Submitted 29 April 2020
Accepted 31 August 2020
Published 28 September 2020

Corresponding author
Mathieu Fortin,
mathieu.fortin@canada.ca

Academic editor
Marieke Huisman

Additional Information and
Declarations can be found on
page 24

DOI 10.7717/peerj-cs.300

Distributed under
Open Government License

OPEN ACCESS

Executing native Java code in R: an
approach based on a local server

Mathieu Fortin

Canadian Wood Fibre Centre, Canadian Forest Service, Ottawa, ON, Canada

ABSTRACT

The R language is widely used for data analysis. However, it does not allow for
complex object-oriented implementation and it tends to be slower than other
languages such as Java, C and C++. Consequently, it can be more computationally
efficient to run native Java code in R. To do this, there exist at least two approaches.
One is based on the Java Native Interface (JNI) and it has been successfully
implemented in the rJava package. An alternative approach consists of running a
local server in Java and linking it to an R environment through a socket connection.
This alternative approach has been implemented in an R package called J4R.

This article shows how this approach makes it possible to simplify the calls to Java
methods and to integrate the R vectorization. The downside is a loss of performance.
However, if the vectorization is used in conjunction with multithreading, this loss
of performance can be compensated for.

Subjects Scientific Computing and Simulation, Programming Languages
Keywords Interoperability, Java local server, TCP/IP connection, R vectorization,
Java Native Interface

INTRODUCTION

The R language (Venables & Smith, 2020) has gained in popularity over the last decades.
It has been recently ranked the tenth most popular language according to the TIOBE
index (Tiobe, 2020). This interpreted language was primarily designed for data analysis and
statistics (Wickham, 2014, Ch. 16) and it is now widely used by the scientific community.

Some scientific problems, especially those involving modelling, require complex
object-oriented implementation and computational performance that can hardly be
achieved in R. Object-oriented languages such as C++ and Java are better suited for
this task since they allow for encapsulation and polymorphism (Schildt, 2007, Ch. 2).
According to different surveys, Java counts among the five most popular languages in
computer programming (GitHub, 2018; Stack Overflow, 2018; Tiobe, 2020). Compared to
other languages, Java has the advantage of being highly portable thanks to a virtual
machine technology. This virtual machine makes the interface between the operating
system (OS) and the Java code. In practice, the Java Virtual Machine (JVM) comes with the
Java installation package.

In terms of performance, the first versions of Java were considered to be slower than
C++. However, the JVM technology has improved over time and the two languages now
show a comparable performance in some contexts (Vivanco ¢ Pizzi, 2002; Costanza,
Herzeel & Verachtert, 2019), even though it is still widely accepted that C++ is slightly

How to cite this article Fortin M. 2020. Executing native Java code in R: an approach based on a local server. Peer] Comput. Sci. 6:e300
DOI 10.7717/peerj-cs.300

http://dx.doi.org/10.7717/peerj-cs.300
mailto:mathieu.�fortin@�canada.�ca
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.300
http://www.nationalarchieves.gov.uk/doc/open-government-licence/
http://www.nationalarchieves.gov.uk/doc/open-government-licence/
https://peerj.com/computer-science/

PeerJ Computer Science

faster than Java. One thing for sure, these two languages are faster than R, mainly because
of their implementation (Wickham, 2014, Ch. 16).

When dealing with complex models, invoking native Java or C++ code directly in R can
result in a significant gain in computational time compared to translating the code and
running it directly in the R environment. This idea of making calls between different
languages is referred to as interoperability (Epperly et al., 2012). Interoperability has the
major advantage of avoiding code replication across different languages and thereby
it decreases the maintenance effort, since only one version of the source code exists.

The basic installation of R already provides tools that can run native C and C++ code.
Some statistical packages, such as nlme and lme4, rely on these tools for tedious
mathematical operations in order to reduce the computational time (Pinheiro, Bates ¢
R Core Team, 2017; Bates et al., 2019). The rJava package is a low-level R to Java interface
that has been available for over a decade (Urbanek, 2020). This package makes it possible to
start a JVM embedded in the R environment and to execute native Java code using the
well-known Java Native Interface (JNI, see Liang, 1999).

The JNI can be used both ways: it allows running native code within a Java environment
or running Java code in a foreign environment. It has been described by some as a powerful
tool for linking Java to other environments (Getov, Gray ¢ Sunderam, 2000), while
being criticized by others for its complexity (Kondoh ¢» Onodera, 2008; Veerasamy ¢
Nasira, 2012). This complexity has led to the development of simplified interfaces, all
derived from the original JNI, such as Safe]NI (Tan et al., 2006) and a JNI-C++ integration
(Gabrilovich ¢ Finkelstein, 2000). In R, some packages, such as the jsr223 and jdx
packages (Gilbert ¢ Dahl, 2020a, 2020b), build on the JNI-based interface of rJava but
offer a simpler interface. Since 2009, the rJava package also implements a high-level
interface that facilitates the instantiation of Java objects and the calls to Java methods, but
it comes with a significant loss of performance (Dahl, 2020a).

Another option for running native code in a foreign environment consists of
creating a distinct environment for each language and making these environments interact
through a Transmission Control Protocol/Internet Protocol (TCP/IP) connection (Liang,
1999, p. 6). The py4j library (www.py4j.org), which enables a connection between Java
and Python, is an example of this approach. Another example is that of the rscala package
(Dahl, 2020a, 2020b) which uses a TCP/IP connection to create a bridge between R and the
Scala language.

In the context of native Java code run in R, this approach could be a simpler alternative
to the use of the JNL It would offer a greater flexibility in the execution of the native
code, allowing for the on-the-fly conversion of primitive types and the inclusion of
R vectorization (De Vries ¢ Meys, 2015, p. 15). Moreover, because the two environments
are created in independent processes, it would make the code easier to debug on both ends.

This article shows how this approach was implemented in an R package called J4R.
The initial objective of this work was to create a package that

1. Can be easily installed;
2. Keeps the syntax simpler than that of the JNI;

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 2/27

https://www.py4j.org
http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

3. Offers a reasonable performance;
4. Takes advantage of some features of R such as the vectorization;
5. Can be debugged on both ends.

METHODOLOGY

Package description

Java is a highly structured object-oriented language. Functions and variables are all
embedded into the classes. They are usually referred to as methods and fields, respectively.
For the sake of clarity, this terminology will be used throughout this paper so that any
occurrence of “method” or “field” refers to Java whereas terms “function” and “variable”
are related to R.

It is assumed that the reader has a certain knowledge of some concepts related to
object-oriented programming and to the Java language in particular, such as class
inheritance and field and method modifiers. Should it not be the case, the reader is referred
to Schildt (2007).

The main functions of the J4R package are listed in Table 1. Most of them are further
described through examples in the following sections. The package implements a series
of more than a hundred unitary tests, which have been successfully run with Java versions
8, 11 and 13 on Windows and Linux.

Linking Java and R through a TCP/IP connection
Linking two environments through a TCP/IP connection is very similar to a server
replying to the requests from a client application. The only distinction between the two
concepts is that the client and the server are both running on the same machine in the
first whereas they are located on two different computers in the latter. Practically speaking,
the J4R package contains an R client which instantiates a local server in Java (Fig. 1).
This server listens to several internal ports. The R client connects to the server through
these ports using a socket connection. Once connected, it can send requests to the Java
server, which processes them and sends the result back to the client.

The J4R package includes a Java library packaged as a runnable jar file. This library
(j4r.jar) implements the local server in the following classes:

e JavaProcess: Instantiate the JVM in an independent process
e JavalocalGatewayServer: Implement a local server

e REnvironment: Translate the requests received from the R client and process them in
Java

The R client in the J4R package invokes the Java library using the system2 function
(Step 1 in Fig. 1). Additional arguments such as the classpath and the memory size of
the JVM can be passed as well. When invoked, the Java library creates a JVM that
bootstraps itself using the JavaProcess class and the arguments it received from the
R client (Step 2). This results in a second JVM with the appropriate classpath and memory
size. An object of the JavaLocalGatewayServer class is then instantiated within this

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 3/27

http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Main functions of the J4R package.

Function Purpose

connectToJava Instantiate a local server in Java
shutdownJava Shut down the local server

addToClassPath Dynamically add a path to the class path
interruptJava Interrupt the current task
createJavalbject Create instances, arrays or uninstantiated (null) objects
callJavaMethod Invoke a public method

getJavaField Retrieve the value of a public field
setJavaField Set the value of a public field

callJavaGC Call the garbage collector in R and Java
as.JavaArray Convert R vectors and matrices to Java arrays

Java environment

The client invokes the Java

library with eventual arguments »| Java library

The Java library
bootstraps itself with

. JVM arguments and
R environment

The server starts the local server
confirms Y
connection
R session) Local
> server

The client reads the
information and
connects to the server

»| Port numbers | .-
Security key The server creates
a temporary file

Figure 1 How the J4R package creates a local server in Java and connects to it. Each numbered circle
represents a step in the initialization of the local server. Full-size k&l DOT: 10.7717/peerj-cs.300/fig-1

second JVM. The server creates a temporary file containing the different port numbers
and a security key in the working directory of the R session (Step 3). The R client
retrieves the information from the temporary file and then connects to the server using the
appropriate port numbers and the security key (Step 4). Once the R client is connected and
the security key has been validated, the server sends confirmation (Step 5).

The first JVM has two main roles: it makes sure the arguments sent by the client
conform to the Java syntax and it adds some arguments required for the dynamic
classpath definition. In Java, the classpath is handled by instances inheriting from the
ClassLoader class (Schildt, 2007, p. 418). There was a major rehauling of these classes
between Java 8 and 9 (Kanagalingam, 2019) so that the JVM must be started with specific
arguments in the latest versions in order to enable the dynamic classpath. Because these

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 4/27

http://dx.doi.org/10.7717/peerj-cs.300/fig-1
http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

tasks do not require a lot of memory, the first JVM is instantiated by the client with an
allocation of 50 Mb.

Once connected to the server, the R client can send requests. Those requests are
processed by an instance of the REnvironment class in Java. The result of this processing
is sent back to the R client through the same TCP/IP connection. The information sent
back and forth through the TCP/IP connection is first translated into character strings
and then re-interpreted on the other end. If the connection is severed for some reason, the
Java server automatically shuts down, and both JVMs exit so that it leaves no idle process
in memory.

In practice, the lasted version of the J4R package can be installed from the SourceForge
repository through the following line of code:

> J4Rurl <- “https://sourceforge.net/projects/repiceasource/files/
latest”
> install.packages(J4Rurl, repos = NULL, type=“source”)

>
Then, the Java server can be instantiated as follows:

> connectToJaval()
Starting Java server...
Server started

(1] TRUE

>

Likewise, the Java server can be shut down by calling the shutdownJava function:

> shutdownJava()

Closing connections and removing sockets...
Shutting down application...

Done.

>

By default the server listens to two ports randomly selected among those that are
available. It is possible to change the number of ports the server is listening to through the
port argument:

> connectToJava(port = 0)
Starting Java server...
Server started

[1] TRUE

>

Since the port argument has a length of one, the server is instantiated with a single
listening port. Moreover, since its value is 0, the port is selected at random. The J4R
package allows for a maximum of four listening ports. Each successful socket connection to

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 5/27

http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

a particular port is handled by an individual thread on the Java end. In the R environment,
all the socket connections are handled by a single instance of the connectionHandler
class. In addition to these ports, the connectionHandler instance creates two other
connections to the server. The first one is a backdoor connection with the Java server.
This backdoor connection can be used if an interruption of the native code is required
or if the Java server must be abruptly terminated (see Subsection “Interrupting native
code”). The other connection is used to synchronize the garbage collection of both
environments (see Subsection “Memory management”).

Creating Java objects

The REnvironment class in the j4r Java library heavily relies on the Reflection API
available in Java (see Shams ¢ Edwards, 2013) for the instantiation of objects and the call to
methods. In J4R, the createJavaObject function makes it possible to

e instantiate Java objects;
e instantiate arrays;

e retrieve uninstantiated objects, that is, objects of particular classes with their value set to
null.

Once an object has been created, the Java server stores it in an internal map with its
identity hash code acting as a key. In Java, the identity hash code is a quasi-unique integer
that is attributed to each object based on its internal address in memory (Marx, 2010).
The class of the object and its identity hash code are the two elements that are sent
back to the R client as a pointer to the real Java object. Subsequent actions on this object,
such as invoking a method of its class or passing it as an argument to the method of
another class, is made possible through this pointer.

Upon reception, the R client instantiates an R object of the java.object class, which
extends the environment class and has two slots: one for the Java class name and
the other for the Java object identity hash code. Whenever this pointer is sent back to
the Java server, then the true object is retrieved from the internal map. Because of the
fundamental role it plays, this internal map will be referred to as the pointer map.

The consequences of this pointer map on the memory management will be addressed later
in this section.

The createJavaObject function requires a class name. It also accepts eventual
arguments if the constructor of the class requires some. Two additional arguments,
isNullObject and isArray, are set to false by default. For the sake of the example,
let us focus on the ArrayList class in Java. Let us also assume that the local server is
running and that the R client is connected. The instantiation of a Java object of the
ArrayList class goes like this:

> myJArrList <- createJavaObject(“java.util.ArrayList”)
>myJArrList

[1] “java.util.ArrayList@2057477420”

>

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 6/27

http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

Table 2 Type conversion between R and Java.

R Java
integer int
character String
numeric double
logical boolean

Since the createJavaObject function was given a single argument in the previous
example, namely the class name, the Java server instantiated the object using the empty
constructor of the ArrayList class. This same class also includes an alternative
constructor that requires an integer to create an ArrayList object with a specific initial
capacity. Such an object can be created as follows:

> my2ndJArrList <- createJavaObject(“java.util.ArrayList”,
as.integer(10))
>

Here, the argument passed to the constructor is an integer, which is considered as
a primitive type. The server automatically recognizes the class or the primitive type of
the argument. Primitive types in R are converted on the fly into Java primitive types
(Table 2), with the notable exception of the character type in R that is converted
into an object of the String class in Java. Because the communication to and from the
server takes the form of character strings, doubles and numerics are converted to an
IEEE 754 representation (/EEE, 2008) with 16 decimals. In practice, there is no loss of
precision.

In the previous example, the Java server recognized an integer and looked for the
constructor ArrayList (int i). If one omits to cast 10 as an integer, then the Java
server recognizes this type as a numeric and it looks for the constructor ArrayList
(double d). Since this constructor does not exist, an exception is returned to the R client:

> my3rdJArrList <- createJavaObject(“java.util.ArrayList”, 10)

Error in .checkForExceptionInCallback(callback) :
java.lang.NoSuchMethodException: java.util.ArrayList.<init>(double)
>

Arrays and uninstantiated objects can also be created by setting the arguments isArray
and isNullObject to true when calling the createJavaObject function. Note that the
as.JavaArray function provides a simpler interface for the instantiation of Java arrays.

Invoking Java methods from R

Java methods that are public can be invoked using the callJavaMethod function,
which requires at least a source argument and the name of the method to be invoked.
Additional arguments passed to the function are assumed to be the arguments of the

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 7127

http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

Java method. When these additional arguments are passed to the function, the Java server
automatically retrieves their class or primitive type in order to find the appropriate method
through the Reflection API. For example,

> callJavaMethod (myJArrList, “size”)
[1]1 0

> callJavaMethod (myJArrList, “add”, 4)
(1] TRUE

> callJavaMethod (myJArrList, “size”)
[1]1 1

> callJavaMethod (myJArrList,
(1] 4

>

«

get”, as.integer(0))

The first call invokes the size method on the ArrayList object we created in a
previous example. The method returns 0 to the R client, since the ArrayList object is
empty. This value is converted on the fly into an integer by the R client. The second
call invokes the add (Object obj) method, which stores the value 4 as a double due to
the on-the-fly conversion of numeric into double (Table 2). The third call invokes
the size method again, which returns the value 1 this time. Finally, the fourth call
retrieves this value just stored in the ArrayList object at index 0. Note: Java indexes the
arrays starting from 0 whereas the indexes start from 1 in R.

Invoking static methods through the callJavaMethod function is made possible
by setting the source argument to a class name instead of a java.object instance.

For example, the Math class contains a static method called sqrt, which computes the
square root of a double. This static method can be invoked as follows:

> callJavaMethod (“java.lang.Math”, “sqrt”, 10)
[1] 3.162278
>

Whenever the source is a java.object instance, the $ operator can be used in
place of the callJavaMethod function, yielding a syntax that is closer to that of Java.
For instance, the four calls to callJavaMethod performed on the myJArrList object in
the previous example could be:

> myJArrList$size ()

(111

> myJArrList$add(4)

[1] TRUE

> myJArrList$size()

[1] 2

> myJArrList$get (as.integer(0))
(1] 4

>

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 8/27

http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

Accessing and changing public fields
Public fields can be accessed through the getJavaField function which requires two
arguments, a source and the field name. The source is either a java.object instance or a
class name in the case of a public static field.

The setJavaField function makes it possible to set the value of such fields as
long as they are not final. The function requires three arguments, a source, a field
name and the value to be set. For the sake of the example, let us consider the following
Java class:

public class MyTestClass {
public int i;
public MyTestClass(int i) {
this.i=1i;

}

If we assume that the binary of this class is in the working directory, an instance can be
created as follows:

> addToClassPath(“.”)
> a <- createJavalObject (“MyTestClass”, as.integer(1))
>

Here, the addToClassPath function adds the working directory to the class path so that
the MyTestClass class can be loaded. Once the instance has been created, the public field
i can then be accessed and changed using the aforementioned functions:

> getJavaField(a, “i”)

(111

> setJavaField(a, “i”, as.integer(10))
> getJavaField(a, “i”)

[1] 10

>

When the source argument is a java.object instance, the $ operator can be substituted
for the two functions as in the following lines of codes:

> a$i <- as.integer(1)
> a$i

[1] 1

>

Using the R vectorization with native Java code

A unique feature of R is its ability to perform operations on vectors (De Vries ¢» Meys,
2015, p. 15). In J4R, the createJavaObject, callJavaMethod, getJavaField and
setJavaField methods allow for this vectorization. For example, if a vector of integers

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 9/27

http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

is passed to the createJavaObject function, many objects of the same class can be
created at once:

> myJArrLists <- createJavaObject (“java.util.ArrayList”,
as.integer(rep(10,3)))

>myJArrLists

[1] “[1] java.util.ArrayList@1322605515”

[1] “[2] java.util.ArrayList@1002797593”

[1] “[3] java.util.ArrayList@1525351974”

>

Here, the Java server instantiated three ArrayList objects with an initial capacity of 10.
The three pointers to these objects were returned to the R client and embedded into a
java.list object. The same applies to the callJavaMethod function:

> callJavaMethod (myJArrLists, “add”, 5)

[1] TRUE TRUE TRUE

> callJavaMethod (myJArrLists, “add”, c(5,7,9))

[1] TRUE TRUE TRUE

> callJavaMethod (myJArrLists[[3]], “get”, as.integer(c(0,1)))
(1159

>

The first call to the callJavaMethod function adds the value 5 to all three ArrayList
objects whereas the second call adds 5, 7, and 9 to the first, second and third ArrayList
objects, respectively. The third call just confirms that the values stored in the third
ArrayList object are 5 and 9. Inconsistent numbers of elements in the vectors or the
eventual java.list objects cause the function to return an error. For instance, if one tries
to add 5 and 7 to a java.list object of size 3, then the function returns an error:

> callJavaMethod (myJArrLists, “add”, c(5,7))
Error in .getSourcelLength(source, parametersLength) :

The length of the java.list object

or the vector is inconsistent with the length of the parameters!
>

Note that the $ operator can be used in place of the callJavaMethod, getJavaField
and setJavaField functions when the source argument is a java.list object so that
the three calls in the previous example could be re-expressed as:

> myJArrLists$add(5)

(1] TRUE TRUE TRUE

> myJArrLists$add(c(5,7,9))

[1] TRUE TRUE TRUE

> myJArrLists[[3]]$get (as.integer(c(0,1)))
(1159

>

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 10/27

http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

Since large java.list objects and vectors could exceed the buffer size of the socket
connection, the R client breaks down these large sets into smaller sets with a maximum of
200 elements each. These smaller sets are successively sent to the server. The results of
these calls are recomposed into a single object by the client.

Creating Java arrays

Since vectors are automatically perceived as an attempt to use R vectorization, any method
or constructor involving an array will be misinterpreted. The Java Arrays class provides
many static methods to manipulate arrays. The argument of these static method is
obviously an array. For example, the sort method makes it possible to sort the values
within an array of doubles. Because vectors are not automatically converted into arrays in
J4R, the following line of code will inevitably throw an exception:

> callJavaMethod (“java.util.Arrays”, “sort”, c(22,10,14))

Error in .checkForExceptionInCallback(callback) :
java.lang.NoSuchMethodException: Method sort cannot be found in the
class Arrays

>

The array must be instantiated first and then passed to this method. This can be done
through the as . JavaArray function of the J4R package. The function returns a pointer to
the array instance which can be passed to a method or a constructor as follows:

> myArray <- as.JavaArray(c(22,10,14))
> myArray
[1] “One-dimension array of D@1799180931”
> callJavaMethod (“java.util.Arrays”, “sort”, myArray)
> getAllValuesFromArray (myArray)
[1] 10 14 22
>
The myArray variable is a pointer to an array of doubles. Calling the sort method in
Java sorts the values of the array in ascending order. The reconversion to R is obtained
through the getAllValuesFromArray function. Note that the as.JavaArray function
accepts vectors and matrices of any primitive types listed in Table 2.

Interrupting native code

R is meant to handle the interruption of native code in C and C++ (Wickham, 2015,
Ch. 10). To the best of my knowledge, there is no guideline for other languages. J4R
implements a workaround that allows for interruption of native Java code. In this example,
the thread that handles to code on the Java end is asked to “sleep” for a 100 s:

> callJavaMethod (“java.lang.Thread”, “sleep”, as.long(100000))

Note that the s1leep method takes a long as argument. Since this type is not available in R,
it must be casted using the as.long function.

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 11/27

http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

Trying to interrupt this code from the R console or R Studio is virtually impossible.
A workaround consists of starting a new session and making sure that the working
directory points to the same folder than that of the first session. With R Studio, this is done
automatically. The J4R package implements a function called interruptJava which
connects to the server through the backdoor connection and requests the interruption of
all the threads associated with the client. This function relies on the Thread.interrupt
method on the Java end.

After opening the second session, the user can enter the following line of code to request
an interruption of the native Java code:

> J4R: :interruptJava()
>

which results in an InterruptedException in the first session:

> callJavaMethod (“java.lang.Thread”, “sleep”, as.long(100000))
Error in .checkForExceptionInCallback(callback) :
java.lang.InterruptedException: sleep interrupted

This interruption mechanism assumes that the Java code is meant to be interrupted.
This can be achieved by invoking methods that throw InterruptedException or
by periodically invoking the Thread.interrupted method (Oracle, 2019). If the Java
code does not invoke these methods, it cannot be interrupted. A successful interruption
does not affect the connection to the server. The thread in charge of the connection on the
Java end resumes and waits for the next request.

The interruptJava function assumes that the temporary file containing the security
key and the port numbers is still available. For this reason, it is strongly recommended to
shut down this second session after calling the interruptJava function. Any call to
other functions such as connectToJava will instantiate a new Java server and produce a
new version of the temporary file. In such a context, the port number of the backdoor
socket and the security key associated to the server instantiated in the first session will no
longer be available.

Memory management

In Java, instances can be automatically removed from the memory when they are no
longer needed. This technique is known as garbage collection (Schildt, 2007, p. 121).
When it is called, the garbage collector removes all the objects for which no references
exist. This means that these objects are no longer tied to any ongoing tasks.

In the J4R package, the Java server keeps all the instances created through the
createJavaObject, callJavaMethod and getJavaField functions in the
aforementioned pointer map. This pointer map is part of the REnvironment class.

It is created as soon as a new client connects to the server and, as long as the local server is
running and the client is connected, a reference to this map exists.

Memory management in R is also based on garbage collection (Wickham, 2014, p. 383).
In J4R, the java.object class implements a finalizer that is run when the garbage

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 12/27

http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

collection occurs. This finalizer does two things. First, the collected instance is temporarily
stored in a java.list instance hidden in the cache environment of the J4R package.
This java.list instance acts as a dump pile. Secondly, it checks if the dump pile contains
more than a hundred java.object instances. If it does, these pointers are sent to the
server through a dedicated connection with the express request to release their associated
objects from the pointer map. These objects are then subject to garbage collection in
Java. The java.object instances sent to the Java server are removed from the dump pile
and they are finally collected by the garbage collector in R.

The J4R package also implements the callJavaGC function which clears the dump pile
regardless of the number of java.object instances it contains.

Multithreading
Each connection to a listening port of the Java server is handled by an individual thread.
The user can take advantage of this setup to execute Java code on multiple threads
when the server is instantiated with two or more listening ports. The four main functions
that run native Java code—createJavaObject, callJavaMethod, getJavaField
and setJavaField—all have an argument called affinity, which is set to 1 by default.
This affinity refers to the connection port and thereby to a particular thread on the
Java end.

Multithreading in R is made possible through several packages, such as parallel
(R Core Team, 2020) and snow (Tierney et al., 2018). The J4R package implements a
function called mclapply. j4r which is a wrapper for the original mclapply function of
the parallel package. The mclapply. j4r function requires two arguments: a vector of
numerics and a function that is to be executed in different threads. This special function
must have two arguments: the first stands for the individual numerics that compose
the vector whereas the second argument defines the affinity to a particular port of
the Java server. This two-argument function executes the Java code by calling the
createJavaObject, callJavaMethod, getJavaField, or setJavaField functions.
The affinity argument must be specified in each call to these four functions. A simple
example is:

> if (getNbConnections() == 1) {

+ shutdownJava()
+ connectToJava()
+3}

Closing connections and removing sockets...

Shutting down application...

Done.

Starting Java server...

Server started

[1] TRUE

> f <- function(i, aff) {

+ myArraylist <- createJavaObject(“java.util.ArrayList”,

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 13/27

http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

+ affinity = aff)

+ callJavaMethod (myArrayList, “add”, 5, affinity = aff)
+3

> result <- mclapply. j4r(1:1000, £)

>

So far, we had been running the server with a single listening port. The first condition
shuts down the server and restarts it with two listening ports. Then, the function £ is
defined and processed a thousand times. At each call, a Java ArrayList instance is created
and the value 5 is stored in this instance. At each call, the argument i takes alternatively the
values of 1 to 1,000. If the client is connected to the server through multiple ports, the
mclapply. j4r function will automatically set the aff argument in such a way that
each R thread will be dealing with a different port of the Java server. Basically, when
connected to the server through two ports, all the calls to £ with odd values of i will be
dispatched through the first port whereas those with even values will be dispatched
through the second port. This splitting follows the implementation of the original
mclapply function and thereby, it ensures a complete parallelization of the code. Note
that the original function relies on forking and consequently, multithreading is not
available on Windows (R Core Team, 2020). As a matter of fact, the mclapply. j4r will
run the code in a single thread on Windows and the user will be notified through a warning
message.

Multithreading through the mclapply. j4r function assumes that the native
Java code is thread-safe. If it is not, the server might throw an exception of the
ConcurrentModificationException class. This can be avoided by synchronizing the
methods or objects that are likely to be concurrently modified by two or more threads
(see Schildt, 2007, p. 225).

SOME APPLICATION EXAMPLES

Using Java GUI features

In Java, the JOptionPane class implements static methods that display windows of
different types. Here is a simple example of a window with a question instantiated from the
R client:

> nullComponent <- createJavalObject(“java.awt.Component”,
isNullObject = T)
> callJavaMethod (“javax.swing. JOptionPane”,
“showConfirmDialog”,

+ nullComponent,

+ “Did you see the jabberwock?”,

+ “Question?”,

+ getJavaField(“javax.swing.JOptionPane”, “YES_NO_OPTION”),
getJavaField(“javax.swing.JOptionPane”, “QUESTION_MESSAGE”))

[1] 0

>

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 14/27

http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

Question?

)

Did you see the jabberwock?

Yes No

Figure 2 Java window instantiated through the R client.
Full-size K&] DOT: 10.7717/peerj-cs.300/fig-2

The resulting window is shown in Fig. 2. Because the window is modal, the R client
waits until it is closed to retrieve the result and return to the command prompt. In this
example, the user clicked on the “Yes” button and the method returned 0.

Detecting patterns in character strings

In R, some operations on character strings are rather unintuitive. For instance, finding
the index of the last dot in the character string “hello.world.123.456” goes like this
(Stack Overflow, 2010):

> regexpr (“\\. ["\\.]*$”, “hello.world.123.456”)
[1] 16

attr(,“match.length”)

[1] 4

attr(,“index.type”)

[1] “chars”

attr(, “useBytes”)

[1] TRUE

>

The argument passed to the regexpr function is beyond the skills of a novice
programmer. The J4R package offers a simpler alternative:

> callJavaMethod(“hello.world.123.456”, “lastIndex0f”, “.”) +1
[1] 16
>

Note that one has been added to the result for consistency because Java and R indexes start
from 0 and 1, respectively.

Using third-party Java libraries

In forestry, commercial (or merchantable) volume of standing trees has traditionally
been the main variable used in short and long-term planning of management activities.
Over the last 20 years or so, it has also become an essential variable in the national
reporting of greenhouse gas emissions in the sector of land use, land-use change and
forestry (LULUCF) (IPCC, 2003, 2006). Using some factors, commercial volumes are

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 15/27

http://dx.doi.org/10.7717/peerj-cs.300/fig-2
http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

converted into biomass, which is in turn converted into carbon and CO, equivalent for
reporting purposes.

In spite of its importance, the commercial volumes is never measured in practice.
Instead, it is predicted using statistical models. An example of linear statistical model
relating tree height and diameter to tree volume can be found in Fortin et al. (2007):

VU:BO+B1T+SU (1)

where vy is the volume (dm?) of tree jin plot i, dy is its diameter (cm) at 1.3 m in height,
h;; is the tree height (m), B = (Bo, ﬁl)T is a row vector of model parameters and g;; is

the model residual error that is assumed to be normally distributed, that is, &ij ~ N(O, 02).
Note that the factor 40 at the denominator ensures a proper unit conversion. Such models
are usually fitted to a subsample of trees and then applied to all other trees with non
observed volumes.

Fitting such a model implies that the true value of f is unknown and only an estimate
is available which will be denoted as ﬁ Given the central limit theorem (Casella &
Berger, 2002, p. 236), fi is assumed to follow a multivariate distribution, that is, fi ~ MVN
(B).

The model shown in Eq. (1) applies at the tree level. However, for carbon accounting
and forest management purposes, the variable of interest is the total of this commercial
volume in a population of trees. This total commercial volume in a particular plot is
estimated as the sum of the individual predictions.

The variance of the predicted plot-level volume is subject to at least two sources of
uncertainty: the uncertainty from the parameter estimates and the uncertainty arising from
the residual error term. Eventually, there can be some additional plot random effects
(Fortin et al., 2007), leading to complex analytical variance estimators especially when tree
height is also predicted (Fortin ¢ DeBlois, 2010).

A simpler alternative consists of using the well-known Monte Carlo technique
(Rubinstein ¢ Kroese, 2008). In the context of commercial volume, the variability is
reproduced by randomly sampling the distribution of the parameter estimates and that
of the residual error and calculating the total volume. Each value of total volume is
considered as a realization of this variable. By repeating this process many times, the
distribution of the variable can be approximated through the distribution of the
realizations.

Sampling the distribution of the residual error is easily done. For the parameter
estimates, the distribution is multivariate and a random deviate of such distribution is
obtained as follows (Rubinstein ¢ Kroese, 2008, p. 67):

B, =P+ Cr,)
where f, is the vector of parameter estimates for realization s, matrix C is the lower triangle
of the Cholesky decomposition of €, that is, the matrix that satisfies CC" = €, and r, is

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 16/27

http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

Table 3 The Java classes implementing the model of commercial volume in France.

Java class Description

FrenchCommercialVolume2014Predictor Read the parameter estimates and compute
volume predictions

FrenchCommercialVolume2014TreeImpl Represent a single tree

Table 4 Ten trees measured in the fictitious plot 001.

Id Diameter (cm) Height (m) Species name
1 22.4 18.2 Picea abies
2 18.3 16.2 Abies alba
3 14.2 15.1 Abies alba
4 41.6 32.6 Abies alba
5 18.4 15.4 Abies alba
6 51.0 33.1 Abies alba
7 12.2 10.2 Picea abies
8 34.7 25.7 Picea abies
9 20.2 19.1 Picea abies
10 15.1 16.2 Picea abies

a vector of independent deviates drawn from a standard normal distribution, that is,
N (0, 1).

The tricky part about the implementation of the Monte Carlo technique with a
statistical model is that the sampling of the distributions follows a hierarchical scheme.
For instance, the distribution of the parameter estimates is sampled only once for each
realization, whereas that of the residual error is sampled every time a tree-level prediction
has to be generated. In other words, for a particular realization of the plot-level volume,
the parameter estimates should not be resampled at each tree. They should be sampled
once and the resulting parameter estimates should apply to all the trees.

Such a hierarchical scheme can be difficult to implement in R. In Java, the Monte Carlo
technique can be implemented in some abstract classes, so that the user does not even
have to think about it. In France, a model of commercial volume similar to the one shown
in Eq. (1) was fitted to several tree species following this idea of encapsulation. The model
was implemented in some Java classes that inherited the Monte Carlo technique from
abstract classes. The only classes of this encapsulation that are relevant to the user are
shown in Table 3. These classes are part of a Java library called lerfob-foresttools.

This library relies on another Java library called repicea for the abstract classes
implementing the Monte Carlo technique (see the “Data Availability”).

Let us assume that some tree measurements were taken in a particular plot and loaded
into R as a data.frame object called plot001 (Table 4). If the Java server is running and

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 17/27

http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

the R client is connected, then the addToClassPath function can be used to dynamically
load the two Java libraries that implement the model of commercial volume:

> addToClassPath(“repicea. jar”)

> addToClassPath(“lerfob-foresttools. jar”)

> getClassLoaderPaths ()

[1] “file:/home/myworkspace/j4r. jar”

[2] “file:/home/myworkspace/repicea. jar”

[3] “file:/home/myworkspace/lerfob-foresttools. jar”
>

The getClassLoaderPaths function provides the list of the libraries included in
the classpath of the JVM. The j4r library is listed by default since it implements the
Java server. In this example, the function also returns the repicea and the lerfob-
foresttools libraries as part of this list. The model of commercial volume can be
instantiated as follows:

> javaPackage <- “lerfob.predictor.frenchcommercialvolume2014”

> modelClass <- “FrenchCommercialVolume2014Predictor”

> volumePredictor <- createJavaObject (paste(javaPackage, modelClass,
sep=“"), T)

>

The constructor of the FrenchCommercialVolume2014Predictor class requires a
logical, which enables or disables the Monte Carlo technique. In this particular example,
the logical is set to true since we want to use the Monte Carlo technique.

Each record of the plot001 object contains a single tree (Table 4), for which we know
the diameter at 1.3 m in height (column dbhCm), the height (column heightM) and the
species name (column speciesName). The data.frame object also includes an id for
each tree (column id). These variables are those required by the constructor of the
FrenchCommercialVolume2014TreeImpl class. Using the vectorization, all 10 trees can
be instantiated at once:

> treeClass <- “FrenchCommercialVolume2014TreeImpl”

> trees <- createJavalObject (paste(javaPackage, treeClass, sep = “."),
+ plot001$id,

+ plot001$dbhCm,

+ plot001$heightM,

+ plot001$speciesName)

>

Note: the vector plot001$speciesName contains factors which are automatically
converted into characters in J4R.

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 18/27

http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

2 -
000 — Est. mean: 8.2 m?3
0.95 Cl: [7.6 ; 8.8]
1500+
>
O
C N
Q I
-}
S 1000-
i
500-
0-
7.0 7.5 8.0 8.5 9.0 9.5

Volume (m3)

Figure 3 Ten thousand realizations of the plot-level volume with the estimated mean and its 0.95
confidence interval (CI). Full-size K&l DOT: 10.7717/peerj-cs.300/fig-3

Once the trees and the model are instantiated, a simple 10,000-realization Monte Carlo
simulation can be run like this:

> volumes <- sapply(1:10000, function(i) {

+ sum(volumePredictor$predictTreeCommercialVolumeDm3(trees, i))* .001
+1)

>

The predictTreeCommercialVolumeDm3 method requires two arguments: an
instance of the FrenchCommercialVolume2014TreeImpl class and an integer.

The method uses this integer to update a private field that stands for the Monte Carlo
realization id in the FrenchCommercialVolume2014TreeImpl class. This field is
later read by the model of volume and a tree-level volume prediction is generated.

In this example, we use the vectorization to obtain a volume prediction for all 10 trees at
once. For each Monte Carlo realization, the distribution of the parameter estimates is
sampled only once, that is every time a new Monte Carlo realization id is read. The deviates
are then stored in an internal map. When a particular Monte Carlo realization id has
already been read, the deviates that were previously drawn from the distribution are
used again. Given the vectorization, the function value is a 10-slot vector of predicted
volumes, which are summed and divided by 1,000 for unit conversion from dm?® to m°.
The sapply function returns the 10,000 plot-level realizations of the volume in the vector
volumes. The mean volume and its 0.95 confidence limits can be estimated from the
distribution of the realizations (Fig. 3).

BENCHMARKING

A natural question that arises is whether the approach implemented in the J4R package is
as efficient as that of existing packages such as rJava and rscala, which also allows to run

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 19/27

http://dx.doi.org/10.7717/peerj-cs.300/fig-3
http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

Table 5 Elapsed times (sec.) to compute 10,000 volume realizations of a particular plot in function of
the package and the number of trees in the plot.

Package and technique Number of trees
10 20 30 40

rJava—low-level API 49 8.3 12.2 16.1
rJava—high-level API 156.1 316.0 483.4 6252
rscala 34.2 65.1 98.0 124.1
J4R—one thread 12.9 13.3 17.2 20.2
JAR—two threads 6.2 8.9 12.2 15.4
JAR—three threads 54 8.7 11.1 13.5

native Java code. To answer this question, the third application example was used as a
benchmark test. It was run using the three packages, J4R, rJava and rscala, and the time
required to process 10,000 plot-level realizations of the volume was recorded for each
package.

The rJava package provides two APIs and both of them were tested. The low-level API
sticks to the JNI syntax, whereas the high-level API simplifies the syntax and makes it
possible to use the $ operator to invoke Java methods. Because rJava does not implement
the vectorization, the code has to include two calls to the sapply function instead of
one as in J4R. The first sapply function actually includes a nested sapply function
which loops over the trees and calls the predictTreeCommercialVolumeDm3 method
for each tree. The code of the benchmark test is available in the Supplemental File
JAR_BenchmarkTest.R.

The rscala package (Dahl, 2020b) is meant to provide a bridge between the Scala
language and R . The Scala language relies on the JVM so that the rscala package makes
it possible to run both Scala and Java code (Dahl, 2020a). Like J4R, the bridge between
Scala and R relies on a TCP/IP connection and its API compares to the high-level API of
rJava. Like the rJava, it does not implement the vectorization so that the benchmark test
also includes two sapply functions.

Given that the predictTreeCommercialVolumeDm3 method is synchronized, the
benchmark test can be multithreaded when using J4R. For the sake of the example, the test
was run in a single thread like in the previous example as well as in two and three threads
using the mclapply. j4r function.

The test was first run with the 10 trees listed in Table 4. To evaluate the gain in
computational time related to the vectorization in J4R, the test was re-run with the tree
list duplicated two, three and four times for a total of 20, 30 and 40 trees. The id of the trees
was updated consistently to avoid any confusion. The computer used for the test was
equipped with a processor Intel(R) Core™ i7-5600U CPU @ 2.60 Ghz x 2. The computer
was running under Linux Mint 19.3 Cinnamon with Java 11.0.7.

The results of the benchmark test are shown in Table 5. The low-level API of rJava was
the fastest alternative when the number of trees was equal to or smaller than 20, followed

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 20/27

http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

closely by the J4R package using two or three threads. For greater numbers of trees, the
multithreading in J4R even showed a slightly better performance than the low-level API of
rJava. The single-threaded J4R was clearly outperformed with smaller number of trees.
When dealing with 10 trees, it was 2.5 times slower than the low-level API of rJava.
However, its performance improved as the number of trees increased so that it was

only 25% slower than rJava when the plot had 40 trees. The rscala package was 7-8 times
slower than the low-level API of rJava. Finally, the high-level API of rJava was by far the
slowest alternative, being 40 times slower than the low-level APL

DISCUSSION

The J4R package has several strengths. First of all, the connection to the Java environment
is easily made. J4R only requires that the Java directory is part of the OS path and it does
not require any compilation. In contrast, the rJava package requires some compilation
and some R environment variables must be properly set before it can start the JVM.
Having this local server setup also makes it easier to track the bugs. The server and the
client can be started in debug mode (see the J4R website for an example) and breakpoints
can be toggled on in both environments.

Although the low-level API of rJava is the fastest alternative (Table 5), its reliance
on the JNI syntax makes the calls to methods rather tedious because they require the return
type as well as the exact signature of the method. Let us consider the three Java classes
A, Band C, where class C extends class B. If a particular method in class A has the signature
A.doRun(B b) and one invokes that method with an argument c of class C, then JNI
throws an exception. In order to find the appropriate method, one would have to cast the
object c to class B.

The J4R package makes the calls to Java methods easier for three reasons. First,
there is no need to specify the return type. Secondly, the Java server implements an
algorithm that helps identify the method the user wants to invoke. When looking for a
method, it scans all the available public methods in a particular class and its superclasses
and gives them a score representing how close they are from the target signature. Since
class B is the superclass of class C, the algorithm would give the method A.doRun (B b)
a score greater than 0. If the method A.doRun (C c) existed, it would be given the greatest
score as it perfectly matches the target signature. The method with the greatest score is the
one that is invoked.

The third reason why the calls to Java methods are easier is that the J4R package also
implements an on-the-fly conversion of primitive types so that one does not have to
translate these types back and forth between Java and R. For instance, the character string
“Hello world!” does not need to be instantiated as a Java String. When invoking a
method, the classes or the primitive types are automatically recognized by the Java server.

The high-level API of the rJava package also implements a similar algorithm that
facilitates the calls to Java functions. Actually, the two functions—callJavaMethod in
J4R and J in rJava—are similar in essence. The two packages also implement the $ operator
to access Java methods and fields. However, in rJava, the J function and the use of the $

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 21/27

http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

operator come with a significant loss of performance. In the comparison between rscala
and rJava, Dahl (2020a) found similar results.

By allowing the vectorization, the J4R package makes it possible to create many
instances at once or to invoke the same method on different instances and eventually
with different arguments. This is handled by the Java server. In their current forms, the
rJava and rscala packages have to rely on loops in the R environment to obtain a similar
result. Even though these loops are handled by the 1apply and sapply functions,
they remain slow compared to loops executed in Java as shown in the benchmark test.
The J4R package shows that there is a significant gain in handling the loops on the Java end
rather than on the R end. The same vectorization approach could eventually be
implemented in rJava and rscala.

J4R implements multithreading by using a series of communication ports with the
server. Each port is handled by a different thread on the Java end, which makes the
communication with the Java server thread-safe as long as the affinity to a particular port
can be specified on the R end. As shown in the benchmark test, using multiple threads
makes it possible to significantly reduce the computational time and even reach a
performance that is close to that of low-level API of rJava.

The rscala package also allows for multithreading, but the bridge between R and the
Scala language is not thread-safe and multiple R threads or processes should not access
the same bridge (Dahl, 2020b). A workaround consists of creating several bridges in the
same R session which is something that J4R cannot do. In fact, J4R only allows for one Java
server by R session.

One last advantage of J4R is that the JVM relies on a standard class loader, which is
the main instance that loads the classes and the resources in Java. In contrast, the rJava
package uses a custom class loader which can cause some problems if the Java application
also needs one (Dahl, 2020a).

The J4R package also has several limitations. First, the code is handled by two distinct
processes: the R environment and a Java server. Although the Java server is supposed
to shut down when the connection with the R client is severed, there is always a possibility
that it does not for some reason. If this ever happens, one might have to manually end the
JVMs.

A second limitation is that J4R does not allow for callbacks to R, whereas rJava and
rscala do. Actually, the J4R package has been created with the idea of executing native Java
code in R and not the other way around. If the user needs to run R code in Java, J4R
is not an option. The Rserve package can also be used to run R code within a Java
environment (Urbanek, 2003). It is also based on TCP/IP connection and a server
implementation.

The multithreading features of J4R do not come without limitations. It is not available
on Windows because the original mclapply function is based on forking (R Core Team,
2020). Moreover, to be thread-safe, the connection to the Java server requires that the
affinity is specified in each call to the four main functions of J4R. As a consequence, it is not
thread-safe to use the $ operator to get or set a public field since the affinity cannot be
specified. The getJavaField and setJavaField functions must be used instead of

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 22/27

http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

the $ operator. Multithreading in J4R also assumes that the native Java code to be run is
thread-safe.

The synchronization of the garbage collection in both environments is not thread-safe
either and it is actually disabled when calling the mclapply. j4r function and
re-enabled when the function exits. In all the preliminary trials to test the function,
this never caused any problem. However, it can be suspected that large computational
routines involving the creation of numerous Java objects might eventually lead to memory
issues.

The multithreading features in J4R remain to be improved. The mclapply. j4r
function should be considered as a proof of concept. Multithreading with J4R is possible
and it works.

Another limitation of J4R is its inability to compile native code, something that rscala
does very well. This limitation means that J4R should be used to run precompiled Java code
usually stored in a jar file.

In terms of perspectives, the approach could be extended to a local network so that
the server could handle more than one client at a time. These clients could even share
some Java objects. Although this would require additional developments, the Java classes
behind the server of J4R have been designed with this idea in mind. The server is meant
to handle several clients. There is actually one instance of the REnvironment class per
client so that the synchronized garbage collection with the R client and the interrupt calls
are client specific.

Nevertheless, having a remote server raises additional security issues such as which
class can be instantiated by the client. Calls to some methods of the File class, such as
delete and createNewFile, should be subject to veto. A shared directory should be
dedicated to host the external Java libraries. These issues are not major ones but they still
require some developments.

CONCLUSIONS

Like the rJava and rscala packages, J4R makes it possible to run native Java code in an
R environment. The J4R package is easy to install. It has been designed to facilitate the
execution of Java code by simplifying the instantiation of Java objects and the calls to Java
methods. Linking the two environments through a TCP/IP connection offers a great
flexibility in the implementation. Among others, it allows for the use of R vectorization in
Java and multithreading. This flexibility comes at the cost of reduced performance in single
operations. However, if the vectorization and the multithreading can be used, the
performance can be similar to that of rJava.

Basically, J4R offers an API that is similar to the high-level API of rJava but with
a performance closer to that the low-level API of rJava. The vectorization and
multithreading make J4R efficient in cases where the Java code implies repeated calls
on the same objects and routines that can be parallelized. In such contexts, it certainly
offers the best trade-off between a simple syntax typical of high-level APIs and the
performance as shown in Table 5. If the vectorization features of J4R cannot be used
and the computational time is a more important issue than the simplicity of the API, the

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 23/27

http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

low-level API of rJava is the best option. If the user prefers a simpler API, J4R offers a
better performance than the high-level API of rJava, even though the vectorization cannot
be used.

J4R is meant to handle Java code embedded in external libraries and can provides a
basis for package development as well. The betadiv package implements dissimilarity
indices for the assessment of beta diversity (Fortin, Kondratyeva & Van Couwenberghe,
2020a, 2020b). The estimators of these indices and a jackknife estimator of the variance are
embedded in a Java library. Recoding the algorithms in R would be time consuming
without saying that there would be two copies of the code to be maintained. The betadiv
package relies on the main functions of J4R and provides the user with a simple API.
The URL of the betadiv package can be found in the Data Availability Section.

That said, there are features that are not available in J4R. Among others, J4R does not
allow for the execution of R native code in a Java environment, whereas rJava and rscala
do. The rscala package can compile native code on the fly whereas J4R cannot.

ABBREVIATIONS

API Application programming interface

CI Confidence interval

GUI Graphical user interface

JNI Java native interface

JVM Java virtual machine

LULUCF Land use, land-use change and forestry
OS Operating system

TCP/IP Transmission control protocol/internet protocol
URL Uniform resource locator
ACKNOWLEDGEMENTS

Thanks to Simon Urbanek (University of Auckland), an anonymous reviewer and the
editor for their constructive comments on a preliminary version of this article.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The author received no funding for this work.

Competing Interests
The author declares that he has no competing interests.

Author Contributions

e Mathieu Fortin conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 24/27

http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

Data Availability
The following information was supplied regarding data availability:

This project is hosted on SourceForge. The source code of the J4R package and the j4r
Java library is freely available at https://sourceforge.net/projects/repiceasource/files/.
The package is documented at: https://sourceforge.net/p/repiceasource/wiki/J4R/. The J4R
package and j4r Java library are licensed under GPL 3.0 and LGPL 3.0, respectively.

All the examples in article, the benchmark test, and the fictitious plot used in the third
application example are available in the Supplemental Files.

The lerfob-foresttools and repicea Java libraries used in the third application example
are hosted on SourceForge at https://sourceforge.net/projects/lerfobforesttools/ and

https://sourceforge.net/projects/repiceasource/. They are both licensed under LGPL 3.0.
The documentation of the classes listed in Table 3 is available at https://lerfobforesttools.
sourceforge.io/lerfobforesttools/javadoc/.

The betadiv package provides a simple example of package development based on J4R.
The project is hosted on SourceForge and the source code is available at

https://sourceforge.net/projects/divindices.mrnfforesttools.p/.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.300#supplemental-information.

REFERENCES
Bates D, Maechler M, Bolker B, Walker S. 2019. Ime4: linear mixed-effects models using ‘Eigen’
and $4. R package version 1.1-21. Available at https://CRAN.R-project.org/package=Ime4.
Casella G, Berger RL. 2002. Statistical inference. Second Edition. Duxbury: Duxbury Press.
Costanza P, Herzeel C, Verachtert W. 2019. A comparison of three programming languages for a
full-fledged next-generation sequencing tool. BMC Bioinformatics 20(1):301
DOI 10.1186/s12859-019-2903-5.
Dahl D. 2020a. Integration of R and Scala using rscala. Journal of Statistical Software 92(4):1-18
DOI 10.18637/jss.v092.i04.
Dahl DB. 2020b. rscala: bridge between R’ and ‘Scala’ with callbacks. R package version
3.2.19. Available at https://CRAN.R-project.org/package=rscala.
De Vries A, Meys J. 2015. R for dummies. Second Edition. Hoboken: John Wiley & Sons, Inc.
Epperly TGW, Kumfert G, Dahlgren T, Ebner D, Leek J, Prantl A, Kohn S. 2012. High-
performance language interoperability for scientific computing through Babel.
International Journal of High Performance Computing Applications 26(3):260-274
DOI 10.1177/1094342011414036.
Fortin M, DeBlois J. 2010. A statistical estimator to propagate height prediction errors into a
general volume model. Canadian Journal of Forest Research 40(10):1930-1939
DOI 10.1139/X10-107.
Fortin M, DeBlois], Bernier S, Blais G. 2007. Mise au point d’un tarif de cubage général pour les
foréts québécoises: une approche pour mieux évaluer 'incertitude associée aux prévisions.
Forestry Chronicle 83(5):754-765 DOI 10.5558/tfc83754-5.

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 25/27

https://sourceforge.net/projects/repiceasource/files/
https://sourceforge.net/p/repiceasource/wiki/J4R/
http://dx.doi.org/10.7717/peerj-cs.300#supplemental-information
https://sourceforge.net/projects/lerfobforesttools/
https://sourceforge.net/projects/repiceasource/
https://lerfobforesttools.sourceforge.io/lerfobforesttools/javadoc/
https://lerfobforesttools.sourceforge.io/lerfobforesttools/javadoc/
https://sourceforge.net/projects/divindices.mrnfforesttools.p/
http://dx.doi.org/10.7717/peerj-cs.300#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.300#supplemental-information
https://CRAN.R-project.org/package=lme4
http://dx.doi.org/10.1186/s12859-019-2903-5
http://dx.doi.org/10.18637/jss.v092.i04
https://CRAN.R-project.org/package=rscala
http://dx.doi.org/10.1177/1094342011414036
http://dx.doi.org/10.1139/X10-107
http://dx.doi.org/10.5558/tfc83754-5
http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

Fortin M, Kondratyeva A, Van Couwenberghe R. 2020a. betadiv: estimators of multiple-site
dissimilarity indices for the assessment of beta diversity. R package version 1.0.2. Available at
https://sourceforge.net/p/mrnfforesttools/divindices/wiki/Home/.

Fortin M, Kondratyeva A, Van Couwenberghe R. 2020b. Improved p-diversity estimators based
on multiple-site dissimilarity: distinguishing the sample from the population. Global Ecology and
Biogeography 29(6):1073-1084 DOI 10.1111/geb.13080.

Gabrilovich E, Finkelstein L. 2000. JNI-C++ integration made easy. C/C++ Users Journal
19(1):10-21.

Getov VS, Gray PA, Sunderam VS. 2000. Aspects of portability and distributed execution for JNI-
wrapped message passing libraries. Concurrency: Practice and Experience 12(11):1039-1050
DOI 10.1002/1096-9128(200009)12:11<1039::AID-CPE519>3.0.CO;2-B.

Gilbert FR, Dahl DB. 2020a. Java’ data exchange for 'R’ and ’rlava’. R package version
0.1.4. Available at https://CRAN.R-project.org/package=jdx.

Gilbert FR, Dahl DB. 2020b. A ‘Java’ platform integration for R’ with programming languages
‘Groovy’. R package version 0.3.4. Available at https://CRAN.R-project.org/package=jsr223.

GitHub. 2018. The state of the octoverse 2018. Available at https://octoverse.github.com/
(accessed 4 November 2019).

IEEE. 2008. IEEE standard for floating-point arithmetic (IEEE std 754-2008). Available at
https://ieeexplore.ieee.org/document/4610935.

IPCC. 2003. Good practice guidance for land use, land-use change and forestry. Hayama: IGES.

IPCC. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Agriculture, Forestry
and Other Land Use. Vol. 4. Japan: IGES.

Kanagalingam S. 2019. Java classloading. Available at https://medium.com/@senthalan/java-
classloading-f281cd1706f6 (accessed 27 July 2020).

Kondoh G, Onodera T. 2008. Finding bugs in java native interface programs. In: ISSTA "08:
Proceeding of the 2008 International Symposium on Software Testing and Analysis. New York:
Association for Computing Machinery, 109-118.

Liang S. 1999. The java native interface—programmer’s guide and specification. Boston:
Addison-Wesley.

Marx D. 2010. Java’s system.identityHashCode—inspired by actual events blog. Available at
http://marxsoftware.blogspot.com/2010/11/javas-systemidentityhashcode.html (accessed 8
January 2020).

Oracle. 2019. The JavaTM tutorials—interrupts. Available at https://docs.oracle.com/javase/
tutorial/essential/concurrency/interrupt.html (accessed 7 July 2020).

Pinheiro J, Bates D, R Core Team. 2017. nime: linear and nonlinear mixed effects models.

R package version 3.1-131. Available at https://CRAN.R-project.org/package=nlme.

R Core Team. 2020. Package ‘parallel’. R package version 4.1.0. Available at http://stat.ethz.ch/R-
manual/R-devel/library/parallel/doc/parallel.pdf.

Rubinstein RY, Kroese DP. 2008. Simulation and the monte carlo method. Hoboken: John Wiley &
Sons, Inc.

Schildt H. 2007. Java: the complete reference. Seventh Edition. New York: Mc Graw/Hill.

Shams Z, Edwards SH. 2013. Reflection support: java reflection made easy. Open Software
Engineering Journal 7(1):38-52 DOI 10.2174/1874107X20130422001.

Stack Overflow. 2010. R: find the last dot in a string. Available at https://stackoverflow.com/
questions/5214677/r-find-the-last-dot-in-a-string (accessed 13 January 2020).

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 26/27

https://sourceforge.net/p/mrnfforesttools/divindices/wiki/Home/
http://dx.doi.org/10.1111/geb.13080
http://dx.doi.org/10.1002/1096-9128(200009)12:11%3C1039::AID-CPE519%3E3.0.CO;2-B
https://CRAN.R-project.org/package=jdx
https://CRAN.R-project.org/package=jsr223
https://octoverse.github.com/
https://ieeexplore.ieee.org/document/4610935
https://medium.com/@senthalan/java-classloading-f281cd1706f6
https://medium.com/@senthalan/java-classloading-f281cd1706f6
http://marxsoftware.blogspot.com/2010/11/javas-systemidentityhashcode.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html
https://CRAN.R-project.org/package=nlme
http://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf
http://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf
http://dx.doi.org/10.2174/1874107X20130422001
https://stackoverflow.com/questions/5214677/r-find-the-last-dot-in-a-string
https://stackoverflow.com/questions/5214677/r-find-the-last-dot-in-a-string
http://dx.doi.org/10.7717/peerj-cs.300
https://peerj.com/computer-science/

PeerJ Computer Science

Stack Overflow. 2018. Developer survey results 2018. Available at https://insights.stackoverflow.
com/survey/2018 (accessed 4 November 2019).

Tan G, Appel AW, Chakradhar S, Raghunathan A, Ravi S, Wang D. 2006. Safe java native
interface. In: IEEE 06: Proceeding of the 2006 International Symposium on Secure Software
Engineering. Piscataway: IEEE, 97-106.

Tierney L, Rossini AJ, Li N, Sevcikova H. 2018. Snow: simple network of workstations. R package
version 0.4-3. Available at https://CRAN.R-project.org/package=snow.

Tiobe. 2020. Tiobe index for April 2020. Available at https://www.tiobe.com/tiobe-index/
(accessed 19 April 2020).

Urbanek S. 2003. Rserve—a fast way to provide R functionality to applications. In: Hornik K,
Leisch F, Zeileis A, eds. Proceedings of the 3rd International Workshop on Distributed Statistical
Computing (DSC 2003). Vienna: Austrian Association for Statistical Computing (AASC), 1-11.

Urbanek S. 2020. rjava: low-level R to java interface. R package version 0.9-13. Available at
https://CRAN.R-project.org/package=rJava.

Veerasamy BD, Nasira GM. 2012. Setting CPU affinity in windows based SMP systems using Java.
International Journal of Scientific & Engineering Research 3(4):893-900.

Venables WN, Smith DM, The R Core Team. 2020. An introduction to R: notes on R—a
programming environment for data analysis and graphics. Version 3.6.3.

Vivanco R, Pizzi N. 2002. Computational performance of java and C++ in the processing of
fMRI datasets. In: OOPSLA °02: Companion of the 17th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications. New York: Association for
Computing Machinery, 100-101.

Wickham H. 2014. Advanced R. London: Chapman & Hall/CRC.

Wickham H. 2015. R Packages. Sebastopol: O’Reilly.

Fortin (2020), Peerd Comput. Sci., DOl 10.7717/peerj-cs.300 27/27

https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2018
https://CRAN.R-project.org/package=snow
https://www.tiobe.com/tiobe-index/
https://CRAN.R-project.org/package=rJava
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.300

	Executing native Java code in R: an approach based on a local server
	Introduction
	Methodology
	Some application examples
	Benchmarking
	Discussion
	Conclusions
	Abbreviations
	flink8
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

