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ABSTRACT

Accurate detection of skin diseases is essential for timely intervention and treatment.
This article proposes a patch-based, interpretable deep learning framework for skin
disease detection using wearable sensors and clinical data. Specifically, a fully
convolutional residual neural network (FCRN) is employed to extract local features
from high-resolution skin images captured via wearable sensors, using a patch-level
training approach. Pre-processing techniques—including image resampling,
intensity normalization, and noise reduction—standardize the input data to ensure
consistency across sensor variations. To enhance local feature learning, the FCRN
incorporates residual modules, which mitigate gradient vanishing and improve
model performance. The framework generates disease probability maps that visualize
regions of high diagnostic risk, providing interpretable insights into skin anomalies.
In the proposed methodology, a convolutional neural network (CNN) integrates
image-derived features with clinical data such as patient demographics, symptoms,
and medical history. This CNN-based multimodal fusion approach improves the
model’s ability to capture spatial relationships and enhances classification
performance. Experimental evaluations demonstrate that the proposed framework
achieves state-of-the-art results across multiple evaluation metrics, including
accuracy, sensitivity, and specificity. The interpretable disease probability maps
highlight affected skin regions, enhancing model transparency and clinical usability.
This approach demonstrates the potential of combining wearable sensor technology
with deep learning for efficient, scalable, and explainable skin disease detection,
laying the foundation for real-time clinical applications.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and Machine
Learning, Data Science, Optimization Theory and Computation

Keywords Skin disease detection, Wearable sensors, Deep learning, Patch-based learning,
Multimodal fusion, Convolutional neural networks, Residual networks

INTRODUCTION

The skin, the human body’s largest organ, is a crucial barrier. The skin’s primary role is to
safeguard the human body against harmful external substances while preventing the loss of
essential nutrients within (Hameed et al., 2016). The skin’s structure includes the outer
layer known as the epidermis, the underlying dermis, and the deeper subcutaneous tissues.
It senses external factors and protects internal organs and tissues from detrimental
bacteria, pollutants, and sunlight. The 20 to 23 square feet of skin surface area is critical in
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thermoregulation, sensation, and overall protection (ALEnezi, 2019; Mohammed & Al-
Tuwaijari, 2021). A variety of factors, such as exposure to solar radiation, smoking habits,
alcohol consumption, physical activities, viral infections, and the surrounding work
environment, influence the health of the skin. The interplay of these factors undermines
skin function, results in negative health consequences, and, in extreme instances, poses a
risk to human life (Hameed, Shabut ¢ Hossain, 2018). Skin diseases have emerged as a
prevalent issue affecting human health, carrying considerable implications for society and
individuals. External influences, such as pollution, allergens, microorganisms, and internal
elements, like genetic disorders, hormonal imbalances, or immune system problems, can
lead to these outcomes (Yang et al., 2018).

Skin diseases are typically classified into three main types: viral, fungal, and allergic.
While fungal and allergic conditions can often be treated effectively when diagnosed early,
viral skin diseases require timely identification for proper intervention (ALEnezi, 2019).
Infectious disorders, bacterial infections, and contact dermatitis are also prevalent, altering
the skin’s colour, consistency, and integrity (Mohammed ¢ Al-Tuwaijari, 2021). Globally,
skin diseases account for approximately 1.79% of physical disabilities, affecting 30% to 70%
of individuals across different populations (Yang et al., 2018). Traditional methods for
monitoring skin health and diagnosing diseases often involve invasive techniques, such as
intravenous catheterization, large-scale ECG monitors, or plasma osmolality
measurements. These approaches can be costly, time-consuming, and inconvenient,
making them unsuitable for long-term, real-time monitoring (Alaejos et al., 2019). Medical
devices such as pacemakers and implantable sensors have been used primarily in hospital
settings for many years. However, wearable biosensors have revolutionised the healthcare
landscape, offering a more accessible, non-invasive solution for health monitoring
(Ianculescu et al., 2018; Cheng et al., 2021).

Wearable technology, first introduced in the mid-20th century, has evolved
significantly. Modern wearable devices incorporate sensor components to monitor and
record physical or biochemical parameters. These devices are versatile, integrated into
clothing, adhered to the skin, or inserted into body orifices, and they facilitate continuous,
real-time health monitoring outside clinical settings (Ianculescu et al., 2018; Cheng et al.,
2021). In skin health management, wearable sensors can track vital parameters such as
hydration levels using advanced technologies like electrodermal activity and wireless
moisture sensors. This marks a shift from conventional invasive methods to user-friendly,
real-time monitoring solutions (Chun, Kim ¢ Pang, 2019). Such advancements address the
limitations of traditional medical systems, which often face issues of limited resources and
high costs, especially in underdeveloped regions. By enabling continuous health
monitoring, wearable sensors can identify skin diseases at early stages, minimise risks, and
improve patient outcomes (Anbar, Gratt ¢ Hong, 1998). As skin diseases can be
contagious and significantly impact the quality of life, timely diagnosis and treatment are
critical to prevent further complications (ALEnezi, 2019).

This article proposes a multimodal deep learning framework for skin disease detection,
combining patch-based feature extraction from wearable sensor images with clinical data
fusion. The proposed methodology leverages a fully convolutional residual network
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(FCRN) to extract localised spatial features from skin image patches and generate disease
probability maps. These maps highlight high-risk regions, offering interpretability and
aiding in disease localization. In addition, patient-specific clinical features, such as age,
symptom duration, gender, and skin type, are fused with image-derived features using a
convolutional neural network (CNN) for final classification. The main contributions of
this study are as follows:

1. To improve detection accuracy and robustness, We propose a hybrid model integrating
wearable sensor images (optical, thermal, and multispectral) with self-reported clinical
data.

2. A FCRN is designed to extract localized features from image patches, enabling the
generation of interpretable disease probability maps highlighting high-risk regions.

3. A CNN fuses spatial features from disease probability maps with patient-specific clinical
data, improving the model’s overall performance.

The remainder of the article is organized as follows: “Related Works” presents related
works. “Methods and Materials” describes the proposed methodology, including
patch-based feature extraction, disease probability map generation, and clinical data
fusion. “Experimental Setup” reports the experimental setup, and “Result and Discussion”
includes the results and discussion, including evaluation metrics, visualisations, and
comparisons with baseline models. “Conclusion and Future Work” concludes the article
and highlights future research directions.

RELATED WORKS

The advancement of machine learning has addressed the limitations of conventional
methods for diagnosing skin diseases, leading to the establishment of image recognition
technology specifically tailored for this purpose. Identifying images through machine
learning represents a convergence of various fields, including medical imaging of skin
conditions, mathematical modelling, and computer technology. This integration utilises
feature engineering and classification algorithms to recognise and diagnose skin diseases
effectively. In 2012, Garnavi, Aldeen ¢ Bailey (2012) employed wavelet decomposition to
extract texture features, modelled and analysed lesion boundary sequences to obtain
boundary features, and utilised shape indicators to derive geometric features. In
conclusion, four distinct classifiers were employed for the classification task (Garnavi,
Aldeen ¢ Bailey, 2012). During the initial phase of diagnostic advancements, technology
evolved as individuals developed tools capable of analysing nearly any desired analyte by
collecting and transmitting samples to various laboratories. The second technological
revolution of point of care testing (POCT) has now granted patients, nurses, and other
medical professionals access to the lab. A recent technological advancement has surfaced,
enabling patients to conveniently transport their test results through smart bio-monitoring
wearable devices (Song et al., 2021). Wong, Scharcanski ¢ Fieguth (2011) introduced an
innovative iterative stochastic region-merging technique to segment skin lesion areas from
macroscopic images. This method begins with stochastic region merging at the pixel level,
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progressing to the region level until convergence is achieved (Wong, Scharcanski ¢
Fieguth, 2011).

A distinct investigation indicates that over 99% of the resistance occurs at the surface
level. Drawing from bioelectrical impedance analysis (BIA), we have collected galvanic
skin response (GSR) data and created a method for assessing hydration levels using the
GSR. GSR quantifies skin conductance, reflecting the inverse of skin resistance, and is
evaluated through electrodermal activity (EDA). EDA sensors are employed to investigate
sympathetic responses in humans. Nonetheless, it operates on the fundamental concept of
transmitting light current from the human body at the skin’s surface. Consequently, the
GSR data from the EDA sensor is utilised through machine learning techniques to identify
the hydration level. Nonetheless, the BIA presents a multifaceted approach unsuitable for
monitoring purposes and is restricted to an indirect assessment of hydration level (HL)
(Fish & Geddes, 2009). Classification involves a computational modelling endeavour in
machine learning to predict a target category for a specific input data sample. The
methodology initiates the forecast of the category labels of the given observations. Many
times, the categories are marked as targets. If you have categorical input data and you want
to forecast categorical output variables, you should try to estimate the modification matrix.
Sorting incoming data into the correct category is the primary goal of categorization
(ExpertAl 2022).

Reeder et al. (2019) emphasize that these devices can precisely measure local sweat loss
and chloride concentration during activities such as swimming and biking, showing a
strong correlation with conventional methods. In one trial, athletes wearing the devices
during intense physical activity received real-time feedback on their sweat composition
and hydration status, allowing immediate adjustments to their hydration strategies
(Flament et al., 2021). Techniques for extracting data from healthcare systems play a
crucial role in the development of automated tools for disease diagnosis, leveraging both
machine learning and deep learning algorithms. Researchers have employed various
artificial intelligence algorithms to train classifiers essential for conducting machine
diagnostics by applying machine learning and deep learning principles. The
interconnectedness of artificial intelligence, machine learning, and deep learning
represents an evolving journey. Utilizing advanced techniques to address data challenges
and generate new accounts by leveraging extensive information facilitated by intelligent
algorithms and conveyed through interconnected systems (Liao, Li ¢» Luo, 2016).

In a separate study, the authors employed five machine-learning algorithms to identify
skin diseases. Ultimately, the confusion matrix analysis revealed that the convolutional
neural network model yielded the most favourable outcome for the disease detection
process (Bhadula et al., 2019). Researchers have proposed an artificial intelligence system
founded on a neural network. This system comprises two components. Initially, the
process of image acquisition was utilized for feature extraction. The subsequent section
involved categorization, executed through the feed-forward neural network (Reddy ¢
Nagalakshmi, 2019). The research introduced a framework that uses images to diagnose
skin conditions. The research categorised four distinct skin conditions: acne, cherry
angioma, melanoma, and psoriasis, employing support vector machine (SVM), random
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forest (RF), and k-nearest neighbors (KNN) methodologies. The collection comprised 377
images, with 80% designated for training and 20% allocated for testing. The approach
involves using a medium filter for resizing images and eliminating noise. The images are
subsequently transformed into greyscale. The technique developed by Otsu effectively
differentiates among various diseases, while features are obtained through applying Gabor,
entropy, and Sobel methods. The application of the RF algorithm yields an accuracy of
84.2%. The KNN algorithm achieved an accuracy of 67.1%. Nevertheless, the SVM
classifier performs better than the others, attaining an accuracy of 90.7% (Lefévre-Utile
et al., 2021).

The field of artificial intelligence, known as machine learning, uses statistical and
mathematical techniques to give computers human-like capacities. So, ML provides
automation and improves machines’ ability to learn from what they have seen without
programming (i.e., human intervention) (Faggella, 2018). Recently, advancements in
machine learning and deep learning have shown great potential as valuable resources in
dermatology. These methods provide automated and scalable approaches for diagnosing
skin conditions, enhancing dermatologists’ skills. Deep learning models, especially CNNss,
have demonstrated remarkable potential in automatically diagnosing skin conditions.
Models utilizing machine learning, when developed with a wide range of comprehensive
datasets featuring images of skin diseases, have shown a remarkable ability to attain high
accuracy and reliability in diagnostic processes—their potential lies in tackling the
challenge of dermatologist shortages by providing accessible diagnostic tools. Nonetheless,
the effectiveness of these models relies heavily on the quality and variety of the dataset
employed for training and the clarity of the outcomes (Sreekala et al., 2022).

Hajgude et al. (2019) present a method for identifying 408 images related to eczema,
impetigo, and melanoma skin conditions, along with a category designated for other
images. The model is constructed utilizing various techniques: a median filter for noise
reduction, the Otsu method for lesion segmentation, a 2D Wavelet transform for feature
extraction such as entropy and standard deviation, and GLCM for extracting texture
features including contrast and correlation. Applying SVM and CNN classifiers for disease
classification yielded accuracy rates of 90.7% and 99.1%, respectively (Hajgude et al., 2019;
Mulge, 2024; Ahalya et al., 2024).

The area of automation in skin disease classification has received attention with the
deep learning boom (Oztel, Yolcu Oztel ¢ Sahin, 2023) and constructed a portable
diagnosis framework using CNNS for images captured from smartphones, though input
RGB parameters constrained the depth of spatial features and diagnosis interpretation to
mere 2D images. Muhaba et al. (2022) enhanced the hybrid system’s diagnostic precision
by integrating clinical data alongside image inputs, but their system underutilised local
spatial features. Sadik et al. (2023) conducted an extensive review on the performance of
different CNNs employing transfer learning, VGG16 and ResNet, integrating them with
some primary school clinical data and wearable datasets, which were still absent in the
literature. Armed with these data sets (Chen et al., 2025), spun attention mechanisms to
features on pigmented lesion classification, which was still useful but added more value for
claiming better analysis than whole-image followers. Nassar et al. (2025) shifted the
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discussion to containing the explainability of the multi-class support deep classification
framework towards sustaining healthcare, focused more on classifying diseases than
features. Likewise, Badr et al. (2024) implemented a multi-model deep learning hierarchy
for skin disease classification, but not for optimised deep edge wearable sensor-driven
deployment.

The structure of the aerogel increases the sensor’s responsiveness and compressibility to
external pressure due to its lightweight and porous nature. The ability of this material to
undergo piezoresistive changes makes it useful for measuring physiological signals such as
heartbeat, breathing, muscle activity, and body position (Zhang et al., 2024; Zhao et al.,
2025b). Treatment included topical and hydroxychloroquine, an antimalarial medication
frequently used in autoimmune dermatological conditions, and systemic corticosteroids
(Wu et al., 2024, 2025). To reduce symptoms and the disruption of cancer treatment, early
detection and prompt intervention are essential (Zhao et al., 2025a; Wang et al., 2025).

These studies (Ahmed et al., 2021) indicate significant advances in image-based
diagnostics. However, most do not incorporate clinical reasoning or real-world
implementation into their approaches. On the other hand, our proposed hybrid
framework combines patch-based feature extraction from high-resolution images captured
by wearable sensors with clinical data from the patient using multimodal fusion. This
approach integrates clinical relevance with diagnostic precision and interpretability,
addressing usability in practical settings. Although previous attempts at integrating Al in
detecting skin diseases have shown some promise, they remain fundamentally flawed in
ways that impact clinical accuracy and reliability. Most models still operate at the level of
whole-image scrutiny and do not extract features at a localized level. This makes critical
lesion-level details diffused and less meaningful, thus decreasing their interpretability. For
instance, models employing standard CNN architectures such as VGG16 or ResNet fail to
capture any delicate regional anomalies because of their global feature pooling strategies.
In addition, most frameworks assume that image data is the only relevant data, completely
ignoring the clinical context, which includes the patient’s age, gender, medical history, and
the severity of the symptoms, all of which play a pivotal role in forming a rational
diagnosis. Systems that include clinical metadata tend to merge them too late and without
sufficient meaningful feature interaction, leading to poor performance. Many models
exhibit a lack of explainability, which further restricts the adoption of such systems into
modern clinical practice since professionals need clear and logical reasons, both visually
and contextually, for decisions made by an Al Another limitation is the ability to use
real-time applications since most other methods are intensive in the resources required to
compute them, making them unsuitable for edge deployment, integration into wearables,
or sensor use. All these gaps indicate the demand for a more context-aware, lightweight,
interpretable framework.

METHODS AND MATERIALS

This section describes the strategy and resources employed to detect skin diseases. The
combined approach merges image-derived spatial features and clinical data into a
multi-modal deep learning structure. The two data types used for this study were sourced
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Figure 1 Sample images from dataset. Full-size K] DOT: 10.7717/peerj-cs.3002/fig-1

from the SCIN (Skin Condition Image Network) dataset. Advanced wearable sensors were
used as the wearable device. Resampling, normalizing, and patching images were
conducted in the preprocessing stages to ensure uniformity in the data.

Third party dataset DOI/URL

This research integrates the SCIN (Skin Condition Image Network) Open Access Dataset
(Google Research Datasets and Stanford Medicine, 2024), and data gathered using wearable
Sensors.

ULR of third-party dataset: DOI: 10.5281/zenodo.10819503.

The SCIN dataset hosted on the Google Cloud contains over 10,000 images of
demographics such as eczema, psoriasis, acne, and melanoma uploaded by Google search
users in America. Each contributor provided relevant self-reported demographic
information, including age, gender, ethnicity, symptom history, and Fitzpatrick Skin Type
(sEST) to ensure diversity and fairness. The sample images from the dataset can be seen
in Fig. 1.

Selection method
The proposed use of multimodal deep learning techniques for skin disease diagnosis
devices enables the balance of the two conflicting features of interpretability and practical
applicability. Furthermore, the diagnostic accuracy attained is outstanding. Therefore,
WEN would significantly spend resources on improving the interpretability and practical
applicability. It would be worth noting that the inclusion of clinical data was embedded
using CNN, which is how patient data was fused with image features for enhanced
accessibility to analysis. The generalised approach was utilised alongside disease-specific
analysis which aided in overcoming baseline models. Such robustness ensured accuracy
and a better AUC score, reflecting superiority over VGG16 and ResNet18. Taking this
further into consideration, veb3 technology can also aid in machine tools that have better
interpretability and clinical explanation—this would enable doctors to plan better
strategies to combat disease. Real and real-time fluid interactions empower the doctors and
give them the needed control. Future adaptation might include temporal and spatial
tracking with the help of wearable sensors. Alongside CNN, additional measures such as
fusion algorithms with real-time portable devices for improved Al explainability would
further the transition and enhance the battle against skin diseases.

SCIN was bolstered by employing wearable sensor devices that enabled capturing social
images and clinical data in great detail. The sensors used optical imaging for fine detail
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images, thermal sensors for temperature variations, and multispectral sensors for
structural and pigmentation. Additional metadata, such as demographics, symptom
duration, and environmental data, enabled collecting over 10,000 additional images. This
integrated dataset catered to high-quality skin images, clinical metadata, and real-time
sensor measurements. The intended model will attain high accuracy and practicality for
real-time skin disease detection due to this multi-modal dataset, and spatial features from
skin images and clinical insights from metadata will be learned, enhancing accuracy and
robustness.

Data preprocessing

The preprocessing pipeline for skin disease images captured using wearable sensors
ensures consistency, quality, and suitability for deep-learning models. To standardise the
input image size, all images were resampled to a consistent spatial resolution of 256 x 256
pixels. Given an input image I(x, y) with dimensions H x W, the resampled image I'(x, y)
is computed as:

x-Hy W
P =1(%t 2t ) e 0L y€ o, w) <n

where H' and W’ are the target height and width, respectively. Spatial adaptive non-local
means (SANLM) filtering was applied to preserve fine details while reducing sensor noise.
The denoised image I; at pixel p is computed as:

S Q) (i) - 1)
S g 0= p ()

where N, represents the neighborhood of the pixel p, w(p, q) is the similarity weight, I(q) is

Li(p) = (2)

the intensity at the pixel g, and & is a smoothing parameter. This technique adaptively
smooths regions while preserving edges. Non-skin areas such as clothing or backgrounds
were removed using a segmentation technique. A threshold-based mask M(x, y) was
generated:

1 I(x,y) > T(skinpixel)
0, otherwise

Mixy) = { )

where T is a threshold value determined through Otsu’s method. The final segmented
image I; was obtained by element-wise multiplication:

L(x,y) =I(x,y) - M(x,y). (4)

To ensure uniform brightness across all images, pixel intensities were normalised to a
range of [0, 1] using min-max scaling. For an input image I(x, y), the normalised image
I,(x,y) is computed as:

I(X,y) _Imin (5)

Imax - Imin

Iﬂ(xvy) =
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Figure 2 Overall structure of the proposed methodology. Full-sizc Kal DOI: 10.7717/peerj-cs.3002/fig-2

where I,,in and I,,ax represent the minimum and maximum pixel intensities, respectively,
this normalization ensures consistent contrast across varying illumination levels. Several
augmentation techniques were applied to improve model robustness and prevent
overfitting, including random rotation (0), flipping cropping, and brightness adjustments.
For rotation, an image I(x, y) was transformed using the following:

L(x',y') = I(xcosO — ysin®, xsinf + ycost) (6)

where 0 is the rotation angle, and (x',y’) are the new coordinates. Flipping was applied
horizontally and vertically, while brightness adjustments scaled pixel values linearly within
the normalised range.

Proposed methodology
The proposed model for skin disease detection first analyses the localised skin anomalies
using a fully convolutional residual network, followed by feature extraction using the
patch-based method, and afterwards applies a convolutional neural network for the
classification. This dual strategy focuses on fine-grained image feature extraction using
image patches and parallelizes the task with speed and interpretability. The tasks consist of
data cleaning, image patch extraction, generation of disease maps, and subsequent cover
classification with CNNs. The FCRN model focuses on local features of disease patches
and combines them into comprehensive maps of areas with the highest probabilities of
skin disease. The classified maps of high risk do not use “discriminative regions” but
instead use a neural network for image classification and its associated probabilities of skin
disease type.

Figure 2 depicts the blueprint of the proposed methodology for classifying skin diseases
using hybrid deep learning techniques. As shown in the framework, the first step involves
image preprocessing, which consists of resizing, scaling, and reducing noise. Disease
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probability maps endure fully convolutional residual network (FCRN) feature extraction
on patch images to produce some maps. Clinical data, such as demographics, symptoms,
and medical history, are integrated with the maps through a CNN-based multimodal
architecture, which yields precise and interpretable skin disease classification.

Patch-based feature extraction using fully convolutional residual network

A patch-based technique is expected to help capture level features in skin images more
accurately to achieve the above mentioned aims. Rather than treating skin disease images
as a single category, they are fragmented into smaller overlapping skin disease images, and
these smaller images are referred to as patches. The patches assist the network in
concentrating on local features, including lesions, pigmentation, and texture irregularities
of the skin, which assist in making an accurate diagnosis. From an input image I(x, y) of
size H x W, non-overlapping patches P of size p x p are extracted. The total number of
patches N can be calculated as:

o= - [2]

Each patch Py at location (i, ) is represented as:
Pe=I(x+iy+j)vie [0,p],j € [0,p], )

where k indexes the patches and p is the patch size. The extracted patches Py are fed into a
FCRN, designed to learn localized features and mitigate common issues like vanishing
gradients. The architecture consists of convolutional layers for feature extraction, residual
blocks to improve training depth and a final SoftMax layer for generating disease
probabilities. The FCRN processes each patch Py with the following components:

The convolutional operation is defined as:

Cin . .
Fi(x,y) = ZKI(’) * P,((’) 9)

i=1
where Klm represents the convolutional kernel at the layer [ for input channel i, C;, is the
number of input channels, * denotes convolution, and F(x, y) is the output feature map.
Residual connections are incorporated to prevent gradient vanishing and enable deep
learning of features. A residual block learns the mapping:

Hl(x) = Fl(x) + x, (10)

where Fj(x) represents the non-linear transformation through convolution, activation, and
batch normalisation. The addition of the input xxx directly to the output promotes
efficient gradient flow. Each residual block consists of Two 3D convolutional layers with
kernel size 3 x 3, Batch normalisation is for stability, and Leaky ReLU activation is for
non-linearity. The residual block output at the layer [ is given as:

Ry(x) = ReLU(BN(W, - ReLU(BN(W; - x))) + x) (11)
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Figure 3 Patch-based feature extraction using fully convolutional residual network (FCRN).
Full-size 4] DOT: 10.7717/peerj-cs.3002/fig-3

where W, and W, are the weights of the convolutional layers, and BN refers to batch
normalization. After the FCRN processes each patch, the final layer generates a disease
probability map using the SoftMax function:

Plcfx) = ) (12)
21 exp(z)

where z. is the network output for class ¢ (e.g., diseased vs. healthy), and C is the total

number of classes. The probability P(c|x) highlights the likelihood of disease presence in a

specific patch. The individual patch probabilities are aggregated to form the final disease

probability map M(x, y) for the entire image. The map is defined as:

M(xJ’) = mI?XPk(xa}’)7 (13)

where k indexes overlapping patches. High-probability regions are identified as high-risk
areas, providing interpretable visual insights into affected regions. Figure 3 shows the
patch-based feature extraction using FCRN.

The input to the network is the image patches of 32 x 32 x 3 pixels RGB channels. The
first convolutional layer consists of a 3 x 3 kernel with 64 filters and a stride of 1. This layer
keeps the spatial parameters and isolates a few low-level attributes. Non-linearity is
introduced by applying the activation function rectified linear unit (ReLU). After this,
there is a residual block with two layers of 3 x 3 a convolutional unit with 64 filters for
each, and afterwards, batch normalization is applied to both layers primarily to stabilize
the learning. There is a skip connection in the residual block, which enables the input of
the block to be added directly, in essence, to the output, assisting in overcoming the
gradient vanishing problem while learning deeper features. The next stage in the model is a
max-pooling operation with a kernel size of 2 X 2 and a stride of 2. This range of kernel
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size and stride reduces the dimension of the model output to half of the original, allowing
the model to leverage more factor global features while also lowering the computational
cost. Once max pooling has been performed, another residual block contains two. 3 x 3
convolutional layers and a batch normalization layer between them to enhance the filtered
input. After that, the processed feature maps are passed through yet another set
convolution layers, but this time, a three-by-three kernel is used with a filter of 128 and a
stride of 1, which allows the network to learn and create a more detailed representation of
the previous set features.

Global average pooling is used on the final feature maps before generating predictions
that downscale the images to a spatial dimension of 1 x 1. While minimizing the overall
number of parameters in the model, these operations condensed all the acquired features
into a more manageable form. A 1 X 1 convolutional layer with two filters provides data
for every class (disease or healthy) in logits to replace a fully connected layer. Subsequently,
softmax was implemented on the logits so each patch could be designated a single class,
with each class probability modified to enable the alteration of the logits. The model was
optimised with the Adam algorithm at a learning rate of 0.001 through the cross-entropy
loss function. The mini patch input is broken down to the size of 32 to enhance efficiency.
To ensure reliability, five-fold cross-validation was conducted alongside the model’s
training in five different respects: accuracy, loss, and convergence speed.

The choice of FCRN for patch-based feature extraction was motivated by its
computational efficiency and ability to capture localised spatial patterns effectively. While
traditional CNNs are incredibly powerful, they often coarse-grain regional information
due to successive downsampling and pooling layers. On the other hand, FCRNS maintain
spatial accuracy throughout the network, making them ideal for skin lesion localisation,
which is highly pixel-dependent. Moreover, adding residual connections helps to some
extent the problem of vanishing gradient due to deep architecture, making training of
deeper networks more stable, which is essential when dealing with complex skin textures
and subtle anomalies needing multi-scale representation. In addition, a fully convolutional
architecture does not include fully connected layers, which enables the model to accept
inputs of arbitrary dimensions and produce probabilistic maps of the disease at
multi-resolution levels, which is useful for real-time monitoring. These features precisely
match the framework’s aims of interpretability, localisation, and ready adaptability—it
requires no retraining for integration with real-time wearables, explaining the preference
for FCRN over standard CNNS or pre-trained image classifiers.

Multimodal fusion using CNN
To enhance the accuracy and robustness of skin disease detection, the proposed
framework integrates multimodal data, including image-derived features from disease
probability maps and clinical information, using a CNN. This fusion approach effectively
combines spatial patterns extracted from skin images with patient-specific clinical features
to improve the model’s overall diagnostic performance.

The FCRN processes patches of skin images and generates disease probability maps,
M(x, y), where each location corresponds to a probability of being diseased. To focus on
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the most significant regions, the top N high-risk regions are identified. Mathematically,
this is defined as:

R(xvy) = {M(x,y)|M(x,y) > T}7 (14)

where T is a probability threshold, and R(x, y) represents the high-probability regions
extracted from the disease probability map. These regions are spatially compact and
informative, capturing the areas most likely to exhibit disease characteristics. Each disease
probability map is downsampled into a fixed-size tensor of dimensions H' x W’ x C,
where H' and W’ are the height and width of the downsampled map, and C represents the
number of channels (e.g., the number of output classes). These processed features act as
inputs to the multimodal CNN for classification.

Clinical feature integration

In addition to image features, patient-specific clinical data, such as age, gender, skin type,
medical history, and symptom severity, are incorporated into the model. Clinical variables
are preprocessed to ensure numerical stability. Continuous variables (e.g., age) are
standardized using Z-score normalization:

X —p
z =
g

(15)

where x is the variable, u is the mean, and ¢ is the standard deviation. Categorical variables
(e.g., gender) are encoded using one-hot encoding to represent them as binary vectors. The
clinical features are then concatenated into a single input vector Cy, ensuring compatibility
with the image-derived features.

Multimodal fusion network

The proposed multimodal fusion framework uses a CNN-based architecture to integrate
the spatial features from disease probability maps with clinical data. The design ensures
hierarchical feature learning while preserving spatial and contextual information. The
CNN takes two inputs:

Spatial features are derived from the disease probability map R(x, y) represented as a
tensor F of dimensions H' x W’ x C. Clinical features are normalized vectors. Cy
concatenated to the CNN output at a later stage. The spatial features F; are first passed
through two convolutional layers with kernel size 3 x 3 and filters = 64 and 128,
respectively. These layers extract local and global spatial features while maintaining the
spatial hierarchy. Each convolutional layer is followed by batch normalization to stabilize
training and ReLU activation to introduce non-linearity. The output F,, of the
convolutional layers is mathematically expressed as:

Fuony = ReLU(BN(K * F; + b)) (16)

where K is the convolution kernel, * denotes convolution, b is the bias, and BN refers to
batch normalisation. A global average pooling (GAP) layer reduces F,,, to a single feature
vector of size 1 X 1 x 128, preserving the most informative spatial features. The GAP
output Fg,, and clinical features Cy are concatenated into a single feature vector.
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Ffusion: Ffusion = [Fgap Cf ] (17)

where [-, -] denotes concatenation. The fused vector Ffo, is passed through two fully
connected (dense) layers with 128 and 64 neurons, respectively. Each dense layer applies a
Leaky ReLU activation to enhance non-linearity. The final dense layer outputs logits z for
the disease classes, where z is defined as:

z = WFpsion + bf (18)

where Wy represents the weights and by is the bias term. A SoftMax activation is applied to
the logits to produce the final class probabilities P(c|x):

Plcf) = o) (19)
2 -1 exp(z)
where z is the logit for class ¢, and C is the total number of classes.

A CNN-based structure has been implemented to create a multimodal fusion subnet
that fuses image features like disease probability maps with clinical features. This
implementation has a dual input; the first input comprises the top high-probability regions
obtained from skin images and clinical information such as the patient’s age, gender,
medical history, etc. This procedure aims to provide a seamless fusion of these two
modalities in solving the problem of skin anomaly classification. Initially, the fully
convolutional residual networks-disease probability maps are spread into a grid of 32 by
32 pixels. After the skin image has been collected, the N highest mean intensity regions of
the image are determined as sufficient to extract information features. The preceding
images get altered into a one-dimensional vector to produce a tensor of shape (N, 1, 32). N
refers to the number of patch regions extracted from each image. The CNN utilizes this
tensor as its input.

We begin with the CNN branch, which includes a 1D convolutional layer performing a
convolution over the input tensor using 16 kernels with dimensions three by three, one
stride and padding. The purpose of this kernel is to focus on the spatial features present
within the image patches. The resultant output from this layer is processed through the
Rectified Linear Unit activation function, which makes the representation more complex.
After this layer, a second layer performs the same function with 32 kernels, working on
existing spatial features. To augment the feature set for essential representation, a Global
Average Pooling is performed on the 32-kernel output to transform it into a vector,
phosphating only the most significant spatial representation.

For continual feature variables such as age and severity of the symptoms, as well as
categorical variables such as sex and medical history, which require proper treatment, we
do so by employing the Z-score normalization and one-hot encoding technique. These
clinical components are then combined to create a vector of size Cf, equal to the number of
illustrative components. All previously discussed modalities would be fused at the fully
connected layers of the model. The output vector from the GAP layer is of size 32 and is
fused with the normalized clinical feature vector C;. This fused feature vector of size (32 +
Cy) is passed through two dense layers. The first dense layer contains 128 neurons and uses
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the Leaky ReLU activation function, which retains the ability to produce non-linear
outputs while resolving the dying ReLU problem. The second dense layer comprises 64
neurons, contributing to further dimensionality reduction and priming of the features in
preparation for the last classification. In what can be referred to as the previous layer, it is
noted that a dense layer feeds the model with logits that coincide with the classes to be
predicted, such as diseased or only healthy skin. A SoftMax activation function further
transforms these logits to yield probabilities concerning the classes.

The cross-entropy loss function combined with the Adam Optimiser is employed
during the model’s training, initialised to 0.001 as the starting learning rate. The batch size
was optimised for semi-efficiency and determined to be equal to 16, and the training
period was set to span ten epochs. The multi-modal CNN can receive a patient’s deep
images, patches, and related clinical variables simultaneously, thus capturing such clinical
context in tandem with the skin images, which learn spatial contexts for each clinical data.
This architecture efficiently utilises the localized disease features in combination with the
clinical features, thereby providing a clinically relevant and reproducible model to predict
the diagnosis of skin conditions.

EXPERIMENTAL SETUP

The structure for diagnosing skin diseases was developed and tested with a proper
experimental design. The framework under consideration was trained on a system
containing an NVIDIA RTX 4080 GPU, an Intel Core i9 processor, and 64 GB of RAM.
Integration was done in a PyTorch deep learning module in Python 3.10. The dataset
comprised skin images collected using wearable sensors, and their clinical records were
also included. These were preprocessed by resampling normalization and patch extraction.

The training and evaluation model was designed meticulously to achieve robust model
performance and generalizability. The training, validation and testing datasets were
created with a 70:15:15 ratio. Stratified sampling was implemented to keep class balance for
each split and ensure uniform distribution of the diseases in every subset. To further
improve the model, we performed extensive hyperparameter optimization by
implementing a grid search strategy. The parameters tested include the learning rates of
0.01, 0.001, and 0.0005; batch sizes of 8, 16, and 32; ‘dropout’ rates of 0.1, 0.2, and 0.3;
activation functions of ReLU, Leaky ReLU, and Tanh; and patch sizes of 16 x 16, 32 x 32,
and 64 x 64. Configuration based on validation performance using accuracy and loss
curves was dominant such as: learning rate of 0.001, batch size of 16, dropout rate of 0.1,
Leaky ReLU activation with 32 x 32 patch size. Additional validation was performed using
five-fold cross-validation for further variance reduction. In training the model, overfitting
was mitigated by using early stopping with the best-performing model and checkpointing
to capture the best model. All these steps provided an accurate model and ensured
generalizability with real-world unseen data.

The data was divided into 70% for training, 15% for validation, and 15% for testing to
assess the model’s generalization ability. The training took 100 epochs, and the model was
optimised using the Adam optimiser with an initial learning rate of 0.001. The batch size
was 16, allowing enough computation for the model to converge. A grid search strategy
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Table 1 Hyperparameter tuning.

Parameter Values tested Optimal value
Learning rate (1) 0.01, 0.001, 0.0005, 0.0001 0.001

Batch size 8, 16, 32 16

Activation function ReLU, Leaky ReLU, Tanh Leaky ReLU
Patch size 16 x 16,32 x 32,64 x 64 32 x 32
Dropout rate 0.1,0.2, 0.3 0.1

was employed to determine the most suitable hyperparameters; this was done by
estimating the impacts of learning rates, batch sizes, and activation functions. The
cross-entropy loss function was used, and accuracy, sensitivity, specificity, and F1-score
results were determined. The hyperparameter tuning process explored various
configurations, as summarised in Table 1.

Hyperparameter tuning outcomes reveal that the model performed well with a learning
rate of 0.001, which balances the factors of convergence ability and the speed at which the
model trains. Regarding the batch size, 16 was suitable as it did not exceed the GPU
memory limit. The Leaky ReLU yielded more significant results than the standard ReLU
and Tanh. This is significant about the device’s probability disease maps as it assisted the
model in learning from even the slightest changes. A patch size of 32 by 32 was determined
to be ideal as when the patches were reduced to 16 by 16, there was not enough context
being captured, but on the other hand, 64 by 64 patches consumed more computational
resources than necessary. Lastly, all the fully connected layers exhibited an appropriate
level of overfitting at a rate of 0.1. A multimodal skin disease detection system was
developed and tested successfully. The system remained accurate across the five folds,
ensuring no variation in the approach’s performance.

RESULT AND DISCUSSION

This section outlines the effects of patch-based FCRN and modes of CNN fusion on skin
disease detection techniques. It outlines the results based on accuracy, sensitivity, F1-score,
and specificity metrics achieved through five-fold cross-validation. It also touches on a
baseline comparison with models’ probability maps and interpretation to provide a better
understanding to the reader. The data about the model is located in Table 2. It allows the
reader to see the predictions based on the different models used when applying the image
and clinical data to the model from the five-fold cross-validation.

The FCRN + CNN fusion model achieved the best metrics consistency compared to the
other tested models, reaching a WAC of 99.5%, WAF1 of over 99.4, and a 0.995 AUC
score. It was noted that the image FCRN model with only a 92.0 accuracy was a significant
factor in the patch-level analysis. In comparison, the clinical module provided an 89.3
accuracy when used separately. This multi-modal fusion model performs the required
classification, increasing accuracy by combining models. Figure 4 depicts the accuracy and
loss curves for training and validation sets concerning skin disease detection for 100
epochs. The left subsection presents the accuracy, which displays signs of constant and
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Table 2 Performance metrics for skin disease detection.

Model Accuracy (%) Sensitivity Specificity F1-score AUC
Image-only (FCRN) 92.0 90.5 93.5 91.2 0.95
Clinical-only (MLP) 89.3 88.0 90.2 88.6 0.91
Fused (Image + Clinical) 99.5 99.0 99.8 99.4 0.995

Training and Validation Accuracy
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Figure 4 Accuracy and loss of the proposed methodology in skin disease detection.
Full-size k&l DOI: 10.7717/peerj-cs.3002/fig-4

rapid improvement during the initial epochs. For training and validation accuracy, the rise
shifts from roughly 70% until 50 epochs are complete to close to 99%. The curves are, in
effect, smooth, where there is no significant divergence between training and validation,
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Figure 5 Confusion matrix on skin disease classification. Full-size k] DOT: 10.7717/peerj-cs.3002/fig-5

which reveals that the model can generalize effectively on unseen data. Eventually, the
accuracy plateaus at approximately 99.5%, reinforcing the model’s learning ability.

The proposed multimodal fusion model (FCRN + CNN) achieved a near-perfect
accuracy of 99.5%, which is substantially higher than the image-only (FCRN) and
clinical-only (MLP) models, which scored 92.0% and 89.3%, respectively. This margin is
not only statistically significant but also clinically relevant, as it implies a reduced risk of
false positives and false negatives in real-world diagnostic settings. For instance, the
sensitivity improvement from 90.5% (FCRN) to 99.0% (fusion model) indicates that the
fusion model detects almost all diseased cases, which is critical for early intervention.
Similarly, the increase in specificity from 93.5% to 99.8% reduces the chances of
misclassifying healthy individuals as diseased. The AUC improvement from 0.95 to 0.995
further confirms superior discriminative capability. These enhancements highlight the
synergistic effect of integrating spatial image features with clinical data, validating that the
fusion model is not only incrementally better but significantly more robust and reliable for
clinical application.

The loss graphs plotted on the left show that the training and validation losses began at
1.2 and dropped to near zero ~0.05 by the end of the training. The closely related two-loss
curves indicate that the model can generalize throughout the training session and is quite
robust to overfitting. Patch-based feature extraction with FCRN and CNN was used for
clinical data fusion. Such performance supports the claim that the model can comprehend
and integrate spatial characteristics in images with clinically relevant context, leading to
accurate prediction.
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In this section, Fig. 5 depicts a confusion matrix that details the proposed model’s
accuracy, precision, and overall performance in skin disease classification. It is observed
that the matrix also captures the extent to which the model differentiates between the two
classes: Healthy and diseased. The true positive rate (disease cases which are diseased) in
the model is equal to 97.68%, which shows that the model is well fitted to identify diseased
patients. The true negative rate (healthy patients that are healthy) in the model is 96.95,
meaning that the model can predict the healthy patient group. Misclassifications are
seldom, as 3.05% of the healthy patients were misclassified as diseased (false positive), and
2.32% of the diseased patients were estimated healthy (false negative). The utmost digits
along the diagonal tell the relative accuracy of the model, and the number of wrong
predictions made is also extremely low, leading to the overall concepts reaching ternary
logic performance levels. The model true positive and true negative rates yield almost the
same values, explaining that such classifiers are expected to show some balance. Such
effects follow from the features patch taken out of skin images using FCRN and then the
concatenation with demographic information, which allows us to learn context and
structure simultaneously.

Figure 6 shows the receiver operating characteristic (ROC) curve for the suggested
model in skin disease detection. The ROC curve plots the true positive rate (TPR), a
sensitivity indicator, against the false positive rate (FPR) at various thresholds. As a
reference point, the diagonally broken line displays a random classifier with an area
under the curve (AUC) of 0.5. With an AUC of 0.99, the suggested model performs at the
highest level.

The curve extends sharply to the left, demonstrating a high positive rate for true
positives and a minimal rate for false positives. Furthermore, the close to 1 AUC value
accurately indicates the model’s ability to discriminate diseases from healthy individuals in
many cases. The almost perfect nature of the ROC curve attests to the efficacy of the
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Table 3 Comparative analysis with baseline models.

Model Accuracy (%) F1-score AUC
VGG16 (Image-only) 87.5 852 0.90
ResNet18 (Image-only) 90.2 88.0 0.93
MLP (Clinical-only) 89.3 88.6 0.91
Proposed fusion (FCRN + CNN) 99.5 99.4 0.995

patch-based feature extraction with FCRN and the encoding of clinical metadata using
multimodal fusion. This guarantees that the model has dense spatial detail and enriched
clinical information required for accurate predictions. A high AUC also means the model
is reliable since it reduces the chances of false diagnoses, a significant component of clinical
practice. Overall, the ROC curve complements the method’s capability of correctly
describing and classifying the subjects into healthy and diseased based on the devised
methodology. The AUC of 0.950 was reached by the image-based model, showing the
effectiveness of patch-based feature extraction. On the other hand, the AUC of 0.910
reached by the clinical-only group indicates that clinical features are valuable, but relatively
more towards clinical performing techniques rather than image-based ones. The output
values of VGG16 and ResNet18, being 0.900 and 0.930, respectively, are also in sync with
their performance as they underperform concerning the focused approach of multimodal
fusion, in which we are interested in fine-tuned details.

Table 3, the proposed model is compared with widely used baseline models such as
VGG16, ResNet18, and clinical-only approaches.

The FCRN model stands out due to its effective architecture and skin image resolution
handling, particularly its patch-based learning approach. Unlike other CNNs that execute
global feature extraction and downsample local details, the FCRN model retains spatial
feature granularity since the spatial dimensions of input patches are preserved during the
network. Thus, the model can recognise fine dermatological details such as lesion
boundaries, pigmentation, and textural irregularities, which are vital in distinguishing
closely resembling skin conditions. The added residual blocks also help mitigate the
vanishing gradient problem, making it easier to train deeper networks, reinforcing model
feature learning. This is crucial in medical image examination, where minor differences in
a region’s texture or tone can be pivotal. Using local patches helps avoid background
clutter while concentrating on relevant regions of interest, which is better than global
image classifiers such as VGG16 and ResNet18, which risk degrading performance. The
FCRN’s spatial detail preservation, deep learning stabilisation through residual learning,
and effective localisation are the prime factors for its domination over conventional
architectures.

To further contextualise the performance of the proposed FCRN + CNN fusion model,
a comparative analysis with established benchmark models highlights its relative strengths.
While effective for generic image classification, traditional deep learning architectures such
as VGG16 and ResNet18 are limited in capturing localised dermatological features due to
their reliance on global pooling and fixed-size inputs. In our experiments, VGG16 achieved
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Figure 7 Precision and recall for different models for skin disease detection.
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87.5% accuracy and ResNet18 achieved 90.2%, both substantially lower than the 99.5%
accuracy of our fusion model. This performance gap illustrates the benefit of our
patch-based strategy combined with clinical data fusion. Moreover, while clinical-only
models such as MLP reached 89.3% accuracy, their lack of spatial visual inputs restricted
their ability to detect complex skin patterns. In contrast, our proposed method effectively
bridges this gap by integrating localized spatial cues from wearable sensor images with
patient-specific metadata, resulting in a more holistic and context-aware diagnostic
decision. Notably, our model’s AUC score of 0.995 surpasses those of VGG16 (0.90),
ResNet18 (0.93), and MLP (0.91), reflecting superior discriminative capacity. These
improvements are not just incremental—they are significant in clinical terms, where high
sensitivity and specificity are crucial to minimising diagnostic errors.

The FCRN + CNN fusion model significantly outperformed standard architectures such
as VGG16 and ResNet18, which rely solely on whole-image analysis. While ResNet18
achieved an accuracy of 90.2%, it struggled to effectively capture fine-grained disease
features. The multimodal fusion approach benefits from localized spatial features and
patient-specific clinical data, achieving near-perfect performance. Figure 7 shows the
precision and recall of different models for the skin disease detection.

Table 4 shows the model’s sensitivity to key hyperparameters, evaluated, and the
optimal configuration determined through a grid search strategy.

The optimal learning rate of 0.001 ensured stable convergence, while a batch size of 16
balanced computational efficiency and model performance. A dropout rate of
0.1 minimised overfitting without affecting accuracy. Other configurations led to slight
performance drops, demonstrating the model’s robustness to hyperparameter selection.
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Table 4 Hyperparameter sensitivity analysis.

Hyperparameter Values tested Optimal value Accuracy (%)
Learning rate 0.01, 0.001, 0.0005 0.001 99.5
Batch size 8, 16, 32 16 99.5
Dropout rate 0.1, 0.2, 0.3 0.1 99.5

CONCLUSION AND FUTURE WORK

This study demonstrates a hybrid deep learning framework combining patch-based spatial
feature extraction using fully convolutional residual network with clinical data integration
through CNNss for interpreting and predicting skin diseases. The model proposed in this
article outperforms all other models and the baselines in multiple metrics, including
accuracy and robustness. After carrying out thorough experiments, it was clear that the
proposed model achieved a new record with an accuracy score of 99% and 5% and AUC
score of 0.995 and was superior to the other baseline models that included image FCRN
AUC 0.950, Clinical-MLP AUC 0.910, VGG16 AUC 0.900 and ResNet18 AUC 0.930.
Moreover, the model’s capacity to display disease probability maps improves its
interpretive character and helps pinpoint areas especially susceptible to diagnosis.
Despite the promising findings, several limitations persist. First, although diverse, the
dataset has scope for improvement, such as adding more images of skin from different
geographic populations, rare skin conditions, and diverse skin tones to augment
generalizability. Furthermore, while the model was validated with retrospective data,
true-world validation must be tested in clinical trials or point-of-care settings with
wearable sensors to ensure validated applicability. Following this, we will work on:
(1) integrating temporal datasets from wearable sensors to track disease progression;
(2) deploying for remote dermatology on edge computing for real-time model use, and
(3) adding SHapley Additive exPlanations (SHAP), gradient-weighted class activation
mapping (Grad-CAM), and other explainable artificial intelligence (XAI) modules to
enhance trust transparency. Additionally, primary attention will focus on in-depth testing
for patients with dermatologists to diagnose confidence and patient outcomes within
hospital or outpatient settings.
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