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ABSTRACT
The challenge of analyzing high-dimensional data affects many scientific disciplines,
from pharmacology to chemistry and biology. Traditional dimensionality reduction
methods often oversimplify data, making it difficult to interpret individual points.
This distortion can complicate the visualization of mutual distances between data
points in the reduced space. Graphs provide an effective framework for representing
objects and their relationships. One of their possible use is visualizing similarity
patterns in tabular datasets. Here we introduce TaGra, an off-the-shelf package
designed to generate a graph of similarity relations from tabular data. TaGra enables
the visualization of datasets in 2D space, identification of typical data points and
outliers, and assessment of the separation between items with different target
variables. We describe TaGra’s functionality, options and setup. The software
including examples, instructions and a guide, is openly available on PyPI at https://
pypi.org/project/TaGra/ and on GitHub at https://github.com/davidetorre92/TaGra.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning, Software
Engineering, Visual Analytics
Keywords Data analysis, Network analysis, Visualization

INTRODUCTION
High-dimensional data is pervasive across scientific disciplines, particularly in pattern
recognition and machine learning (for example, Giraud, 2021, section 1.1). Such
high-dimensional spaces often present a dual challenge: they contain substantial noise and
redundant information while making it difficult to meaningfully visualize complex
relationships between data points (Altman & Krzywinski, 2018).

Graph-based methods have gained significant traction in recent years due to their
inherent ability to effectively capture and represent complex properties of networked data
(Carneiro & Zhao, 2018). In analyzing high-dimensional datasets, the standard
methodological approach typically follows a two-step process: (i) transforming feature
vector data into a graph representation that preserves essential relationships, and
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(ii) leveraging the resulting network structure to uncover and analyze underlying patterns,
communities, and relationships (Silva & Zhao, 2012). This approach has proven
particularly effective in maintaining both local and global data properties while providing
intuitive visualizations of complex data structures. However, despite the proliferation of
network analysis libraries, there remains a gap between general-purpose graph tools and
specialized visualization solutions that integrate preprocessing, graph generation, and
analysis in a cohesive workflow.

Multiple dimensionality reduction methodologies have been developed to address
visualization challenges in high-dimensional spaces (Nguyen & Holmes, 2019). While
methods like t-distributed Stochastic Neighbor Embedding (t-SNE) and Uniform
Manifold Approximation and Projection (UMAP) have gained popularity for their ability
to preserve local structures, they often sacrifice global relationships. Recent frameworks
such as that proposed by Mu, Goulermas & Ananiadou (2018) incorporate both local and
global structural constraints, but their specialized nature can limit general applicability
across diverse datasets and analytical needs.

Probst & Reymond (2019) addressed scalability concerns in visualizing large
high-dimensional datasets by developing TMAP (Tree MAP), a tree-based method capable
of representing millions of data points while preserving global and local neighborhood
structures. However, TMAP emphasizes scalability at the expense of comprehensive data
preprocessing and analysis capabilities and graph generation versatility.

Here we present TaGra, an integrated open-source package that bridges the gap
between dimensionality reduction techniques and network analysis. TaGra creates
a graph of similarity relations from tabular data while providing tools to visualize data
points in 2D space and quantify the separation between instances with different target
variables.

A graph G consists of the pair ðV; EÞ, where V are the vertices and E is the set of
relations connecting these vertices (Newman, 2018). The graph representation of a tabular
dataset is effective for showing similarity relationships between data points. In particular, it
can be used to reduce the size of a dataset while preserving the relationships between first
neighbors (Jia et al., 2022).

TaGra provides a workflow where users can specify datasets and target variables
through a minimal bash command, with additional customization available via JavaScript
Object Notation (JSON) configuration. Our Python library integrates dimensionality
reduction with comprehensive preprocessing capabilities—handling categorical
variable encoding, missing data, and standardization automatically. Unlike existing
approaches such as TMAP, TaGra emphasizes both visualization and analytical depth,
incorporating detailed graph analyses including community detection and neighbours
statistics.

The article is organized as follows: the Methods section describes TaGra’s
architecture and algorithms, including data preprocessing, graph creation, and analysis
modules. The Results section demonstrates the application of TaGra to two medical
informatics datasets, comparing different graph construction approaches and their
performance in visualizing data relationships. The Discussion and Conclusions examines
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limitations and potential applications of the package, while also comparing it with
existing tools.

METHODS
In this section, we will describe the architecture of the software, the parts of which it is
composed and their dependencies, and go into detail on the methods by which we can
obtain a graph from a dataframe and its visualisation.

With a minimal set of options, the software automates data preprocessing, including
handling missing values and encoding categorical variables, and transforms tabular data
into graphs. Its goal is to integrate and automate dataset preprocessing with graph creation
and analysis, thus providing insights through community detection and degree
distribution. Additionally, it offers detailed visualisations to enhance data interpretation
and presentation.

Software architecture
TaGra is designed with a modular architecture to streamline data preprocessing, graph
creation, and graph analysis. The software consists of three main components: data
preprocessing module, graph creation module and graph analysis module which are fully
settable with a ready-to-use configuration file in JSON format. In Fig. 1 we show a pictorial
representation of the entire package, complete with the main submodules.

We have used the following Python libraries:

(1) Preprocessing: Pandas (Pandas Development Team, 2020; McKinney, 2010) for the
dataset handling, NumPy (Harris et al., 2020) for scaling the data and scikit-learn for
the encoding in the dimensionally-reducted space.

(2) Graph creation: SciPy (Virtanen et al., 2020) for evaluating the distances and
similarities between the rows of the dataset and NetworkX (Hagberg, Swart & Schult,
2008) for handling the graph.

(3) Graph analysis: Matplotlib (Hunter, 2007) for the visualization and NetworkX
(Hagberg, Swart & Schult, 2008) for the centrality measurements and community
detection algorithms.

All these dependencies can be installed via the requirement.txt in our GitHub
repository or automatically with pip.

Software functionalities
In this section we explain the package with its off-the-shelf features.

Configuration file
TaGra’s flexibility is enhanced by its support for a JSON configuration file, allowing users
to specify preprocessing, graph creation, and analysis settings. This ensures reproducibility
and ease of use. Users can customize preprocessing options, such as handling missing
values, encoding categorical variables, scaling numeric features, and applying manifold
learning. The graph creation parameters are also flexible, supporting various methods with
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customizable settings to adapt to different analysis needs. Through this subsection, we
provide a description of both the submodules and their options that can be specified in the
configuration file. Even though it is possible for a user to specify only the dataframe path
and the name of the target variable, it is possible to customise the processing and analysis
by changing the options in a JSON file. All options are listed in Table 1.

Data preprocessing
This module automates handling missing values, encoding categorical variables, and
scaling numeric features.

Specify the input dataframe in the configuration file under input_dataframe
(supported extensions: CSV, Microsoft Excel, Pickle, JSON, Parquet, HDF5). Columns
can be designated as numeric or categorical via numeric_columns and
categorical_columns. Categorical columns are encoded (One-hot or Label encoding)
and numeric columns are scaled (MinMax or Standard Scaler).

Figure 1 Diagram of TaGra’s operation. The three modules, with their options, can be used con-
secutively to obtain a graph from a set of tabular data or individually.

Full-size DOI: 10.7717/peerj-cs.2986/fig-1
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Use target_columns to specify the target variable for class differentiation, and
ignore_columns to exclude columns from processing. The unknown_column_action
flag (infer or ignore) handles unspecified columns, using numeric_threshold to
determine numeric classification.

Manage missing data with nan_action (drop row, drop col, or infer), and set
nan_threshold for column removal.

Optionally, apply manifold learning Isomap (Tenenbaum, Silva & Langford, 2000),
t-distributed Stochastic Neighbor Embedding (t-SNE) (Van der Maaten & Hinton, 2008)
and Uniform Manifold Approximation and Projection (UMAP) (McInnes, Healy &
Melville, 2018; Healy & McInnes, 2024) to numeric data using the manifold_method

Table 1 Complete configuration flags of TaGra.

Option Description Default value

input_dataframe Path to the input DataFrame. *mandatory*

output_directory Path to the folder where the results will be collected. results/

preprocessed_filename Filename of the preprocessed DataFrame. None

graph_filename Filename of the graph file. None

numeric_columns List of columns to be treated as numeric. None

categorical_columns List of columns to be treated as categorical. [ ]

target_columns Column to be used as the target variable for coloring the graph and neighborhood
statistics.

[ ]

ignore_columns List of columns to ignore during preprocessing. [ ]

unknown_column_action Action to take on columns not specified as numeric, categorical, or ignored. “infer”

numeric_threshold Threshold for determining if a column is numeric. 0.05

numeric_scaling Method for scaling numeric columns. “standard”

categorical_encoding Method for encoding categorical columns. “one-hot”

nan_action Action to take on NaN values. “infer”

nan_threshold Threshold for dropping columns based on NaN ratio. 0.5

verbose Flag for detailed output. True

overwrite Overwrite or not the previous output. False

manifold_method Method for manifold learning on numeric columns. None

manifold_dimension Number of dimensions for manifold learning output. None

method Method for creating the graph. “knn”

k Number of neighbors for KNN graph creation. 5

distance_threshold Threshold for distance-based graph creation. None

similarity_threshold Threshold for similarity-based graph creation. None

neigh_prob_path Filename for neighborhood probability statistics. “neigh_prob.txt”

degree_distribution_filename Filename for the degree distribution plot. “degree.png”

community_filename Filename for the community composition histogram. “communities.png”

graph_visualization_filename Filename for the graph visualization. “graph.png”

prob_heatmap_filename Filename for the neighborhood probability heatmap. “neigh_prob_heatmap.png”

network_metrics_filename Filename for the other network metrics. None (will be displayed in
terminal)
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flag. The preprocessed file is saved using preprocessed_filename and
output_directory.

Graph creation
Once the data is preprocessed, TaGra’s graph creation module transforms the cleaned data
into a graph. Each node corresponds to a row in the dataset and contains the complete
feature vector as its attributes, while the edges between the nodes represent a similarity
relationship between the nodes. Users can choose from three methods to set these
similarity: K-nearest neighbors (KNN, Zhang et al., 2017), Distance Threshold (Radius
Graph, Carneiro & Zhao, 2018), and Similarity Graph (Singhal, 2001). The graph creation
mode can be set with method (either "knn", "distance" or "similarity"). The KNN
method constructs a graph by connecting each node to its k nearest neighbors based on
Euclidean distance. The value of k can be set with "k". The Distance Threshold method
creates edges between nodes if their Euclidean distance is below a specified threshold
("distance_threshold"), which is ideal for identifying closely related data points. The
Similarity Graph method adds edges between nodes if the cosine similarity of between two
nodes is greater than "similarity_threshold".

Graph analysis
The graph analysis module facilitates comprehensive examination of network structures
generated in the previous processing step. While designed to work seamlessly with graphs
produced by the preceding modules, this component also supports independent analysis of
externally generated networks, provided they conform to the GraphML format
specification. While several established tools exist for network visualization and analysis
(for example, NetworkX (Hagberg, Swart & Schult, 2008), GraVis (Haas, 2022), NetworKit
(Staudt, Sazonovs & Meyerhenke, 2016), Gephi (Bastian, Heymann & Jacomy, 2009), and
Cytoscape (Shannon et al., 2003)), our approach offers a unique workflow that bridges
manifold learning with network analytics.

First, the graph is visualised and saved in the output directory under the name specified
with "graph_visualization_filename". For node positioning, we uniquely leverage
the coordinates obtained from manifold learning in the previous step, creating a natural
connection between dimensionality reduction and network visualization. When these are
not available, we default to the Fruchterman-Reingold force-directed algorithm
(Fruchterman & Reingold, 1991) with the NetworkX implementation. If the target variable
is specified, each node (the rows of the previous step) are colored according to the value of
that attribute, and we perform a distinctive neighborhood analysis that evaluates the
probability of extracting a neighbor with label j given that the selected node has
attribute i. The output of this analysis is both printed on the screen and saved in
"neigh_prob_path" in txt file and "prob_heatmap_filename" as an heatmap in
which the cell ði; jÞ tells the aforementioned probability. This neighborhood
probability heatmap provides a unique analytical perspective for assessing network
structure. Intuitively, diagonal elements approaching 1 indicate strong class separation,
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as nodes predominantly connect with same-class neighbors. Conversely, weaker
diagonals suggest poorer separation, offering researchers a quantitative measure of
homophily or assortative mixing that is not directly available in standard network
analysis tools.

Then the degree distribution of the node is evaluated and saved under
"degree_distribution_filename" if specified. Following this, the Girvan Newman
algorithm (Girvan & Newman, 2002) search the communities and their composition are
saved in "community_filename". The resulting visualization displays community ID on
the x-axis and cardinality on the y-axis. When a target variable is specified, our tool
provides an enhanced community analysis by coloring each bar according to the class
distribution within that community, offering insights into how class labels are distributed
across the detected network structures—a feature particularly valuable for analyzing the
relationship between community structure and node attributes. In Fig. 2 we summarized
the visuaizations with a brief explaination. TaGra’s graph analysis module extends beyond
basic visualization capabilities to provide a comprehensive statistical evaluation of graph
structure and quality. The module calculates several categories of metrics that quantify
different aspects of the network topology: graph density, average clustering coefficient,
number of connected components, and size of the largest component (for definitions of these
metrics, see Newman, 2018).

Furthermore, TaGra evaluates class separation metrics to assess how well the graph
preserves relationships between nodes with different target attributes. Specifically, we
compute: (1) chi-square tests on the contingency table of neighbor relationships to detect
non-random connectivity patterns; (2) a homophily score, defined as the frequency of
same-class connections relative to total connections; and (3) statistical significance
assessments through permutation tests and z-scores to determine whether the observed
class separation exceeds what would be expected by random chance.

Figure 2 Outputs of the graph analysis module generated from the heart failure EHRs dataset. (A) Graph visualization illustrates connectivity
patterns between data points based on similarity relationships. Isolated nodes (that are, nodes with no edges) represent potential outliers, as they lack
connections to other nodes. (B) Neighbor probability heatmap indicates the likelihood of each data point being connected to its neighbors, offering
insights into local density and neighborhood structure. (C) Community composition histogram reveals clusters within the graph, facilitating the
interpretation of group separability and data organization. (D) Degree distribution plot displays the network connectivity pattern, identifying
potential outliers (nodes with few connections) and central nodes (nodes with many connections). These outputs were generated using the Similarity
Graph method. For further details, refer to the Graph Creation paragraph. EHR, electronic health records; HF, heart failure.

Full-size DOI: 10.7717/peerj-cs.2986/fig-2
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Quickstart
You can run these three steps consecutively with the simple bash command python3 go.

py -d path/to/dataframe -a target_column_name.
In the bash shell the path to the saved file is displayed as well as the elapsed time and the

neighbor probabilities (if the target variable is specified).

RESULTS
In this section, we apply the methodologies described in the previous section and proceed
with the analysis of two datasets derived from electronic health records (EHRs), one
concerning cases of comorbidity of depression and heart failure (Jani et al., 2016) and one
concerning cases of diabetes type one (Smith et al., 1988). For both, we will quickly
describe the content and report the visualisation of the graphs obtained from the dataset,
complete with the analysis of the topological structures of the graphs themselves.

Depression and heart failure EHRs dataset
We consider a comorbid Depression and Heart Failure (HF) dataset of electronic health
records (EHRs) (Jani et al., 2016), a high-dimensional dataset featuring data from 425
patients, with 10 features (excluding the id of the patient). Here, we demonstrate how the
output graph properties change when specifying one of three different graph construction
methods and the underlying statistics. The layout of the graph (that is, the position of the
nodes) is evaluated by reducing the space using the Isomap method for each method. For
the preprocessing, we specified only the target column and a single column to be ignored,
namely the id which should not be taken in consideration when evaluating the distance or
similarity relations between nodes. Tables 2 and 3 summarize the experiments, coloring
nodes red (target = 0) or blue (target = 1).

With the distance threshold method, central nodes indicate typical data points, while
fewer connections suggest outliers. Neighbor probabilities show a 53% chance of finding a
class 0 neighbor given class 1, and community composition reveals a large central
community with smaller ones around it, suggesting this method excels at identifying
typical nodes and outliers but not class separation: as we mentioned in the last section, if a
good separation were achieved by this method, then the neighbors of a node with a certain
class should have the same class as the node under consideration, and the elements off the
diagonal of the matrix should be around 0%.

The K-nearest neighbors method produces a graph with fewer connections and no
evident central nodes, resulting in fewer communities and some separability between
neighbors, as seen in the community histogram and neighbor probability heatmap.

The similarity threshold method results in two communities and central nodes, with an
improved neighbor matrix and better neighbor separation compared to K-nearest
neighbors.

Looking at the quantitative metrics for the HF EHRs dataset across the three graph
representation methods in Table 3, several important patterns emerge: similarity method
demonstrates the strongest class separation with the highest homophily score (0.87) and
homophily Z-score (29.75), indicating that nodes predominantly connect with others of
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Table 2 Heart failure EHRs dataset—comparison of three different graph representation methods.

Method Graph visualization Neighbor probabilities Communities composition Degree distribution

Distance

KNN

Similarity

Note:
Each row indicates a methodology to generate the graph and each column contains one of the output results of TaGra. We reported a detailed explanation of these output
results in Fig. 2. EHRs, Electronic health records; HF, Heart failure.

Table 3 Heart failure EHRs dataset—comparison of three different graph representation methods.

Metric Distance threshold K-nearest neighbors Similarity

Graph density 2:29� 10�2 0:71� 10�2 1:70� 10�2

Average clustering coefficient 0.34 0.25 0.35

Connected components 49 1 6

Largest component size (%) 87.3% 100.0% 98.8%

Assortativity coefficient 0.31 –0.06 0.60

Community count 50 2 7

Modularity score 0.39 0.39 0.48

Homophily score 0.70 0.80 0.87

Chi-square p-value 0.00 0.00 0.000

Homophily Z-score 18.1 14.3 29.75

Note:
Quantitative metrics for each graph construction approach. Each metric is defined in Section Methods.
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the same class far beyond what would be expected by random chance. This is further
supported by its high assortativity coefficient (0.60), showing that similar nodes tend to
connect to each other. While the K-nearest neighbors approach produces a perfectly
connected graph (single component with 100% coverage), it shows lower clustering (0.25)
and negative assortativity (–0.06), suggesting less meaningful local neighborhood
structures. Nevertheless, it maintains good homophily (0.80), indicating decent class
separation. The Distance Threshold method yields the most fragmented graph (49
connected components), which explains its higher community count (50). Despite having
the highest density (2:29� 10�2), its class separation metrics are the weakest among the
three approaches, though still statistically significant (homophily Z-score of 18.1). All three
methods show statistically significant non-random connectivity patterns (p-value near 0),
but the Similarity method achieves the best balance between meaningful community
structure (modularity score of 0.48) and class separation. This quantitative analysis
confirms our visual observations and demonstrates that the Similarity method most
effectively captures the inherent structure of the HF dataset while preserving meaningful
class relationships.

TaGra demonstrates exceptional capabilities in data analysis through its robust
graph-based visualization framework. The graph visualization component effectively
illustrates data connectivity patterns, emphasizing the detection of potential outliers as
isolated nodes—those without edge connections to other vertices in the graph. The
neighbor probability heatmap provides quantitative insights into local density structures
and neighborhood relationships, where optimal separation is achieved when nodes with
target label 0 connect exclusively with other label 0 nodes, and similarly for label 1 nodes.
While perfect separation is ideal, the presence of strong diagonal values in the probability
heatmap indicates effective data partitioning and minimal overlap between classes.

In the dimensionally reduced space, the graph visualization highlights two primary data
clusters with sparse inter-cluster connections, suggesting distinct separability. The
community composition histogram further characterizes these clusters, revealing that the
minority cluster is predominantly composed of target 1 data points, reflecting class
imbalance. The degree distribution analysis completes the topological assessment by
identifying peripheral nodes (potential outliers with minimal connections) and hub nodes
(central vertices with numerous connections). The heavy tail observed in the double-log
plot of degree distribution reflects a hierarchical structure in the dataset, where a few highly
connected nodes (typical data points) coexist with many low-degree nodes, reinforcing the
presence of varying data importance and prominence within the graph.

These analytical outputs, generated through the Similarity Graph method, underscore
both the necessity of addressing outliers for enhanced data quality and the potential
benefits of employing non-linear methodologies to capture complex underlying patterns in
the data structure.

Diabetes type one EHRs dataset
Let us consider the type one diabetes dataset (Smith et al., 1988), which reports data from
768 patients, each with nine features. Here, we demonstrate how the output graph
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Table 4 Diabetes type one EHRs dataset—comparison of three different graph representation methods.

Method Graph visualization Neighbor probabilities Communities composition Degree distribution

Distance

KNN

Similarity

Note:
Each row indicates a methodology to generate the graph and each column contains one of the output results of TaGra. We reported a detailed explanation of these output
results in Fig. 2.

Table 5 Diabetes type one EHRs dataset—comparison of three different graph representation
methods.

Metric Distance threshold K-nearest neighbors Similarity

Graph density 2:35� 10�2 0:38� 10�2 0:37� 10�2

Average clustering coefficient 0.38 0.24 0.23

Connected components 114 5 222

Largest component size (%) 80.2% 97.3% 52.2%

Assortativity coefficient 0.52 –0.04 0.58

Community count 115 6 223

Modularity score 0.03 0.40 0.58

Homophily score 0.61 0.65 0.68

Chi-square P-value 0.00 0.00 0.000

Homophily Z-score 18.8 10.4 14.15

Note:
Quantitative metrics for each graph construction approach. Each metric is defined in Section Methods.
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properties change when specifying one of three different graph construction methods and
the underlying statistics. The layout of the graph (that is, the position of the nodes) is
evaluated by reducing the space using the Isomap method for each method. For the
preprocessing, we specified only the target column and a single column to be ignored,
namely the id which should not be taken in consideration when evaluating the distance or
similarity relations between nodes. Tables 4 and 5 reports the three different experiments.
The nodes are colored blue, corresponding to patient who has not been diagnosed with
diabetes mellitus (outcome = 0) or red, corresponding patient who has been diagnosed
with diabetes mellitus (outcome = 1).

In the graph obtained with the distance threshold method, we observe nodes that are
more central than others (see graph visualization and degree distribution). This
information helps us infer the presence of outliers (which have fewer connections) and
typical data points (which have a larger number of connections). Additionally, this
reasoning can be extended to multiple data items by examining nodes that are strongly
connected but cluster in small communities. By combining information on communities
and individual node connections, it is possible to identify outliers among multiple data
items. Additionally, the neighbor probabilities indicate a 65% chance of finding a neighbor
of target class 0 given that a node has class 1. The community composition reveals a large
central community with many smaller surrounding communities, each with a similar
proportion of nodes of class 0 and 1. These insights suggest that while this method is not
effective at class separation, it excels in identifying typical nodes and outliers.

With K-nearest neighbors, a graph with fewer connections and no central nodes is
created. Consequently, we have fewer communities, but we observe a certain degree of
separability between neighbors, as observed from the community histogram and neighbor
probability heatmap.

Finally, in the graph obtained with the similarity threshold method, the number of
communities is higher, but we notice both the presence of central nodes (from the degree
distribution) and, compared to K-nearest neighbors, an improved neighbor matrix,
resulting in better neighbor separation.

The quantitative metrics for the Diabetes EHRs dataset reveal distinct characteristics
across the three graph construction methods: similarity method shows the highest
modularity score (0.58) and strong assortativity (0.58), indicating well-defined community
structures and preferential connections between similar nodes. However, it produces a
highly fragmented graph with 222 connected components and only 52.2% of nodes in the
largest component. This fragmentation suggests that while local relationships are
preserved with good homophily (0.68), the global structure is less cohesive compared to
other methods.

The K-nearest neighbors approach creates a more connected graph with only five
components and 97.3% of nodes in the largest component. It achieves moderate
modularity (0.40) but shows slight disassortativity (−0.04), indicating connections between
dissimilar nodes. The homophily score (0.65) demonstrates reasonable class separation,
though with a lower Z-score (10.4) than other methods.
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The Distance Threshold method generates a dense graph (2:35� 10�2) with high
clustering coefficient (0.38) and positive assortativity (0.52). Despite having 114
components, it maintains good coverage with 80.2% of nodes in the largest component. Its
relatively low modularity score (0.03) suggests less distinct community structures, though
it achieves solid homophily metrics (0.61 score, 18.8 Z-score).

All three methods show statistically significant class separation (p-values of 0.00), but
each offers different trade-offs between connectivity, community structure, and class
separation. For the Diabetes dataset, the choice of method depends on analytical priorities:
K-nearest neighbors provides the best balance between connectivity and community
structure, while Similarity offers stronger local class separation but at the cost of global
connectivity.

This analysis highlights how different graph construction approaches can reveal distinct
aspects of the underlying data structure, emphasizing the value of TaGra’s multiple graph
generation methods when analyzing complex biomedical datasets.

We obtained a data visualization in which the similarity relations are marked by the
presence of an edge between two nodes (the individual data items). It is possible to detect
potential outliers (in the distance and similarity threshold methods, there are several
isolated nodes), and we can see that given the different methods, it is challenging to
separate the data both locally around a node (neighbor probabilities) and at the cluster
level (community composition). This analysis suggests that a dataset like this should be
cleaned of its outliers and treated with non-linear methods.

Reproducing the results
To comply with the reproducibility principles of open science (Sandve et al., 2013; Iqbal
et al., 2016), we report here the instructions to reproduce the results described in this study
from any personal computer having Python installed and an internet connection. After
downloading the repository from https://github.com/davidetorre92/TaGra and installing
the required dependencies, the results presented in this analysis can be reproduced using
the following command:

python3 go.py -c examples/article/dataset/{method}.json

Where {dataset} can be specified as either diabetes or hf, and {method} can be set
to distance, knn, or similarity. The execution generates output files in the directory
dataset/article/output/{dataset} containing all visualizations and analyses
presented above.

COMPARISON WITH EXISTING GRAPH-GENERATION
TOOLS
Our package fills a niche between raw graph libraries (for example, igraph (Csardi &
Nepusz, 2006; Csárdi et al., 2025)) and visualization tools by providing an attribute-focused
analysis pipeline with automated reporting. Unlike NetworkX’s (Hagberg, Swart & Schult,
2008) general-purpose functions or igraph’s performance-oriented approach, TaGra
specializes in quantifying and visualizing node attribute relationships through probability
metrics and heatmaps. While lacking the scalability of graph-tool (Peixoto, 2014) or the
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interactivity of Gephi (Bastian, Heymann & Jacomy, 2009), our TaGra library offers
unique value in automated multi-output analysis (text reports + plots) for tabular-data-
derived graphs.

Regarding specialized network visualization libraries like GraVis (Haas, 2022) and
NetworKit (Staudt, Sazonovs & Meyerhenke, 2016), our tool differentiates itself through
the integration with manifold learning and its focus on neighbourhood analysis for
attributed graphs. While GraVis and NetworKit provide excellent general-purpose
network visualization, they do not offer the same tailored approach to analyzing the
relationship between node attributes and network structure through probability-based
metrics.

Table 6 provides a functionality comparison between TaGra and related tools,
highlighting our package’s unique capabilities in preprocessing tabular data, handling
categorical variables, and performing neighborhood probability analysis—features not
natively supported by existing graph libraries.

We developed our TaGra software independently and concurrently with some of these
specialized visualization libraries, which speaks to the growing recognition of the need for
attribute-focused network analysis tools. Looking forward, we plan to implement export
capabilities to established visualization platforms like Gephi (Bastian, Heymann & Jacomy,
2009) and Cytoscape (Shannon et al., 2003), allowing users to further explore the generated
networks with these interactive tools. We also aim to incorporate selected functionality
from NetworKit to improve performance for larger graphs while maintaining our unique
analytical perspective. This makes TaGra particularly suited for exploratory data analysis
of medium-sized attributed graphs, complementing rather than replacing existing
libraries.

DISCUSSION AND CONCLUSIONS
We have presented software whose aim is to provide a basic tool for pre-processing and
visualisation of data in many dimensions. It serves as a tool for rapid preliminary analysis

Table 6 Functionality comparison between TaGra and related tools: NetworkX (Hagberg, Swart & Schult, 2008), GraVis (Haas, 2022),
NetworKit (Staudt, Sazonovs & Meyerhenke, 2016), Gephi (Bastian, Heymann & Jacomy, 2009).

Functionality TaGra NetworkX Gephi igraph NetworKit

Automated preprocessing of tabular data with categorical variables handling ✓ � � � �
Multiple graph creation methods ✓ ✓ � ✓ ✓

Manifold learning integration ✓ � � � �
Neighborhood probability analysis ✓ � � � �
Community detection ✓ ✓ ✓ ✓ ✓

Target variable-based visualization ✓ � � � �
Single command end-to-end analysis ✓ � � � �
Interactive visualization � � ✓ � �
Large-scale graph processing � � ✓ ✓ ✓

Note:
✓, Native support; �, Partial support (requires additional coding); �, Not supported.

Torre and Chicco (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2986 14/22

http://dx.doi.org/10.7717/peerj-cs.2986
https://peerj.com/computer-science/


of datasets characterized by a large number of features. Through the creation and
visualization of relationships between points in a dataset, it is possible to reduce the
dimensionality while preserving the proximity or similarity information of each point with
respect to its neighborhood, thus retaining more information than the simple
dimensionalityreduction (Geng, Zhan & Zhou, 2005; Jia et al., 2022).

In addition, this approach is informative as it helps detect data items that are more
typical than others. In the last section, we showed that some data items are particularly
central to the dataset, indicating that their similarity relationships are consistent at many
entry points. Conversely, other data items have fewer connections with the rest of the
dataset. This allows us to identify data items with more similarity relationships and
outliers. The identification and classification of data entries into these two categories are
essential for data analysis (Ramaswamy, Rastogi & Shim, 2000; Sullivan, Warkentin &
Wallace, 2021; Alghushairy et al., 2020).

Finally, the community detection algorithm and the neighbor probability distribution
aid the user in understanding if the dataset is separated in two ways: first by determining if
the separation occurs locally at the level of each node, and then if the separation happens
on a larger scale, i.e., at the community level. Understanding the separations within a
dataset is crucial for determining the appropriate techniques and methods to use for
further analysis and classification tasks (Sedlmair et al., 2012).

To summarize the contribution of the software we presented here, it is a way to visualize
high-dimensional data while preserving the proximity and similarity relationships between
data points. This approach not only facilitates the detection of typical and atypical data
items but also aids in understanding local and global separations within the dataset. By
providing tools for data preprocessing, graph creation, and community analysis, our
software enables users to effectively explore and analyze complex datasets, thus enhancing
their ability to make informed decisions about subsequent analytical and classification
tasks.

Through its integration with widely-used Python libraries and support for various data
formats, TaGra offers flexibility and ease of use, aiding more informed and efficient data
analysis.

Limitations
A notable limitation of TaGra lies in its dependency on the number of edges in the
constructed graph, which heavily influences the effectiveness of the community detection
module. On the other hand, sparse graphs with fewer edges may fail to capture meaningful
cluster structures, leading to fragmented or incomplete communities. Additionally, in the
current implementation, distance and similarity matrices used for graph generation rely on
predefined metrics, which may not fully adapt to complex data structures. Incorporating
advanced methods such as those described in TMAP (Probst & Reymond, 2019), which
dynamically adjust similarity measures for large-scale datasets, could enhance the
robustness and scalability of graph construction and improve downstream analyses. In the
Supplemental Information we discuss an additional limitation related to the application of
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Tagra to an EHRs dataset containing a small number of entries (Takashi et al., 2019;
Cerono & Chicco, 2024). The tool faces scalability challenges with very large datasets,
particularly in high-dimensional spaces where distance-based methods often perform
poorly. Current graph construction methods create unweighted edges, which may not
adequately capture relationship strengths between nodes. Graph quality remains sensitive
to user-specified parameters (like k in KNN, or threshold values), requiring careful tuning
for optimal results.

For input data, TaGra can be sensitive to noise—outliers or erroneous values may
significantly impact the resulting graph structure and subsequent analysis. While the
preprocessing module provides options for handling missing values and scaling, the
quality of the final visualization directly depends on data cleanliness. This is particularly
relevant for EHRs datasets, which often contain measurement errors or inconsistently
recorded values. From an integration perspective, TaGra’s current API structure provides
basic export capabilities to formats compatible with tools like Gephi and Cytoscape, but
lacks direct integration bridges to these platforms. The extensibility of the codebase for
implementing custom graph construction methods or specialized neighborhood analyses
requires improvement in future versions. A limitation of this is study is that we showed the
effectiveness of TaGra only on datasets of medical records, and we did not show its efficacy
on other data types. We selected EHRs data because the data of this particular type are not
collected for scientific purposes, and consists of data variables of different types (numeric,
ordinal, categorical, binary, etc.), making their scientific analysis particularly challenging.
Due to the ease with which medical records data are collected (usually a blood test is
sufficient to have tens of clinical factors), computational analyses on them can lead to
impactful and useful scientific discoveries, at limited cost in terms of resources and money.
However, the use of only two EHRs datasets, even if they pertain to two different diseases,
diminishes the generalizability of our findings. In the future, we plan to apply TaGra to
other types of biomedical data as well.

Future works
To further enhance TaGra’s capabilities, future development will focus on integrating
advanced graph analysis techniques, supporting real-time data processing, and expanding
its functionality for other data domains, such as social network analysis (Scott, 2000).
Social networks often consist of highly dynamic and interconnected structures that evolve
over time (Braha & Bar-Yam, 2009). By incorporating support for dynamic graphs, TaGra
could analyze time-evolving networks, capturing the changes in connectivity patterns and
community structures as they occur. This functionality would be particularly valuable in
applications such as tracking information flow, detecting emerging trends, or monitoring
influence propagation in social media platforms. Additionally, advanced graph metrics
such as betweenness centrality, closeness centrality, and graph embeddings could provide
deeper insights into the hierarchical roles of nodes and uncover influential entities or
hidden relationships within social networks.
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Computational genomics and proteomics in general can be another scientific area where
TaGra can be effectively applied. Networks of protein-protein interactions (PPIs), in
particular, seem specifically suitable for our method: applied to this kind of network,
TaGra would produce an informative representation of the protein-protein interactions,
and potentially infer new knowledge about the proteome. Protein-protein interaction
networks can be found in open public databases such as KEGG (Kanehisa et al., 2017),
Reactome (Croft et al., 2010), or STRING (Szklarczyk et al., 2024).

Additionally, we envision effective applications of our software package of
pharmacological data, too. Network-based approaches in this field, in fact, can unveil new
relationships between chemical compounds and drug components (Boezio et al., 2017;
Moon & Rho, 2025). We also plan to include additional visualization interactive features
(Brown & Chicco, 2024), and to propose the inclusion of TaGra into open biomedical
informatics platforms such as Galaxy (Jalili et al., 2020), Bioconda (Grüning et al., 2018), or
Bioconductor (Amezquita et al., 2020).

LIST OF ABBREVIATIONS
API application programming interface

CC Creative Commons

CSV comma-separated values

HF Heart failure

EHRs electronic health records

HDF5 Hierarchical Data Format

JSON JavaScript Object Notation

k-NN KNN: k-nearest neighbors

KEGG Kyoto Encyclopedia of Genes and Genomes

PPIs protein-protein interaction networks

PyPI Python Package Index

t-SNE t-distributed stochastic neighbor embedding

PHATE Potential of Heat-diffusion for Affinity-based Transition Embedding

TMAP Tree MAP

UMAP Uniform Manifold Approximation and Projection for Dimension Reduction
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