptively adjusted Huber loss
to form a new loss function:

Lyisawn = oLs(a) + f Zi wiWi(p,q) 9)

where Lysawn represents the combined loss function, specifically designed to integrate the
MSAWH loss. This function combines the Wasserstein distance and Huber loss
components to adapt to various data distributions. o« and f are weighting parameters that
control the influence of the Huber loss and Wasserstein distance components in the
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Figure 2 Workflow of the multi-scale adaptive Wasserstein-Huber (MSAWH) loss function for
gradient-based model optimization. The workflow of the MSAWH loss optimization. The process
involves calculating dynamically adjusted Huber loss and multi-scale Wasserstein distance, followed by
gradient computation and parameter update through backpropagation, iterating until convergence.
Full-size K&l DOT: 10.7717/peerj-cs.3006/fig-2

combined loss function. » , w;W;(p, q) represents the sum of Wasserstein distances
calculated at different scales, with each term in the sum being weighted by wi, and wi is the
weight for the Wasserstein distance at the i-th scale, allowing the model to adjust the
importance of each scale’s contribution to the total loss. W;(p, q) denotes the Wasserstein
distance between distributions p and q at the i-th scale. This term measures the distance
between distributions at multiple resolutions or granularities.

Combining Wasserstein distance with Huber loss provides a flexible framework that can
adapt to different types of data distributions and error characteristics.

Model predictive control (MPC) error correction

The MPC method is primarily used for prediction and control issues in dynamic systems
(Zhao et al., 2024b). In this article, MPC is used to adjust the predicted time series data to
more accurately match the actual values. Specifically, it dynamically adjusts predicted
values to bring them closer to observed actual values. The optimization of the cost function
reduces the error between predicted and actual values. During this process, it also smooths
out anomalies in the predicted values (Gu, Wang & Liu, 2024).
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In the MPC control approach, the cost function is mainly utilized to assess the
discrepancy between the predicted values and the actual values (Han, Park ¢ Lee, 2024).
The formula is:

76 = 3 Ol = Oprealt] + x01) (10

where J(x) represents the cost function, which is used to quantify the discrepancy between
the predicted values and the actual values over a specified prediction horizon. t represents
the time step within the predicted horizon. N is the prediction horizon (the total number of
future steps over which the cost function is evaluated). y;,. represents the actual value or
ground truth for the target variable at time step t, ypq represents the predicted value at
time step t, x[t] represents the adjustment value applied at time step t, which is used to
fine-tune or correct the prediction.

CNN-LSTM-Attention

The CNN is a deep learning architecture specifically designed to process data with a
grid-like topology, such as images and time series (Zeghina et al., 2024). By leveraging local
connections and weight sharing, CNNs effectively extract spatial or temporal features from
input data, reducing the number of parameters and computational complexity (Zhang
et al., 2024a). Their primary function is to automatically extract and learn high-level
features from data, enabling the model to achieve high accuracy and efficiency in tasks
such as classification, detection, and prediction (Kheddar et al., 2024).

A typical 1D-CNN consists of an input layer, a convolutional layer, a pooling layer, a
fully connected layer, and an output layer. The input layer acts as the gateway for data. In
the convolutional layer, features are extracted using a particular convolutional kernel, often
referred to as a feature detector. The feature extraction process follows this formula:

$(0) = (X W)(i) = Y XG5+ m) - W(om) ()

where S(i) represents the output of the convolution operation, X denotes the input feature
map, W refers to the convolutional kernel, M corresponds to the height of the
convolutional kernel, respectively, and i denotes the position of the output, m is the index
variable used in the summation, representing the positions within the convolutional kernel
as it slides over the input feature map.

Ultimately, the CNN architecture combines outputs from various convolutional layers,
utilizing Dropout and Batch Normalization to boost the model’s generalization ability and
stability. This structure ensures effective learning from both temporal data and local
teatures, while enhancing prediction performance through the fusion of multi-level
features (Man et al., 2024).

LSTM is a variant of recurrent neural networks (RNNs) specifically designed to
capture long-term dependencies within sequential data (Ehteram et al., 2024). LSTMs
overcome the problems of vanishing and exploding gradients found in traditional RNNs

Liao et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.3006 13/30


http://dx.doi.org/10.7717/peerj-cs.3006
https://peerj.com/computer-science/

PeerJ Computer Science

by incorporating memory cells and gating mechanisms, which are specialized units
designed for this purpose (Al-Selwi et al., 2024). In the CNN-LSTM-Attention model,
LSTM is used to process time series data, such as voltage, current, and temperature over
time. LSTM can capture the temporal dependencies in these sequences, providing more
accurate predictions (He et al., 2024). An LSTM network consists of four key components:
the input gate, forget gate, output gate, and cell state (Ehteram et al., 2024). Each
component is vital for the LSTM’s operation, but the cell state stands out as the most
critical. The cell state functions like a conveyor belt, enabling information to pass through
multiple time steps without alteration, which is essential for preserving long-term
dependencies (Zhao et al., 2024a). LSTM is governed by the cell state formula:

Ci=fi-Co+i-C (12)

where C; represents the cell state at the current time step t, t is the time step in the
sequence, and f; denotes the forget gate’s activation vector at time step t, which determines
how much of the previous cell state C;_; should be retained, C;_; is the cell state at the
previous time step (t — 1), i; is the input gate’s activation vector at time step t and C; is the
candidate cell state at time step t.

In the CNN-LSTM-Attention model, LSTM plays a crucial role in capturing long-term
dependencies in time series data. By combining CNN and Attention mechanisms, the
model can more accurately predict the SOH of lithium batteries. The final outputs of the
model include predicted SOH (make sure consistent) values and relevant evaluation
metrics to assess the model’s performance.

The Attention mechanism is an advanced technique employed to improve the efficiency
of models when processing sequential datasets. This approach allows the model to focus
more on the relevant parts of the data by assigning varying levels of importance to different
segments of the input sequence (Hassanin et al., 2024). By dynamically assigning different
weights to various segments of the input sequence, this approach allows the model to focus
on the most relevant information for the current task (Guo et al., 2024). For predicting the
SOH in lithium batteries, the Attention mechanism can boost the performance of the
CNN-GRU model by highlighting the time steps most relevant to SOH variations, thereby
increasing the accuracy of the predictions (Du et al., 2024).

The core of the Attention mechanism lies in its ability to dynamically adjust the
importance of input information, making the model more accurate in time series
prediction. In lithium battery SOH prediction, the Attention mechanism helps the model
better identify and utilize important time step data, thereby improving prediction
performance and accuracy.

Evaluation metrics for prediction performance

To accurately quantify the deviation between forecasted outcomes and actual values, it is
essential to implement appropriate performance assessment metrics. Lety = [y1, y2, . . ., V4]
represents the vector of actual values, with the average value denoted by y. The vector
representing the forecasted values is denoted by y = [yAl, V2., yn|, and the relationship
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between them is captured by relevant assessment metrics. The main assessment metrics are

listed below:
MAE:

MAE(y,y) Z‘yl yz

MSE:

MSE(y,y) = Z(yz i),

MAPE:

MAPE = — Zy’ y’.

ni= yi
RMSE:
RMSE(y,7) = 1/ Z(y
R%:

> (i — pi)?
> [yi — mean(§i))]?

Rsquare(y,y) = |1 —

CRMSD:

1 & S . _\12
CRMSD = NZ [(yz —y) — (yi —y)] .

i=1
MAD:

MAD (y,y) = median|yi — yil.
nRMSE:

RMSE(y, )

nRMSE (y,y) = 7

Process flow of UGABO-CNN LSTM Attention-MSAWH Loss-MPC

model

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

The detailed workflow of the UGABO-CNN-LSTM-Attention-MSAWH Loss-MPC model
is depicted in Fig. 3, outlining data preparation, model training, prediction, and evaluation

stages. The process ensures a structured and reproducible approach for LIB SOH

evaluation.
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Table 2 Summary of key operating parameters for lithium-ion battery cells (B0005-B0018) in the
NASA dataset, including temperature, charging/discharging current, and cut-off voltage. The
detailed basic parameters of the selected lithium-ion battery dataset, including the temperature, charging
current, discharging current, and cut-off voltage for different battery models. The values listed corre-
spond to the battery models B0005, B0006, B0007, and B0018 under a constant temperature of 24 °C.

Model Temperature/°C Charging current/A Discharging current/A Cut-off voltage/V

B0005 24 1.5 2 2.7

B0006 24 1.5 2 2.5

B0007 24 1.5 2 2.2

B0018 24 1.5 2 2.5
RESULTS

To evaluate the practicality and effectiveness of the proposed LIB SOH prediction
framework, this section presents a comprehensive experimental validation. Starting with
the NASA dataset as the baseline, the raw data underwent systematic augmentation to
generate four new datasets with improved diversity and generalizability. These augmented
datasets were subsequently divided into training, validation, and testing subsets to facilitate
robust model evaluation. The enhanced datasets were then fed into the proposed
prediction framework for both training and testing. Finally, the results were thoroughly
analysed and benchmarked against alternative approaches to ensure a rigorous and
objective assessment of the framework’s predictive performance.

Raw data description

To analyse the degradation performance of LIBs in electric vehicles and support the
development of deep learning prediction models, the NASA lithium battery dataset serves
as the foundation data source (Saha ¢ Goebel, 2007). This dataset includes four batteries:
B0005, B0006, B0007, and B00018. The basic testing parameters of these four batteries are
summarized in Table 2. These batteries are initially charged in a constant current (CC)
mode at 1.5 A until they reach 4.2 V, then charged in a constant voltage (CV) mode until
the current decreases to 20 mA. The discharge process occurs in CC mode at 2 A until the
voltages of batteries 5, 6, 7, and 18 drop to 2.7, 2.5, 2.2, and 2.5 V, respectively.

The battery is subjected to continuous charge and discharge cycles until its capacity
meets the predetermined end-of-life criteria. Figure 4 illustrates the degradation trends of
four lithium-ion batteries (B0005, B0006, B0007, and B0018) in terms of capacity (A),
current (B), and voltage (C) over time. Overall, the three subplots collectively demonstrate
how different cells degrade under the same testing protocol and highlight the importance
of modelling multi-dimensional inputs for accurate SOH estimation.

Evaluation of CNN LSTM attention framework
This section validates the proposed deep learning-based SOH prediction system for
lithium-ion batteries using the NASA dataset. As outlined in the workflow (Results), data
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Figure 4 Capacity, current, and voltage variation curves of four lithium-ion batteries (B0005, B0006, B0007, B0018) from the NASA dataset.
Battery performance trends from NASA’s lithium-ion datasets. (A) Capacity degradation over charging cycles for four battery units, showing
variation in aging rates. (B) Current profiles during charging/discharging phases over time, illustrating operational dynamics. (C) Voltage curves
over time, capturing voltage drop behaviors under different usage patterns. Full-size K&l DOL: 10.7717/peerj-cs.3006/fig-4

preprocessing, augmentation, and partitioning were key steps to ensure robust evaluation.
To enhance dataset diversity, data augmentation methods—including linear interpolation,
cross-enhancement, flipping, and slicing—were applied. The dataset was partitioned into
training, validation, and test sets, with flexible parameter control to enable different
experimental setups.

Validation sets were dynamically generated through K-fold cross-validation (k = 3), and
the independent test set was reserved exclusively for final performance evaluation. These
rigorous methodologies ensured unbiased and reliable assessment of the model’s predictive
capabilities, as presented in the following results.

It is important to note that, unless explicitly stated otherwise (e.g., the baseline model),
all experimental configurations integrate UGABO, MSAWH Loss, and MPC. These core
components are fundamental to the system’s design and will not be reiterated in
subsequent sections.

As illustrated in Fig. 5, the proposed CNN-LSTM-Attention model was trained and
tested on datasets generated by four distinct data augmentation techniques: linear
interpolation, cross-validation sampling, flipping, and slicing. Across all four scenarios, the
predicted capacity trajectories (in red) closely match the actual measured values (in blue),
indicating high consistency in capturing the underlying degradation patterns.

The results demonstrate that the integration of multiple data augmentation techniques
significantly enhances the model’s adaptability to diverse input patterns and strengthens its
resilience against noise and distributional shifts.

DISCUSSION

Analysis and comparison of different LIB capacity prediction models
This section examines the strengths and weaknesses of different capacity prediction
methods. The accuracy of models such as CNN-LSTM-Attention, CNN-GRU-Attention,
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Figure 5 State-of-health (SOH) prediction results under four data augmentation strategies using the proposed deep learning model. The SOH
change curves under four different data augmentation strategies. (A) Shows linear interpolation applied between available data points; (B) represents
SOH variation using cross-validation partitioning; (C) depicts results under the flipping method; and (D) illustrates the slicing strategy that segments
the cycle data for augmentation. The curves demonstrate how each strategy affects the data trend and smoothness of the SOH trajectory.
Full-size K&l DOT: 10.7717/peerj-cs.3006/fig-5

CNN-GRU, CNN, CNN-LSTM, LSTM, and LSTM-Attention is evaluated. The method
resembles that described in ‘Analysis and Comparison of different Hyperparameter
Optimization Method’, with the forecast results illustrated in Fig. 6.

As illustrated in Fig. 6 (capacity trend comparison), multiple deep learning architectures
such as CNN-GRU-Attention and CNN-LSTM-Attention demonstrate satisfactory
capacity prediction performance. However, a comparative analysis across all seven
architectures indicates that CNN performs relatively poorly. Although CNNs are
well-suited for capturing spatial patterns, their ability to model temporal dependencies in
sequential battery data is limited, making them less effective in SOH estimation tasks.
Similarly, while LSTM captures temporal dependencies, its standalone performance is
slightly lower, likely due to limitations in feature extraction from raw multivariate
inputs. Although certain parameters of CNN-GRU-Attention occasionally
outperform those of CNN-LSTM-Attention, the latter exhibits overall smaller prediction
errors and superior robustness across different evaluation scenarios. Therefore, we
ultimately selected the CNN-LSTM-Attention method for subsequent model development
and validation.
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Figure 6 Capacity variation curves across different approaches. The actual battery capacity against the predicted capacity values across eight deep
learning architectures. Each subfigure (A-D) presents results on one battery cell using different models including CNN, LSTM, GRU, and their
variants enhanced with attention or hybridized structures. The alignment or deviation of predicted curves from the ground truth highlights the
comparative prediction performance of each method. Full-size K&] DOT: 10.7717/peerj-cs.3006/fig-6

Analysis and comparison of different hyperparameter optimization
method

In the hyperparameter optimization comparison experiments, the proposed UGABO
optimization algorithm was compared with Random Search, Tree-structured Parzen
Estimator (TPE), Particle Swarm Optimization (PSO), and Bayesian Optimization under
the same model structure. As shown in Fig. 7, the proposed UGABO algorithm
consistently outperforms other mainstream hyperparameter optimization methods—
including Bayesian Optimization, PSO, Random Search, and TPE—across various data
augmentation strategies (interpolation, flipping, slicing, crossover). The box plot in Fig. 7
illustrates that UGABO achieves the narrowest error distribution and the lowest median
MAE and RMSE values, reflecting both accuracy and robustness.

Opverall, these results validate that UGABO not only improves model generalization
but also offers stable convergence and stronger resistance to noise in high-dimensional
search spaces. The consistent dominance of UGABO across multiple metrics and
datasets reinforces its practical utility in optimizing deep learning-based SOH
prediction models.
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Figure 7 Comparison of prediction error distributions under five hyperparameter optimization methods across four data augmentation
strategies. The prediction errors of five hyperparameter optimization strategies: Bayesian optimization, PSO, Random Search, TPE, and
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Comparison with various loss functions

In this section, the proposed MSAWH Loss, based on the Wasserstein distance, is
compared with Huber Loss, Log-Cosh Loss, Mean Squared Logarithmic Error (MSLE),
and Smooth L1 Loss. The evaluation metrics used for comparison include R?*, MSE, and
RMSE. The results are presented in Fig. 8. The testing conditions are similar to those
described in ‘Analysis and comparison of different hyperparameter optimization
methods’, with the only difference being the type of loss function used in the same model
architecture.

As shown in the box plot of Fig. 8, the MSAWH loss function results in a narrower
interquartile range and fewer outliers compared to other methods, indicating more stable
and reliable predictions.

These trends confirm that MSAWH is not only robust to noisy data but also maintains
generalization across different data distributions.

The prediction errors are concentrated within a smaller range, demonstrating that the
model exhibits strong robustness in most cases.
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Figure 8 Box plot comparison of prediction errors under different loss functions across four data augmentation methods. The prediction
errors obtained using five different loss functions: Huber, Log-Cosh, MSAWH, MSLE, and Smooth L1. Each subfigure (A-D) corresponds to a
battery sample, showing how different loss functions influence prediction accuracy. The MSAWH loss function generally yields lower error dis-
tributions, demonstrating its robustness for lithium-ion battery SOH prediction.
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Table 3 Ablation study results of the CNN-LSTM-Attention model components under linear
interpolation-based data augmentation. The evaluation metrics for the ablation experiment on the
CNN-LSTM-Attention model using the linear interpolation method. The baseline model is progressively
modified by removing key components: UGABO, MSAWH loss, and MPC correction. Metrics such as
MAE, MSE, MAPE, RMSE, R%, CRMSD, MAD, and nRMSE are reported. The complete model shows
superior performance across most indicators, while removal of UGABO, MSAWH, or MPC leads to
increased prediction error and reduced accuracy, highlighting the contribution of each module to the
overall model efficacy.

Index MAE MSE MAPE RMSE R? CRMSD MAD nRMSE
Baseline model 0.01684 0.00076 0.01087 0.02752 0.98757 0.24734  0.21432  0.03200
Complete model 0.00685 0.00016 0.00413 0.01250 0.99333 0.15293  0.13674 0.02733
Remove UGABO  0.01591 0.00073 0.00968 0.02703 0.98690 0.23735  0.20722  0.03345
Remove MSAWH  0.02524 0.00105 0.01574 0.03234 0.98126 0.23249  0.20440 0.04001
Remove MPC 0.02609 0.00134 0.01689 0.03528 0.97811 0.26194  0.22850 0.04102

Therefore, the integration of multi-scale Wasserstein distance with Huber loss proves

particularly effective in handling battery degradation variability and mitigating the

influence of abnormal values or distribution shifts.
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Table 4 Ablation study results of the CNN-LSTM-Attention model under cross-validation data
augmentation. The evaluation metrics from the ablation study on the CNN-LSTM-Attention model
using the cross-validation-based data augmentation strategy. The baseline model is compared with the
full model and versions with individual components removed (UGABO, MSAWH loss, and MPC).
Performance is measured using MAE, MSE, MAPE, RMSE, R?, CRMSD, MAD, and nRMSE. The full
model exhibits improved accuracy, while excluding individual components leads to performance

degradation, demonstrating the cumulative effectiveness of each integrated module.

Index MAE MSE MAPE RMSE R? CRMSD MAD nRMSE
Baseline model 0.015340 0.00071 0.00974 0.02667 0.98835 0.24381  0.21114 0.03101
Complete model 0.01489  0.00067 0.00908 0.02583 0.98806 0.23720  0.20734 0.03195
Remove UGABO  0.02126  0.00103 0.01340 0.03157 0.98152 0.23532  0.20397 0.03906
Remove MSAWH  0.02508  0.00104 0.01564 0.03221 0.98137 0.23255  0.20446 0.03985
Remove MPC 0.02353  0.00109 0.01486 0.03287 0.98213 0.25963  0.22434 0.03822

Table 5 Ablation study results of the CNN-LSTM-Attention model under flipping-based data
augmentation. The evaluation metrics for the CNN-LSTM-Attention ablation experiment under the
flipping-based data augmentation method. The baseline model is compared with the complete model and
three ablated versions excluding UGABO, MSAWH loss, or MPC components. Metrics such as MAE,
MSE, MAPE, RMSE, R?>, CRMSD, MAD, and nRMSE are used to assess performance. The complete
model yields the lowest prediction error, whereas removing each component individually results in
degraded performance, confirming the value of their integration under the flip augmentation strategy.

Index MAE MSE MAPE RMSE R? CRMSD MAD nRMSE
Baseline model 0.01682 0.00060 0.01087 0.02442 0.97460 0.15056  0.13580 0.04780
Complete model 0.01654 0.00060 0.01080 0.02441 0.96850 0.13573  0.12253  0.05238
Remove UGABO  0.01834 0.00068 0.01197 0.02606 0.96389 0.14044  0.12667 0.05594
Remove MSAWH  0.02173  0.00067 0.01413  0.02579 0.96485 0.13990  0.12592  0.05535
Remove MPC 0.01818 0.00061 0.01175 0.02464 0.97414 0.15098  0.13722  0.04843

Evaluation of ablation experiments

This section primarily employs ablation experiments to validate the importance of each

component, ensuring the model’s robustness. The experiments are divided into five

groups:

(1) Baseline Model: A CNN-LSTM-Attention model that does not utilize UGABO
optimization, MSAWH Loss, or MPC error correction. It employs fixed

hyperparameters without any hyperparameter optimization methods and uses the

Huber Loss function with no error correction algorithm.

(2) Complete model.

(3) Removal of UGABO Hyperparameter Optimization.
(4) Removal of MSAWH Loss Function.

(5) Removal of MPC Error Correction Algorithm.

From Tables 3 to 6, the results indicate that removing any of the three proposed
components—UGABO, MSAWH, or MPC—Ileads to a noticeable degradation in model
performance, as reflected by metrics such as MAE and RMSE. Specifically, excluding

UGABO results in the highest increase in prediction errors, underscoring its critical role in
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Table 6 Ablation study results of the CNN-LSTM-Attention model under slicing-based data
augmentation. The ablation experiment results of the CNN-LSTM-Attention model using the
slicing-based data augmentation method. The evaluation compares the baseline model, the complete
integrated model, and three ablated versions with the exclusion of UGABO, MSAWH loss, or MPC
modules. Performance is assessed using eight evaluation metrics, including MAE, MSE, MAPE, RMSE,
R? CRMSD, MAD, and nRMSE. The complete model consistently outperforms the ablated models
across all metrics, demonstrating the individual contribution of each component in improving the
prediction accuracy under slicing-based augmentation.

Index MAE MSE MAPE RMSE R? CRMSD MAD nRMSE

Baseline model 0.01710  0.00069 0.01077 0.02615 0.96368 0.13535  0.11875 0.05511
Complete model 0.01424 0.00051 0.00888 0.02253 0.96938 0.12643  0.10910 0.05130
Remove UGABO  0.01911 0.00080 0.01169 0.02794 0.95166 0.13265  0.11529 0.06363
Remove MSAWH  0.02368 0.00083 0.01457 0.02874 0.95014 0.12642  0.10978 0.06549
Remove MPC 0.02117  0.00089 0.01313  0.02958 0.95249 0.14352  0.12455 0.06237

guiding efficient hyperparameter optimization. Omitting MSAWH widens the error
distribution and increases the number of outliers, demonstrating its importance in
enhancing error tolerance and mitigating the impact of anomalous data. Likewise,
eliminating the MPC module introduces significant fluctuations in the predicted
sequences, revealing its effectiveness in smoothing temporal predictions and reducing
cumulative error propagation.

Compared to the baseline model, the improved model achieves a reduction in MAE
from 0.01653 to 0.01313 and RMSE from 0.02619 to 0.02132, representing decreases of
20.6% and 18.6%, respectively. Additionally, the average R* improves from 0.97855 to
0.9798, marking a relative increase of 0.1%, which further validates the effectiveness of the
proposed enhancements.

CONCLUSIONS

This study introduces a method for analysing lithium-ion battery capacity changes and
predicting related parameters using deep learning. The feasibility of the proposed system
was confirmed using relevant databases. The main conclusions of this study are as follows:

(1) A novel deep learning architecture was developed to monitor the degradation of
battery capacity. Through advanced data preprocessing and network optimization, the
proposed framework achieved substantial improvements in prediction performance.
Compared with the baseline model, the enhanced system reduced the average MAE and
RMSE from 0.01653 and 0.02619 to 0.01313 and 0.02132, respectively. The average R>
value also increased from 0.97855 to 0.9798, indicating enhanced reliability and accuracy.

(2) The integration of four complementary data augmentation techniques, including
linear interpolation, slicing, flipping, and cross-validation sampling, significantly
improved the diversity and generalization capacity of the training datasets. This
enhancement contributed to higher model stability and prediction accuracy.

(3) The proposed UGABO algorithm demonstrated superior effectiveness in
hyperparameter tuning. It consistently delivered lower prediction errors and a more
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concentrated error distribution, indicating strong model stability under various training
conditions.

(4) The MSAWH Loss (MSAWH Loss) function outperformed other conventional loss
functions by providing more accurate and consistent predictions. Its design allowed the
model to respond effectively to errors of varying magnitudes, improving robustness against
noise and distributional variation.

(5) The inclusion of the MPC algorithm served as a critical error correction strategy,
reducing cumulative prediction errors and ensuring smooth output trajectories. This
improvement enhanced the practical reliability of the model under real-world constraints
such as voltage, current, and temperature limits.

(6) Ablation studies confirmed that the integrated use of UGABO, MSAWH Loss, and
MPC played a pivotal role in enhancing the overall model performance. Each component
contributed to more accurate SOH estimation, reinforcing the framework’s effectiveness
across multiple evaluation metrics.

Although the proposed method significantly improves prediction accuracy and
robustness, several challenges remain. The UGABO algorithm, while effective, imposes
high computational costs that may hinder real-time application. Similarly, the MSAWH
loss function may be overly sensitive to outliers, and the MPC algorithm’s complexity and
resource demands can create performance bottlenecks. To address these issues, future
work will focus on enhancing model adaptability by incorporating real-time battery data
and accounting for environmental and chemical variability. Variants of UGABO and
MSAWH will also be explored to improve performance under practical conditions and
broaden real-world applicability.
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