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ABSTRACT

As the internet continues to evolve rapidly and social media becomes increasingly preva-
lent, the ways people access information has become increasingly diverse. However, the
proliferation of fake news has emerged as a critical problem, presenting major challenges
to the integrity of the information ecosystem. To address the complex propagation
mechanisms of fake news, existing studies leverage multi-modal information and
dynamic propagation social graphs for effective detection. Nonetheless, capturing the
temporal relationships of propagation nodes in dynamic social networks accurately
and dynamically integrating multi-modal information for improved detection accuracy
remains a technical challenge. In response, This study proposes a multimodal approach
to fake news detection—the dynamic temporal network (DTN) model. Firstly, this
model designs a time similarity strength metric to measure the temporal similarity
among nodes in propagation sequences and introduces a weighting mechanism to
dynamically fuse multi-modal information. Secondly, it constructs a social propagation
graph model, enhancing node representation through the dynamic variations of time
similarity and graph structure, and utilizes the Transformer encoder to extract the
overall semantic features of news propagation. Furthermore, the model views the news
propagation process as a complex system, analyzing the temporal dynamics of news
in real social networks, effectively revealing the abnormal propagation patterns of
fake news. Further analysis demonstrates that the proposed DTN model exhibits high
accuracy and effectiveness in multi-modal fake news detection.

Subjects Natural Language and Speech, Network Science and Online Social Networks, Text
Mining, Sentiment Analysis, Neural Networks
Keywords Heterogeneous graph, Fake news detection, Social networks, Multi-modal

INTRODUCTION

With the swift advancement of the internet and the widespread growth of social media,
the ways in which people access information have become increasingly diverse. We

no longer rely on printed materials; instead, we communicate with the outside world
through quicker and more comprehensive social media channels. However, alongside
the convenience that social media brings to our lives, hidden drawbacks are gradually
eroding our daily experiences. One significant issue is fake news. While internet platforms
facilitate the rapid flow of information, they also inadvertently provide a breeding ground
for the spread of falsehoods. Individuals in various sectors spread fake news either to gain
attention and small profits or, in more severe cases, to intentionally incite social unrest,
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potentially harming national interests. For instance, during the 2020 COVID-19 outbreak,
false claims that 5G radiation could spread the virus propogated on social media, causing
panic. This led to 5G towers being damaged or burned in the UK and the Netherlands,
disrupting communication systems (Schraer ¢ Lawrie, 2020). Consequently, the issue of
fake news has become a focal challenge in the realm of cybersecurity, attracting widespread
interdisciplinary research. Scholars from fields ranging from complex network analysis
to communication theory, sociology, psychology, and artificial intelligence are actively
exploring the intrinsic mechanisms of fake news propagation and working to develop
more accurate detection technologies. Their goal is to provide the public with effective
tools for identifying fake news, thereby helping to maintain the purity and health of the
information ecosystem. Hence, it is imperative to develop a highly efficient and precise
model for detecting fake news.

To detect fake news, classic text-based methods (Cheng, Nazarian ¢ Bogdan, 2020) use
variational autoencoders (VAEs) to encode textual information, generating embedded
representations of news texts and improving performance through multi-task learning.
In social networks, connections between news and entities such as users and comments
make graph-based methods effective. Yin et al. (2024) introduced self-supervised learning
with a graph autoencoder, while Bian et al. (2020) utilized graph convolutional networks
(GCNs) with directed rumor graphs to learn propagation and dispersion patterns. News
content includes text, images, videos, audio, and more. Researchers have proposed
leveraging multimodal information to improve fake news detection, enabling models
to better understand news content for more accurate results. Xue et al. (2021) emphasized
the consistency of multimodal data, capturing the overall characteristics of social
media information, while Yadav ¢ Gupta (2024) leveraged emotional cues and a vision
transformer to filter irrelevant data and boost classification performance.

While current methods for detecting fake news have shown some effectiveness, they still
exhibit certain limitations, primarily reflected in the following aspects:

1. Limitations of graph structure representation Many studies use news text as the
sole information source for graph nodes, pooling them into graphs or subgraphs for
classification. This approach fails to capture complex node-edge relationships and
dependencies in news propagation, limiting its ability to represent the propagation
network’s features.

2. Lack of dynamic information fusion The majority of models center on the content
of news, neglecting both the social environment and its dynamic spread. As public
understanding of news content deepens, propagation paths evolve, making real-time
monitoring crucial for detecting fake news. However, the lack of effective integration
of dynamic information limits the models’ performance in complex environments.

To tackle these challenges, this study introduces a dynamic temporal network (DTN)
model, designed to address the complexities of multimodal fake news detection. As
fake news continues to spread rapidly across social media platforms, its multi-modal
characteristics and dynamic propagation patterns make detection increasingly complicated.

Following this line of thought, we designed the DTN model, which enhances detection
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capabilities by exploring the complex temporal relationships between nodes, calculating
the temporal and spatial distribution features during news propagation, and capturing
the dynamic changes in graph structures. Based on this, we address three core challenges:
(1) How to effectively capture the temporal dynamics of nodes? (2) How to dynamically
integrate multi-modal information to maximize the complementary aspects during the
propagation process? (3) How to reveal the abnormal patterns of fake news with respect to
temporal and spatial distribution to improve detection accuracy?

To address these challenges, Yu et al. (2017) introduced temporal similarity metrics to
link prediction, showing that nodes frequently infected at similar times are more likely to
connect. Building on this, we designed a temporal similarity strength metric to dynamically
weight neighboring nodes in propagation sequences, capturing temporal dynamics. We also
constructed a propagation social graph model combining temporal similarity with dynamic
graph changes, enhancing node representation and capturing local contextual features.
Inspired by Sheng et al. (2022), who noted that fake news aligns with popular events
to maximize exposure, we introduced entropy analysis to quantify temporal dynamics,
revealing abnormal patterns in fake news propagation. To improve global semantic
perception, we used a Transformer encoder to capture global semantics and integrate
multi-modal information, significantly enhancing detection accuracy. Experiments show
that the DTN model outperforms existing methods in accuracy and robustness, effectively
capturing propagation dynamics, integrating multi-modal information, and detecting fake
news efficiently.

The key features and advancements of our model can be summarized as:

e Integrality We proposed a time similarity strength metric and a dynamic weighting
mechanism for the integration of multi-modal information among nodes, improving
the model’s capacity to understand semantics throughout the propagation process.

e Efficiency We constructed the DTN model, which combines graph structure with the
time similarity metric and utilizes a Transformer encoder to capture global semantics,
thereby improving the effectiveness of fake news detection.

e Monitor Through feature analysis, we revealed the complexities of the concentrated
short-term propagation and long-term diffusion of fake news, identifying patterns
in their temporal and spatial distributions, thus enabling early monitoring of news
propagation and long-term diffusion warning functions.

Experimental results validate the DTN model’s significant detection performance and
generalization capability across different datasets, demonstrating its potential in capturing
news propagation dynamics and identifying fake news.

RELATED WORK

Text-based methods

Traditional fake news detection methods focus on analyzing textual content by extracting
semantic features (Madani, Motameni ¢ Roshani, 2024). Yu et al. (2017) first applied
CNNs to model news articles, mapping related posts into vectors, concatenating them
into a matrix, and extracting features with CNNs before classification. Cheng, Nazarian
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¢ Bogdan (2020) employed a variational autoencoder (VAE) for encoding news text,
generating embeddings and enhancing performance through multi-task learning. Vaibhav,
Mandyam & Hovy (2019) represented news using a graph structure, where sentences acted
as nodes and their similarities formed edges, utilizing GCNs to combine node information
and identify fake news.

However, these methods rely solely on text, neglecting user behavior and social data in
social networks. This limits their ability to capture fake news dissemination characteristics,
as user interactions and propagation patterns provide a more comprehensive basis for
detection.

Graph-based methods
In social networks, connections between news and entities like users and comments can
be utilized for fake news detection by constructing homogeneous or heterogeneous graphs
(Ramya & Eswari, 2024; Jiang et al., 2024; Su et al., 2024). Dou et al. (2021) evaluated user
credibility by considering posting history as an internal element and news propagation as an
external aspect. Shu, Wang ¢ Liu (2019) modeled relationships like publisher-post-news
and user-spread-news in a heterogeneous information network, using matrix factorization
to enhance node representations and detection accuracy. Park ¢ Chai (2023) integrates
user, content, and social network features based on social capital, effectively reflecting fake
news propagation characteristics.

However, these methods often fail to capture complex node-edge relationships and
dependencies in news dissemination processes.

Multi-modal methods

News content includes text, images, videos, and audio. Researchers have proposed
multimodal approaches to improve fake news detection (Zhang et al., 2024; Zhang et
al., 2025; Zhu et al., 2024) proposed a reinforcement-driven subgraph selection method,
adaptively retrieving entity-level knowledge and capturing cross-modal correlations via
heterogeneous graph learning. Luvembe et al. (2024) introduced complementary attention
fusion between image captions and text, combined with feature normalization to reduce
semantic noise and improve detection performance. Peng et al. (2024a) emphasized that
fake news is not always semantically similar, and proposed contextual semantic learning to
fuse global and local semantics for more robust detection in multimodal environments.

However, these models lack effective integration of dynamic information. Real-time
monitoring of news dissemination is crucial, as public understanding evolves over time,
affecting fake news spread. Dynamic information integration is essential for addressing
real-world complexities.

To tackle these issues, we introduce the DTN framework, designed to surpass the
constraints of text-centered methods. It captures complex graph relationships and node
dependencies during news dissemination while enhancing semantic information. By
analyzing spatiotemporal distribution patterns, DTN dynamically weights nodes for
comprehensive multimodal fusion, excelling in distinguishing real and fake news on large
social networks.
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PROPOSED MODEL

To address the limitations of graph structure representation and the lack of dynamic
information fusion, this paper proposes the DTN model, designed to effectively identify
the authenticity of news. This section introduces the design and implementation of
DTN. Figure 1 illustrates the architecture of DTN, which consists of five modules:
feature representation, graph structure enhancement, temporal feature analysis, temporal
dynamics fusion, and global semantic encoding.

Feature representation module

Figure 2 outlines the architecture of the feature representation module, which is responsible
for extracting multi-modal information from news events and their social context. This
module incorporates textual, visual, and social media signals, enabling the model to capture
both semantic content and user interaction dynamics. By performing quantification and
normalization across heterogeneous modalities, the model ensures feature alignment and
dimensional consistency, laying a solid foundation for downstream tasks. The module
consists of three components: (1) text feature representation, which encodes the semantics
of news titles, content, and social posts; (2) image feature representation, which captures
visual cues from accompanying news images; and (3) social media feature representation,
which models user attributes and engagement metrics. Together, these representations
provide a comprehensive understanding of event credibility and significantly enhance the
model’s predictive performance.

Text feature representation

To obtain meaningful vector representations for diverse textual modalities, we employ
a hybrid encoding strategy leveraging two pre-trained language models. Given an input
sentence S, we first tokenize it with padding or truncation into a fixed-length sequence
T ={[CLS],s1,52,--,Si---,Sn, [sep]}, where s; denotes the token corresponding to the
$i$-th word. This sequence is passed into a fine-tuned robustly optimized bidirectional
encoder representations from Transformers (RoBERTa) encoder to extract contextualized
embeddings. The hidden state of the special token [CLS] is used as the sentence-level
embedding, denoted by e € R%, where d; is the embedding dimension. In parallel, we
employ a fine-tuned T5 encoder to process structured textual fields in the news data,
including the title, content, and associated post. Each field is encoded independently to
produce dense vector representations e’, e, and e”, respectively. These embeddings are
further normalized to ensure consistency across modalities and facilitate downstream
training. The RoBERTa-based representation is specifically used for user-related textual
inputs, such as user descriptions or profile metadata, yielding the user embedding e*.
This dual-model setup enables the system to capture both general linguistic patterns and
field-specific semantics across heterogeneous textual inputs.

Image feature representation
To incorporate visual modality into the model, we utilize a pre-trained ResNet18 network
to extract semantic-level image features from news-related visual content. Given an input

Hu et al. (2025), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.2998 5/33


https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2998

PeerJ Computer Science

post

:::.’::m % R ﬁ e'

normalizing

User Profile RoBERTa
Feature ()
fans o9 i
e

A

2"z

e,e€R’ EI o @
2 < B

Select the top K most frequently
visited neighbors in random

Picture walks

ResNet18

cover image
i

i
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

'R tati —_—
| Representation | ¢ owers (A
| Module ¥ -
| vertify

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

lzl m e,e€R’ a ¢ @

Global Semantic Analysis Module

Fusion Module

LR ==

| |
‘ |
‘ i
‘ i
| |
‘ i
! |
| i
‘ i
! |
| |
| |
‘ |
! i
‘ i
| |
| |

i |
| Analysis source Dynamic graph |
| i
| |
| |
| i
‘ i
! |
| |
| |
‘ |
‘ i
‘ |
| i
| |
‘ |
‘ i
‘ i
i

e

0~ [ 388 ] ™
1
-]

Transformer

Temporal time
Module news propagation ﬂ
Ee .
entropy e e o ° R weight W classifier
—) ° =0 —
related
news/posts ° e ﬂ

Figure 1 The framework of the DTN model.
Full-size G DOI: 10.7717/peerjcs.2998/fig-1

image associated with a news event, we pass it through ResNet18 and extract the feature
vector from its final average pooling layer, resulting in a dense representation. This visual
feature vector is then subjected to normalization to ensure alignment with the dimensions
of other modalities. The resulting image embedding is denoted as e” € R%, where d,
indicates the dimension of the image feature vector. By integrating visual cues from news
images, the model is able to capture multimodal signals that may reflect emotional tone,
contextual clues, or visual bias, thereby enhancing its capacity for comprehensive news
understanding and veracity assessment.

Social media data feature representation

When a news topic emerges, it inevitably triggers public opinion through social media,
and metrics such as the number of reposts and likes on posts related to the topic are key
numerical attributes that need to be considered. In particular, we need to focus on the
social media data of the user u; who posted the news and related posts. This data contains
key attributes, including follower count, fan count, and the verification status of the
user. These user features should be treated as important numerical attributes and further
incorporated into the model for analysis. Subsequently, the aforementioned social media
numerical features are converted into a sparse feature matrix using one-hot encoding,
with the embedding representation of the user’s social media metrics denoted as e*. In this
way, the numerical attributes can be normalized. Quantifying these social media data not
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only helps to fully understand the user’s influence and credibility on the platform but also
provides more accurate and comprehensive information support for the model, improving
its prediction capability and effectiveness.

Graph structure enhancement module

Relying solely on news text to determine authenticity has limitations, as relationships
between users, news, and posts influence information dissemination and public perception.
We extend social media data into a multidimensional graph structure to explore the impact
of these relationships on fake news detection. Figure 3 illustrates the graph structure
enhancement module. By constructing a heterogeneous graph consisting of users, news,
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and posts, and optimizing it using random walks and frequency sampling, we capture
dynamic propagation relationships and preserve key connections.

Definition of graph structure

As shown in Fig. 4, we model the relationships between news using a graph structure to
further analyze and detect fake news propagation patterns. Drawing from the entity
categories identified in the dataset, including users, news, and posts—we construct

a heterogeneous news graph G = {V, €}, where V = {U,N, P} represents the set

of nodes for users, news, and posts, respectively. U = {ul,uz,...,ui...,ucu},N =

{nl, Ny, ... N, } ,P= {pl,pz,...,pi...,pcp} represent the sets of users, news, and posts,
with ¢, ¢,, ¢, denoting the number of users, news, and posts, respectively. € represents the
edges that link these nodes. Specifically, we model news, users, and posts as nodes, with
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different types of interactions as edges, constructing a multi-type edge graph that reflects

the propagation patterns in social networks. The implementation steps are outlined below:

Nodes: The graph nodes correspond to three categories of entities:

(a) User nodes: Each user posting news is represented as a node in the graph.

(b) News nodes: Each news is represented as a node.

(c) Postnodes: Each post related to the news is represented as a node.

Edges: Based on different types of interactions between news, we define the following edges

between nodes:

(a) news-post interaction edges: Recursively add n — p edges between main news nodes
and their directly replied posts. Add p — p edges between reply posts to represent
interactions among posts.

(b) user interaction edges: Add n— u or p — u edges between each main news or post and
its corresponding user. If a post has replies, add u — u edges to represent interactions
between users.

Heterogeneous graph optimization

After constructing a network graph based on different node types (users, news, and

posts), as shown in Fig. 3, a random walk process is simulated between nodes to capture

the underlying patterns of information propagation, going beyond the relationships of
first-order neighbors to obtain a more comprehensive propagation graph. The specific
steps are as follows:
i. Random walk initiation: Start from an initial node and iteratively visit its neighboring
nodes according to the connections defined in the adjacency list.

ii. Frequency sampling to select high-frequency neighbors: In large-scale networks,
connections between nodes are often dense. To reduce complexity, a frequency
sampling method is used to retain only high-frequency neighbors, controlled by
parameter k. Neighbor nodes are ranked by visitation frequency during random walks,
excluding the starting node and irrelevant nodes. High-frequency nodes are prioritized
and retained in the final neighbor list.

iii. Enforced retention of important edges: To ensure that certain critical edge types
(e.g., news-user, post-user) are always retained, these edges are forcibly added to the
neighbor list even if they are not part of the initial target set of the random walk. This
guarantees that important connections are reflected in the graph structure, enhancing
overall connectivity.

Dynamic temporal analysis module

In the context of accelerated information dissemination and short public attention spans,
controlling the credibility and dissemination paths of news has become increasingly
challenging, especially during emergencies. This section analyzes news dissemination
patterns through temporal dynamic features and propagation information to enhance
transparency and controllability.
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Temporal sequence penetration fusion module
As the internet and social media continue to evolve, focusing on the time dimension is
crucial for studying news dissemination. By analyzing the temporal proximity of nodes,
the concept of time similarity intensity is introduced to measure the impact of related news
and posts on information spread. The core idea is that the closer the time, the stronger
the correlation in information dissemination, enabling a more accurate assessment of the
cumulative effects and diffusion paths of information sources.
i. Incorporating time information into attribute features and graph structure
As shown in Fig. 5, convert the time string (e.g., Mon Apr1218 : 37 : 46 2021)
into a UTC timestamp to embed temporal information into the identifiers of graph
nodes and edges, integrating time data into the graph structure. Node identifiers
embed time by concatenating the news ID with the timestamp (e.g., news;z +”t” +
changetime(sourceye. [ ‘created_at'])). Similarly, edge identifiers incorporate reply
hierarchy relationships and timestamps to associate news with posts or posts with other
posts in the graph structure. Even if replies share the same news ID, they can be distinguished
by their timestamps. In the final graph file, all relationships between nodes and edges include
temporal information, ensuring that the graph structure’s relationships are closely linked
to time.
ii. Enhancing the target news node with temporal similarity based on neighbor features
By leveraging neighbor features and time similarity, the target news node is enhanced
to capture the dynamics of news dissemination in complex networks. Temporal similarity
is determined by measuring the interval separating the x — th neighbor and the target news
n; in its neighborhood N™ and the target news #; itself.
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The time interval I)! is calculated according to the following formula:

I exp(ty —ty;)

x ky
Zj:l exp(t]- - tn,-)

Here, t,, the publishing timestamp of the target news, ¢, indicates the publication

moment of the x — th neighbor within the neighborhood N associated with #;, while k,
refers to the count of news neighbors associated with n;. Nodes that are temporally closer
exhibit stronger correlations in information dissemination and greater content relevance.
Therefore, we assign higher weights to such nodes. The temporal similarity strength S},
between a neighboring node in N” and the target news #; is defined by the following
formula:

Sn _ eXp(_I;l)
Z]]fllexp(—lj”)

"=
Here, I represents the time gap between the publication of the x — th neighbor in N"
and the target node #;. k,, denotes the total count of neighbors associated with n;.
Similarly, the temporal similarity strength S? between posts can be calculated using the
same method described above, where S" € R*" and P € Rk,
iii. Concatenating the attribute characteristics of news nodes
A self-attention mechanism uncovers feature dependencies, enhancing contextual
semantics, First, the attribute features of the news node, including its title and content, are
processed and combined. Then, they are linearly transformed to a unified dimension d,
facilitating subsequent neural network computations. The title feature of the neighboring
news E’ is given by the following formula:

t t t t t
E" =concat(ey.e;,...... e )W'.

Here, W' € R%*4 represents the trainable parameters, where d; and d denote the unified
projection dimension of the title feature and the embedding dimension, respectively. k,
the count of neighboring nodes associated with the target news ;. concat(-) denotes the
vector concatenation operation, and E* € Rf*4,

Each embedding vector undergoes linear transformations through a self-attention layer
to generate query, key, and value vectors. Three independent linear layers are initialized
to perform matrix operations on the embedding vectors, producing tensors with a shape
of [batch_size, seq_len,n_heads*head_dim] represents the vector dimension for each
attention head. The output of the multi-head attention is further processed through a linear
layer to produce tensors of the same shape. This operation integrates the attribute features
from the news titles of neighboring nodes and employs a multi-head attention mechanism

to refine the current news node’s attributes, enhancing its semantic dependencies and

t

"y are calculated

structural features. The semantic relational features of the news title E
using the following formula:

E! = MultiHead (Q,K,V)

rel —

= MultiHead (E' ,E' ,E").
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Here, E!, € Rk*4 | the formula for E, means that the input E' is mapped into three
matrices: query, key, and value, through the multi-head attention mechanism. Specifically,
it is linearly transformed as Q= EtWtQ, K = EtWtK ,and V =E tWtV, where WtQ, WtK ,
and W,V represent the weight matrices corresponding to the query, key, and value. The
multi-head attention mechanism is calculated using the following equation:

h K 1% M
MultiHead(Q,K,V):(‘H Attention(QW 2 KWK vwVy)w

1=1

/ /T

K /
< )W
Vo
Here, di represents the dimension of K. WRe Rdx%, wk ¢ R4 f ,and WV e R9% % d
indicates the unified projection size, and || signifies the operation of joining features. Using

Attention(Q/,K/, V/) = softmax(

a comparable method described above, the semantic relational features of the news content

E;,, the visual semantic relational features E;;, and the temporal semantic relational

N

~; for neighboring nodes can also be obtained.

features E
Time information from neighboring nodes is integrated into the attribute features to
capture their dynamic relationships. Subsequently, varying weights are assigned to each
neighbor. In real social networks, the process of news dissemination gives varying levels
of attention to different neighboring nodes, enabling the dynamic capture of the social
structure information of the news.
iv. Temporal weighted diffusion features
Finally, the fused feature representation for each node is obtained. The calculation

formula for the temporal diffusion features of the news title is as follows:

rel» “rel»

Elyy = MultiHead (Q.K, V') = MultiHead (. E}; EL,)).

Here, Ej:l and E/,; denote the temporal semantic relationships and the title-related
semantic relationships associated with the main news. E;;; € R4 denotes the temporal
diffusion attribute of the focus news. k, denotes the count of neighboring nodes linked to
the target news n;. Using the above formula, we can obtain the temporal diffusion features
of the news content Ej ;.

Based on the node types (news, user, post), we process the embeddings of different
types of neighboring nodes, apply the attention mechanism, and fuse temporal and
content information, followed by processing with a bidirectional recurrent neural network
(Bi-RNN). The embeddings are then aggregated using mean pooling, and the pooled result
is returned. Finally, the fused features of the news node are obtained, and the calculation
formula is as follows:

Ef,, = Fusiong;_py (E;df,E;df,E;df> — MeanPool (Elyy, Ey ESyp).

Here, Eﬁs € Rk*d where k,, refers to the count of connected nodes related to the main
news 1;. MeanPool(-) denotes the operation of mean pooling.

Integrating the graph structure enhancement module, we extract fused features for users,
news, and posts in the heterogeneous graph. Using the temporal sequence permeation
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fusion module, we dynamically capture the contextual semantics of neighboring nodes
within the social network, integrating time-related information. When calculating the
fused features of post nodes, temporal permeation is not applied to user neighbors as
there are no dynamic relationships between users. By combining semantically enhanced
user features with other user attributes, the fused features of post nodes El; , are obtained.
Finally, the fused features for target news nodes E}’us e R4, post nodes Epus e R4 and
user nodes Ef’LS € Rk are computed, where k, and k, indicate the quantities of post-type
and user-type neighbors associated with #n;, and d refers to the dimensionality of the
projection.

Dynamic monitoring in the temporal dimension
The above module optimizes fake news detection through complex networks and
information dissemination. This subsection delves deeper from sociological and
psychological perspectives. As shown in Fig. 6, fake news often draws inspiration from
mainstream public opinion, using high-exposure content to attract attention, with more
concentrated release and dissemination times. Monitoring the propagation disorder of
rumors and non-rumors using entropy enhances the model’s detection accuracy and
timeliness.
i. Calculation of dissemination disorder

Extract the source tweet’s publication time for each news item from the dataset as the
starting point and record the reaction tweets’ publication times to form a time series.
Define time intervals (e.g., 1 h, 2 h, 6 h, 12 h, or even up to 24 h, etc.) starting from the
source tweet time, segment the timeline, and count the number of tweets in each interval
to create a propagation distribution and calculate entropy. A smaller entropy indicates
concentrated propagation, while a larger entropy suggests more dispersed or disordered
propagation.

kP
H == p(x,)logp(xy,).
i=1

Here, p(x,,) represents the probability distribution of a specific post within each time
period. k, represents the count of post-type neighbors linked to n;. By comparing the
entropy changes of rumors and non-rumors, the differences in their propagation patterns
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can be analyzed. Low entropy indicates that rumors tend to spread rapidly in a short period,
while high entropy reflects the sustained diffusion of real news across multiple nodes. In
the early stages of propagation, the low number of tweets may cause entropy calculations
to be affected by sparsity. This can be addressed using weighted entropy and smoothing
techniques.
ii. Introducing disorder as a temporal feature into the model

Propagation entropy, as a measure of news dissemination disorder, can be combined
with other features and input into the model to enhance news authenticity detection.
Additionally, calculating entropy at different time intervals (e.g., every 6 or 12 h) forms a
time series that can be input into a Transformer temporal model to capture propagation
dynamics. This approach better reflects the timeliness and complexity of propagation
paths, thereby optimizing the effectiveness of fake news detection.

Global semantic analysis module

Building on the graph structure enhancement module and dynamic temporal analysis
module described above, this section introduces a module that optimizes the graph
structure through dynamic attention coefficients. This module uses a graph attention
mechanism, combining temporal semantics and the dynamic relationships of neighboring
nodes, to calculate positive and negative attention coefficients and integrate node features.
Meanwhile, the model employs a multi-modal input and feature fusion strategy, leveraging
the attention mechanism, the model effectively combines the attributes of news nodes and
their neighboring nodes, enhancing the precision of fake news detection. The design of the
graph alignment module is depicted in Fig. 1.

Adding dynamic attention coefficients to optimize the graph structure
Temporal semantics are added to dynamic neighbor embeddings, and attention coefficients
are computed considering node relationships. This means that the interaction between
nodes depends not only on their static topology but also on their temporal interactions.
The dynamic attention coefficient integrates temporal semantics, enabling the model to
more accurately capture node dependencies and information flow at different time points.
The formula for the dynamic attention coefficient §; is as follows:

84+ = LeakyReLU ((Efus W, ) + (Efus Wa,)1).

Here, Ej,s represents the fused features of the news node, and W, a; and «; are trainable
parameters. The adjacency matrix A is divided into upper d rows and lower d rows,
corresponding to «; and o.€R¥, Epys € R4 W eRI*4 and 04 € R,

Subsequently, the dynamic attention coefficients are standardized using the following
formula:

8; = softmax (84 ).

We use the softmax function for normalization because some posts express opposition to
the news being released, which means that some values of §; might be negative. However,
after applying softmax brings values closer to zero, reducing the influence of negative ones.
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Let _ = —44, and the normalization formula is as follows:
s = softmax(5_).

The graph attention mechanism performs a weighted calculation on the nodes in
the embedding sequence by comprehensively analyzing the temporal context of each
node and the dynamic relationships with its neighboring nodes. This dynamic weighting
calculation not only reflects the immediate associations between nodes but also considers
their interactions at different time steps, thereby improving the timeliness and accuracy
of feature representation. By concatenating the aggregated features of both positive and
negative correlations, the output features processed by the fully connected layer are
represented as follows:

fo = ReLU (8, Esus|18_ Epus) We).

Here, Ef,s represents the fused features of the news node, and W, is a trainable parameter,
with W, € R%>4_ ReLU (-) is used as a nonlinear function, || denotes a joining operation,
and f; e R4,

During model training, different dynamic attention coefficients are produced. Based on
the positive attention weights, the information from neighboring nodes is weighted and
summed to generate updated representations for individual nodes. Similarly, the feature
representation for negative attention is also derived. The node features under both positive
and negative attention are concatenated to form a feature matrix that is twice the original
size. A new weight matrix, used in a variant of the graph attention network (GAT), is then
applied to the concatenated features for m linear transformations, generating new node
features. This process yields a more comprehensive and integrated graph structure feature
Fg. The calculation formula is as follows:

Fe=0u(GAT(| ).

Here, ]fgi represents the graph structural features obtained in the i — th iteration, where
i€ [1,h].GAT (-) represents the graph attention module, o, (-) stands for the elu activation
function, || is the concatenation operation, and F, € RIxd,

Multimodal feature integration and prediction

This module aggregates the features of news nodes and their neighbors (users, posts) using a

Transformer, integrating temporal features, node entropy weights, and fused visual-textual

representations to enhance the perception of temporal dynamics and the complexity of

multimodal node information. Utilizing the multi-head attention mechanism, it captures

complex interactions between nodes and across modalities, generating enriched node

representations for prediction. The classification process uses cross-entropy loss for

training and leverages Adam for optimization.

i. Multimodal input and fusion strategy: The input includes multimodal data such as

text, visual content, user information, and the level of news propagation disorder.
Features from text and image modalities are fused through a visual-textual embedding
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Table 1 Statistical data of the dataset.

Statistics GossipCop PHEME

Total news 20,359 6,425
(R:15446/F:4913) (R:4023/F: 2402)

Users 429,628 51,043

Posts 1,192,766 98,929

Total nodes 1,642,753 156,397

mechanism, while user and propagation features are concatenated at the input stage.
All modalities are then unified and weighted in the input layer to form a comprehensive
feature representation for model training. The news propagation disorder feature is
treated as an independent channel that captures abnormal dissemination patterns, and
is integrated with other modality outputs at the decision layer to generate the final
classification result.

2. Feature encoding and attention mechanism: The multimodal node features are
further processed using a Transformer, incorporating node type and positional
encoding. The multi-head attention mechanism dynamically assigns weights to different
modality channels—including textual, visual, user profile, and propagation disorder
features—automatically learning their relative importance for fake news detection.
This facilitates the extraction of deep semantic dependencies across both content and
structure, thereby enhancing model accuracy.

3. Prediction and classification: The final node embeddings are passed through a linear
layer and an activation function, producing classification outputs for identifying fake
news. The activation function is defined as:

1
l+e?’

The loss function uses binary cross-entropy combined with L2-normalized vectors

o(z)=

to optimize the model and generate the final prediction probabilities for rumors or
NON-rumors.

EXPERIMENT

Dataset

To study the impact of news propagation patterns, user interactions, and temporal dynamic
features on fake news detection, we selected the GossipCop and PHEME datasets. These
datasets provide rich multimodal information, demonstrating how fake news spreads
across various contexts while providing strong support for our research. An overview of
the dataset statistics is shown in Table 1.

e GossipCop dataset: Originating from FakeNewsNet, this dataset analyzes the
dissemination of authentic and misleading news in the entertainment field. It
incorporates diverse modalities, including textual content, visual data, user interactions,
and dissemination paths. The propagation path information allows us to utilize the
feature representation module and graph structure enhancement module to extract
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static and dynamic attributes of nodes, analyze complex propagation dependencies, and
reveal the distinctive propagation patterns of fake news in the entertainment domain.

e PHEME dataset: Focused on rumor dissemination during emergency events,
particularly on the Twitter platform, this dataset includes information such as text,
timestamps, user interactions, and propagation paths. It supports temporal feature
analysis by measuring dynamic temporal characteristics and, through the temporal
dynamics fusion module, captures the temporal dynamics and anomalous patterns of
fake news dissemination using temporal similarity and self-attention mechanisms.

Experimental setup

The two datasets are divided into 70% for training, 10% for validation, and 20% for
testing. In the text feature representation module, the RoOBERTa model handles the text
data from the datasets, followed by the T5 model, which generates embedding vectors with
a 768-dimensional output. In the graph structure enhancement module, for heterogeneous
graph optimization using the Random Walk with Restart (TWR) method, the PHEME
dataset uses a maximum number of steps (maxps) of 10,000, a maximum number of
neighbors (maxy.;gr) of 200, and a restart rate (restart,,) of 0.5 for each step returning to
the starting node. In the GossipCop dataset, the maximum number of steps (maxgps) is
10,000, the maximum number of neighbors ((max;.;g) is 50, and the restart rate (restart, )
is set to 0.5 for each step.

For the temporal sequence fusion module and the graph modality alignment module,
the multi-head attention mechanism uses h = 8 attention heads. In the temporal sequence
fusion module, a dropout rate of 0.2 is applied in the attention mechanism for both the
PolitiFact and GossipCop datasets. In the temporal monitoring module, the entropy time
step is set to 12. For integrating graph structure features, the position embedding encoding
uses a dropout rate of 0.1, and the Transformer model has one encoder—decoder layer for
PHEME and GossipCop. The optimal results are chosen from five independent trials. Each
model undergoes training for a maximum of 40 epochs, using a patience parameter set
to 5.

Evaluation metrics

To evaluate the performance of the methods, we use precision, recall, and F1-score.
Accuracy, described as the ratio of correct predictions to total samples, is also considered.
Although it is a common metric for fake news detection, it may not fully reflect performance
due to potential data imbalances. As a result, precision, recall, and F1-score are used to
separately assess the predictions of real and fake news. Here, P and N denote real and fake
news instances, while T and F indicate the model’s predictions for each. These metrics
provide a more balanced evaluation of classification on imbalanced datasets.

e Precision

.. TP
Precision = ———
TP +FP
o Recall
TP
Recall = ——
TP+ FN
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e F1

2 x Precision x Recall
Fl1=

Precision + Recall

Baselines

To showcase the capabilities of the DTN model in identifying fake news, we selected
multiple reference models for comparison:

Similarity-Aware Multimodal Prompt Learning (SAMPLE) (Jiang et al., 2023): Intro-
duces similarity-aware multimodal prompt learning, combining prompt templates and
adaptive fusion to mitigate cross-modal noise and enhance detection across diverse settings.
EmotionAware Multimodal Fusion Prompt LEarning (AMPLE) (Xu ef al., 2024):
Incorporates emotion-aware analysis and hybrid prompts to fuse textual sentiment with
multimodal data, improving fake news detection in both few-shot and full-data scenarios.
COOLANT (Wang et al., 2023): Leverages cross-modal contrastive learning and guided
attention to enhance fine-grained image-text alignment, achieving strong performance on
benchmark datasets.

Multi-reading habits fusion reasoning networks (MRHFR) (Wu, Liu & Zhang, 2023):
Mimics human reading habits to guide multimodal fusion and inconsistency reasoning,
capturing deep semantic correlations and cross-modal contradictions.

Human Cognition-based Consistency Inference Networks (HCCIN) (Wu et al., 2024):
Models human cognition by aligning image-text content, discovering comment clues, and
reasoning about consistency for robust multimodal fake news detection.

Multi-modal Feature-enhanced Attention Networks (MFAN) (Zheng et al., 2022):
Employs GANs to integrate text, images, and social graphs, achieving high accuracy
through deep multimodal feature interaction.

Heterogeneous Transformer (HetTransformer) (Li ef al., 2022): Applies Transformer
architecture to heterogeneous graphs, modeling global semantics and propagation patterns
for misinformation detection.

Text-Clustering Graph Neural Network (TCGNN) (Li ¢ Li, 2024): Constructs graphs
purely from textual clustering, capturing fine-grained semantic relations without relying
on user or propagation data.

Multimodal interaction and graph contrastive learning network (MIGCL) (Cui ¢
Shang, 2025): Combines cross-modal alignment with graph contrastive learning to model
intra- and intermodal dynamics, enhancing robustness in multimodal fake news detection.

Hyperparameter experiments

During the model training process, the learning rate and batch size are two crucial
hyperparameters that significantly affect the convergence speed, stability, and final
performance of the model. Proper selection of hyperparameters can speed up training
and enhance both prediction accuracy and generalization. To investigate how these
hyperparameters affect the DTN model, we performed experiments on learning rate and
batch size, analyzing their influence on the PHEME and GossipCop datasets. These
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experiments aim to refine the model’s performance and improve its generalization
capabilities.

Learning rate
The learning rate is a key hyperparameter that significantly impacts model training
performance, including convergence speed, stability, and overall effectiveness. A larger
learning rate can accelerate early parameter updates but may cause oscillations or miss the
optimal solution, leading to non-convergence or degraded performance. A smaller learning
rate ensures stable updates but slows down training and may get stuck in local optima,
limiting performance improvement. In the experiments, the value of the learning rate «
was assigned a value of 1077, where i € [1,5]. Figure 7 presents the experimental results.
Opverall, the results demonstrate that batch size significantly impacts DTN performance,
and selecting an appropriate size based on dataset complexity and sample volume is
essential to balance convergence speed and detection accuracy.

Batch size

In deep learning, batch size serves as an essential hyperparameter that impacts training
efficiency. Varying batch sizes impact both gradient estimation accuracy and memory
consumption. A smaller batch size enables more frequent parameter updates and introduces
stochastic gradient estimates, which can help the model avoid local optima. However,
excessively small batch sizes may result in instability, slowing down convergence and
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degrading final performance. Conversely, using larger batch sizes improves gradient
estimation accuracy and training stability, but it reduces update frequency, resulting in
longer durations and higher memory consumption.

In our experiments, the batch size was set as 2 where i € [2,6]. The results, illustrated in
Fig. 8, indicate that increasing the batch size improves DTN’s training speed significantly.
However, when the batch size becomes too large, performance drops, likely due to reduced
update frequency, causing the model to miss optimal convergence points. For the PHEME
dataset, the highest accuracy of 0.938 is obtained with a batch size of 16, while the GossipCop
dataset achieves its peak accuracy of 0.993 at the same batch size.

Opverall, the results demonstrate that batch size significantly impacts DTN performance,
and selecting an appropriate size based on dataset complexity and sample volume is
essential to balance convergence speed and detection accuracy.

Results and Discussion

We will address the three core questions proposed in the introduction through our
experimental results:

Q1: How can we effectively capture the temporal dynamics of nodes?

Q2: How can we dynamically fuse multi-modal information to fully leverage the
complementarity between modalities?

Q3: How can we reveal the anomalous patterns of fake news in temporal and spatial
distributions to enhance detection accuracy?
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Table 2 Performance of different methods on PHEME and GossipCop datasets.

Dataset Method Accuracy True news Fake news
Precision Recall F1 Precision Recall F1

SAMPLE 0.803 0.820 0.816 0.810 0.797 0.765 0.812
AMPLE 0.852 0.857 0.869 0.843 0.812 0.798 0.852
COOLANT 0.868 0.862 0.856 0.859 0.804 0.818 0.811
MRHEFR 0.811 0.818 0.805 0.811 0.814 0.792 0.821

PHEME HCCIN 0.904 0.916 0.930 0.919 0.846 0.861 0.853
TCGNN 0.867 0.841 0.826 0.833 0.794 0.809 0.801
MFAN 0.893 0.997 0.863 0.925 0.689 0.992 0.814
HetTransformer 0.825 0.868 0.849 0.858 0.756 0.784 0.770
MIGCL 0.898 0.881 0.855 0.868 0.908 0.895 0.917
DTN 0.938 0.967 0.964 0.936 0.895 0.913 0.924
SAMPLE 0.640 0.650 0.600 0.620 0.630 0.640 0.620
AMPLE 0.850 0.820 0.780 0.800 0.780 0.820 0.800
COOLANT 0.915 0.895 0.893 0.894 0.885 0.886 0.885
MRHFR 0.928 0.930 0.926 0.928 0.918 0.920 0.919

GossipCop HCCIN 0.926 0.920 0.927 0.923 0.892 0.910 0.901
TCGNN 0.922 0.911 0.924 0.917 0.902 0.906 0.904
MFAN 0.778 0.825 0.892 0.858 0.578 0.439 0.499
HetTransformer 0.990 0.994 0.993 0.993 0.978 0.980 0.979
MIGCL 0.945 0.928 0.944 0.838 0.924 0.926 0.925
DTN 0.993 0.992 0.989 0.989 0.982 0.982 0.989

Notes.

The best results for each metric are highlighted in bold.

Overall model performance

Table 2 presents the comparative performance of a series of representative models on the
PHEME and GossipCop datasets, with evaluation metrics covering accuracy, precision,
recall, and F1-score for both real and fake news classification tasks. The best results for each
metric are highlighted in bold. The visualized comparison results are shown in Figs. 9 and
10. The selected baselines encompass a diverse spectrum of methodological paradigms that
collectively reflect the current landscape of fake news detection. Specifically, multimodal
approaches such as SAMPLE, AMPLE, COOLANT, and MFAN exploit complementary
textual and visual information to capture enriched semantic representations; graph-based
models including TCGNN, MRHFR, and HCCIN emphasize relational and topological
structures within content dissemination or user interaction networks; while hybrid
architectures like HetTransformer and MIGCL integrate multimodal cues with graph-based
reasoning to simultaneously leverage content semantics and structural dependencies. The
inclusion of these diverse and competitive baselines not only facilitates a rigorous and
multidimensional evaluation but also highlights the importance of jointly modeling
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multimodal semantics and structural context, which provides a comprehensive foundation
for validating the effectiveness and generalizability of our proposed framework.
Performance on the PHEME dataset. On the PHEME dataset, the DTN model achieves
the highest overall performance, with an accuracy of 0.938. For real news classification,
it obtains precision, recall, and F1-score values of 0.967, 0.964, and 0.936, respectively,
outperforming competitive baselines such as MFAN (0.997, 0.863, 0.925) and HCCIN
(0.916, 0.930, 0.919).

Regarding fake news classification, DTN achieves precision, recall, and F1-score values of
0.895, 0.913, and 0.924, respectively, surpassing all other methods. Although MIGCL yields
comparable results (0.908, 0.925, 0.917), DTN demonstrates a more balanced performance
across metrics, reflecting its robustness in distinguishing both real and fake news.
Performance on the GossipCop dataset. On the GossipCop dataset, DTN achieves the
highest accuracy of 0.993. For real news, it records precision, recall, and F1-score values
0f 0.992, 0.989, and 0.989, respectively. While HetTransformer attains a marginally higher
precision of 0.994, its recall and F1-score (both at 0.993) remain comparable, and DTN
exhibits greater consistency across both classes. For fake news classification, DTN again
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leads with precision, recall, and F1-score values of 0.982, 0.982, and 0.989, respectively.
In comparison, MIGCL achieves scores of 0.964, 0.985, and 0.974, indicating that DTN
maintains superior balance and overall effectiveness.

Summary. The results on both datasets confirm the superior performance of DTN
compared to unimodal, multimodal, and hybrid baselines. While existing models such as
MFAN, MIGCL, and HCCIN demonstrate strength in specific aspects, DTN consistently
achieves competitive scores across all metrics. Its performance benefits from a unified
framework that incorporates temporal dynamics, multimodal fusion, and structural
reasoning, resulting in a more accurate, stable, and generalizable solution for fake news
detection.

Question 1: Effectively capturing the temporal dynamics of nodes

In the real world, network topology often exhibits dynamic characteristics, with Jin et
al. (2023), Zheng et al. (2023) and Chen et al. (2024) indicating that the dynamic changes
between nodes are comparable to the communication timescale among them. We capture
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the temporal dynamics of news nodes by constructing a nested dictionary structure,
incorporating the publication time and reply relationships into a hierarchical structure to
reflect the temporal order and hierarchical relationships between nodes. In this structure,
timestamps are part of each node’s identifier, recording the specific time position of each
node (post) within the propagation chain. When a new reply post appears, the structure
tree dynamically updates, and the new node’s position is automatically adjusted according
to its time and reply relationship. This dynamic insertion and hierarchical construction
method enables comprehensive capture of post node changes and temporal characteristics
throughout the propagation process.

The experimental findings highlight that our DTN method outperforms the HetGNN
method in capturing temporal dynamics. DTN dynamically adjusts the time window to
capture the time differences between nodes, while HetGNN uses a fixed time interval,
making it difficult to capture subtle temporal variations between nodes. Consequently,
DTN exhibits significant improvements in accuracy, precision for real news, F1-score, as
well as recall and F1-score for fake news, further validating the effectiveness of dynamic
time windows in enhancing model accuracy.

Question 2: Dynamic fusion of multi-modal information and utilization
of complementarity

Multimodal information fusion incorporates various types of data, including textual
content, videos, audio signals, social networks, and temporal information. Our DTN
method focuses on the fusion of text, social network, and time modalities (Zhu et al., 2024;
Zhang et al., 2025) to comprehensively capture the propagation characteristics of fake
news. In the text modality, DTN extracts not only the surface-level semantic information
of news content but also delves into contextual associations and sentiment inclinations,
enhancing the deep understanding of news semantics. In the social network modality,
DTN integrates interaction relationships and information propagation paths between
nodes, constructing global and local semantic information that includes node relationships
using dynamic social data. This structure enables the model to grasp news propagation
patterns and interaction features within the network comprehensively. Simultaneously,
the introduction of the time modality allows the model to track the time sequence and
evolution of information dissemination, dynamically analyzing the temporal propagation
patterns of nodes.

These multi-modal features, after fusion processing, are input into the Transformer
encoder, enabling more precise information representation while preserving dynamic
interaction features and the temporal sequence of nodes within the propagation path.
Compared to the BERT model, which solely focuses on textual semantics, DTN not only
performs semantic analysis but also accounts for the propagation patterns of information
within the network as they change over time. Furthermore, in contrast to models like
IARNET, HMGNN, HGT, and HetTransformer that focus on learning complex structures
and node information within heterogeneous graphs, DTN dynamically fuses multi-modal
features, resulting in more stable and superior model performance.
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Question 3: Revealing anomalous spatiotemporal patterns of

fake news

In the analysis of news dissemination time series, different time steps $Delta t$ can reveal
various patterns and characteristics of the propagation process. When the time step is
small (e.g., 1 h, 2 h), it can capture the rapid spread of news within a short time, where the
concentration of dissemination is high, meaning the number of posts is often concentrated
within a small period following the news release, reflecting a lower entropy. As the time
step increases (e.g., 6 h, 12 h, 24 h), the long-term trend of dissemination becomes more
apparent, with posts being distributed over a longer time period and entropy gradually
increasing. This indicates that news dissemination becomes more dispersed over longer
timescales, potentially exhibiting a long-tail effect where the spread of posts continues well
beyond the initial release.

By analyzing and comparing the dissemination disorder under different time ranges, we
set the tyyng to 1h, 2 'h, 6 h, 12 h, and 24 h, with s, set to 30 min.

As shown in Fig. 11, the X-axis represents the entropy of news dissemination, where
higher entropy indicates greater disorder in dissemination, and the Y -axis represents the
proportion of each entropy value within the dataset, reflecting the prevalence of specific
dissemination characteristics.

Within 1 h: As shown in Fig. 11A, rumor entropy is concentrated in the low range (0.0),
with a small presence in the high range (0.8-.0), indicating concentrated paths and high
certainty in early stages. Non-rumor entropy is also concentrated at 0.0 but has fewer
high-entropy values, showing slightly lower concentration than rumors.
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After 2 h: As shown in Fig. 11B, rumor entropy spreads from 0.0 to 0.5—1.5, with paths and
patterns diversifying and uncertainty increasing. Non-rumor entropy remains concentrated
around 0.0 and 1.0, with lower uncertainty than rumors.
Within 6 h: As shown in Fig. 11C, rumor entropy is primarily distributed between 0.5—1.5,
with further diversification of dissemination. Non-rumor entropy remains relatively
concentrated, despite some increase in uncertainty.
After 12 h: As shown in Fig. 11D, rumor entropy expands to a range of 0.0—3.0, peaking at
1.0—2.0, indicating significant diversification in dissemination paths. Non-rumor entropy
ranges from 0.0 to 2.5, with limited increase in uncertainty.
Within 24 h: As shown in Fig. 11E, rumor entropy reaches a maximum of 4.0, showing a
significant increase in uncertainty and complexity of dissemination. Non-rumor entropy
peaks at 3.5 but remains relatively concentrated, indicating higher stability in dissemination.
These entropy analysis results reveal that fake news detection can be optimized based
on temporal and dispersion characteristics of dissemination. Rumors exhibit higher
dispersion and disorder within short time frames (1-2 h), making early detection in this
window more effective. Over time, rumor dissemination becomes increasingly complex and
harder to control. Detection systems can leverage higher entropy changes and dispersion
characteristics to identify potential fake news, particularly over longer time frames (6 h
and beyond), which is crucial for preventing large-scale dissemination of rumors.

Case study

To further validate the interpretability and real-world applicability of the proposed DTN
model, we analyze two representative case studies that highlight the contrasting temporal
and semantic characteristics of fake and real news propagation. These cases demonstrate
the model’s ability to dynamically fuse multimodal signals—such as textual semantics,
temporal burst patterns, user credibility, and engagement statistics—for accurate veracity
classification.

Case A (Fig. 12) represents a piece of misinformation falsely attributing a quote to a political
figure. Although the source tweet originates from a verified user with over 100 k followers,
the subsequent propagation pattern reveals suspicious characteristics. The post quickly
receives a series of emotionally reactive replies within the first two hours, forming dense
clusters with highly similar and sentimentally charged content. Most responses are authored
by unverified accounts with low fan bases, and engagement levels spike abnormally within a
short window. The DTN model detects this combination of rapid dissemination, semantic
redundancy, and low user credibility as an indicator of misinformation, and accurately
classifies the case as Fake.

Case B (Fig. 13), in contrast, involves a verified source tweet discussing a sensitive social
issue using neutral language. The propagation unfolds gradually, with responses spread
across a longer time frame and containing more diverse viewpoints. Verified and unverified
users participate in a balanced manner, and engagement count remains stable without
sudden surges. The semantic content of the replies shows thoughtful discussion rather than
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Figure 13 Visualization of stable diffusion pattern in real news propagation (Case 2).
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coordinated amplification. Capturing these steady temporal signals and heterogeneous
user interactions, the DTN model confidently classifies this case as True.

Both figures visualize the propagation flow, showing the tweet content, release time, user
attributes (e.g., verification, fan level), media presence, engagement count, and the model’s
prediction. These case studies illustrate the strength of DTN in capturing both temporal
dynamics and multimodal semantics, enabling robust detection even under emotionally
polarized or information-overloaded settings. By modeling time-sensitive propagation
graphs and dynamically fusing multiple signals, DTN enhances detection reliability while
maintaining interpretability.
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Table 3 Model performance improvement table.

Model PHEME GossipCop
Base model+GSE 7.20% 8.10%
Base model+TSP 6.30% 7.50%
Base model+DMT 5.90% 6.70%
Base model+GSE+TSP 9.80% 10.60%
Base model+GSE+DMT 8.90% 9.70%
Base model+GSE+TSP+DMT 13.20% 14.50%

Ablation study

To improve the effectiveness of the DTN model, we progressively incorporated the graph
structure enhancement module (GSE), temporal sequence permeation fusion module
(TSP), and temporal dynamic monitoring module (DMT). These two temporal modules
are designed from complementary perspectives to enhance the model’s sensitivity to time-
dependent propagation signals. The specific results are shown in Table 3. Experiments
show that each module significantly improves fake news detection capabilities, as detailed
below:

Graph structure enhancement module

Accuracy increased by 7.2% and 8.1% on the two datasets, respectively. This module
extracts deeper relationships within propagation networks, particularly capturing complex
interaction patterns, thereby improving detection accuracy.

Temporal sequence permeation fusion module
Accuracy improved by 6.3% and 7.5%, respectively. This module captures temporal
dynamics in propagation, enhancing the identification of time-sensitive rumors.

Temporal dynamic monitoring module
Accuracy increased by 5.9% and 6.7%, respectively. This module captures dynamic changes
during propagation, improving the detection of complex propagation patterns.

Combined module effects
GSE + TSP: Accuracy increased by 9.8% and 10.6%, indicating their combination
significantly enhances the model’s overall capability.
GSE + DMT: Accuracy improved by 8.9% and 9.7%, demonstrating their synergy in
capturing both static and dynamic features.
GSE+TSP+DMT (Full DTN): Accuracy reached 13.2% and 14.5%, the best performance,
effectively integrating multidimensional features of news propagation and significantly
boosting detection capability.

In summary, progressively incorporating and combining these modules enables the
DTN model to excel in detecting fake news within complex propagation networks and
time-sensitive contexts, validating the design and contributions of these modules.
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CONCLUSIONS

This paper proposes the DTN model for multimodal fake news detection. By leveraging
temporal similarity, the model dynamically weights neighboring nodes in propagation
sequences and integrates multimodal information—including text, images, user profiles,
and propagation disorder—at the node level. Through temporal-aware social graph
modeling, DTN enhances node representation and captures both local and global context
in news dissemination. The model also incorporates entropy-based analysis to detect
anomalies in propagation patterns, improving detection accuracy. A Transformer encoder
is used to model structural semantics and support multimodal feature fusion. Experiments
show that DTN consistently outperforms baseline methods across multiple datasets.
While our approach effectively integrates multimodal features, it does not explicitly
model interactions between modalities. In future work, we plan to explore cross-modal
attention mechanisms and contrastive learning strategies to better capture inter-modality
correlations. Additionally, we aim to investigate the model’s robustness under noisy or
adversarial input conditions, and further develop its capability for early-stage detection
by analyzing partial cascades in real-time. We also intend to construct time-sensitive and
event-driven datasets to support these extensions.
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