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ABSTRACT
Federated learning has the potential to unlock siloed data and distributed resources by
enabling collaborative model training without sharing private data. As more complex
foundational models gain widespread use, the need to expand training resources and
integrate privately owned data grows as well. In this article, we explore the intersection
of federated learning and foundational models, aiming to identify, categorize, and
characterize technical methods that integrate the two paradigms. As a unified survey
is currently unavailable, we present a literature survey structured around a novel
taxonomy that follows the development life-cycle stages, along with a technical
comparison of available methods. Additionally, we provide practical insights and
guidelines for implementing and evolving these methods, with a specific focus on the
healthcare domain as a case study, where the potential impact of federated learning and
foundational models is considered significant. Our survey covers multiple intersecting
topics, including but not limited to federated learning, self-supervised learning, fine-
tuning, distillation, and transfer learning. Initially, we retrieved and reviewed a set of
over 4,200 articles. This collection was narrowed tomore than 250 thoroughly reviewed
articles through inclusion criteria, featuring 42 unique methods. The methods were
used to construct the taxonomy and enabled their comparison based on complexity,
efficiency, and scalability. We present these results as a self-contained overview that not
only summarizes the state of the field but also provides insights into the practical aspects
of adopting, evolving, and integrating foundational models with federated learning.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning, Emerging Technologies, Neural Networks
Keywords Federated learning, Foundational models, Machine learning, Privacy preserving,
Survey, Healthcare

INTRODUCTION
Federated learning (FL) allows multiple parties to collaboratively train machine learning
(ML) models without exchanging or transferring private data (Zhang et al., 2021). Its
main goal is to improve ML algorithms by integrating siloed data, which would otherwise
remain isolated and underused. For example, using patient data from different hospitals
to improve diagnostic ML algorithms would be challenging without FL (Pfitzner, Steckhan
& Arnrich, 2021).
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As ML models and datasets grow, particularly with the development of foundational
models (FMs) (Bommasani et al., 2021), training them requires more computational
resources and diverse data. However, high-quality data is often siloed due to privacy
concerns. In this context, it is valuable to explore how FL can enable new data sources
for training FMs, improve resource sharing, or use pre-trained FMs, to develop robust
collaborative ML models. While both FMs and FL aim to improve ML models, their
approaches differ fundamentally. FMs are trained centrally using large and diverse datasets,
and fine-tuned for various tasks (Awais et al., 2025; Chang et al., 2024; Liang et al., 2024).
In contrast, FL allows multiple parties to train specialized models without centralizing data,
preserving privacy. Their integration faces technical challenges such as bandwidth manage-
ment, training latency, and efficient data transmission (Zhang & Metaxas, 2023), as well as
legal and organizational challenges such as finding incentives to defining Internet Protocol
(IP) ownership for participating nodes (Woisetschläger et al., 2024).

Navigating the intersection of FMs and FL remains challenging due to the absence of
comprehensive reviews.While existing literature addresses the challenges of integrating FMs
and FL (Zhuang, Chen & Lyu, 2023), examines their integration at various development
stages (Woisetschläger et al., 2024;Kang et al., 2023), and categorizes existing literature (Ren
et al., 2024; Li et al., 2024b), an integrated an self-contained review is still missing.
For example, Zhuang, Chen & Lyu (2023) lack a structured taxonomy or technical anal-
ysis of methods, Ren et al. (2024) and Li et al. (2024b) propose taxonomies, but many
of their categories overlap, making it hard to uniquely position new methods,
while Woisetschläger et al. (2024) and Kang et al. (2023) focus on specific stages
such as training.

To address these gaps, we aim to provide a more comprehensive survey structured
around a non-overlapping taxonomy that follows the development life-cycle stages.
Furthermore, we aim to provide a comprehensive technical comparison of the
available methods, together with practical insights into their implementation and
quality attributes, and study their application in specific use-cases. This will guide future
researchers and practitioners understand, apply, and evolve these methods.

Overall, the contributions of this article are as follows:

• We present a comprehensive literature survey that aims to cover the majority of articles
at the intersection of FMs and FL.
• We categorize the articles using a novel taxonomy based on the stage where FM are
used (e.g., pretrain or inference) and the methods used at each stage.
• We compare the methods based on complexity, efficiency and scalability.
• We discuss practical aspects of applying the methods presented and provide guidelines
and future research directions, focusing on the application of FL and FMs in the
healthcare domain.

The remainder of this article is organised as follows. We start with background
information and related work (Background and Related Work), followed by the
methodology and the taxonomy used for the literature survey (Survey Methodology). We
then discuss the selected articles (Methods) and practical aspects of the methods (Practical
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perspectives). The article concludes with a discussion of study limitations (Limitations),
findings (Discussion), followed by conclusions (Conclusions). Prerequisite information
about FL, FMs, fine-tuning, and KD is provided in the Appendix.

BACKGROUND AND RELATED WORK
Several comprehensive surveys have been published covering FL or FMs, addressing
applications in multiple domains including healthcare. For example, Zhang et al. (2021)
present a survey of FL, categorizing and summarizing various methods along with their
advantages and disadvantages. Liu et al. (2024) build upon this survey, incorporating
more recent techniques and providing an extensive taxonomy for their classification.
Additionally, several articles explore the challenges and opportunities in FL—e.g., (Wen
et al., 2023)—and examine different quality attributes of the algorithms, such as
trustworthiness (Zhang et al., 2024b), robustness (Huang et al., 2024), and fairness (Ji
et al., 2024). In the medical domain, Guan et al. (2024) and Pfitzner, Steckhan & Arnrich
(2021) cover both the techniques used as well as benchmarks and datasets for FL.

Likewise, numerous surveys address FMs for various applications, including
vision (Awais et al., 2025), language (Chang et al., 2024), and multi-modal FMs (Liang
et al., 2024). These surveys include methods for developing FMs, comparative benchmarks,
as well as the opportunities and risks associated with using FMs (Bommasani et al., 2021).
In the medical domain, Azad et al. (2023) present a comprehensive survey discussing
algorithms, modalities, and various organs for which FMs have been developed. Within
this realm, FMs are also called generalist models (Moor et al., 2023). Zhang & Metaxas
(2023) present a classification of the types of FMs and generalist models, ranging from very
broad, multi-modal, models, to very narrow, task-specific FMs.

Nonetheless, the majority of these studies concentrate only on the development and
scaling of FMs or FL algorithms independently. Although several surveys discuss specific
algorithms applicable to both FL and FMs, such as knowledge distillation (KD) (Wu et al.,
2022)—they do not provide a comprehensive understanding of the intersection between
FL and FMs (Chen et al., 2023; Li & Wang, 2024; Yu, Muñoz & Jannesari, 2023).

While the intersection of FL and FMs is still developing, a series of articles highlight
the opportunities and challenges of integrating these fields, as well as partial surveys and
taxonomies. Zhuang, Chen & Lyu (2023) provide an overview of the motivations and
challenges associated with using FMs in FL. While some of the authors’ motivations
are realistic—such as overcoming a shortage of available private or personalised data
for developing FMs—are less so. For example, attempting to address response delays or
service downtimes for FMs by running them in FL may be impractical, as FL introduces
additional communication overhead that can increase latency and provide additional
disruptions in service. We observe that all the presented challenges—such as those related
to reducing communication and computational costs, or developing incentive mechanisms
for collaborations—are timely, and are also acknowledged in similar position papers
exploring the interplay between FL and FMs.

Several related surveys focus on specific aspects of FL and FMs. For exam-
ple,Woisetschläger et al. (2024) present a survey of methods for training FMs in FL settings,
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while Kang et al. (2023) survey methods for using transfer learning in FL. While these
studies are closely related, our aim is to provide a broader and more comprehensive
technical survey that will encompass specific concerns as presented in these works.

The studies by Ren et al. (2024) and Li et al. (2024b) come closest to our aim, as they
seek to provide taxonomies and surveys of the intersection of FL and FMs.When compared
with Ren et al. (2024), our objectives are slightly divergent. In our study, we focus only on
technical methods, which broadly fall under the categories of efficiency and trustworthiness
from their taxonomy, and avoid broader debates on topics such as incentivization or
alignment. Furthermore, our aim is to discuss these methods, rather than characterize
and classify them in general terms, or present their motivation. This approach allows us
to present a more comprehensive and self-contained technical survey, enabling readers to
more effectively understand, apply, and evolve the methods presented.

Moreover, we develop a more focused, technical, taxonomy of the methods presented,
derived from the underlying principles used to develop them, and ensuring there
are no overlaps between the selected classes. For example, Ren et al. (2024) propose
different classes such as computational and communication efficiency, although most
methods for computational efficiency also improve communication efficiency. Instead,
we identify orthogonal criteria for classifying the methods presented. Additionally, we
avoid speculative debates, such as whether quantum computers can aid FL and FMs, as
these technologies are not considered viable in the near future. In this sense, our study is
closer to the work of Li et al. (2024b), but instead of focusing on representative methods,
we aim to present potentially all available methods, and provide a more detailed and
structured characterisation of the methods presented. We also provide in-depth details
on practical application and implementations of FMs with FL in the medical domain.
We highlight these differences in Table 1.

SURVEY METHODOLOGY
In the following sections, we present the methodology used to conduct the literature survey
and develop the taxonomy used throughout the article.

Study design and protocol
Our study can be classified as a literature survey (Sataloff et al., 2021), aimed at identifying,
classifying, and evaluating the strengths and weaknesses of various methods proposed at
the intersection of FL and FMs. Towards this goal, we designed the study protocol following
the guidelines of Okoli (2015) and Yannascoli et al. (2013).

A total of five research questions, as summarized in Table 2, were formulated to guide
the study. The questions cover a range of topics, from the exploration of general methods to
more practical aspects of implementation, and future research directions. Specifically, RQ1
and RQ2 focus on the general intersection of FL and FMs, aiming to identify and classify
the key methods in this area. RQ3 and RQ4 focus on practical aspects, investigating the
applications and best practices for implementing these methods in real-world scenarios,
particularly in the medical domain. RQ5 explores future directions and open questions,
providing insights into future research.
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Table 1 Comparison with prior surveys across key dimensions: the structure of the taxonomy (includ-
ing overlaps among subclasses), the extent of lifecycle coverage (spanning training, customization, and
deployment), the depth of technical comparison (such as method comparisons or ranking), the inclu-
sion of practical insights (addressing real-world considerations), and the analysis of use cases (evaluat-
ing methods in applied contexts).

Study Non-overlaping
Taxonomy

Lifecycle
coverage

Technical
comparison

Practical
Insights

Use-case
analysis

Zhuang, Chen & Lyu (2023) × × × × ×

Ren et al. (2024) × × X × ×

Li et al. (2024b) × × X × ×

Woisetschläger et al. (2024) × × × × ×

Kang et al. (2023) × × × × ×

This article X X X X X

Table 2 Research questions that guided this study, as outlined in our study protocol.

ID Research Question

RQ1 What are the techniques that integrate FMs with FL?
RQ2 What are the trade-offs involved in integrating FMs with

FL?
RQ3 What are the most practical methods for using FMs with

FL?
RQ4 What FL and FMs methods have been applied in the

medical field?
RQ5 What are the key open research questions and future

directions for developing FMs with FL?

To ensure comprehensive coverage of academic and potential non-academic studies, the
search strategy included multiple information sources. Initially, we used the Google and
Google Scholar search engines. While these engines are known to encompass many other
information sources commonly used in literature surveys (Shahin, Babar & Zhu, 2017), we
also used the ScienceDirect and Scopus search engines to further broaden the search. For
each information source we used the first five pages of answers. ScienceDirect and Scopus
were queried using the APIs, limiting the number of answers to fifty for each query.

To define the queries, we followed several guidelines (Okoli, 2015; Yannascoli et al.,
2013), and initially defined terms that comprised of two elements. For the first element, we
used the term federated learning, and for the second element we used the term foundational
model along with various synonyms for the techniques used to develop or use FMs.
These included self-supervised learning, pre-trained models, fine-tuning, distillation, transfer
learning. Additionally, we created two variations of these queries to make them more
specific. First, we added an element suggesting the medical domain using the wordsmedical
and healthcare. Second, we added an element suggesting the practical application of these
methods using the words application, implementation, development, and deployment. A
complete list of keywords is provided in the Appendix.

To filter out irrelevant documents, we first removed duplicates based on the article
titles, and restricted the search to articles published from 2021 onwards, as this year
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4,200 articles from Google,
Google Scholar, Scopus and

ScienceDirect

260 articles assessed by full
text

48 relevant articles 

2360 articles excluded after
duplicate filtering

1580 articles excluded after
title/abstract filtering

218 articles excluded after
full text reading

Identification Screening

Inclusion

1840 articles included in
title/abstract screening

Eligibility

6 articles  added from
snowballing

Figure 1 PRISMA flow chart illustrating the article selection process at each stage of the filtering crite-
ria, as defined in the study protocol.

Full-size DOI: 10.7717/peerjcs.2993/fig-1

corresponds with the first developments in FMs. Afterwards, we reviewed the titles
and abstracts of the remaining articles and applied several inclusion and exclusion
criteria. Inclusion criteria required that articles (i) addressed at least one of the RQs,
(ii) were peer-reviewed or appeared in more reputable preprint servers, and (iii) were
written in English. Exclusion criteria eliminated articles that (i) were not accessible
in full text, (ii) focused solely on unrelated domains, or (iii) appeared to lack a clearmethod-
ological contribution. The remaining articles were fully read and evaluated using these
criteria, and the initial list of articles was complemented from their references using a
snowballing strategy (Jalali & Wohlin, 2012). An illustration of the article filtering process
is provided in Fig. 1.

Taxonomy
When attempting to classify the articles discussed in this study using previously introduced
taxonomies, we found that no existing work could categorize them into distinct, non-
overlapping classes based on the algorithms presented. For example, the taxonomy
proposed by Li et al. (2024b), while compelling, exhibited significant overlap between
classes and provided only representative examples for each technique. Upon trying to scale
up their taxonomy, we found that the fine granularity of their approach made it difficult
to fit some methods from our study. Therefore, we developed a broader taxonomy that is
compatible with all proposals in the literature but adheres to more stringent criteria.

Initially, we classified the articles based on the stage of the development life-cycle
into three categories: (i) train—focusing on techniques for pre-training FMs using FL,
(ii) customize—focusing on the adaptation of FMs for specific tasks using FL, and (iii)
deploy—focusing on the use of FL to run inference for a pre-trained or customised FM.
Within each of these categories, we further defined sub-classes based on the core algorithmic
technique used to develop the methods. An illustration of this taxonomy is provided in
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 Foundational models using Federated Learning

Fine-tuning

Customize Deploy

Selective

Additive

Contraction

Compression,
Pruning,

Quantization

Distillation

Hybrid

Entire

Train

Aggregation

Partial

Selective

Additive

Test-time
adaptation

Figure 2 Taxonomy of methods for training, customizing or deploying foundational models using
federating learning.

Full-size DOI: 10.7717/peerjcs.2993/fig-2

Fig. 2. We observe that for certain classes, such as those used to customize FMs, it was
possible to define more fine-grained sub-classes due to the diversity of the algorithms
used. Conversely, for other classes like the deploy class, were fewer techniques have been
developed, the taxonomy is more coarse. Comprehensive details about the class definitions
are discussed in Methods, where the methods belonging to each class are introduced.

To ensure that the validity of the taxonomy, we conducted an internal validation with
experts within our team. Two experts independently assigned each method to one of the
taxonomy classes, followed by a review to resolve any disagreements and ensure consistency.
Furthermore, cross-referencing of prior taxonomies and internal discussions between the
authors and the experts helped reached consensus. Both experts were researchers with over
five years of experience in machine learning and at least three years of focused research in
FL or FMs.

METHODS
This section presents and compares the methods identified based on the taxonomy
from Fig. 2. An illustration of the methods grouping by year is illustrated in
Fig. 3, following the three main categories of the taxonomy. We can observe a
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slight shift from methods focusing on training the FM in FL to methods focusing
mostly on customization. This is likely due to the increase in resources needed to
train FMs over time and the emergence of more efficient fine-tuning methods such as
low-rank adaptation (LoRA).

Train
Although collaboratively training FMs using FL can offer access to high-quality siloed
data, it is also the most challenging use-case as communicating large model updates
leads to substantial communication overhead. Managing large datasets and models
requires innovative communication-efficient algorithms and compression methods
(McMahan et al., 2017). Additionally, handling heterogeneous data distributions and
varied computational resources across nodes poses further challenges (Kairouz et al.,
2021). Due to these challenges, few publications attempt to pre-train entire FMs, with most
focusing on adding parameters or pre-training only a subset of the FMs collaboratively.
This technique is also known as continuous domain adaptation, where off-the-shelf FMs
are further pre-trained on more specific data (Jiang, Svoboda & Lane, 2023).

To initially categorize the algorithms in this class, we consider the parts of themodel used
for pre-training: (i) entire—where the whole model is pre-trained using FL, (ii) partial—
where only parts of the model are pre-trained using FL, and (iii) test time adaptation—
where the pre-training phase adjusts specific parameters or inputs for customization or
deployment using FL—such as modifying the prompts used to better suit the context
or specific user requirements. An illustration of these methods is provided in Fig. 4,
focusing on the parts of the models that are trained collaboratively. On the server side,
most algorithms discussed in this section use Federated Averaging (FedAVG) (details in
Appendix) or its variants for parameter aggregation, but implement novel techniques
to minimize the parameters transmitted over the network. Within these classes, several
sub-categories could be identified, detailed in the next sections.

Entire model training
The methods presented in this section can be classified into methods that aim to pre-train
FMs using FL, discussed below, and those that improve the aggregation algorithms used on
the server, detailed in the aggregation paragraph. This distinction was made because novel
aggregation methods can, in principle, be combined with other pre-training techniques.

Garcia Bernal et al. (2021) conducted one of the first empirical studies on pre-training
a FM in FL, training a Word2Vec model (Mikolov et al., 2013) collaboratively with a small
number of clients holding large text corpora. They used FederatedSGD (McMahan et
al., 2017), where the only changes were context-specific decisions like merging client
vocabularies. While the final model didn’t improve performance significantly, the
study showed the feasibility of training FMs and FL. Sani et al. (2024) further optimized
training by combining efficient local and global gradient updates with data parallelism
techniques typically used for large-scale FMs (e.g., distributed data parallelism). Besides
these optimizations, the authors used a larger set of local updates before updating the
global model, which reduced communication costs and proved effective when scaling the
dataset size.
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Figure 3 Temporal trends in the evolution of methods over the years following the taxonomy illus-
trated in Fig. 2.

Full-size DOI: 10.7717/peerjcs.2993/fig-3

While these articles focused on using existing techniques without introducing novel
methods, they demonstrate the viability of pre-training FMs in FL settings. Zhuang et al.
(2021) first adapted pre-training techniques for FMs by modifying Bootstrap Your Own
Latent (BYOL) (details in Appendix) to run in FL. In their approach, each client trains a
BYOL-like model locally using contrastive learning, with one encoder updated via gradient
descent and the other via exponential moving average (EMA). Every n epochs, clients
upload their EMA encoders to the server, which merges them using FedAVG and sends the
updates back to the clients. The clients can then dynamically choose to replace their EMA
models with the global one while maintaining consistency with their local data. The novelty
of this approach is that only the EMA encoder is updated globally, reducing communication
overhead. Li, He & Song (2021) also introduced a method using contrastive learning in FL,
allowing clients to adapt their local models on demand. Unlike Zhuang et al. (2021), they
performed contrastive learning at the model level, aiming tominimize the distance between
local and global model features by contrasting them at each training step. The global model
is updated using FedAVG every epoch, and after the update the contrastive loss is used to
update the local model. This removes the need for an EMA encoder, as the global model
acts like it. Nevertheless, the communication costs increase as the global model is updated
at every epoch.

Zhuang, Wen & Zhang (2022) examined the advantages and disadvantages of choosing
different pre-training techniques, and evaluated their impact of running them in FL. They
conducted an empirical study comparing SimCLR, MoCo, BYOL, and SimSiam (details in
Appendix) pre-training methods in FL. The authors found that non-contrastive methods
such as BYOL perform better, and while EMA is not essential, it improves performance.
To further investigate EMA’s influence, they replaced the update of the local EMA encoder
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(a) Entire foundational models’ training using
federated learning, where all model parameters are
adjusted.
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(b) Partial foundational models’ training using
federated learning, where only a subset of global
parameters are adjusted.
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Client 1

Model input
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parameters
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trained model

Client n

Model input

(c) Test time adaptation of foundational model using
federated learning, where only the models’ input is
adjusted.

Figure 4 Overview of pre-training methods for foundational models using federated learning.
Full-size DOI: 10.7717/peerjcs.2993/fig-4

with the global model, as performed in Zhuang et al. (2021), with an EMA update on the
global model where the decay rate is dynamically set by all clients. This technique led to
performance improvements, as the EMA model is more adapted to local data.

Makhija, Ho & Ghosh (2022) presented a method where each client first pre-trains an
individual model, and then a global model is adapted using an independent alignment
dataset. At each epoch, the server sends a subset of this dataset and the corresponding
global model embeddings to all clients. Clients then compute the similarity between their
local embeddings and the global embeddings, and send their local embeddings back to the
server. The server aggregates these representations and sends the results back to the clients,
which continue training by maximizing the embeddings similarity. While this approach
outperforms previously discussed methods such as Zhuang, Wen & Zhang (2022), it incurs
high communication costs due to the exchange of data and embeddings. Some of these
costs are alleviated by using a smaller alignment dataset. However, the need for a small
dataset is not guaranteed by the method. Agarwal, Rezagholizadeh & Parthasarathi (2023)
ran an empirical study on pre-training FMs using FL, investigating distinct factors such as
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data heterogeneity, the clients contribution to the final metrics, as well as the influence of
the client’s dataset size in relation to performance and speed. They found that using FMs
can have both a positive and a negative impact on the local models, depending on how
skewed the data distribution is between clients. The authors also found that having more
clients with less data, instead of less clients with more data, can impact the performance of
the FMs, and note that performing less updates from clients with less data can improve the
communication efficiency without loss of performance.

Aggregation. To improve FedAVG and address potential scaling issues with the embedding
norms during local updates, Kim et al. (2023) introduced an additional L2 feature
normalization, moderated by a client-specific scaling factor. This technique demonstrates
improved performance when applied to both pre-training and fine-tuning, and could
potentially be integrated with the methods discussed earlier.

Rehman et al. (2023) introduced a new aggregation method aimed at reducing bias from
heterogeneous clients during model aggregation. In their approach, each client performs
local pre-training and uploads its models to the server. The server then computes a layer-
wise weight for each model’s contribution to the final global model, using a weight metric
measured as the cosine similarity between the client’s model and the global model from
the previous iteration. The method can be interpreted as a weighted, layer-wise FedAVG,
which improves both the performance and mitigates some of the biases introduced by
clients with more skewed data distributions.

Recasens et al. (2023) proposed a novel averaging technique based on the Fisher matrix,
which merges local models in the parameter space. The method assumes that each client
performs pre-training locally on all data, until convergence, and only upon convergence
merges the models into a global model, significantly reducing the communication costs
during training. The Fisher matrix is used in the aggregation process to weigh the
importance of each parameter, providing information for preserving parameters that
contribute most significantly to the model’s performance. This method is particularly
effective in scenarios where client data distributions are highly heterogeneous, ensuring
that the global model benefits from the most informative local updates.

Partial model training
The methods discussed in this section pre-train only a portion of the FMs using FL and can
be classified based on the parameters used for pre-training. These include methods that
add new parameters for pre-training (additive) and methods that select existing parameters
for pre-training (selective).

Additive. Tan et al. (2022) assume that the clients already have independent pre-trained
models, obtained either from pre-training on their own data or adopting off-the-shelf
FMs, and use these to pre-train a global FM. In this setting, each client encodes their
data with the local model and shares the embeddings with all other clients. The clients
then concatenate all embeddings and project them through a learnable projection layer
to obtain client-specific prototypes for the concatenated embeddings. These prototypes
are shared with the server, which aggregates them using FedAVG, and sends the results
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back to the clients. For supervised or semi-supervised tasks, multiple class-wise prototypes
can be used. After receiving the prototypes from the server, each client minimizes the
distance between the local and the global prototype, or can perform contrastive learning
if multiple prototypes are used. Sharing and training only the prototypes significantly
reduces communication costs while enabling each client to contribute more effectively to
the global model. This method improves both performance and communication efficiency.
However, it assumes the existence of pre-trained models for all clients and does not explore
the scenario where all clients use the same FM (e.g., using an off-the-shelf FM). Fanì et al.
(2023) extended this method by introducing a regularization term based on the magnitude
of the prototype weights to address concerns arising from heterogeneous data distributions
across clients. This addition resulted in further performance improvements.

Chen, Su & Li (2024) further used the prototypemechanism to achieve a balance between
pre-trained models that provide generic features and more personalized, client-specific
features. The adaptation consists in increasing the training period for clients with more
complex data, and simplifying the local parameters and the training period for clients
with limited or noisy data. This dynamic adjustment helps optimize the training process
for each client. Their experiments demonstrated improved performance in pre-training
methods for personalizing the final models, while being more resilient to bias added by
specific clients.

Kim, Yoo & Kang (2023) further simplified this method demonstrating that removing
the embedding concatenation and projecting only the features from the local models is also
effective. The clients send only the projection layers to the server, which aggregates them
using FedAVG. However, the authors used projection layers with many more parameters,
making them more similar to adapter layers (Pfeiffer et al., 2021) rather than simple
projection layers.

Lu et al. (2024) further extended this strategy by also incorporating learnable adapters
for the inputs, in addition to the projections (prototypes) used for the outputs of a FM. The
authors trained both an auto-encoder to map the inputs to a FM (a stage also called input
surgery), and use the outputs of the FM to project them to a common space through a
learnable layer. The server receives both the input auto-encoder and the output projection,
performs FedAVG, and returns the aggregated results to the clients, who then replace
their corresponding local components with the global ones. This approach improves the
adaptability of the FM by integrating both input and output adjustments. However, it
also increases communication costs compared with previously mentioned methods, as the
input auto-encoder is additionally trained using FL.

Selective. Lit et al. (2022) introduced a method to pre-train the BERT language model in
FL by splitting the model into two parts: one trained locally by each client and one trained
jointly by all clients. The novelty lies in splitting the model to have more encoder layers
trained locally and fewer globally. To optimize communication, only a subset of clients
participates in each global update, using the FedAVG algorithm to train the global layers.

Yu, Muñoz & Jannesari (2023) introduced a method to select a subset of parameters
from the main model to be used in FL using saliency maps. The L1-norm is used to rank
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the original model’s weights, and only a small percentage of these weights, determined
by thresholding the L1 score, are sent to the server. The server performs FedAVG on the
received features and sends only these features back to the clients. The authors demonstrate
that this approach accelerates training of FLs in FL by nearly halving the computational
time, while maintaining and even improving performance. This suggests that performing
FedAVG on a subset of parameters can act as regularization, similar to stochastic weight
averaging (Guo, Jin & Liu, 2023).

Test-time adaptation for training
The methods in this class only optimize the input to the FMs, by collaboratively adjusting
it using FL (Yang, Wang & Wang, 2023).

Guo et al. (2023) introduced amethod for collaboratively training prompts instead of the
entiremodel. Their approach assumes that each client pre-trains or uses an off-the-shelf FM
on their local data, and uses FL to optimize continuous prompts, which are learnable vectors
directly integrated into the model’s embedding space. The method introduces a new set of
learnable input parameters representing the continuous prompt and optimizes only these
parameters in FL using FedAVG. While this significantly reduces communication costs, it
presents additional challenges, as it assumes clients can pre-train models independently
on their data. Additionally, adjustments are needed, as the number of clients involved in
optimizing the prompts directly affects performance. Su et al. (2022) proposed a similar
method where prompts are trained collaboratively, but the contribution of each client’s
prompt is modulated by a learnable parameter called a key. This technique mirrors the
aggregation methods used in training entire models, but is specifically applied to prompts.
Using the learnable weight (key) enables a more personalized aggregation process, where
clients with similar domains, but different distributions, can customize their contribution
to the final prompt. Zhao et al. (2023) extended the experiments with continuous prompts
to evaluate whether the exchange of prompts can compromise the privacy of FL, and found
that introducing prompt tuning in FL does not inherently breach privacy.

Customize
Customizing existing FMs using FL is one of the most attractive use cases, as it is more
efficient to train a FM in a centralizedmanner or to use an off-the-shelf pre-trained FM and
then customize it using FL. This approach aligns well with the ML development life-cycle,
where starting from pre-trained models has become a standard practice for most tasks.
Therefore, the algorithms in this class are also themost numerous. To initially classify them,
we first consider the type of method used for customization: (i) fine-tuning—where parts
or the entire model are fine-tuned in FL using supervised or semi-supervised learning,
(ii) contraction—where the size of the model is reduced using various techniques, and
(iii) hybrid methods—combining fine-tuning and contraction. On the server side, most
algorithms discussed in this section use FedAVG or its variants for parameter aggregation.
Within these classes, several sub-categories can be identified, which are detailed in the
following sections.

Hatfaludi and Serban (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2993 13/41

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.2993


Fine-tuning
Fine-tuning methods involve continuing to train a FM in FL using supervised or semi-
supervised learning. Given that fine-tuning the entire model is both computationally and
communication-intensive, most methods in this class focus on fine-tuning only a selection
of existing or new parameters. To further distinguish between these methods, we classify
them into two categories: methods that select only parts of the model for fine-tuning
(selective) and methods that add extra parameters for fine-tuning (additive), both of which
are presented in the following paragraphs.

Selective. Selective methods fine-tune only a subset of the existing parameters of the
FM using FL. Unlike pre-training with selective methods, the methods in this class
use supervised or semi-supervised learning and primarily focus on fine-tuning the bias
parameters of a model in FL, while keeping the rest of the parameters frozen. Sun et
al. (2022) are among the firsts to evaluate the performance of fine-tuning only the bias
parameters (also known as bias tuning) and compare it to adding extra adapters under
various settings, including distinct client stability, data distributions, and differential
privacy settings. During training, each client performs a forward pass through the model,
sends the bias parameters to the server, which aggregates them using FedAVG and returns
the outcome to all clients. The authors found that bias tuning consistently outperforms
additive fine-tuning, across distinct use cases involving both language and vision. This
performance gap is maintained across various settings, such as when differential privacy is
used for training, or when all clients operate in low-data regimes. Chen et al. (2022a) ran a
similar study, with similar conclusions, using different types of adapters.

Tsouvalas, Asano & Saeed (2024) presented a novel technique that selects a subset of
network parameters based on the L1 norm of the weight matrices at each layer. The
algorithm ranks these matrices using the L1 norm and aggregates only the top n matrices,
with n being determined by the specific use case. This approach significantly reduces the
number of parameters involved in the aggregation process. The authors demonstrated a
reduction of more than 60% in the number of parameters for large NLP architectures such
as BERT-Large. However, they obserdve a less pronounced decrease for smaller models,
indicating that the effectiveness of this technique may vary depending on the model size
and complexity.

Additive. Additive methods introduce extra parameters that are fine-tuned while keeping
the FM frozen. These methods focus on adding extra parameters in the final layers, typically
called adapters, which project the final embeddings of the FM and adapt them to new tasks,
or on using parameter-efficient fine tuning (PEFT) (particularly LoRA—described in
Appendix) to add parameters at each layer. When using LoRA, a common question arises:
should the added LoRA ranks be homogeneous or heterogeneous, given that some clients
may have better computational resources or larger datasets. Additionally, within LoRA,
there is the possibility of adding asymmetric parameters between the low-rankmatrices. An
illustration of these methods is provided in Fig. 5, where Fig. 5A shows the addition of extra
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adapters, Fig. 5B illustrates the use of LoRA with either homogeneous or heterogeneous
(gray) parameters, and Fig. 5C illustrates the use of asymmetric LoRA parameters.

Houlsby et al. (2019) were the first to analyze which parameters of a FM should be
fine-tuned for better precision by comparing fine-tuning directly the last layers of a FM
with adding one extra layer to fine-tune (Fig. 5A). The authors found that adding extra
adapters not only improves the performance, but also leads to more stable training. Chen
et al. (2022a) tested this idea in FL settings and found that using an adapter does improve
the performance but only in some cases. In other cases, selecting and fine-tuning only the
bias parameters of a transformer leads to better results (discussed in the selective paragraph
from above).

Legate et al. (2024) extended this idea and proposed to first fine-tune only the extra
adapter, followed by some steps in which the complete model is fine-tuned using FedAVG.
This second step is shown to further improve performance, however, it increases the
communication costs significantly.

When using LoRA in FL, a key consideration is whether to make the added low-rank
parameters homogeneous (identical) across clients or heterogeneous. Several studies
use homogeneous LoRA, as discussed in Appendix, for distinct tasks. Nguyen, Munoz
& Jannesari (2024) used it to fine-tune a vision-language model where the encoders for
either the vision or language components are extended using LoRA. Jiang et al. (2024)
used LoRA to fine-tune large language models (LLMs), while Zhang et al. (2024a) used
it for instruction-tuning LLMs in FL. Yi et al. (2023) applied it in scenarios where clients
own heterogeneous FMs, but use homogeneous parameters for fine-tuning, by manually
selecting the layers for parameter addition. In all these cases, the aggregation of global
(homogeneous) LoRA parameters is performed using FedAVG, with the mentioned
studies showing consistent performance improvements across different benchmarks and
modalities.

However, using homogeneous LoRA ranks presents a trade-off between overfitting and
slow convergence, especially for clients with more heterogeneous datasets or models (e.g.,
skewed distributions) or when personalization is required. In such cases, the definition
and aggregation of local parameters for LoRA can be made more dynamic by introducing
heterogeneous parameters. For example, Guo et al. (2024) fine-tuned a multi-language
LLM by introducing heterogeneous local adapters for each language family (e.g., Germanic
or Italic), and aggregating only the parameters relevant to a specific language family
globally. This approach helped mitigate inter-language bias and offered flexibility for more
challenging languages, at the expense of increased communication costs.

Additionally,Cho et al. (2023) proposed amethod to assign and aggregate heterogeneous
ranks to all clients based on their system capabilities (e.g., distributing higher ranks to more
capable clients and vice versa). The challenge then becomes aggregating the heterogeneous
parameters into global LoRA parameters. To achieve this, the server pads all ranks to the
same size and applies weighting based on the norm of the singular value vectors for the
local parameters. The padded parameters are then aggregated using weighted FedAVG.
This not only improves communication efficiency, as smaller parameter exchanges occur
for some clients, but also acts as a form of regularization that enhances final performance
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compared to homogeneous LoRA. Byun & Lee (2024) further investigated the padding-
based aggregation of heterogeneous ranks and discovered that it introduces instabilities
during training. To mitigate these instabilities, the authors used replication-based padding
instead of zero-padding, which led to more robust and efficient fine-tuning.

More complex approaches, which combine multiple sets of homogeneous and
heterogeneous adapters have also been explored. Yang et al. (2024b) proposed using
two sets of LoRA parameters: a homogeneous set that is aggregated and updated globally,
and a heterogeneous that is kept local. This technique can address skewed distributions
between the client datasets or facilitate personalization. During each training step, the
forward pass uses the frozen FM, the global adapter, and the local adapter. To balance the
contribution of the global and local adapters, a weighting mechanism can be additionally
employed. The global adapter is aggregated by the server using FedAVG, while the local
adapter is kept individual for each system. This technique provides further adaptability
without compromising the global performance.

Ping et al. (2024) explored this concept in a multi-task setting by defining multiple
(heterogeneous) LoRA parameters for each task. During each training step, only the
parameters specific to a task are aggregated using FedAVG. In scenarios where task labels
are not explicitly defined, the authors introduced a mechanism that employs k-means
clustering to group and aggregate the parameters. This approach automatically clusters
similar adapters from the clients, which are assumed to contribute to the same tasks,
and aggregates them using FedAVG. The method demonstrated improved robustness in
multi-task settings by mitigating cross-task drift. However, it incurs high computational
costs.

Tian et al. (2024) introduced additional heterogeneity by modifying one of the low-rank
matrices from LoRA (A, B) to add multiple asymetric matrices for B (illustrated in Fig. 5C).
This approach allows specialization for particular tasks in multi-task settings, similar to
mixture of experts (MOE) (Cai et al., 2025). During each training step, the matrix A is
aggregated globally using FedAVG, while each part of matrix B is aggregated only with
its corresponding part from other clients, also using FedAVG. The method demonstrated
consistent performance improvements even when the combined sizes of the asymmetric
matrices are equal to the initial size of B, providing evidence that specializing these matrices
for particular tasks can improve overall performance without increasing the parameter
count.

In addition to parameter homogeneity, Babakniya et al. (2023) found that the
initialization of the LoRA parameters can introduce instabilities and affect performance,
as a single initialization may not suit all client data distributions. To mitigate these issues,
the authors proposed to initially fine-tune the entire model for a few steps, followed
by fine-tuning only the LoRA parameters. This approach provides initialization and
momentum from the entire data distribution from all clients, which represents a better
initialization. However, fine-tuning the entire model comes with high computational costs
and may not always be feasible. Wu et al. (2024b) extended this procedure by alternating
between full fine-tuning and fine-tuning only the LoRA parameters. This method aims to
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balance global and local knowledge exchange, demonstrating performance improvements
but at an even higher cost.

Yang et al. (2024a) further advanced this idea by introducing a process similar to
simulated annealing. They proposed initially fine-tuning the entire model using FedAVG
while applying the L2 norm to all parameters to mitigate potential client drifts. In the
second stage, fine-tuning is limited to the LoRA parameters, but the ranks are adaptively
decreased during training. This stage begins with more parameters in the early epochs,
gradually reducing the number of parameters (ranks) as training progresses, similar to a
learning rate scheduler. However, the method adds overhead for adjusting the ranks and
only improves communication efficiency in the final stages when the number of parameters
decreases.

Instead of fine-tuning the entire FM, Yan et al. (2024) suggested initializing the LoRA
ranks using the results of singular value decomposition on the pre-trained weight matrices.
This approach introduces only a minor initialization step which helps stabilize the entire
training process.

Zhang et al. (2023b) conducted an empirical study on additive fine-tuning in FL and
found that, compared to fine-tuning the entire model, additive fine-tuning offers better
defense against certain threatmodels, such as data reconstruction attacks. Additionally, they
discovered that adaptive fine-tuning generally performs on par with complete fine-tuning
while significantly reducing communication costs, by factors ranging from 12 to 190 times.
However, additive fine-tuning is more sensitive to data heterogeneity.

Contraction
Contraction methods aim to decrease the size of the models to optimize communication
and computation efficiency. The methods in this class are further classified in methods
that transfer the knowledge from one model to another (distillation) and methods that aim
compress the FM (through compression, pruning, or quantization).

Distillation. As discussed in the Appendix, KD in FL involves transferring knowledge from
local models to a global, in this case, FM. This process is equivalent to training local models
on local datasets and then distilling this knowledge into the FM using a shared dataset (Wu
et al., 2022). Additionally, it is possible to distill the local datasets by training synthetic
data generators. This synthetic data can either be shared directly with the global model
or used to distill the knowledge from the local models to the global model. Figure 6A
illustrates training local models on private data and distilling the knowledge on public
data and Fig. 6B illustrates the scenario where a synthetic data generator is trained using
locally trained models. While the intersection of KD and FL has been explored, we focus on
presenting papers that utilize use FMs or aim to customize pre-trained models. For a more
comprehensive overview of KD and FL, we refer readers to the work of Li et al. (2024a).

Gong et al. (2021) are among the first to customize a FM using ensemble KD (Fig. 6A).
In the first stage of their approach, each client trains a local model on their private datasets.
In the second stage, the local datasets are disconnected, and a central public dataset is
used for distillation. At each training step, the server distributes data to each node, which
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Full-size DOI: 10.7717/peerjcs.2993/fig-5

runs inference on the local model and sends the results back to the server. The server then
aggregates these results using FedAVG and uses them to distill the knowledge to the FM
using the KL-divergence as described in the ‘‘Knowledge distillation’’ section. Additionally,
beyond performing KD only with the final outputs, the authors introduce a mechanism to
also distill the attention from transformer layers, which improves the overall effectiveness
of the knowledge transfer by transferring intermediate features as well. While the method
demonstrates performance gains, especially when compared to training the model using
fine-tuning with FedAVG, it introduces a dependency on the availability of a dataset, which
should be sufficiently large to enable KD between the local nodes and the global FM. While
the method demonstrates performance gains, particularly when compared to fine-tuning
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with FedAVG, it introduces a dependency on the availability of a sufficiently large public
dataset, that can facilitate KD between the local nodes and the global FM.

Wu et al. (2023) assume the existence of a FM for each client node, assuming the clients
can pre-train their own models or use off-the-shelf FMs. In this setting, each client keeps
the FM private and trains a small-scale proxy model used to exchange the knowledge. The
proxy models are aggregated by the server using FedAVG. Wu et al. (2023) assume the
existence of a FM for each client node, either by allowing clients to pre-train their own
models or by using off-the-shelf FMs. In this setting, each client keeps the FM private
and trains a small-scale proxy model used to exchange knowledge. At each training step,
KD is used between the FM and the proxy. The proxy models from each client are then
aggregated by the server using FedAVG. This approach ensures that the knowledge from
the private FMs is shared and integrated into the global model without sharing the models.
However, it assumes the existence of FMs at each client, which may not always be realistic.

Zhang et al. (2022b) introduce amethodwhere the server trains a synthetic data generator
used for KD, as illustrated in Fig. 6B. In this framework, each client trains their own local
model and shares it with the server. The server then trains a synthetic data generator using
these local models, aiming to match the semantics of the outputs from the local models
with synthetic data. Subsequently, the generator is used to produce synthetic data, perform
inference on the local models, and distill this knowledge to the global model using KD
(as described above). This method ensures that the knowledge from the local models is
transferred to the global model without the need to share the original data. However, it
introduces additional failure dependencies on the quality of the synthetic data generated,
which can impact performance in different scenarios (Zhang et al., 2022a) present a similar
framework where the server trains a data generator. However, in their approach, the
generator is also trained using KD, instead of using a semantic loss.

For language-specific tasks, Deng et al. (2023) do not train a new generator but instead
use the FM directly to generate new data. In this framework, each client trains a small
model on their local, private data. The clients then transfer their models to the server,
which uses them to calibrate the generation process and synthesize a new dataset. This
dataset is subsequently used for KD, as described above.

Compression, pruning, and quantization. While techniques such as compression, pruning,
and quantization have been extensively studied for reducing model size and implicitly
lowering communication costs in both FL and FMs, their intersection has received
relatively little attention in the literature. Compression involves either compressing the
weights of local models (e.g., using singular-value decomposition (Yang, 2021)) before
transmission to the server, or compressing the gradients for back-propagation (e.g., using
stochastic sign-based methods (Tang, Wang & Chang, 2024)) and aggregating them on the
server. Pruning involves iteratively removing model parameters with small values during
collaborative training (Jiang et al., 2022), while quantization reduces the number of bits
used to represent the weight matrices (Chen et al., 2022b).

As these concerns can be considered together with other customization techniques
such as fine-tuning techniques, most of the works for FMs using compression, pruning,
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Figure 6 Overview of knowledge distillation methods using federated learning.
Full-size DOI: 10.7717/peerjcs.2993/fig-6

or quantization will be discussed in the hybrid section. The only study on FMs without
additional techniques is by Yang et al. (2023), who employ quantization to compress the
weight matrices (excluding other parameters like biases) in a large FM from 32 to 16 bits.
To mitigate the effects of quantization, the authors propose applying a linear (learnable)
transformation on the server side when integrating the aggregated parameters. Additionally,
they suggest alternating and quantizing only a subset of parameters for each client, varying
the selection across clients to ensure the server receives precise updates from clients that
did not quantize those parameters. Using these techniques, they achieve communication
cost reductions of over 60% in some cases, assuming that clients can perform inference on
the FM locally and the server can run back-propagation for the quantized parameters.

Hybrid. Hybrid methods use both fine-tuning and contraction or multiple contraction
methods methods to further improve communication costs.

Chen et al. (2022b) use selective fine-tuning with quantization to reduce communication
costs. Instead of selecting individual weights, the authors propose partitioning the FM into
blocks containing multiple layers and selecting only some of these blocks for fine-tuning in
FL. At each training step, each block is assigned an importance score using the average L2
norm between the block values from the last two epochs. The score is used to select
only the top n blocks, where n is determined based on the task. To further reduce
communication costs, the selected blocks are quantized using stochastic quantization
(Dong et al., 2019) before being sent to and aggregated on the server (using FedAVG). This
method demonstrates consistent performance improvements and reduced communication
costs compared to other selective fine-tuning approaches.

Chen et al. (2024) introduce a hybrid approach that combines adapter-based fine-tuning
with knowledge distillation. Similar to the dual adapter methods discussed in the additive
fine-tuning section, each client maintains a global adapter and a local client-specific
adapter. During each training epoch, clients share the global adapter, which is aggregated

Hatfaludi and Serban (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2993 20/41

https://peerj.com
https://doi.org/10.7717/peerjcs.2993/fig-6
http://dx.doi.org/10.7717/peerj-cs.2993


by the server and then redistributed to the clients. This global adapter is used to distill its
knowledge into the local adapter using the client’s local dataset. The proposed method
demonstrates consistent performance improvements over traditional adaptive fine-tuning
or distillation techniques. However, it introduces additional computational constraints
due to the local distillation process. Kuo et al. (2024) prune the LoRA parameters before
uploading and aggregating them on the server by applying a magnitude-based threshold.
Using the shared parameters, the server generates a global sparsification mask, averages
the parameters using FedAVG, and then distributes the parameters back to the clients.
The clients update only the parameters corresponding to the sparsification mask, retaining
all other parameters as they were before sparsification, enabling dense training. This
method demonstrate an order of magnitude improvement in communication costs while
maintaining competitive performance with full LoRA fine-tuning. Yadav et al. (2023)
improve this method by incorporating quantization of the sparsified parameters, resulting
in further size reduction.

Wu et al. (2024a) propose a method that combines compression with distillation and
adaptive fine-tuning. Initially, the server compresses the FM into a more compact model
by extracting a sub-model using layer dropout. This sub-model acts as a student model to
distill information from the FM using a public dataset. The compressed model is then used
with LoRA and trained within in FL, as described in the adaptive fine-tuning section.

Deploy
Deploying models through FL involves performing inference at each client using their
local models, rather than relying on a final global model. This approach can be viewed as
delivering an inference service leveraging the FL infrastructure (Han et al., 2024).

The only study that addresses the deployment of FMs using FL is the work by Liu et al.
(2022). The authors proposed projecting multi-scale embeddings from intermediate layers
and accumulating these projections across multiple clients to perform predictions. For
example, in a classification task using transformer architectures, the class token responsible
for classification is extracted from intermediate layers. The choice of layer is determined
by the available resources at each client. Clients with fewer resources can use the token
from earlier layers, while those with more resources can use the token from later layers.
The final prediction is an average of the client predictions.

FMS AND FL IN HEALTHCARE
Healthcare applications are among the most compelling use cases for FL (Pfitzner, Steckhan
& Arnrich, 2021), and represent a significant area where FMs canmake a substantial impact
(Moor et al., 2023). However, despite the potential, relatively few articles have explored the
use of FMs and FL in healthcare applications.

Manoel et al. (2023) fine-tuned a multilingual FM for medical transcript analysis. At
each epoch, the clients fine-tune the entire model using their own datasets for a specific
number of batches and upload the entire model to the server. The only optimization
introduced is to train the model locally for a larger number of batches, to decrease the
communication costs (similar to Sani et al. (2024)). Wang et al. (2024) introduced a new
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dataset with eight distinct medical tasks, including classification, anomaly detection, and
generative tasks, designed for fine-tuning FMs using FL. The authors conduct a comparative
benchmark using this dataset. In their setup, each client trains a local model on their private
data and uploads it to a server, which employs FedAVG to aggregate these models into a
global model. The global model is then used to incorporate local knowledge into a FM by
concatenating the global model’s output with the input of an FM. Using a public dataset,
the FM is fine-tuned together with the local knowledge. Using this method, the authors
demonstrate performance improvements across all tasks in the dataset. Liu, Luo & Zhu
(2024) used FL to develop a foundational segmentation model based on the segment
anything method (Kirillov et al., 2023). The authors perform additive fine-tuning, where
each client fine-tunes additional lightweight adapters for the segment anything model
using their local data. The adapters are then aggregated on the server using FedAVG.
Empirical experiments show that the performance achieved using FL is comparable to that
of centralized training, while significantly reducing the resources required for training.

PRACTICAL PERSPECTIVES
From a practical standpoint, choosing the right algorithms to experiment with can be
challenging. This is because many algorithms are interconnected, and their trade-offs
beyond performance are not always evident. For example, it can be difficult to differentiate
between various additive fine-tuning methods and decide which one to prototype first or
trace its incremental development. Furthermore, comparing the algorithms’ performance
is not always relevant, as they are tested on distinct datasets and modalities.

To assist with this issue, we present an initial classification of the methods discussed
in this paper, using three criteria: complexity, efficiency, and scalability. Each criterion is
defined on a scale ranging from 1 to 3, denoted as * to *** in Table 3.

First, we evaluate the complexity of the method, which is estimated based on
the effort required to implement it. For incremental methods, we consider the base
method to have the lowest complexity, with any additional features or modifications
increasing its complexity. The extent of this increase depends on the nature and
complexity of the additions. After classifying the methods based on their inherent
complexity, we compared and scaled the base methods accordingly. For example,
complexity * indicates minimal implementation effort such as adding a classifier
head, ** indicates moderate effort such as using more complex adapters such as
LoRA, and *** indicates a large effort, such as having client-specific, hybrid, adapters.

Second, we assess the efficiency of the method, which is measured by the amount
of information transmitted from the clients to the server. Here, we follow a similar
approach to reduce iterative methods to their base method and first compare the
base methods. For example, * indicates high communication overhead, such as
updating and communicating all parameters of a model, ** indicates partial
parameter updates such as updating and communicating adapter layers, and *** indi-
cates highly efficiency methods such as hybrid methods that communicate a small num-
ber of parameters by quantization or compression.
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Table 3 Classification of the methods discussed based on their complexity, efficiency, and scalability, and following the taxonomy from Fig. 2. For complexity, * de-
notes low implementation effort (e.g., adding a classifier head), ** denotes moderate effort (e.g., using adapters like LoRA), and *** denotes high effort (e.g., client-specific
hybrid adapters). For efficiency, * indicates high communication overhead (e.g., full model updates), ** indicates moderate overhead (e.g., adapter updates), and *** indi-
cates highly efficient methods (e.g., quantized or compressed updates). For scalability, * denotes low scalability, ** moderate scalability, and *** high scalability.

Technique Complexity Efficiency Scalability

* ** *** * ** *** * ** ***

Entire Garcia Bernal et al.
(2021), Sani et al.
(2024), Rehman
et al. (2023)

Zhuang et al. (2021),
Li, He & Song (2021)

Makhija, Ho &
Ghosh (2022), Re-
casens et al. (2023)

Garcia Bernal
et al. (2021), Li,
He & Song (2021),
Makhija, Ho &
Ghosh (2022),
Rehman et al. (2023)

Sani et al. (2024),
Recasens et al. (2023)

Zhuang et al. (2021) Garcia Bernal
et al. (2021), Li,
He & Song (2021),
Makhija, Ho &
Ghosh (2022),
Rehman et al.
(2023), Recasens
et al. (2023)

Sani et al. (2024),
Zhuang et al. (2021)

Partial Tan et al. (2022),
Chen, Su & Li
(2024), Kim, Yoo
& Kang (2023), Lit
et al. (2022), Yu,
Muñoz & Jannesari
(2023a)

Lu et al. (2024) Lu et al. (2024) Tan et al. (2022),
Kim, Yoo & Kang
(2023), Lit et al.
(2022)

Chen, Su & Li
(2024), Yu, Muñoz
& Jannesari (2023a)

Lu et al. (2024) Tan et al. (2022),
Chen, Su & Li
(2024), Kim, Yoo
& Kang (2023), Lit
et al. (2022), Yu,
Muñoz & Jannesari
(2023a)

Pretrain

Test-time
ad.

Guo et al. (2023), Su
et al. (2022), Zhao
et al. (2023)

Guo et al. (2023), Su
et al. (2022), Zhao
et al. (2023)

Guo et al. (2023), Su
et al. (2022), Zhao
et al. (2023)

Fine-tune Sun et al. (2022),
Chen et al. (2022a),
Tsouvalas, Asano
& Saeed (2024),
Houlsby et al. (2019)

Legate et al. (2024),
Nguyen, Munoz &
Jannesari (2024),
Jiang et al. (2024),
Zhang et al. (2024a),
Yi et al. (2023), Yang
et al. (2024a), Yan
et al. (2024), Zhang
et al. (2023b)

Guo et al. (2024),
Cho et al. (2023),
Byun & Lee (2024),
Yang et al. (2024b),
Ping et al. (2024),
Tian et al. (2024),
Babakniya et al.
(2023),Wu et al.
(2024b)

Ping et al. (2024),
Babakniya et al.
(2023),Wu et al.
(2024b), Yang et al.
(2024a)

Sun et al. (2022),
Chen et al. (2022a),
Legate et al. (2024),
Nguyen, Munoz &
Jannesari (2024),
Jiang et al. (2024),
Zhang et al. (2024a),
Yi et al. (2023), Guo
et al. (2024), Cho
et al. (2023), Byun
& Lee (2024), Yang
et al. (2024b), Tian
et al. (2024), Yan
et al. (2024), Zhang
et al. (2023b)

Tsouvalas, Asano
& Saeed (2024),
Houlsby et al. (2019)

Legate et al. (2024),
Ping et al. (2024),
Tian et al. (2024),
Babakniya et al.
(2023),Wu et al.
(2024b), Yang et al.
(2024a)

Sun et al. (2022),
Chen et al. (2022a),
Nguyen, Munoz &
Jannesari (2024),
Jiang et al. (2024),
Zhang et al. (2024a),
Yi et al. (2023), Guo
et al. (2024), Byun
& Lee (2024), Yang
et al. (2024b), Yan
et al. (2024), Zhang
et al. (2023b)

Tsouvalas, Asano
& Saeed (2024),
Houlsby et al.
(2019), Cho et al.
(2023)

Contraction Yang et al. (2023) Gong et al. (2021) Wu et al. (2023),
Zhang et al. (2022b),
Zhang et al. (2022a),
Deng et al. (2023)

Wu et al. (2023),
Zhang et al. (2022b),
Zhang et al. (2022a)

Gong et al. (2021),
Deng et al. (2023)

Yang et al. (2023) Gong et al. (2021),
Wu et al. (2023),
Zhang et al. (2022a)

Zhang et al. (2022b),
Deng et al. (2023)

Yang et al. (2023)

Customize

Hybrid Chen et al. (2022b) Chen et al. (2024),
Kuo et al. (2024),
Yadav et al. (2023)

Wu et al. (2024a) Chen et al. (2024),
Wu et al. (2024a)

Chen et al. (2022b),
Kuo et al. (2024),
Yadav et al. (2023)

Wu et al. (2024a) Chen et al. (2024) Chen et al. (2022b),
Kuo et al. (2024),
Yadav et al. (2023)

Deploy Liu et al. (2022) Liu et al. (2022) Liu et al. (2022)
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Third, we consider the scalability of the method, which is estimated based on
the resources required for both the client and the server. For example, if a method
requires clients to run a FM on their premises, it will have lower scalability compared
to methods that require inference on smaller models. For example, * indicates
heavy computation on client or server, such as pre-training a large model, **
indicates moderate compute such as performing inference and optimization on a
subset of parameters, and *** indicates low-resource needs such as test time adaptation.
This classification system offers initial guidance in choosing methods to experiment with
first, based on project constraints, and later on progressing to more complex methods.
To assign the scores, we used a process similar to validating the taxonomy, where two ex-
perts assigned individual scores, and potential disagreements were resolved through dis-
cussion and consensus.

We observe that, for pre-training FMs with FL, the methods used for pre-training
the entire model exhibit the lowest scalability but also low complexity. This is because
basic algorithms can be employed, but the resources required to run training at each
client and aggregate the results are substantial. Similarly, methods that assume clients
can independently train FMs, such as those described in Makhija, Ho & Ghosh (2022),
have higher complexity and low scalability. In general, pre-training FMs in FL demands
significant resources, as either the clients or the server must perform forward passes on
the model, which are generally computationally intensive. Therefore, from a practical
standpoint, it is best to begin with partial model training, particularly using selective
methods that can be both efficient and scalable. Test-time adaptation methods are suitable
only for certain types of models, such as large language models or text-based models.

For customizing FMs in FL, we observe that methods using adapter fine-tuning with
small adapters, such as adding a final layer, are the least complex and the most scalable and
efficient. These methods also provide good performance, making them a recommended
start point.

More complex additivemethods, such as those using LoRA, require forward passes of the
entire model at the clients while aggregating only the additive parameters. This introduces
additional complexity in managing the extra parameters. Similarly, more advanced LoRA
methods that employ heterogeneous or dual adapters further increase complexity, although
some, like those described in Cho et al. (2023), may offer scalability improvements.

From the contraction methods, compression and quantization algorithms are the fastest
to prototype, as they have lower complexity and high efficiency and scalability. Moreover,
these algorithms can be used in conjunction with any other types of algorithms, making
them highly versatile. The KD algorithms are relatively complex. They assume either
the existence of an independent dataset or the ability to train independent FMs or data
generators for each client. These constraints make KD algorithms less practical for many
use cases, as they require additional resources and infrastructure.
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STUDY LIMITATIONS
While this literature survey aims to provide objective insights into FMs and FL,
several limitations must be acknowledged that may influence the generalizability of
the findings:

• Selection bias: The inclusion of studies was guided by predetermined search terms,
databases, and criteria for inclusion and exclusion. As a result, there is a potential for
selection bias, which could have led to the omission of relevant studies that did not meet
these criteria. We tried to avoid this bias by including major information sources such
as Google Scholar or ScienceDirect.
• Timeframe constraints: The scope of this survey was limited to studies published within
a defined period, potentially excluding early works or very recent advancements in the
field. This could impact the completeness of the review, especially in a rapidly evolving
research area such as machine learning. Nevertheless, given that the uptake of FMs
significantly increased after 2022, this article is primarily subject to the risk of missing
the most recent developments.
• Exclusion of grey literature: The survey primarily focused on peer-reviewed or
academical articles, excluding non-peer-reviewed sources such as theses, technical
reports, or more general blog articles. This exclusion of grey literature may have resulted
in missing insights and contributions from practitioners, especially regarding the
discussion providing practical perspectives.
• Subjectivity in interpretation: The process of reviewing and interpreting the literature
involves a degree of subjectivity. Despite efforts to adhere to objective criteria, such as
asking opinions fromothre independent researchers, researcher biasmay have influenced
decisions regarding the inclusion of studies, the interpretation of findings, or the ranking
and comparison of methods.
• Publication bias: This survey may be subject to publication bias, where studies with
significant or positive results are more likely to be published, thus potentially over-
representing certain outcomes while underrepresenting null or negative results.

DISCUSSION
In this section, we address and provide responses to the initial research questions outlined
in Table 2. An graphical representation of the findings is summarized in Table 4.

To address RQ1, we identified approximately 48 distinct methods that combine FMs
with FL at various phases of the development life-cycle. The majority of these methods
fall under the category of FM customization through fine-tuning. Moreover, most of the
presented methods use relatively straightforward FL andmachine learning primitives. They
predominantly rely on FedAVG for the aggregation mechanism and on simple adjustments
to established algorithms such as using contrastive learning for pre-training, LoRA for
fine-tuning, or KD. This presents an opportunity for future work, as exploring more
adaptive aggregators (e.g., FedAdam) or innovative pre-training techniques could yield
more efficient and effective integration of FM with FL.
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Table 4 Summarized answers to the research questions that guided this study, as outlined in Table 2.

ID Answer

RQ1 Pre-training entire models or a subset of model parameters
Fine-tuning using new adapters in the final stage or for all
layers
Knowledge distillation using a shared or a synthetic dataset

RQ2 Communication efficiency vs. model complexity
Personalization vs. generalization
Integration of privacy enhancing technologies

RQ3 Additive fine-tuning with adapters in the final stage or
LoRA
Hybrid approaches, combining compression, quantization,
and additive fine-tuning

RQ4 Entire model fine-tuning
Additive fine-tuning with adapters in the final stage

RQ5 Development and use of advanced aggregation mechanisms
Integration of privacy enhancing technologies
Applications and trade-off assessment in practical use-cases
Standardized benchmarking

To address RQ2, the literature highlights and amplifies the trade-offs inherent in FLwhen
using FMs. One of the primary concerns is the trade-off between communication efficiency
and model complexity. Communicating large model updates in FL can substantially
increase training time. To alleviate this trade-off, efficient customization techniques have
been explored. These include selective or additive model updates, where only a fraction of
the FMs parameters are adapted, as well as hybrid techniques such as model compression
or pruning. Another FL trade-off exists between personalization and generalization, where
some clients may require models tailored to their specific data, while others may prioritize
generalization to diverse datasets. Fine-tuning FMs can balance these competing needs, as
robustness is, in principle, assured when using pre-trained models. We also observed that
only a small subset of the reviewed publications investigates additional privacy-preserving
techniques, such as differential privacy or secure multiparty computation. Incorporating
these methods could further enhance privacy at the cost of performance, introducing
another important trade-off to consider, and an opportunity for future work.

To address RQ3, as discussed in the Practical Perspectives section and Table 3, certain
methods offer low complexity and high scalability or efficiency, such as the methods
by Sun et al. (2022) or Chen et al. (2022b). Overall, the most compelling methods use a
hybrid approach, addressing distinct trade-offs throughmultiple techniques. These include
reducing the number of parameters used and compressing them during communication.
However, very few methods excel in achieving low complexity, high efficiency, and high
scalability simultaneously, leaving ample room for future work.

To explore the application of FL and FMs, we focused on the healthcare domain as a use
case. Our goal was to investigate whether these methods have been adopted and studied
in real-world scenarios. Healthcare was selected as it is widely considered an ideal use
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case for FL, given that hospitals often face data privacy challenges and can benefit from
collaborative model training without sharing sensitive data. However, to address RQ4, our
literature review revealed only a limited number of publications in this area. This scarcity
of research opens up new avenues for future work, presenting opportunities to further
investigate and apply these methods in practical settings, as well as investigate and discover
novel potential trade-offs.

Lastly, to address RQ5, and as previously indicated, our literature analysis revealed
several promising research directions. First, studying and developing novel aggregation
mechanisms has the potential to improve the performance and efficiency of FL and
FMs, where advanced techniques such as adaptive aggregation, hierarchical aggregation, or
personalized aggregation can improve the convergence speed, performance and robustness.
Second, further in-depth studies are essential to understand the trade-offs between model
size and efficiency, as well as privacy and performance, when integrating FMs and FL. Such
investigations can identify potential privacy limitations and their impact on overall system
efficiency. For instance, while techniques like LoRA reduce communication costs, they still
require a forward pass over the entire model, including additional adapters, during each
iteration. This can limit clients to using smaller FMs due to computational constraints.
Similarly, the effectiveness of differential privacy techniques may be diminished when
applied to pre-trained models, as these models might retain more sensitive information
from pre-training. Third, there is a need for more practical use-cases to evaluate the
generalizability and robustness of available methods. By exploring a wider range of real-
world applications, researchers can determine whether these methods perform consistently
across different domains and scenarios, or whether novel trade-offs are identified. Last,
this can lead to more comprehensive benchmarks and integrated datasets for evaluating
these algorithms, which are not currently evaluated on similar data.

Furthermore, several challenges remain unsolved or underexplored. Achieving a
balance between personalization and generalization continues to be a significant
challenge. While many methods enhance performance on client-specific data, few
provide mechanisms to ensure robustness and generalizability across heterogeneous
participants or tasks.

Although privacy is a core motivation for adopting FL, most reviewed methods lack
integrated privacy guarantees such as differential privacy or secure aggregation
through encription—an omission that is especially concerning in sensitive domains
like healthcare. Additionally, existing methods often fail to reconcile the trade-
offs between scalability, communication efficiency, and implementation complexiry.
Techniques tend to prioritize one of these aspects at the cost of the others, thereby
limiting their practical deployment.

While the medical domain is frequently cited as a key application area, real-world
implementations of FL–FM systems in healthcare settings remain scarce, with few
methods evaluated on clinical datasets or tested in real deployment scenarios.
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CONCLUSIONS
We conducted a comprehensive literature review on FMs using FL, covering all stages of the
development life cycle, including training, customization, and deployment of models. Over
260 articles weremanually inspected, withmore than 40 identified as highly relevant for our
study, demonstrating the growing interest but relatively limited work at the intersection of
FL and FMs.

To classify the methods presented, we developed a custom taxonomy based on the
stage of the development life cycle—training, customization, and deployment—and
further categorized methods based on their complexity, efficiency, and scalability. This
classification framework provides clarity on the current landscape ofmethods and identifies
areas where additional research and innovation are needed.

Our analysis emphasized several challenges and practical considerations of integrating
FL with FMs. In particular, we highlighted the significance of methods that balance
communication efficiency with personalization capabilities, such as selective fine-tuning
and additive parameter approaches. These methods are promising for addressing key issues
in federated environments, such as data heterogeneity and limited client resources.

We also discussed the application of FMs in the healthcare domain, which remains
significantly underserved in terms of adoption within FL settings. This presents substantial
opportunities for innovation, especially in developing approaches that handle the
complexities of medical data, such as privacy preservation and non-IID data distributions
across clients. By exploring healthcare as an illustrative use case, the article highlights the
potential for FMs to bring transformative benefits to sensitive domains where data sharing
is restricted.

Additionally, our review underscored the need for new research in multiple areas,
such as developing or applying novel aggregation techniques beyond the standard
FedAVG, exploring in depth privacy-efficiency trade-offs, or studying novel trade-
offs in practical applications. This establishes a foundation for future research on
integrating FMs with FL, as well as on the practical applications of these methods.
First, the presented taxonomy and analysis guide researchers toward areas that
require further exploration and innovation. Second, the comparison of techniques
assists researchers in developing novel, more efficient, or scalable methods. Last, the
study serves as a comprehensive reference and guide to existing literature, facilitat-
ing the uptake and familiarization with the literature on this topic.
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APPENDIX
This section provides a brief overviewof the prerequisite knowledge for FL, FMs, fine-tuning
and KD that is used most frequently by the articles discussed in Methods.

Federated learning
In federated learning (FL), the objective is to collaboratively develop a global model by
merging local model updates from participating clients without exchanging the private
data stored on their devices. The training process usually involves a central server that
orchestrates communication among multiple clients and aggregates local updates into a
global model. Each client performs local updates using its own data and transmits these
updates to the central server, which then integrates them using various techniques.

In the most basic implementation, during each training round, every client conducts a
forward pass using a shared model architecture on its local data and computes an update
for all parameters using a shared loss function. The clients then send their model updates to
the server, which integrates them to form a global model and sends the updated parameters
back to the clients. This iterative process continues, with each client replacing its local
model with the global parameters and resuming training as described.

The majority of articles presented in this study use FedAVG to integrate the local client
updates, which is defined as:

w t+1
=

K∑
k=1

nk
n
w t+1
k (1)

where nk represents the number of samples on client k, and n is the total number of
samples across all clients. This process weights each client’s contribution to the global
model according to the size of its local dataset.

Pre-training foundational models
The main method for pre-training FMs is self-supervised learning (SSL), which involves
creating pretext tasks from unlabeled data. This approach eliminates the need for annotated
data, allowing to significantly expand the training datasets. Some SSL methods are further
extended to incorporate semi-supervised learning, allowing them to leverage any available
annotated data. This is particularly useful when the annotations are not related to the
downstream tasks or are noisy.

SSL methods can be broadly classified into three categories (i) contrastive learning
methods (e.g., Chen et al., 2020; He et al., 2020), where the pretext task aims to generate
similar embeddings for inputs representing the same concepts (e.g., images of the same
organ) and distinct (contrastive) embeddings for inputs representing distinct concepts (e.g.,
prostate vs. kidney); (ii) correlation-based methods (e.g., Bardes, Ponce & LeCun, 2022),
where the pretext task aims to decorrelate embeddings of distinct objects while preserving
the variance of embeddings for similar concepts, and (iii) masked input modelling (e.g.,
He et al., 2022; Baevski et al., 2023), where the task involves reconstructing original inputs
from masked versions of it (e.g., masking words in sentences or patches of images). Recent
studies suggest that, despite their differences in methodology and training objectives, SSL
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Figure 7 Illustration of pre-training FMs using contrastive learning.
Full-size DOI: 10.7717/peerjcs.2993/fig-7

methods are closely related and may produce similar embeddings (Garrido et al., 2023).
This is because they minimize criteria that are equivalent under certain conditions. These
methods are independent of the architecture used, being universally applied to transformer
or convolutional based architectures.

The predominant methods used in FL, as discussed in section ‘Train’, use contrastive
learning techniques that involve passing two augmented versions of an input through
identical decoders, known as Siamese networks, but updating the decoders differently.
The primary decoder, often referred as the student network, is updated through standard
back-propagation. The secondary decoder, called the teacher network, is updated using
different techniques aimed at preventing the encoders from generating overly the same
embeddings, a phenomenon known as feature collapse. These techniques include the use
of momentum or EMA as in BYOL (Grill et al., 2020; Cai et al., 2021). Simpler variants that
use a single encoder for both input augmentations are possible but generally less effective
e.g., as in SimCLR (Chen et al., 2020). The teacher network is usually the only one updated
in FL, using global aggregation. An illustration of these techniques is provided in Fig. 7.

In all cases, the loss used is based on the InfoNCE contrastive loss (Parulekar et al.,
2023).

Fine-tuning FMs and LoRA
Fine-tuning follows the pre-training the FMs on unlabeled data by continuing the training
process using labeled data in a supervised learning manner. This step can be seen as
specializing the FMs for a specific task, allowing themodel to leverage the general knowledge
gained during pre-training and adapt it to particular nuances of the task at hand. While
all model parameters can be updated during fine-tuning, resource constraints may induce
a more selective approach. One strategy is to update only a subset of the parameters, such
as the final layers (also called adapter tuning), which can be effective in projecting and
adapting the models’ outputs for specific tasks. Alternatively, one can introduce additional,
smaller sized parameters at each layer, allowing the model to learn task-specific features
while keeping most of the pre-train parameters fixed.
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Figure 8 Illustration of LoRA.
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Figure 9 Illustration of knowledge distillation.
Full-size DOI: 10.7717/peerjcs.2993/fig-9

The most prevalent method for introducing additional parameters, frequently used in
FL fine-tuning is known as LoRA. This method assumes that all model parameters have an
intrinsic low rank that can be adapted during fine-tuning. Therefore, eachmodel parameter
(e.g., weight matrix) can be decomposed into the sum of the initial parameters and a low
rank update expressed as W0x+1Wx . Here W0 represents the frozen initial parameters,
and Wx is the low-rank update optimized during fine-tuning. This low-rank is defined
by two trainable matrices Wx = BAx , where A encodes the input to a lower dimensional
rank and B recovers the output dimension of the original W0. An illustration of LoRA is
provided in Fig. 8. In transformer architectures, LoRA is applied to the attention weights
rather than the multi-layer perceptronss (MLPs) layers.

LoRA can speed up fine-tuning of large-scale FMs with more than 25%, while decreasing
the memory requirements by more than 103. Other LoRA variants, such as quantized LoRA
further decrease the memory requirements by up to 90% (Dettmers et al., 2024).

Knowledge distillation
Knowledge distillation (KD) aims to transfer the knowledge from a large FM (called
teacher) to a smaller, more efficient model (called student). This process involves training
the student model to mimic the behavior of the teacher model by matching its outputs,
such as logits or soft targets, rather than relying only on supervised signals such as labels.
Themost commonmethod forminimizing the distance between the teacher’s and student’s
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Table 5 List of terms for the queries.Queries were formed by first combining the first and second terms
using the boolean AND operator, and afterwards combining the first, second, and third terms using the
same operator.

First terms Second terms Third terms

Federated Learning Foundational Models Healthcare
Self-supervised learning Medical
Pre-training Applications
Pre-trained models Implementation
Fine-tuning Development
Parameter-efficient fine-tuning Deployment
Adapter tuning Inference
Distillation
Transfer learning
Compression
Quantization
Pruning

outputs is the Kullback–Leibler (KL) divergence (Gou et al., 2021). In the context of FL,
KD is used to transfer knowledge from local models to a global model by minimizing the
divergence between their outputs. This approach allows the global model to benefit from
the collective knowledge of the local models. An illustration is provided in Fig. 9.

List of terms for literature search
The complete list of terms used to develop queries for the literature review is illustrated in
Table 5.
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