Submitted 11 March 2025
Accepted 9 June 2025
Published 16 July 2025

Corresponding author
Wahida Mansouri,
Wahida.Smari@nbu.edu.sa

Academic editor
Paulo Jorge Coelho

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.2996

() Copyright
2025 Alhayan et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

DA-FIS: A high-speed dynamic adaptive
fault injection server framework for
reliable FPGA-based embedded systems

Fatimah Alhayan', Gaganjot Kaur?, Sultan Alanazi’,
Mohammed Burhanur Rehman®, Wahida Mansouri®, Da’ad
Albalawneh®, Ali Alqazzaz” and Hanadi Alkhudhayr®

! Department of Information Systems, College of Computer and Information Sciences,
Princess Nourah bint Abdulrahman University, Riyad, Saudi Arabia

% Department of Computer Science and Engineering, Raj Kumar Goel Institute of Technology,
Ghaziabad, India

3 Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam
bin Abdulaziz University, AL-Kharj, Saudi Arabia

* Department of Computer Science, Applied College at Mahayil, King Khalid University, Abha,
Saudi Arabia

> Department of Computer Science and Information Technology, Faculty of Sciences and Arts,
Turaif, Northern Border University, Arar, Saudi Arabia

® Department of Computer Science, University College in Umluj, University of Tabuk, Tabuk,
Saudi Arabia

7 Department of Computer Science and Artificial Intelligence, College of Computing and
Information Technology, University of Bisha, Bisha, Saudi Arabia

8 Department of Information Systems, Faculty of Computing and Information Technology,
King Abdulaziz University, Rabigh, Saudi Arabia

ABSTRACT

Fault injection is a critical technique for assessing the reliability of field
programmable gate array (FPGA)-based embedded systems, particularly in
radiation-prone and safety-critical applications. Conventional fault injection
methods, such as bit upset fault injection testing (BUFIT), single critical fault
injection testing (SCFIT), and dynamic partial reconfiguration (DPR), suffer from
high resource overhead, slow injection speeds, and limited adaptability, making them
inadequate for real-time fault resilience evaluation. This article introduces the
dynamic adaptive fault injection server (DA-FIS), a high-speed, scalable, and
resource-efficient fault injection framework designed to overcome these limitations.
Unlike traditional methods, DA-FIS employs a configurable LESR-based fault
generator that enables adaptive and real-time fault injection based on workload
sensitivity and system conditions. The proposed framework integrates masking logic
and dynamic propagation tracking, allowing precise injection of single-event upsets
(SEUs) and multiple-bit upsets (MBUs) into FPGA configuration memory and logic
without disturbing non-targeted regions. DA-FIS is implemented on the Xilinx
Zynq-7000 FPGA and evaluated across multiple benchmark workloads, including the
Bubble Sort algorithm, 4-bit adder, 4-bit multiplier, and counter-based logic circuits.
Experimental results demonstrate that DA-FIS achieves a fault injection rate of 111.1
faults per second, outperforming BUFIT (53.4 faults/s), SCFIT (27 faults/s), and DPR
(18.5 faults/s), with 30% lower FPGA resource overhead compared to SCFIT. The
adaptive architecture ensures seamless scalability across different FPGA platforms,
making it suitable for space electronics, automotive safety systems, and
high-performance computing. Additionally, DA-FIS supports real-time error model

How to cite this article Alhayan F, Kaur G, Alanazi S, Rehman MB, Mansouri W, Albalawneh D, Alqazzaz A, Alkhudhayr H. 2025.
DA-FIS: A high-speed dynamic adaptive fault injection server framework for reliable FPGA-based embedded systems. Peer] Comput. Sci. 11:
€2996 DOI 10.7717/peerj-cs.2996

http://dx.doi.org/10.7717/peerj-cs.2996
mailto:Wahida.�Smari@�nbu.�edu.�sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2996
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

adjustments, enabling researchers to analyze fault propagation, error correction
strategies, and security vulnerabilities in FPGA-based architectures. This work
establishes DA-FIS as a superior fault injection framework, offering high-speed,
precision-controlled fault testing while maintaining minimal FPGA overhead and
enhanced scalability. Future research will explore machine learning-assisted fault
modeling and self-healing FPGA architectures to further enhance FPGA fault
resilience in safety-critical and autonomous systems.

Subjects Algorithms and Analysis of Algorithms, Computer Architecture, Embedded Computing,
Optimization Theory and Computation, Real-Time and Embedded Systems

Keywords FPGA, Fault injection, DA-FIS, SEU, MBU, LFSR, Reliability testing, Sustainable
development goals (SDGs)

INTRODUCTION

Field programmable gate arrays (FPGAs) have emerged as a critical component in modern
computing architectures, offering a unique blend of hardware flexibility, high
performance, and energy efficiency (Schneider ¢ Smalley, 2024). Unlike traditional
microcontrollers and application-specific integrated circuits (ASICs) (Mishra, Singh ¢
Rousseau, 2016), FPGAs provide reconfigurable logic, allowing them to be dynamically
programmed for specific computational tasks. This versatility makes them ideal for
embedded systems, artificial intelligence (AI) (Kushwaha, 2023a, 2023b) accelerators,
high-performance computing (HPC) (Kushwaha, Kumar ¢ Jain, 2011), and
mission-critical applications such as aerospace, automotive safety systems, and medical
devices. However, as FPGA complexity continues to grow, so does their susceptibility to
hardware faults, particularly single event upsets (SEUs) and multiple bit upsets (MBUs)
caused by radiation exposure, high-energy particles, and environmental noise. These faults
can lead to functional failures, security vulnerabilities, and reduced reliability, necessitating
robust fault injection and resilience testing frameworks (Lanzieri et al., 2025).

Fault injection is a well-established methodology used to assess the fault tolerance of
digital systems, including processors, memory modules, and reconfigurable hardware. By
deliberately introducing faults into a system, researchers can study its response, evaluate
error detection mechanisms, and develop fault-tolerant designs. Various fault injection
techniques have been proposed over the years, including software-based simulations,
electromagnetic interference, clock glitching, and hardware-assisted fault injection using
specialized circuits (Gangolli, Mahmoud ¢» Azim, 2022). Among these, FPGA-based fault
injection has gained significant attention due to its ability to mimic real-world fault
conditions in a controlled environment. However, existing fault injection methods suffer
from several limitations, including high resource overhead, slow fault injection speeds, and
a lack of dynamic adaptability. Conventional techniques such as bit upset fault injection
testing (BUFIT) (Velayaudhan & Devi, 2024), single critical fault injection testing (SCFIT)
(Mohammadi et al., 2012), and dynamic partial reconfiguration (DPR) (Cano-Pdez et al.,
2025) introduce faults statically or with predefined patterns, limiting their applicability in
real-time fault resilience analysis.

Alhayan et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2996 2/21

http://dx.doi.org/10.7717/peerj-cs.2996
https://peerj.com/computer-science/

PeerJ Computer Science

To overcome these limitations, we propose the dynamic adaptive fault injection server
(DA-FIS), a high-speed, scalable, and resource-efficient fault injection framework for
FPGA-based systems. Unlike traditional approaches, DA-FIS employs a programmable
linear feedback shift register (LESR)-based fault generator (Saleem, Geethu ¢
Bhakthavatchalu, 2022), which allows adaptive and real-time fault injection based on
workload sensitivity and system state. This adaptive approach ensures that fault injection
patterns closely resemble real-world error conditions, enabling more accurate and reliable
evaluation of FPGA fault tolerance mechanisms. Additionally, DA-FIS integrates masking
logic and an intelligent fault propagation tracker, allowing it to precisely target specific
logic blocks, memory regions, or flip-flops without disrupting unrelated circuit operations
(Vikranth et al., 2021).

The need for efficient fault injection frameworks is particularly evident in
radiation-sensitive applications, where FPGA-based devices must operate under harsh
environmental conditions. Space missions, satellites, and high-energy physics experiments
all rely on SRAM-based FPGAs (Kastensmidt, Carro ¢ Reis, 2006), which are inherently
vulnerable to cosmic radiation and charged particle interference. Traditional fault
mitigation techniques, such as triple modular redundancy and error correction codes,
provide some degree of protection but come at the cost of increased power consumption,
area overhead, and latency. DA-FIS addresses these challenges by offering a low-overhead
fault injection mechanism that enables precise testing of radiation effects on FPGA logic
without requiring costly hardware modifications. This ensures that designers can evaluate
and enhance the reliability of FPGA-based systems before deployment in real-world
conditions (Richter-Brockmann, Sasdrich ¢ Giineysu, 2022).

Another key advantage of DA-FIS is its real-time reconfigurability and scalability,
making it suitable for a wide range of FPGA architectures. Unlike traditional methods,
which require manual reprogramming or system resets to introduce new faults, DA-FIS
enables dynamic error model adjustments during live operation (Metawie, Safar & El
Kharashi, 2022). This makes it an ideal tool for automotive applications, where FPGAs are
used in advanced driver assistance systems (ADAS), real-time decision-making units, and
safety-critical controllers. Automotive electronics must undergo extensive fault resilience
testing to comply with industry standards such as ISO 26262, which mandates rigorous
fault tolerance verification. By providing high-speed fault injection with minimal
performance degradation, DA-FIS ensures that automotive FPGA systems can be
thoroughly tested without affecting real-time processing (Yang, Li ¢ He, 2022).

Moreover, the scalability of DA-FIS extends to networked FPGA clusters and
cloud-based hardware accelerators, where fault injection testing must be conducted across
multiple nodes simultaneously. Traditional fault injection techniques struggle with
multi-FPGA environments, as they rely on localized fault insertion methods that are
difficult to synchronize across distributed systems. DA-FIS overcomes this by supporting
multi-node fault injection orchestration, allowing distributed FPGA arrays to be tested
under uniform fault conditions. This feature is particularly beneficial for edge computing
platforms, Internet of Things (IoT) security frameworks, and artificial intelligence

Alhayan et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2996 3/21

http://dx.doi.org/10.7717/peerj-cs.2996
https://peerj.com/computer-science/

PeerJ Computer Science

(AI)-driven FPGA accelerators, where fault propagation across interconnected processing
units must be analyzed in real time (Gao ¢ Liu, 2021).

In addition to its practical applications, DA-FIS also serves as an essential tool for
academic research and hardware security evaluations. With the increasing threat of
hardware-based cyberattacks, including fault injection attacks on cryptographic
algorithms, there is a growing need for efficient testing methodologies to assess FPGA
security mechanisms. DA-FIS enables precise injection of faults into cryptographic
circuits, helping researchers analyze side-channel vulnerabilities, differential fault analysis
(DFA), and countermeasure effectiveness. By allowing fine-tuned fault insertion at the
logic gate level, DA-FIS provides deeper insights into the resilience of FPGA-based security
architectures (Carminati ¢» Scandurra, 2021).

This article presents a comprehensive design, implementation, and performance
evaluation of the DA-FIS framework, highlighting its advantages over existing fault
injection methods. We provide an in-depth analysis of its architecture, fault injection
process, and experimental validation using the Xilinx Zynq-7000 FPGA platform. The
experimental setup includes benchmark circuits such as the Bubble Sort algorithm, 4-bit
adder, 4-bit multiplier, and counter-based logic, representing a diverse set of
computational and sequential workloads. Our evaluation results demonstrate that DA-FIS
achieves a fault injection rate of 111.1 faults per second, outperforming traditional
methods such as BUFIT (53.4 faults/s), SCFIT (27 faults/s), and DPR (18.5 faults/s).
Additionally, DA-FIS introduces 30% lower FPGA resource overhead compared to SCFIT,
ensuring that fault injection testing does not compromise overall system performance.

The rest of this article is structured as follows: “Related Work” provides a detailed
literature review of existing fault injection methodologies, discussing their advantages,
limitations, and impact on FPGA reliability. “Proposed Methodology” describes the
DA-FIS architecture, covering its adaptive fault generation mechanism, multi-bit fault
injection logic, and configurable control system. “Results and Discussion” presents the
experimental results, comparing DA-FIS with conventional fault injection techniques in
terms of fault injection speed, FPGA resource utilization, and scalability. “Conclusion and
Future Works” concludes the article with a discussion on future research directions,
including machine learning-assisted fault modelling, true random number
generator-based fault generation, and self-healing FPGA architectures.

RELATED WORK

Fault injection is a critical methodology for assessing the reliability of FPGA-based
embedded systems. Over the past few years, several researchers have proposed various
fault injection techniques to evaluate and enhance the resilience of FPGAs against
radiation-induced errors, MBUs, and hardware failures. These methodologies differ in
terms of fault injection speed, scalability, and accuracy. While many existing approaches
have successfully demonstrated the effectiveness of fault injection mechanisms, they often
suffer from limitations such as static fault modeling, high overhead costs, and slow
injection rates (Medjmadj, Diallo ¢» Arias, 2021). SCFIT is one of the earliest FPGA-based
fault injection methodologies, designed specifically for SEU fault modeling. The authors

Alhayan et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2996 4/21

http://dx.doi.org/10.7717/peerj-cs.2996
https://peerj.com/computer-science/

PeerJ Computer Science

propose a hardware-based fault injection mechanism that emulates SEUs to evaluate
system vulnerability and recovery strategies. SCFIT is implemented on a Xilinx Virtex
FPGA, demonstrating its applicability for radiation-hardening and error correction code
validation (Mohammadi et al., 2012).

One of the notable findings of their study was that existing adversary models are not
always effective in evaluating diverse FPGA designs. Their approach relies heavily on
customized adversary scenarios, which, while effective for security applications, lack
generalizability for other fault injection use cases (Anglada et al., 2021). Furthermore, their
work does not explore the efficiency of fault injection speed or resource overhead, which
are crucial factors in real-time FPGA applications. In comparison, DA-FIS provides a
generalized, high-speed fault injection methodology that can be applied to various FPGA
workloads without requiring extensive customization. By integrating adaptive fault
injection rates and programmable fault sequences, DA-FIS enhances FPGA fault analysis
without sacrificing scalability or speed (Breier, Hou & Liu, 2021).

Another promising fault injection technique involves clock glitch-based fault modeling.
This research developed a low-cost fault injection platform that uses clock glitches to
generate precise bursts of faults in FPGA circuits. This method offers a high degree of
repeatability, making it an attractive option for analyzing real-time error propagation in
embedded systems (Metawie, Safar ¢ El Kharashi, 2022).

Another significant area of research in FPGA fault injection involves hardware fault
adversary models. This article explored the impact of hardware faults in adversary
scenarios, where faults are intentionally induced to analyze system vulnerabilities. Their
work introduced customized adversary models that help researchers understand the extent
to which an FPGA system can withstand deliberate hardware attacks, such as SEUs, clock
glitches, and voltage tampering (Richter-Brockmann, Sasdrich & Giineysu, 2022).

Despite its advantages, clock glitch-based fault injection is limited by its dependence on
clock variations, making it less effective for MBUs or memory-specific fault injections.
Additionally, this technique requires fine-tuning for each FPGA architecture, reducing its
applicability for generalized fault injection scenarios. DA-FIS overcomes this limitation by
implementing an LFSR-based fault injection mechanism, which allows precise MBU
modeling without reliance on clock signal variations (Yang, Li ¢ He, 2022).

An alternative approach to hardware fault injection is software-based fault simulation,
which allows researchers to introduce faults at the software level without requiring physical
modifications to FPGA hardware. This article proposed a QEMU-based fault injection
framework that enables software simulations of memory-related faults in embedded
systems. Their methodology extends fault modeling to control and execution channels,
allowing faults to be simulated at different abstraction levels within a processor
architecture (Xie et al., 2023).

One of the primary advantages of software-based fault injection is its cost-effectiveness
—since faults are injected in a virtualized environment, there is no risk of damaging actual
FPGA hardware. However, software-based approaches, including the QEMU framework
(QEMU Documentation, 2025), have a significant limitation in that they fail to account for
hardware-level interactions. In practical FPGA systems, hardware-level faults do not

Alhayan et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2996 5/21

http://dx.doi.org/10.7717/peerj-cs.2996
https://peerj.com/computer-science/

PeerJ Computer Science

always translate directly to software faults, meaning that QEMU-based fault injection may
not accurately reflect real-world fault conditions. Additionally, this approach does not
support MBUs simulations, making it unsuitable for radiation-sensitive applications
(Rhod et al., 2023).

Fault injection techniques are not only utilized for testing FPGA resilience against
random hardware failures, but they are also employed for analyzing FPGA aging and its
impact on system performance. This emphasized the importance of fault injection in
monitoring hardware aging effects in FPGA-based embedded systems (Bohmer et al.,
2023). Their study investigated how prolonged FPGA usage leads to degradation in
performance and increased susceptibility to soft errors. The key contribution of their work
was the integration of fault injection methods with predictive modeling, which allowed
researchers to estimate hardware aging effects over time (Ferlini et al., 2023).

Despite its innovative approach, the fault injection methodology used by authors does
not address MBUs which are a primary concern in radiation-sensitive environments such
as aerospace applications and high-energy physics experiments. Furthermore, their model
focuses primarily on long-term FPGA degradation rather than real-time fault analysis. In
contrast, DA-FIS introduces a real-time, adaptive fault injection model that allows both
short-term and long-term fault simulations, ensuring comprehensive FPGA fault resilience
evaluation (Smit et al., 2024).

This article presents an error detection and recovery mechanism for MPSoCs
multiprocessor system-on-chips (MPSoCs) using a hypervisor-based approach with DPR.
The proposed architecture integrates real-time fault monitoring with a hypervisor that
dynamically reconfigures faulty FPGA regions without affecting system execution. The
study showcases how DPR enhances system reliability by isolating faulty components and
dynamically reprogramming FPGA logic (Cano-Pdez et al., 2025).

One of the significant fault injection techniques was proposed by Velayaudhan ¢» Devi
(2024), where they introduced a built-in circuit-based fault injector for FPGA systems.
Their methodology aimed to inject faults directly into the FPGA configuration memory,
ensuring that multiple-bit upsets MBUs could be simulated efficiently. The BUFIT
technique developed by Velayaudhan ¢ Devi (2024) demonstrated a peak injection rate of
53.4 faults per second, making it one of the most efficient models for injecting faults into an
FPGA-based architecture. However, a key limitation of this approach is that it relies on
static fault modeling, meaning that the fault injection scenarios are predefined and cannot
adapt dynamically to different workloads or environmental conditions (Velayaudhan ¢
Devi, 2024).

As in Table 1, it provides both quantitative and qualitative analysis of existing fault
injection frameworks. It highlights how each approach balances performance, complexity,
and functionality, dynamic control and scalable integration. Existing fault injection
methodologies have significantly contributed to the field of FPGA reliability assessment,
but they all exhibit specific limitations that restrict their effectiveness in real-time, multi-bit
fault injection scenarios. Approaches such as BUFIT, QEMU-based fault simulation, and
clock glitching techniques either suffer from high resource overhead, limited scalability, or
static fault models.

Alhayan et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2996 6/21

http://dx.doi.org/10.7717/peerj-cs.2996
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Comparative assessment of existing FPGA fault injection frameworks.

Fault injection Methodology Fault types Injection FPGA Adaptability/ Main limitations Design trade-offs Integration Functional
framework supported speed resource Dynamic control complexity scope
(Faults/s) overhead
Clock Glitching Clock glitch Burst faults 14.5 Low Limited to clock Less effective for Low cost, but Moderate— Burst faults
(Gangolli, injection faults MBUs, limited fault type ~ hardware setup mainly,
Mahmoud & architecture- range required less
Azim, 2022) specific suitable for
MBUs
BUFIT Built-in circuit- Single-event 53.4 Low (0.4% Static fault model ~ Predefined faults, no Low resource Moderate— Supports
(Velayaudhan ¢ based and Multi- CLB) dynamic control overhead but hardware SEU and
Devi, 2024) bit static faults changes needed MBU,
limited
dynamic
control
SCFIT Hardware-based Single-event 27 Moderate Static, no adaptive ~ Slow injection, high ~ Precise SEU High-requires Focused on
(Mohammadi SEU emulation upset (SEU) (4.8% CLB, injection overhead modeling at cost custom FPGA SEU,
et al., 2012) 5.8% FF) of speed design limited
fault types
DPR (Cano-Pdez ~ Dynamic Partial Various faults 18.5 High (7.2% Partial dynamic High latency, Flexible High-complex Wide fault
et al., 2025) Reconfiguration CLB, 6.5% reconfiguration resource heavy reconfiguration, partial coverage
FF) high latency reconfiguration but slower
injection
QEMU-based Software-level fault Memory faults 15.6 None Software-level only No hardware-level No hardware Low-software- Software
simulation simulation only faults, no MBUs overhead but based only faults only,
(QEMU lacks realism no
Documentation, hardware
2025) fault
modeling

PROPOSED METHODOLOGY

The DA-FIS is a high-speed, real-time fault injection framework, as shown in Fig. 1,
designed to enhance FPGA reliability testing. Unlike conventional fault injection
methodologies, which often rely on static fault models and fixed injection rates, DA-FIS
introduces an adaptive, programmable, and scalable approach that can dynamically adjust
fault injection parameters based on workload sensitivity. This ensures that FPGA-based
systems can be thoroughly tested under various fault conditions, mimicking real-world
radiation-induced failures, MBUs and soft errors. The DA-FIS architecture is built upon
three core components, each designed to enhance the precision, flexibility, and efficiency
of fault injection in embedded systems. At the heart of DA-FIS lies its Adaptive Fault
Injection Model, which employs a configurable LFSR to generate realistic fault scenarios.
Unlike traditional random bit flipping approaches, DA-FIS ensures that the fault injection
follows the natural distribution of MBUs observed in real-world FPGA systems.

The multi-bit fault injection logic (MBFIL) is the primary mechanism that enables
DA-FIS to inject single-event and multi-bit faults with high precision. Unlike conventional
fault injectors, which apply uniform fault distributions, DA-FIS employs a programmable
fault sequence generator that enables fine-tuned fault targeting. DA-FIS provides a
configurable fault injection control system that allows user-defined adjustments in real-
time, ensuring maximum flexibility and usability. Key functionalities of this control system
include real-time fault injection enablement/disable, allowing users to enable or disable
fault injection without resetting or reconfiguring the FPGA. This feature is particularly

Alhayan et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2996 7/21

http://dx.doi.org/10.7717/peerj-cs.2996
https://peerj.com/computer-science/

PeerJ Computer Science

Start: DA-FIS Fault
Injection

DA-FIS Architecture

|

|

Configurable Fault

Adjustment

Adaptive Fault Multi-Bit Fault
[Injection Model ’] [Injection Logic ’] Injection Control]
Configurable LFSR Dy_narTuc st Workload-Sensitive Programmable Fault Single-Bit & Multi-Bit Error Propagation Real-T|mg (Rexl User-Defined Fault
i Injection Rate = P 5 Injection
for Fault Generation Fault Modeling Sequence Generator Upset Injection Analysis Enable/Disable Thresholds

Fault Injection

[‘ Sequence]

|

Fault Model Selection

Fault Generation via

Injection &

Error Logging & ’

Experimental Setup

l

End: Performance
Evaluation

LFSR Propagation Correction
l L
Performance Metrics
I Analysis]

FPGA Platform: Xilinx Benchmark Fault Injection Rate FPGA Resource Error Propagation &
Zyng-7000 Workloads g Overhead Detection
DL 4-bit Adder Circuit 4-bit Multiplier Counter-Based Logic

Algorithm

Figure 1 Flowchart of DA-FIS fault injection framework.

Full-size K&l DOT: 10.7717/peerj-cs.2996/fig-1

useful for live system testing, where faults are gradually injected to observe system stability

and fault tolerance. In addition, the ability to set user-defined fault thresholds is also

provided, allowing researchers to control the frequency and intensity of fault injection.
This makes DA-FIS suitable for a wide range of testing, from mild to extreme stress testing.
The DA-FIS fault injection process follows a structured sequence to ensure that faults
are injected systematically and accurately, as shown in Fig. 2. This figure illustrates the
structured fault injection process in DA-FIS, covering fault model selection, LFSR-based
fault generation, injection & propagation, real-time logging, and error correction.

Alhayan et al. (2025), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.2996

8/21

http://dx.doi.org/10.7717/peerj-cs.2996/fig-1
http://dx.doi.org/10.7717/peerj-cs.2996
https://peerj.com/computer-science/

PeerJ Computer Science

Start: DA-FIS Fault
Injection

|

Fault Model Selection

Choose SEU, MBU, or Error Burst

LFSR-Based Fault
Generation

Generate Fault Patterns

4

Injection &
Propagation

Inject Faults into FPGA Configuration Memory

Monitor Fault
Propagation

Track Errors in Logic Circuits & Registers

Real-Time Fault
Logging

Store Fault Data in Error Database

Error Analysis &
Correction

Generate Diagnostic Reports

End: System
Response Evaluation

Figure 2 Structured fault injection process in DA-FIS. Full-size Kl DOI: 10.7717/peerj-cs.2996/fig-2

Alhayan et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2996 00 |9/

http://dx.doi.org/10.7717/peerj-cs.2996/fig-2
http://dx.doi.org/10.7717/peerj-cs.2996
https://peerj.com/computer-science/

PeerJ Computer Science

The DA-FIS fault injection process has four major steps. The first step, fault model
selection, involves choosing an appropriate fault model. DA-FIS provides various
predefined models, such as SEU, which simulates individual bit flips, MBU, which inserts
errors in multiple bits simultaneously, and the error burst model, which generates fast,
frequent faults to stress-test error correction mechanisms. The selected model is based on
the FPGA’s characteristics, workload sensitivity, and user-defined criteria.

The second step, DA-FIS employs an adaptive LESR to generate pseudo-random
sequences that determine the fault injection sites within the FPGA configuration memory.
The LFSR outputs a stream of bit patterns that correspond to specific addresses or bit
positions where faults will be injected. For SEUs, a single bit position is selected from the
LFSR output, simulating a single-bit fault. For MBUs, consecutive or adjacent bits are
targeted by interpreting sequential LFSR outputs, enabling injection of multi-bit faults that
mimic real-world clustered fault scenarios. This approach allows dynamic adjustment of
the fault injection pattern by changing the LFSR seed and feedback polynomial, which
ensures realistic and statistically valid fault distributions based on observed failure data.
The LFSR’s adaptability provides flexible fault site selection aligned with workload
sensitivity and system conditions, enabling precise and efficient fault injection.

The third stage, injection and propagation, in which generated faults are inserted
directly into the FPGA configuration memory, affecting logical circuits, data registers, and
routing interconnects. DA-FIS also monitors how faults propagate across the FPGA
architecture, yielding valuable insights on error propagation patterns and system stability.
As needed, additional faults can be injected in real-time to simulate fault accumulation.

The final stage, error logging & correction, in which all fault events are logged into a
dedicated error database, allowing researchers to analyze fault trends and system response.
DA-FIS provides real-time diagnostic reports, including fault impact analysis, system
performance degradation, and fault correction metrics. The system can also interface with
error correction mechanisms, allowing FPGA-based systems to autonomously mitigate
faults during live operation.

Once the DA-FIS fault injection setup is configured, the system executes fault injections
in real-time, following a structured sequence. The fault injection process involves fault
model selection, adaptive LESR-based fault generation, error injection into FPGA logic,
and real-time monitoring of error propagation. The pseudocode for DA-FIS fault injection
execution is provided in Table 2, illustrating the step-by-step procedure for systematic fault
injection and logging.

To validate the performance and effectiveness of the DA-FIS, we conducted extensive
experimental testing using the Xilinx Zynq-7000 FPGA, see the Fig. 3. The Xilinx
Zynq-7000 FPGA was chosen as the test platform due to its versatility, embedded ARM
processors, and reconfigurable logic architecture, making it a widely used platform for
fault-tolerant computing research. The main objective of this experimentation was to
compare DA-FIS against conventional fault injection frameworks, including BUFIT, DPR,
and SCFIT, and assess its fault injection speed, accuracy, and resource utilization.

Alhayan et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2996 10/21

http://dx.doi.org/10.7717/peerj-cs.2996
https://peerj.com/computer-science/

PeerJ Computer Science

Table 2 Pseudocode for DA-FIS fault injection framework.

//Initialize DA-FIS System
BEGIN
Initialize FPGA System (Xilinx Zynq-7000)
Load Benchmark Workloads (Bubble Sort, 4-bit Adder, etc.)
Configure Clock Generator (100 MHz)
Initialize Memory (SRAM/DDR3)
Setup UART Debugging ¢ GPIO Monitoring
END
//DA-FIS Architecture Setup
//Adaptive Fault Injection Model
BEGIN
Configure LFSR-Based Fault Generator
SET LFSR_Polynomial < Select Feedback Polynomial
SET Fault Seed < Random Initial Value
SELECT Fault_Type < {SEU, MBU, Burst}
SET Injection_Rate < Adaptive based on FPGA Workload
END
//Multi-Bit Fault Injection Logic
BEGIN
WHILE FPGA is Running DO
SELECT Target Circuit (Adder, Multiplier, Counter, etc.)
IDENTIFY Critical Flip-Flops ¢ Memory Cells
MASK Non-Critical Regions
IF (Fault_Type = SEU) THEN
Inject Single-event Fault at Target Location
ELSE IF (Fault_Type = MBU) THEN
Inject Multi-Bit Fault in Adjacent Memory Cells
ELSE IF (Fault_Type = Burst) THEN
Inject Consecutive Errors in Timing Sequence
END IF
END WHILE
END
//Configurable Fault Injection Control
BEGIN
SET Fault _Enable < TRUE
WHILE Fault_Enable DO
Inject Faults into FPGA Logic

(Continued)

Alhayan et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2996

11/21

http://dx.doi.org/10.7717/peerj-cs.2996
https://peerj.com/computer-science/

PeerJ Computer Science

Table 2 (continued)
Monitor Error Propagation
IF (Fault Impact > Threshold) THEN
Log Error and Adjust Injection Rate
END IF
END WHILE
END
//Fault Injection Sequence Execution
BEGIN
SELECT Fault Model (SEU, MBU, Burst)
WHILE Experiment is Running DO
GENERATE Fault Pattern using LFSR
INJECT Fault into Target Circuit
MONITOR FPGA Output for Fault Impact
IF (Fault Detected) THEN
LOG Error into Fault Database
END IF
END WHILE
END
//Experimental Execution and Performance Analysis
BEGIN
FOR EACH Benchmark Circuit (Bubble Sort, Adder, Multiplier, Counter) DO
RESET FPGA Configuration
ACTIVATE Fault Injection
RUN FPGA Workload
RECORD Fault Occurrences
MEASURE Fault Injection Speed, Error Propagation
COMPARE DA-FIS Results with {BUFIT, DPR, SCFIT}
END FOR
GENERATE Performance Report
END
//Fault Logging and System Analysis
BEGIN
OPEN Fault_Log_File
WRITE Fault Type, Target Circuit, Injection Rate, Error Impact
CLOSE Fault_Log_File
DISPLAY Fault Summary on PC via UART
END

Alhayan et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2996 12/21

http://dx.doi.org/10.7717/peerj-cs.2996
https://peerj.com/computer-science/

PeerJ Computer Science

Power Supply

5V/3.3V

Xilinx Zyng-7000
FPGA

L ; J
I]s 1

v

Benchmark Circuits | 4= | Programmable Logic | €= e | GPIO Debug Output

Fault Injection UART Serial
Module - DA-FIS Communication
LFSR-Based Fault Error Propagation

4 Injection Control Unit
Generator Monitor

L . J
1

Real-time Fault Logs

|

PC for Analysis &
Visualization

Figure 3 Circuit layout for the DA-FIS. Full-size 4] DOT: 10.7717/peerj-cs.2996/fig-3

RESULTS AND DISCUSSION

The experimental evaluation, as shown in Fig. 4, of DA-FIS demonstrates its superiority
over existing fault injection methodologies. Here, we analyze and compare the
performance of DA-FIS with BUFIT (Velayaudhan ¢ Devi, 2024), SCFIT (Mohammadi
et al., 2012), and DPR (Cano-Pdez et al., 2025) to highlight its efficiency in real-time FPGA
fault injection applications. The fault injection speed is a critical parameter in evaluating
the effectiveness of a fault injection framework. Higher injection rates lead to more
efficient stress testing of FPGA-based systems under various fault conditions. Table 3
presents the performance comparison of DA-FIS with other existing methodologies in
terms of initialization time, fault injection time, and fault injection rate. Another crucial
performance metric is the resource overhead incurred by fault injection mechanisms.
Excessive resource consumption can impact FPGA efficiency, limit scalability, and reduce

Alhayan et al. (2025), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.2996 13/21

http://dx.doi.org/10.7717/peerj-cs.2996/fig-3
http://dx.doi.org/10.7717/peerj-cs.2996
https://peerj.com/computer-science/

PeerJ Computer Science

Start: Experiment
Setup

Configure FPGA with
DA-FIS

l

Select Benchmark

— 1

Bubble. Sort 4-bit Adder Circuit 4-bit Multfpller ConteiE e o Setup Fault Injection
Algorithm Circuit Parameters
it Target Run Fault Injection
Locations
Inject Faults in FPGA Monitor Error Performance
< y Record Fault Impact o
Logic Propagation Evaluation
Measure Injection Analyze FPGA Assess Fault Compare DA-FIS with
Speed Resource Overhead Detection Accuracy BUFIT, DPR, SCFIT
Generate
Experimental Results
End: Validate DA-FIS
Efficiency
Figure 4 Flowchart for the DA-FIS experimental setup. Full-size K&l DOL: 10.7717/peerj-cs.2996/fig-4

overall system performance. Table 4 presents a comparison of configurable logic block
(CLB) and flip-flop (FF) overhead for different fault injection frameworks.

As in Fig. 5, it illustrates the performance of four fault injection methods based on
initialization time, injection time, and fault injection rate. The red line represents
initialization time, showing the fastest setup for BUFIT and DA-FIS. The green line
indicates injection time, where DA-FIS significantly outperforms other methods. The blue

Alhayan et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2996 I 14721

http://dx.doi.org/10.7717/peerj-cs.2996/fig-4
http://dx.doi.org/10.7717/peerj-cs.2996
https://peerj.com/computer-science/

PeerJ Computer Science

Table 3 Fault injection performance comparison.

Fault injection method Initialization time (ms) Injection time (ms) Fault injection rate (Faults/s)

BUFIT 0.7 18.7
SCFIT 18 36
DPR 25 54
DA-FIS (Proposed) 5 9

534

27

18.5
111.1

Table 4 FPGA resource utilization comparison.

Method CLB overhead (%) FF overhead (%)
BUFIT 0.40% ~0%

SCFIT 4.80% 5.80%

DPR 7.2% 6.5%

DA-FIS (Proposed) 4.30% 4.10%

Fault Injection Performance Comparison

—e— |nitialization Time (ms)
—&— |njection Time (ms)
100 | —*— Fault Injection Rate (Faults/sec)

80

60

Time (ms) / Faults/sec

BUFIT SCFIT
Fault Injection Method

DA-FIS (Proposed)

Figure 5 Fault injection performance comparison of different methods.
Full-size K&l DOT: 10.7717/peerj-cs.2996/fig-5

line highlights the fault injection rate, with DA-FIS achieving the highest efficiency among

all methods.

As in Fig. 6, it compares the FPGA resource utilization of four fault injection methods

based on CLB and FF overhead. The red line represents CLB overhead, showing the lowest
usage for BUFIT and the highest for DPR. The green line indicates FF overhead, where
BUFIT has negligible usage, while DPR has the highest. DA-FIS demonstrates a balanced

resource utilization, making it an efficient alternative.

Alhayan et al. (2025), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.2996

15/21

http://dx.doi.org/10.7717/peerj-cs.2996/fig-5
http://dx.doi.org/10.7717/peerj-cs.2996
https://peerj.com/computer-science/

PeerJ Computer Science

FPGA Resource Utilization Comparison

—e— CLB Overhead (%)
—&— FF Overhead (%)

Resource Overhead (%)

BUFIT SCFIT DPR DA-FIS (Proposed)
Fault Injection Method

Figure 6 FPGA resource utilization comparison of different fault injection methods.
Full-size Kal DOI: 10.7717/peerj-cs.2996/fig-6

Now, we selected four different FPGA benchmark workloads, as shown in Table 5, each
representing distinct computational characteristics. These workloads include bubble
sort algorithm (sorting algorithm—compute intensive), 4-bit adder circuit (arithmetic
operation—low complexity), 4-bit multiplier circuit (arithmetic operation—moderate
complexity), and counter-based logic (sequential logic—continuous execution). Each of
these benchmarks was executed under controlled fault injection conditions.

As in Fig. 7, it compares the fault injection latency of four methods (BUFIT, SCFIT,
DPR, and DA-FIS) across different workloads. The red, green, and blue lines represent
conventional methods, showing higher latencies. The magenta line represents DA-FIS,
which achieves significantly lower latency across all workloads. DA-FIS demonstrates a
speed improvement of up to 2.2x compared to BUFIT, making it the most efficient
method.

Discussion

The experimental evaluation of DA-FIS highlights its superior fault injection speed
compared to traditional methodologies, making it an efficient and scalable solution for
FPGA fault resilience testing. As seen in Table 1, DA-FIS achieves a fault injection rate of
111.1 faults per second, which is 2.5x higher than BUFIT (53.4 faults/s) and four times
faster than DPR (18.5 faults/s). This significant improvement in injection speed ensures
that DA-FIS can rapidly introduce faults into FPGA logic, making it particularly suitable
for real-time fault analysis in mission-critical applications such as aerospace, automotive
safety, and medical devices. Additionally, the reduced injection latency (9 ms compared to
54 ms in DPR and 36 ms in SCFIT) enables more precise error monitoring, ensuring that

Alhayan et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2996 16/21

http://dx.doi.org/10.7717/peerj-cs.2996/fig-6
http://dx.doi.org/10.7717/peerj-cs.2996
https://peerj.com/computer-science/

PeerJ Computer Science

Table 5 Summary of experimental findings.

Workload Conventional fault injection latency Proposed Speed improvement
of proposed
BUFIT latency SCFIT latency DPR latency DA-FIS latency (Compared to BUFIT)
(ms) (ms) (ms) (ms)
Bubble sort 673 845 1,120 303 2.2x Faster
4-bit adder 512 654 896 245 2.1x Faster
4-bit 1,064 1,345 1,570 496 2.1x Faster
multiplier
Counter 1,296 1,520 1,785 673 1.9x Faster
logic

Summary of Experimental Findings - Fault Injection Latency

1800 | —e— BUFIT Latency (ms)
—8— SCFIT Latency (ms)
| —— DPR Latency (ms)
1600 ——&— DA-FIS Latency (ms)
w1400
E
>
2 1200}
2
©
—
c 1000
2
=
(9}
9]
c 800
o
3
L 600
400
200, . | L
Bubble Sort 4-bit Adder 4-bit Multiplier Counter Logic

Workload

Figure 7 Fault injection latency comparison across different workloads.
Full-size K&l DOT: 10.7717/peerj-cs.2996/fig-7

faults can be injected and evaluated without causing excessive delays in FPGA operation.
The fast fault injection cycle of DA-FIS also makes it an ideal tool for stress testing
fault-tolerant mechanisms such as error correction codes and triple modular redundancy.
Another key advantage of DA-FIS is its optimized FPGA resource utilization, which
ensures that fault injection testing does not compromise the system’s overall performance.
Table 2 demonstrates that DA-FIS incurs only 4.3% CLB overhead and 4.1% FF overhead,
which is 30% lower than SCFIT (4.8% CLB, 5.8% FF) while maintaining higher fault
injection efficiency. Unlike conventional methods, DA-FIS dynamically allocates fault
injection logic, ensuring that the additional hardware footprint remains minimal. In
contrast, SCFIT and DPR introduce higher resource consumption, which can limit
scalability in complex FPGA architectures. By efficiently balancing performance and
resource usage, DA-FIS remains a practical and scalable solution for a wide range of

Alhayan et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2996 17/21

http://dx.doi.org/10.7717/peerj-cs.2996/fig-7
http://dx.doi.org/10.7717/peerj-cs.2996
https://peerj.com/computer-science/

PeerJ Computer Science

FPGA-based systems, from low-power embedded devices to high-performance
reconfigurable computing platforms.

Furthermore, the ability of DA-FIS to adapt fault injection parameters in real-time sets
it apart from traditional static fault injection methods. While BUFIT, SCFIT, and DPR rely
on predefined fault models, DA-FIS employs a configurable LESR-based fault generator,
enabling adaptive fault injection based on workload conditions. This adaptability is
particularly crucial in radiation-hardened FPGA applications, where single-event upsets
and multiple-bit upsets occur unpredictably. DA-FIS’s ability to dynamically adjust fault
rates and target specific logic blocks ensures that FPGA fault testing can closely mimic
real-world error conditions, leading to more accurate fault tolerance evaluations.
Additionally, its real-time reconfigurability makes it suitable for next-generation FPGA
systems, where autonomous fault detection and self-repair mechanisms are becoming
increasingly important. These results establish DA-FIS as an efficient, scalable, and
high-speed fault injection framework, providing valuable insights for FPGA reliability
testing and fault-tolerant system design.

CONCLUSION AND FUTURE WORKS

The DA-FIS presented in this study provides a high-speed, scalable, and resource-efficient
solution for FPGA fault injection testing. By leveraging an LFSR-based adaptive fault
model, DA-FIS achieves 2.5x to 4x higher injection rates compared to conventional
methods while maintaining lower FPGA resource overhead. The ability to dynamically
adjust fault injection parameters in real-time ensures that DA-FIS is suitable for aerospace,
automotive, medical, and high-performance computing applications where fault resilience
is critical. Experimental results demonstrate that DA-FIS not only enhances fault injection
accuracy but also reduces latency and improves system monitoring, making it a reliable
and flexible solution for evaluating FPGA-based embedded systems.

For future work, we aim to further optimize fault generation algorithms by integrating
machine learning models to predict and inject faults more intelligently based on workload
sensitivity. Additionally, extending DA-FIS to support true random number generators
instead of deterministic LFSR-based sequences could enhance randomization in fault
injection scenarios, leading to more realistic error modeling. Future implementations may
also focus on multi-FPGA distributed fault injection, enabling testing of large-scale
reconfigurable systems in real-time environments. Finally, exploring self-healing
architectures, where FPGA systems autonomously detect and correct faults, could pave the
way for next-generation fault-tolerant computing in safety-critical applications.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the Deanship of Research and Graduate Studies at King
Khalid University through Large Research Project under grant number RGP2/247/46,
Princess Nourah bint Abdulrahman University Researchers Supporting Project number
(PNURSP2025R719), Princess Nourah bint Abdulrahman University, Riyadh, Saudi

Alhayan et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2996 18/21

http://dx.doi.org/10.7717/peerj-cs.2996
https://peerj.com/computer-science/

PeerJ Computer Science

Arabia; the Deanship of Scientific Research at Northern Border University, Arar, KSA for
through the project number “NBU-FFR-2025-2899-057; the Deanship of Graduate Studies
and Scientific Research at University of Bisha through the Fast-Track Research Support
Program and Prince Sattam bin Abdulaziz University project number (PSAU/2024/R/
1446). The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

Deanship of Research and Graduate Studies at King Khalid University, Large Research
Project: RGP2/247/46.

Princess Nourah bint Abdulrahman University Researchers Supporting Project:
PNURSP2025R719.

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Deanship of Scientific Research at Northern Border University, Arar: NBU-FFR-2025-
2899-05.

Deanship of Graduate Studies and Scientific Research at University of Bisha, Fast-Track
Research Support Program and Prince Sattam bin Abdulaziz University: PSAU/2024/R/
1446.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Fatimah Alhayan conceived and designed the experiments, prepared figures and/or
tables, and approved the final draft.

» Gaganjot Kaur conceived and designed the experiments, performed the computation
work, prepared figures and/or tables, and approved the final draft.

e Sultan Alanazi conceived and designed the experiments, performed the computation
work, prepared figures and/or tables, and approved the final draft.

e Mohammed Burhanur Rehman conceived and designed the experiments, analyzed the
data, prepared figures and/or tables, and approved the final draft.

» Wahida Mansouri conceived and designed the experiments, analyzed the data,
performed the computation work, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.

e Da’ad Albalawneh performed the experiments, analyzed the data, performed the
computation work, authored or reviewed drafts of the article, and approved the final
draft.

e Ali Alqazzaz performed the experiments, authored or reviewed drafts of the article, and
approved the final draft.

» Hanadi Alkhudhayr performed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

Alhayan et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2996 19/21

http://dx.doi.org/10.7717/peerj-cs.2996
https://peerj.com/computer-science/

PeerJ Computer Science

Data Availability
The following information was supplied regarding data availability:
The data is available at GitHub and Zenodo:
- https://github.com/Research-Society/DA-FIS.
- Research Society. (2025). DA-FIS. Zenodo. https://doi.org/10.5281/zenodo.15541493.

REFERENCES

Anglada M, Canal R, Aragén JL, Gonzalez A. 2021. Fast and accurate SER estimation for large
combinational blocks in early stages of the design. IEEE Transactions on Sustainable Computing
6(3):427-440 DOI 10.1109/TSUSC.2018.2886640.

Bohmer K, Forlin B, Cazzaniga C, Rech P, Furano G, Alachiotis N. 2023. Neutron radiation tests
of the NEORV32 RISC-V SoC on flash-based FPGAs. In: 2023 IEEE International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). Piscataway: IEEE.

Breier J, Hou X, Liu Y. 2021. On evaluating fault resilient encoding schemes in software. IEEE
Transactions on Dependable and Secure Computing 18(3):1065-1079
DOI 10.1109/TDSC.2019.2897663.

Cano-Piez J, Entrena L, Garcia-Valderas M, Lindoso A. 2025. Architecture for error detection
and recovery in MPSoCs: a hypervisor approach using dynamic partial reconfiguration. IEEE
Transactions on Nuclear Science 99:1 DOI 10.1109/tns.2025.3534431.

Carminati M, Scandurra G. 2021. Impact and trends in embedding field-programmable gate
arrays and microcontrollers in scientific instrumentation. Review of Scientific Instruments
92(9):91501 DOI 10.1063/5.0050999.

Ferlini F, Viel F, Seman LO, Pettenghi H, Bezerra EA, Leithardt VRQ. 2023. A methodology for
accelerating FPGA fault injection campaign using ICAP. Electronics 12(4):807
DOI 10.3390/electronics12040807.

Gangolli A, Mahmoud QH, Azim A. 2022. A systematic review of fault injection attacks on IoT
systems. Electronics 11(13):2023 DOI 10.3390/electronics11132023.

Gao Z, Liu X. 2021. An overview on fault diagnosis, prognosis, and resilient control for wind
turbine systems. Processes 9(2):300 DOI 10.3390/pr9020300.

Kastensmidt FL, Carro L, Reis R. 2006. Fault-tolerance techniques for SRAM-based FPGAs. Cham:
Springer.

Kushwaha S. 2023a. A futuristic perspective on artificial intelligence. In: Proceedings of the IEEE
OPJU International Technology Conference on Emerging Technologies for Sustainable
Development. Piscataway: IEEE.

Kushwaha S. 2023b. Review on artificial intelligence and human computer interaction. In:
Proceedings of the IEEE OPJU International Technology Conference on Emerging Technologies for
Sustainable Development. Piscataway: IEEE.

Kushwaha S, Kumar V, Jain S. 2011. Node architectures and its deployment in wireless sensor
networks: a survey. In: Proceedings of the SPRINGER International Conference on High
Performance Architecture and Grid Computing (HPAGC—2011), CCIS 169. Berlin, Heidelberg:
Springer-Verlag, 522-533.

Lanzieri L, Martino G, Fey G, Schlarb H, Schmidt TC, Wihlisch M. 2025. A review of techniques
for ageing detection and monitoring on embedded systems. ACM Computing Surveys 57(1):1-34
DOI 10.1145/3695247.

Alhayan et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2996 20/21

https://github.com/Research-Society/DA-FIS
https://doi.org/10.5281/zenodo.15541493
http://dx.doi.org/10.1109/TSUSC.2018.2886640
http://dx.doi.org/10.1109/TDSC.2019.2897663
http://dx.doi.org/10.1109/tns.2025.3534431
http://dx.doi.org/10.1063/5.0050999
http://dx.doi.org/10.3390/electronics12040807
http://dx.doi.org/10.3390/electronics11132023
http://dx.doi.org/10.3390/pr9020300
http://dx.doi.org/10.1145/3695247
http://dx.doi.org/10.7717/peerj-cs.2996
https://peerj.com/computer-science/

PeerJ Computer Science

Medjmadj S, Diallo D, Arias A. 2021. Mechanical sensor fault-tolerant controller in PMSM drive:
experimental evaluation of observers and signal injection for position estimation. Revue
Roumaine des Sciences Techniques—Série Electrotechnique et Energétique 66(2):77-83.

Metawie H, Safar M, El Kharashi MW. 2022. An evaluation method for embedded software
dependability using QEMU-based fault injection framework. In: Proceedings of the 6th
International Conference on System Reliability and Safety (ICSRS). Piscataway: IEEE.

Mishra S, Singh NK, Rousseau V. 2016. SoC design fundamentals and evolution. In: System on
Chip Interfaces for Low Power Design. Amsterdam: Elsevier.

Mohammadi A, Ebrahimi M, Ejlali A, Miremadi SG. 2012. SCFIT: a FPGA-based fault injection
technique for SEU fault model. In: 2012 Design, Automation ¢ Test in Europe Conference ¢
Exhibition (DATE). Piscataway: IEEE, 586-589.

QEMU Documentation. 2025. QTest device emulation testing framework—QEMU
documentation. Available at https://www.qemu.org/docs/master/devel/testing/qgtest.html
(accessed 2 February 2025).

Rhod E, Ghavami B, Fang Z, Shannon L. 2023. A cycle-accurate soft error vulnerability analysis
framework for FPGA-based designs. ArXiv DOI 10.48550/arXiv.2303.12269.

Richter-Brockmann J, Sasdrich P, Giineysu T. 2022. Revisiting fault adversary models: hardware
faults in theory and practice. IEEE Transactions on Computers 72(2):572-585
DOI 10.1109/TC.2022.3164259.

Saleem HI, Geethu R, Bhakthavatchalu R. 2022. A programmable and parameterisable reseeding
linear feedback shift register. In: 2022 Second International Conference on Artificial Intelligence
and Smart Energy (ICAIS). Piscataway: IEEE, 1629-1633.

Schneider J, Smalley I. 2024. What is a field programmable gate array (FPGA)? Ibm.
com. Available at https://www.ibm.com/think/topics/field-programmable-gate-arrays (accessed
19 December 2024).

Smit TT, Forlin BE, Chen K-H, Souvatzoglou I, Psarakis M, Ottavi M. 2024. An enhanced fault
injection framework for FPGA-based soft-cores. In: 2024 IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT). Piscataway: IEEE.

Velayaudhan ST, Devi K. 2024. BUFIT: fine-grained dynamic burst fault injection tool for
embedded field programmable gate array TESTING. Revue Roumaine Des Sciences Techniques
69(3):303-308 DOI 10.59277/rrst-ee.2024.69.3.8.

Vikranth CS, Mohammad D, Somanathan GR, Bhakthavatchalu R. 2021. Analysis of a novel
reseeding pattern generator. In: 2021 2nd International Conference on Smart Electronics and
Communication (ICOSEC). Piscataway: IEEE, 676-682.

Xie Y, Qiao T, Xie Y, Chen H. 2023. Soft error mitigation and recovery of SRAM-based FPGAs
using brain-inspired hybrid-grained scrubbing mechanism. Frontiers in Computational
Neuroscience 17:1268374 DOI 10.3389/fncom.2023.1268374.

Yang W, Li Y, He C. 2022. Fault injection and failure analysis on Xilinx 16 nm FinFET Ultrascale+
MPSoC. Nuclear Engineering and Technology 54(6):2031-2036 DOI 10.1016/j.net.2021.12.022.

Alhayan et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2996 21/21

https://www.qemu.org/docs/master/devel/testing/qtest.html
http://dx.doi.org/10.48550/arXiv.2303.12269
http://dx.doi.org/10.1109/TC.2022.3164259
https://www.ibm.com/think/topics/field-programmable-gate-arrays
http://dx.doi.org/10.59277/rrst-ee.2024.69.3.8
http://dx.doi.org/10.3389/fncom.2023.1268374
http://dx.doi.org/10.1016/j.net.2021.12.022
http://dx.doi.org/10.7717/peerj-cs.2996
https://peerj.com/computer-science/

	DA-FIS: A high-speed dynamic adaptive fault injection server framework for reliable FPGA-based embedded systems
	Introduction
	Related work
	Proposed methodology
	Results and discussion
	Conclusion and future works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

