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ABSTRACT
Deep learning (DL) workflows consist of multiple interdependent and repetitive
steps, including data preparation, model training, evaluation, and deployment. Each
step involves decisions impacting the final model’s performance, interpretability, and
applicability. These models rely on data, preprocessing operations, and
configuration, underscoring the need for mechanisms to ease the analysis throughout
the entire life cycle—from model generation and selection to deployment. Moreover,
ensuring trust, reproducibility, and transparency becomes important as DL models
transition into production environments. Traceability across the steps of the DL
workflow is essential to address these challenges. However, existing traceability
solutions often present limitations. Many fail to integrate the steps of the DL
workflow, focusing on either data preparation or model training. Additionally, they
frequently rely on proprietary formats to represent traceability data and rarely
produce a provenance document that can accompany the model into production. To
bridge these gaps, we present DLProv, a suite of provenance services designed to
ensure end-to-end traceability across DL workflows. DLProv supports structured
query language (SQL)-based querying during training and generates provenance
graphs that capture data preparation steps, model training, and evaluation. These
provenance graphs comply with the PROV de facto standard, ensuring
interoperability across different environments. One of the key strengths of DLProv
lies in its framework-agnostic architecture. The suite’s services can be invoked
independently of the DL framework, enabling integration across several training and
deployment workflows. Furthermore, DLProv includes specialized instances
designed for specific DL frameworks, such as Keras and physics-informed neural
networks (PINNs), offering adaptability to a wide range of applications. We
evaluated DLProv using well-established datasets, including Modified National
Institute of Standards and Technology (MNIST) and Canadian Institute for
Advanced Research (CIFAR)-100. These datasets were chosen to illustrate the suite’s
capability to capture and manage provenance data across tasks of varying complexity,
from basic image classification to more complex DL workflows. Additionally, we
evaluated DLProv within a handwritten transcription workflow, further showcasing
its flexibility. Across all these use cases, DLProv showed its ability to ease SQL-based
queries during model training while maintaining framework independence. An
important aspect of our evaluation was measuring the overhead introduced by
integrating DLProv into DL workflows. The results showed a maximum overhead of
1.4% in execution time, highlighting the suite’s minimal impact on DL workflow
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performance. For comparative analysis, we benchmarked this overhead against
MLflow, further reinforcing DLProv’s suitability for real-world DL applications.

Subjects Databases
Keywords Traceability, Provenance data, W3C PROV, Provenance graph, Deep learning

INTRODUCTION
Deep learning (DL) is a subset of machine learning (ML) that supports decision-making
processes by focusing on training computational models composed of multiple layers of
nonlinear processing units. These layers enable the learning of hierarchical data
representations, which result in a DL model (LeCun, Bengio & Hinton, 2015). The
aforementioned hierarchical learning capabilities depend on leveraging large, preprocessed
datasets. Once trained, a DL model can identify patterns in new datasets. As a result, DL
has become a transformative technology, advancing fields such as natural language
processing (NLP), computer vision (CV), and speech recognition (SR) (Chai et al., 2021).

DL models are generated by preparing datasets to be trained and validated by a deep
neural network (DNN) architecture. A DL model generation typically involves workflow
steps such as data preprocessing, model training, hyperparameter tuning, and model
validation, all of which produce artifacts and metadata that contribute to the model’s final
form. Due to the variety of alternative configurations for each workflow step, several
candidate DL models are usually generated. Finally, a model selection stage identifies the
most suitable DL model for further deployment. This involves comparing candidates using
data such as performance metrics.

After being selected for deployment, a DL model transitions into production, where it
becomes a part of real-world systems and applications. As discussed by Souza et al. (2024),
the complexity of DL models with their application in critical decision-making requires
trust in model predictions. Provenance tracking in DL workflows has emerged as an
essential support for this trust and interpretability (Ferreira da Silva et al., 2024). Providing
comprehensive provenance tracking for DL workflows requires capturing and relating
metadata from all the workflow steps (Souza et al., 2022; Pina et al., 2024, 2023, 2025).
Despite the existing initiatives in the literature, provenance tracking in DL workflows is an
open, yet important, problem (Ferreira da Silva et al., 2024; Leo et al., 2024).

Current DL frameworks often employ proprietary traceability representations, creating
an ecosystem that makes interpretability difficult. We consider that provenance capture for
traceability should not be tightly coupled to the DL framework (Pina et al., 2024). Existing
solutions for monitoring and analyzing DL models typically concentrate on providing
analyses through metadata management without traceability. While some claim to support
traceability, they often lack the representation of typical relationships, thus restricting the
ability to trace derivation paths across the DL workflow stages. With the diverse landscape
of DL frameworks and execution environments, DL scientists should be free to use
different frameworks independently for each DL workflow stage. Unlike traditional
software systems, DL workflows often run in environments ranging from cloud-based
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platforms to high-performance computing (HPC) clusters, with each environment
imposing its requirements and limitations. This scenario contributes to the challenge of DL
workflow provenance tracking and calls for a solution that flows along different
frameworks and platforms to generate a DL provenance graph.

We did not find a solution that generates traceability support that integrates the DL
development stages and delivers a provenance graph document to follow the DL model in
production workflows. DLProv (Pina, 2025a) addresses this gap in the literature and
current solutions by presenting a suite of provenance services. DLProv services produce
traceability documents as provenance graphs that integrate the DL model traces. The
contributions of DLProv support are that it is World Wide Web Consortium (W3C)
PROV (Moreau & Groth, 2013) compliant, and its services can be invoked independently
from the DL frameworks chosen to follow the DL model stages. DLProv has captured
provenance in notebooks, clusters, cloud, and HPC machines. It has also supported DL
workflows in frameworks like TensorFlow (https://www.tensorflow.org), PyTorch (https://
pytorch.org/), and DeepXDE (Lu et al., 2021). Even when new DL models appear like
physics-informed neural networks (PINNs) (Toscano et al., 2025) or surrogate generative
adversarial networks (GANs), DLProv has shown its benefits under the same services and
provenance model. Our goal with DLProv is to enhance analytical capabilities during the
development and selection of DLmodels and contribute to aspects of trust, interpretability,
and reproducibility in models in production.

This work is organized as follows: “Background: Challenges in Traceability of DL
Workflows” provides the background, detailing foundational concepts relevant to the
proposed suite. “Related Work” discusses related work, highlighting existing approaches
and their limitations. “Suite of Provenance Services” introduces the proposed DLProv
suite, describing its architecture and functionalities, while “DLProv Specializations”
presents DLProv specializations for capturing and analyzing provenance in DL workflows.
“DLProv Suite Evaluation” presents the experiments conducted to validate the suite and
their results and analysis. Finally, “Conclusion and Future Work” concludes the article,
summarizing the findings and outlining future directions.

BACKGROUND: CHALLENGES IN TRACEABILITY OF DL
WORKFLOWS
This section introduces important concepts of this article. It introduces concepts involved
in the DL workflow, providing an overview of the steps. Then, we highlight the impact of
human actions in DL workflows, exploring the pivotal role of human intervention. Finally,
the concepts of traceability and their role in DL workflows are presented.

An overview of DL workflow components
DL workflows are both data-centric and model-centric, as they produce a DL model based
on input raw data through a data transformation flow (Schlegel & Sattler, 2023a). While
Schlegel & Sattler (2023a) explicitly represents the relationships between processes, they do
not depict the data. Therefore, Fig. 1 presents a simplified view of the DL workflow from a
dataflow perspective, inspired by representations such as Miao et al. (2017), Gharibi et al.
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(2021), Shankar & Parameswaran (2022), Polyzotis et al. (2018), Xin et al. (2018). The
workflow consists of data transformations represented as rounded rectangles and datasets
represented by cylinders. The workflow begins with data preparation, an important step
involving a series of preprocessing operations. These operations can impact a DL model’s
performance, motivating data scientists to experiment with diverse combinations of
operations, often referred to as preprocessing pipelines, that address transformations at
structural and syntactical levels. Once preprocessing is complete, the prepared data is split
into training and testing datasets to facilitate the evaluation of the DL model. This split can
occur either before or after the data preparation phase, depending on the specific
operations involved.

The DL workflow contains feedback loops among the different data transformations,
which are characteristics of an experimentation process. Therefore, it often involves
additional iterative refinements and going back to previous steps based on performance
metrics. For instance, when training error remains high, strategies such as increasing
model capacity, extending training duration, or changing the architecture may be explored.
Similarly, high validation errors can be addressed by incorporating more data, adjusting
regularization, or reconsidering the model design. During model evaluation, performance
issues on test data may prompt efforts to align training data with test data, collect
additional data, or revisit architectural choices. These iterations are implicitly depicted in
the model tuning transformation.

The role of traceability in the DL workflow
Human intervention adds a critical layer of expertise to the DL workflow. Data scientists,
with their domain knowledge, actively engage in the analysis of DL workflow results. They
interpret the findings, tune the DL workflow configurations, and ensure that the selected
model not only excels in terms of quantitative metrics but also aligns with the specific
needs of the task at hand. To enable such informed decision-making, integrating data
transformations, configurations, and results within a DL workflow is important.
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Figure 1 Data transformations and artifacts involved in the DL workflow (Pina et al., 2023). Full-size DOI: 10.7717/peerj-cs.2985/fig-1
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Decision-making benefits of traceability to understand relationships within the
workflow. Provenance is a natural and standard solution for traceability (Pina et al., 2024).
Unfortunately, many metadata-based approaches do not provide traceable relationships.
These approaches often lack relational structures in their data models, treating metadata as
isolated attributes rather than connected entities. This limitation increases the burden on
data scientists, who must manually infer relationships that should be explicitly supported
by the system.

For instance, consider a workflow designed to predict whether a person earns more than
$50 K annually using the Adult Census dataset (Becker & Kohavi, 1996). If an analysis aims
to trace the prediction for a specific person back to the data preparation steps, such as
encoding their “Education” level, e.g., Bachelor’s, Master’s, or Doctorate, it is necessary to
establish a relationship between preprocessing and DL model training activities. In
solutions based on metadata, the connection between preprocessing steps and DL training
steps may be lost, due to the lack of explicit relationships, making it difficult to understand
the transformations applied to a given input (data for a specific person). On the other
hand, solutions that associate preprocessing activities with the training activity provide a
trace from a DL model back to the specific preprocessing that shaped the preprocessed
data. Such traceability is also valuable in deployment scenarios. If the DL model presents
unexpected prediction values or performance issues arise, the provenance traceability is a
reliable means to investigate inconsistencies.

Promoting traceability consists of several key phases: data model, capture, store, and
query (visualization/analysis), as presented in Fig. 2. The first phase, data model, involves
defining a provenance data model, typically following an established standard like W3C
PROV. In this phase, the relationships among agents, activities, and entities are specified,
allowing for the abstract representation of provenance data. The data model relationships
should define how entities are generated, used, and derived to enable traceability. In
addition, accountability can be established by the relationships between agents and
activities. During the capture phase, provenance information is captured in real-time as
activities are executed. For example, in a DL workflow, the training data (an entity) and the
transformation steps (activities) are tracked, capturing how data evolves and which models
(entities) are generated by specific training activities. The wasGeneratedBy and used
relationships are commonly recorded during this phase, documenting the data
transformations and the sequence of operations. Captured provenance data is then stored
in the store phase, often within a provenance-aware database or graph system. Proper
storage ensures data integrity and supports data retrieval for analysis. Finally, the query
phase enables data scientists to analyze provenance information through querying and
visualization tools. By tracing relationships and gaining insights into workflow processes,
data scientists can identify bottlenecks, optimize configurations, and ensure compliance
with governance and accountability standards.

When provenance is integrated directly within ML frameworks, it allows for the
automatic capture of provenance data during workflow execution, reducing the overhead
associated with manual intervention. However, this tight coupling can lead to challenges in
flexibility, as the provenance capture capabilities may be limited by the framework’s
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architecture and functionalities. Additionally, changes or updates to the framework may
disrupt provenance tracking, potentially impacting reproducibility and trust in the
captured data. On the other hand, using external provenance systems allows for greater
flexibility and can facilitate the incorporation of provenance across arbitrary execution
frameworks. This approach can be beneficial in heterogeneous environments where
multiple ML frameworks are in use. However, it often requires additional effort to
implement and maintain, as it may involve instrumentation to ensure that relevant
provenance information is captured. This can introduce complexity and the potential for
errors if not managed carefully.

Exporting provenance graphs for production
In DL workflows, traceability is important to enhance analytical capabilities during DL
model development, selection, and integration into production environments (Mora-
Cantallops et al., 2021). The two main approaches for exporting traceability information
are log files and provenance graphs. This section details the strengths and limitations of
each approach, comparing their roles in DL workflow analysis.

Log files are easy to implement and can be used to capture workflow activities and
represent the workflow results as entities, but are limited in their ability to structure
complex relationships (Barringer et al., 2010). While log files can provide basic analytical
capabilities and a transparent record of actions, their structure can fall short when tracking
data transformations and traceability (Yao et al., 2016), which is important for reliable

Figure 2 Tracking entities, activities, and relationships throughout the DL life cycle.
Full-size DOI: 10.7717/peerj-cs.2985/fig-2
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reproducibility and trust in production. Provenance graphs represent the workflow
structure, capturing entities (data, models, parameters), activities, and their relationships
(Missier, Belhajjame & Cheney, 2013; Herschel, Diestelkämper & Lahmar, 2017). Typically
stored in a database, provenance graphs provide detailed workflow traceability, enabling
fine-grained analytical capabilities during model development and selection. This
traceability enhances reproducibility, interpretability, and trust in production
environments (Mora-Cantallops et al., 2021), where model auditability and transparent
decision-making are essential.

For storage, log files are typically saved as plain files on an operating system, such as a
disk. Provenance graphs, on the other hand, are stored in established databases designed
for structured data storage, such as relational or graph databases. When it comes to
concurrency and consistency, log files are susceptible to issues such as log corruption
during simultaneous writes, whereas provenance graphs leverage database systems that
provide built-in concurrency control, minimizing corruption risks.

Interpretation of log files depends heavily on user-defined formats and requires
knowledge of the specific log structure, whereas the standardized structure of provenance
graphs simplifies interpretation, with inherent relationships encoded within the data.
Traceability is another area where differences are apparent. Log files often require
post-processing to establish traceability, like manual setups, such as sorting by timestamps,
to establish event order and traceability. Provenance graphs, in contrast, capture entity
relationships, including dependencies, facilitating traceability. Lastly, querying capabilities
differ substantially. Log files offer limited querying functionality, making complex analyses
challenging. Provenance graphs, however, support complex relational or graph-based
queries, simplifying sophisticated analysis tasks.

RELATED WORK
DL workflows generate vast amounts of data and metadata, yet many existing tools fail to
capture the relationships and dependencies needed to understand and reproduce the
process of training DL models. Traceability is often limited by simplistic metadata logs or
systems that provide only fragmented views of workflow steps, neglecting the relationships
between activities, data, and results. Without robust traceability, it becomes challenging to
reconstruct the models’ derivation trace, validate the results’ reproducibility, or analyze the
impact of specific workflow choices. This lack of provenance also undermines the ability to
perform advanced queries and ensure transparency. We did not find any solution that
delivers a provenance graph document to follow the DL model in production. This lack of
provenance documents of the DLmodel in production limits the ability to establish trust in
the deployed model.

Mora-Cantallops et al. (2021) review the state of the art, as of 2021, on models and tools
for ensuring trustworthiness in AI. They analyze key transparency requirements through
traceability, drawing on the EU Commission’s Ethics Guidelines for Trustworthy AI
(https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai). Their
study emphasizes the role of provenance in supporting accountability and interpretability
in AI systems. Additionally, they highlight the importance of adopting standards to ensure
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compliance with ethical and regulatory frameworks. This analysis aligns with our research,
as we also emphasize the role of provenance in enhancing transparency and
interoperability, as well as supporting analyses in AI systems, particularly within DL
workflows.

Current popular solutions like MLflow (https://mlflow.org/) (Zaharia et al., 2018; Chen
et al., 2020) and Weights & Biases (WandB) (https://wandb.ai/site) provide user-friendly
interfaces for managing ML workflows. MLflow is an open-source framework that enables
users to track experiments by embedding tracking commands within Python scripts. It logs
parameters, metrics, and artifacts, with storage options ranging from local files to
SQLAlchemy-compatible databases or remote tracking servers. Despite its widespread
adoption, MLflow lacks native support for provenance traces and relationship-driven
representations. As a result, it does not generate provenance documents to accompany DL
models when they are deployed. WandB also offers a solution for managing ML models,
from the experimentation phase to model production. However, despite allowing the
definition of some relationships between artifacts, WandB requires scripting for a more
in-depth analysis to traverse the resulting graph, in addition to requiring prior knowledge
of the graph depth. During hands-on experience with WandB, we also identified some
issues with respect to its network requirements. When WandB is executed, it requires
access to external IP addresses. In supercomputer environments like Santos Dumont
(https://sdumont.lncc.br/), the compute nodes typically do not allow external access,
making it necessary to configure the firewall to allow such connections. However, in
practice, this configuration is not always feasible due to security policies or technical
restrictions, limiting the usability of WandB in such HPC facilities.

These solutions are grounded in metadata-based log systems, which provide a simplistic
model for recording workflow steps. These models typically suffer from limitations such as
the absence of relationships between activities, representing only attributes of individual
steps without a holistic view. This lack of a relationship-driven data model restricts trace
representations, impacting the ability to perform robust queries and analyses.

Addressing some of these gaps, MLflow2PROV (Schlegel & Sattler, 2023b) extends
MLflow by generating PROV-compliant provenance graphs based on information
extracted from code repositories and MLflow. While this approach enhances traceability,
its reliance on MLflow’s limited captured data results in incomplete provenance support.
For example, MLflow2PROV struggles to document preprocessing steps applied to data
before model training when such steps are not explicitly recorded in Git or MLflow logs.
Additionally, its provenance graph can become overloaded with Git-related details,
making it challenging to perform queries that require a clear representation of workflow
activities and their relationships.

The Braid Provenance Engine (Braid-DB) (Pruyne, Wozniak & Foster, 2022; Wozniak
et al., 2022) captures provenance of data and steps in ML workflows, with a focus on
producing data products that are findable, accessible, interoperable, and reusable (FAIR).
It manages ML model versions, enabling traceability back to raw data, including scientific
datasets. Braid-DB captures provenance data at the file and version levels rather than at the
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record level. Although it is not fully compliant with the W3C PROV recommendation, it
covers core PROV concepts and supports analytical queries.

DPDS (Chapman et al., 2022, 2024; Gregori et al., 2024), which stands for Data
Provenance for Data Science, is an approach designed to foster explainability,
reproducibility, and trust in ML models by automatically tracking granular provenance
related to raw data preprocessing operations that precede model training. DPDS
provenance is compliant with W3C PROV and ensures that the complete data preparation
step is captured in detail, providing a transparent record of how the data was handled.

MLtrace (https://mltrace.readthedocs.io) (Shankar & Parameswaran, 2022) is a data
management system that offers debugging for deployed ML workflows through assisted
detection, diagnosis, and reaction to ML-related bugs and errors. MLtrace allows for the
automatic logging of inputs, outputs, and metadata associated with execution, and it has an
interface for data scientists to ask arbitrary post-hoc queries about their pipelines.

ModelDB (Vartak et al., 2016; Vartak & Madden, 2018) is an open-source system to
manage ML models, tracking model metadata through the whole ML workflow,
e.g., parameters of preprocessing operations, hyperparameters, etc. While ModelDB offers
traceability, it does not follow the W3C PROV recommendation for provenance data
representation. Additionally, ModelDB is tightly integrated with specific ML frameworks,
which can restrict its adoption across different ML frameworks.

ModelHub (Miao et al., 2016, 2017) is a system designed for managing DL models,
offering a model versioning system that allows for storing, querying, and tracking different
model versions. It also features a domain-specific language, which acts as an abstraction
layer for searching through the model space, along with a hosted service to store, explore,
and share developed models. Since it primarily focuses on the model itself, ModelHub does
not capture information about other DL workflow steps, such as data preparation, limiting
its scope for end-to-end traceability.

ModelKB (Gharibi et al., 2021) is a Python library focused on managing DLmodels with
automatic metadata extraction. ModelKB stores metadata regarding the model
architecture, weights, and configurations, which allows for reproducibility, querying,
visualization, and comparison of experiments. The primary goal of ModelKB is to offer
model management with minimal disruption to the data scientist’s workflow by using
callbacks to capture metadata. However, it does not follow recommendations for
provenance data representation.

ProvLake (https://ibm.biz/provlake) (Souza et al., 2022) provides provenance services
through lightweight tracking that can be easily integrated into workflow code, such as
scripts. This tracking can be applied at each step of the workflow and subsequently
integrated into a data lake. By using a universal identifier, ProvLake captures relationships
within the data lake and offers data modeling for all workflow steps in compliance with
W3C PROV. ProvLake has been used in ML workflows and offers traceability of the ML
workflow. Although it operates independently of specific frameworks, ProvLake requires
consistent use throughout all steps of the workflow to ensure comprehensive tracking.

Runway (Tsay et al., 2018) is a prototype tool for tracking ML experiments that
organizes metadata about ML models, similar to tools like MLflow and WandB. It offers
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visualization capabilities to facilitate the exploration of relationships between
hyperparameters and metrics. While Runway is intended to be framework-agnostic, it
currently provides integration only with Python scripts through a Python SDK.

Vamsa (Namaki et al., 2020) is a system that extracts provenance from Python ML
scripts without requiring changes to the data scientists’ source code. It essentially analyses
scripts to determine which columns in a dataset have been used to train a certain ML
model, automatically recording the relationships between data sources and models at a
coarse-grained level.

Amazon SageMaker (https://aws.amazon.com/sagemaker/) (Nigenda et al., 2022)
provides resources for model building, training, deployment, and metadata tracking.
SageMaker provides traceability to some extent through its built-in capabilities for tracking
model metadata, such as training configurations, metrics, and model artifacts. However,
this traceability is largely limited to its internal environment, with no support for exporting
detailed provenance traces to external systems. SageMaker relies on proprietary formats
for logging and metadata management. In addition, SageMaker is tightly coupled with
Amazon Web Services (AWS), making it less adaptable for use in diverse execution
frameworks. This dependency on AWS infrastructure reduces its flexibility for integrating
with external tools or workflows beyond its ecosystem.

Table 1 assesses some of the existing solutions based on the following criteria:
independence, Traceability, DL Provenance Graph, Provenance Representation, and
Provenance Graph in Production. Independence highlights whether a solution supports
arbitrary execution frameworks. Traceability assesses whether a solution captures the
necessary information so that provenance traces can be generated, encompassing all steps
of DL workflows. DL Provenance Graph evaluates whether a solution produces a
provenance graph derived from the captured traceability. Provenance Representation
shows whether the solution adheres to any standards for provenance representation.
Provenance Graph in Production indicates if a solution supports exporting the generated
provenance graph for use in production.

Table 1 shows that most existing solutions fail to provide provenance support across the
steps of DL workflows. While some systems like Braid-DB, Mltrace, and WandB offer
traceability, few solutions offer a complete DL life cycle provenance graph or the ability to
export the provenance graphs into production. The adoption of provenance representation
standards is limited, with only a few tools, such as DPDS, MLflow2PROV, and ProvLake,
leveraging established standards like PROV. Independence is provided by more solutions,
with more than half of the solutions supporting arbitrary execution frameworks. For
instance, MLflow and WandB are highly versatile, compatible with a wide range of ML
frameworks such as TensorFlow, PyTorch, and scikit-learn, while Vamsa facilitates
provenance capture in Python scripts. DPDS also supports Python scripts, but data should
be in the form of Pandas dataframes.

SUITE OF PROVENANCE SERVICES
Generating a provenance graph is a natural solution for traceability. Therefore, we
designed the DLProv suite (https://github.com/dbpina/dlprov) (Pina, 2025a) to integrate
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provenance services into DL workflows, thereby supporting detailed analyses and
enhancing both reproducibility and trust in DL models. DLProv builds on DfAnalyzer
(Silva et al., 2020; Silva, 2018) core provenance components to address traceability
challenges in DL workflows. DLProv suite encompasses all traceability key phases (Fig. 2):
data model, capture, store, query (visualization/analysis), and contributes with an export
service that delivers provenance documents to assist DL models in production. These
services can be invoked in DL workflow scripts or embedded in frameworks, as was done
in Keras (Pina, 2025b), or specialized for scientific DL like PINNProv (de Oliveira, 2025).
Its compliance with W3C PROV has shown the interoperability of DLProv with other
tools that capture provenance at different DL workflow stages, including data preparation.

The DLProv suite architecture was introduced in Pina et al. (2021), with an updated
version briefly presented in Pina et al. (2025). It consists of four service layers, as shown in
Fig. 3. In the Training Layer, the Provenance Extractor captures both prospective and
retrospective provenance from DL workflows developed using DL frameworks such as
TensorFlow or PyTorch. Prospective provenance (p-prov) refers to the specification that
outlines how data should be generated or processed, while retrospective provenance
(r-prov) relates to the data associated with each step during execution, such as parameter
values (Freire et al., 2008). During model training, all captured provenance data is sent to
the Data Layer for persistent storage in the DL Model Provenance database. The
Provenance Integration Layer then connects the training-related provenance with the
provenance data from data preparation. Finally, the Analysis Layer offers resources for
exporting the captured provenance in standard document formats.

Table 1 Assessment of solutions according to Independence, Traceability, DL Provenance Graph, Provenance Representation, and
Provenance Graph in Production.

System Independence Traceability DL provenance graph Provenance representation Provenance graph in production

Braid-DB Yes Yes No N/A No

DPDS Yes No No PROV No

MLflow Yes No No N/A No

MLflow2PROV Yes No No PROV Yes

Mltrace Yes Yes No N/A No

ModelDB No Yes No PMML No

ModelKB Yes No No N/A No

ModelHub Yes No No NNEF/ONNX No

ProvLake Yes Yes Yes PROV No

Runway Yes No No N/A No

SageMaker No No No N/A No

Vamsa Yes No No N/A No

WandB Yes Yes No N/A No

DLProv Yes Yes Yes PROV Yes
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Provenance data model
A provenance graph is a structured representation that models the dataflow, processes, and
relationships within a system. It provides an account of how data is generated,
transformed, and used by capturing interactions between entities (data or artifacts),
activities (processes or data transformations), and agents (people or systems). In this
directed graph, nodes represent the core elements—entities, activities, and agents, while
directed edges represent relationships such as used, wasGeneratedBy, and wasDerivedFrom
(Huynh et al., 2018; Belhajjame et al., 2013).

Consider a scenario where a DL model is being trained. The resulting provenance graph
for this process would have entities and activities as nodes. Entities would be the raw
dataset and intermediate datasets produced during preprocessing, hyperparameters, and
metrics. Activities would be data preparation steps, DL model training, and validation
processes. The edges would be the relationships between the activities and entities. Used
edges would connect activities to the entities they use. For instance, an edge may link a
training activity to the preprocessed dataset it uses.WasGeneratedBy edges would indicate
the generation of new entities by specific activities. A model training activity, for example,
would be linked to the trained model it produces.

The data preparation can also be represented in the provenance graph, as in the example
shown in Fig. 4. For instance, consider a dataset of flower images where each image
contains elements like surrounding grass or background. A cropping operation could

Analysis LayerTraining Layer

Deep
Learning

Architecture

Provenance

Training Library
Core

Provenance
Extractor

Data Layer

Raw Data

Domain
Specific Data

File System

DL Provenance

DL Model
Provenance

Provenance
Integration

Layer

Provenance
Mapper

Pre-processing
Provenance

Data
Scientist

Pre-processing
Provenance

Pre-processing
Provenance

Provenance Graph

Provenance
Viewer

Provenance
Exporter

Provenance Graph

Provenance Pre-processing
Provenance

DLProv

Figure 3 DLProv suite architecture (Pina et al., 2025). Full-size DOI: 10.7717/peerj-cs.2985/fig-3
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Figure 4 A W3C PROV representation of an image cropping activity transforming a raw image entity into a cropped image entity.
Full-size DOI: 10.7717/peerj-cs.2985/fig-4
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isolate only the flower in the image. Suppose the original raw image is 1,024 × 768 pixels,
and the flower is centered within a 500 × 500-pixel square. The cropping operation would
extract this 500 × 500 region and discard the rest, creating a processed image that
highlights the flower and minimizes noise in the dataset. In W3C PROV terms, the raw
image is represented as an entity, named ex:rawImage, with metadata specifying its
dimensions (1,024 × 768 pixels) and source (Dataset A). This image is connected to a ex:
Cropping activity through the used relationship, indicating that it served as input for the
operation. The activity can include metadata about its start and end times, as well as
specific parameters used to define the rectangular area to be cropped from the raw image.
The resulting cropped image is another entity, named ex:croppedImage, with updated
dimensions (500 × 500 pixels). This entity is linked to the cropping activity through the
wasGeneratedBy relationship, indicating that the cropping activity produced this new
image. Additionally, the cropped image is linked back to the original raw image through
the wasDerivedFrom relationship, establishing that the cropped image originates from the
raw image. To ensure complete traceability, the cropped image can also be connected to
the aforementioned training activity, illustrating the data’s flow from preparation to DL
model training. The provenance graph also includes an agent, representing the data
scientist who performed the operation, identified as ex:Alice; This agent is connected to the
cropping activity with the wasAssociatedWith relationships, indicating responsibility for
executing the operation.

To represent the provenance information captured in DL workflows, we propose a
specialized provenance data model derived from the domain-agnostic PROV-DM
(Belhajjame et al., 2013). Given that most ML workflows follow a common structure,
typically involving data preparation, data splitting, model training, and testing, we adapt
PROV-DM to explicitly incorporate these elements. This specialization ensures that the
provenance data model captures details of DL workflows while maintaining compatibility
with PROV-DM. Figure 5 presents the UML class diagram of the proposed provenance
data model. The initial version of this model was introduced in Pina et al. (2021) and later
refined in Pina et al. (2023), adding classes that highlight the relationships between data
transformations within the DL workflow. This provenance data model is tailored to
capture training-specific data from DL experiments while integrating them into the
preprocessing transformations performed on the data.

The classes related to the dataflow specification are inherited from the PROV-Df model
(Silva et al., 2016), which are dataflow, data_transformation, data_entity,
data_dependency, and attribute. These classes represent prospective provenance. At its
core, the dataflow class represents the workflow, identified by an id and a descriptive tag.
The execution of a specific instance of dataflow is managed by the dataflow_execution
class. Within a dataflow, individual steps, i.e., activities, are defined as
data_transformation, such as train.

Data or entities used or generated in the workflow are captured by the data_entity class.
In previous articles, we have used this class with the name data_set as any collection of data
elements to be consumed or produced during an activity. However, to avoid confusion
with a dataset that serves as input for training a DL model, we employ the term data_entity
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in the current provenance data model. The performance class monitors task performance,
recording attributes such as method descriptions, start and end times, and invocation
details. Relationships between transformations are tracked using the data_dependency
class, which links transformations through their previous_dt_id and next_dt_id, along with
the associated data entities.

To represent retrospective provenance, the provenance model contains the class task,
which represents the instances of activities that are executed, which allows for recursive
queries that trace back the execution. The input of the training process is captured in the
itrain class, which includes parameters such as the optimizer name, learning rate, number
of epochs, batch size, and number of layers. The training outcomes are represented by the
otrain class, which stores metrics like loss, accuracy, validation loss, and validation
accuracy for each epoch. The resulting trained models are managed by the otrained_model
class, which includes identifiers for the associated training task, model name, file path, and
related test task. Testing processes are tracked in the otest class, which records test accuracy
and loss. Data splits used in training and testing are handled by the idata_split and
odata_split classes, with attributes to identify the dataset paths, names, and task identifiers

Figure 5 Provenance data representation for DL workflows. Extended from Pina et al. (2023). Full-size DOI: 10.7717/peerj-cs.2985/fig-5
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for training and testing. The schema also supports the integration of hardware resources
through the hardware class, while user information is maintained in the user class.

With these classes, the data scientist can discover which preprocessing methods were
applied to the data to train/evaluate a model. The prefix i refers to the input parameters of a
task, and the prefix o in the classes refers to the output parameter values. This model is
designed to be extensible, allowing the incorporation of additional elements, such as
hyperparameters, metrics, and data transformations, as needed for more detailed analysis.
For example, the activity ex:Cropping and the resulting entity ex:croppedImage, shown in
Fig. 4, could be integrated into the provenance data model to be captured.

Provenance capture
DLProv operates independently of the DL framework, as its services are invoked through
script instrumentation. This approach enables it to capture parameters and metrics, such
as shown in the provenance model in Fig. 5, and to track dependencies between activities
within the workflow. The data scientist defines which domain data, model configurations,
and model metrics will be captured and where they should be captured. With this
instrumentation, the Provenance Extractor can access the data during training. For
instance, Listing 1 illustrates a fragment of the instrumentation for a simple workflow. In
this example, the workflow takes a preprocessed dataset, splits it into training and testing
subsets, and then uses the training set to train a DL model. A dependency, such as
dependency = t1, means that activity t2 (e.g., model training) can only start after activity t1
(e.g., data splitting) has produced the required output. For simplicity, the inputs and
outputs of activity t1 are omitted in the figure.

Consider the cropping scenario. The workflow starts with a raw image entity that
undergoes a cropping operation. Once cropping is applied to all raw images in the dataset,
the resulting cropped images are used in subsequent steps, such as splitting the data into
training and testing sets, followed by training a DL architecture. Here, the splitting activity
is identified as t1, and the training activity as t2, with t2 explicitly dependent on the
completion of t1. This dependency ensures that the training process cannot begin until the
split images are available.

Intermediate steps, such as additional preprocessing operations applied to the cropped
images before training (e.g., data augmentation or normalization), would also depend on
the output of the cropping operation. This creates a chain of dependencies, where each
activity is linked to the successful completion of the preceding step, ensuring the
workflow’s traceability.

Provenance store
Once captured, the provenance data is sent asynchronously with the DL execution to the
Data Layer. The DLProv suite uses a database referred to as DL Model Provenance in
Fig. 3, currently instantiated with MonetDB (https://www.monetdb.org/), a columnar
database optimized for analytical workloads, as its provenance storage solution. This
database is designed to manage and query the provenance data generated throughout DL
workflows, adhering to the provenance data model shown in Fig. 5.
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During the training of a DL model, provenance data is asynchronously sent to the DL
Model Provenance database, ensuring minimal interference with the training process. This
allows scientists to execute SQL queries on the data while the DL model is still being
trained. Even after the training phase finishes, the provenance data remains stored in the
database, enabling continued analysis and querying to support reproducibility and
performance evaluation.

In some cases, provenance capture for different stages of a DL workflowmay be handled
by separate solutions, for example, one solution capturing provenance during data
preparation and another during DL model training. To address this scenario, assuming
both solutions adhere to the W3C PROV recommendation, the Provenance Integration

Listing 1 Fragment of DLProv instrumentation showing activity dependencies in a simple DL
workflow.

1 dataflow_tag = “example”

2 df = Dataflow(dataflow_tag, predefined=True)

3 df.save()

4 exec_tag = dataflow_tag + “-” + str(datetime.now())

5 t1 = Task(1, dataflow_tag, exec_tag, “SplitData”, dependency = t0)

6 class DLProvCallback(Callback):

7 def on_epoch_end(self, epoch, logs=None):

8 tf2_output = DataSet(“oTrain”, [

9 Element([timestamp, elapsed_time, loss, accuracy,

10 val_loss, val_accuracy, epoch])])

11 t2.add_dataset(tf2_output)

12 t2.save()

13 t2 = Task(2, dataflow_tag, exec_tag, “Train”, dependency = t1)

14 callbacks = DLProvCallback(t2)

15 tf2_input = DataSet(“iTrain”, [Element([optimizer_name,

16 learning_rate, epochs, batch_size, num_layers])])

17 t2.add_dataset(tf2_input)

18 t2.begin()

19 model.compile(optimizer=opt,

20 loss=‘sparse_categorical_crossentropy’,

21 metrics=[‘accuracy’])

22 model.fit(x_train, y_train, epochs=epochs, validation_split=0.2,

23 callbacks=callbacks)

24 tf2_output_model = DataSet(“oTrainedModel”, [Element([trained_model,

25 trained_model_path])])

26 t2.add_dataset(tf2_output_model)

27 t2.end()
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Layer ensures integration of the provenance information collected by these solutions. To
allow the integration between these data models of two provenance databases, the
Provenance Mapper obtains the identifier for each record or image and inserts this
identifier in the DL Model Provenance database, along with the type of data
transformation that will use that record.

Provenance queries
During the development and selection of DL models, scientists rely on queries to analyze
metadata captured during training. This metadata includes details about training epochs,
parameters, and the performance of candidate models, such as in Fig. 5. By querying this
database, scientists can make informed decisions about selecting the “best” candidate for
deployment. Once a DL model transitions into production, queries play an important role
in ensuring reproducibility and verifying consistency. For instance, scientists may use
queries to confirm whether the preprocessing steps applied during model development
were replicated in the production environment. These checks are vital for detecting
discrepancies that could compromise the reliability of the deployed model.

The Analysis Layer provides data scientists with analytical capabilities, enabling them to
perform queries during training and explore provenance data in greater depth after
training. While many analyses can be conducted directly through SQL queries, some
require a provenance graph to better explore relationships and dependencies within the
workflow. One of the advantages of using the W3C PROV is the ability to generate
predefined provenance document representations, such as PROV-N, which can later be
converted and analyzed in graph database management systems (DBMS).

DLProv supports both p-prov and r-prov, which provide a relationship from the
specification of the DL workflow to all alternative executions of this workflow. In DLProv,
the identifier df_tag is associated with the p-prov, representing the overall workflow
specification. For each instance of this workflow execution, r-prov is generated with a
df_exec identifier. Queries may use the relationship from df_tag to df_exec to analyze
and filter candidate DL models. With the Provenance Exporter, scientists can create a
provenance document in PROV-N format. Scientists can export all provenance graphs
associated with the workflow or a specific subset of these workflow executions through
DBMS queries that follow joins between the df_tag and df_exec. Both identifiers,
df_tag and df_exec, are predefined in the code and can be retrieved from MonetDB. To
query the relationships, the DLProv suite includes functionality for ingesting the
provenance document into Neo4j (https://neo4j.com), using PROV Database Connector
(https://github.com/DLR-SC/prov-db-connector). Once ingested, the provenance data can
be queried using the Cypher language.

Table 2, adapted from Pina et al. (2024), outlines a set of queries used during two key
stages of the workflow: (i) the training and selection of DL models, and (ii) their
deployment and use in production. These queries, adapted from the literature and the
Provenance Challenges (https://openprovenance.org/provenance-challenge/WebHome.
html), vary in complexity—some focus on single DL workflow activities, such as DL model
training. In contrast, others trace the derivation path of artifacts across multiple stages. In
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the Workflow Stage column, we distinguish between Development and Deployment
stages. A query classified under Development can be performed during the generation and
selection of DL models, leveraging data from multiple executions and configurations.
Queries marked as Deployment focus exclusively on the provenance data of the deployed
DL model, providing insights into its behavior and derivation trace in the production
environment. If a data scientist needs to analyze additional executions or configurations
beyond the deployed model, the workflow is assumed to revert to the Development stage
for further exploration. This distinction clarifies the scope and applicability of each query
within the DL workflow.

When training a DLmodel with several configurations, queries can provide insights into
the process and outcomes of the experiments. These queries enable comparison and
selection of the most suitable model for deployment by analyzing training configurations,
performance metrics, and other information. They support the evaluation of multiple
training runs, helping to identify configurations that yield the best results or optimize
specific criteria. For instance, Q1 helps filter the experiments. By determining the average
time per epoch during training, Q2 can provide insights into the computational
performance of different configurations. Q3 enables the data scientist to evaluate which
configurations are more likely to generalize well to unseen data, offering a starting point
for further tuning or testing. Q4 focuses on selecting the model most likely to perform well

Table 2 Examples of typical provenance queries in DL workflows.

Id Query Workflow stage Source

Q1 Find all trained models with a specific value for the learning rate. Development Provenance
challenge 1

Q2 What was the epoch’s average processing time of the model training? Development,
Deployment

Souza et al.
(2022)

Q3 What is the hyperparameter configuration used to train the model with the highest average training
accuracy?

Development Provenance
challenge 1

Q4 What is the hyperparameter configuration used to train the model with the highest test accuracy? Development Provenance
challenge 1

Q5 For a given experiment, which data contributed to the run with the highest test accuracy? Development Provenance
challenge 1

Q6 Given a training set, what are the values for hyperparameters and evaluation measure associated with
the trained model with the least loss?

Development,
Deployment

Souza et al.
(2022)

Q7 Which hyperparameters were used in this model? Development,
Deployment

Schelter et al.
(2017)

Q8 What was the computational environment used to train a given model? Development,
Deployment

Provenance
challenge 4

Q9 Who was responsible for training a given model? Development,
Deployment

Provenance
challenge 4

Q10 Find the process that led to a given model (i.e. model M)/everything that caused model M to produce
these results.

Development,
Deployment

Provenance
challenge 1

Q11 Which data was used to train this model? Development,
Deployment

Namaki et al.
(2020)

Q12 What feature transformations have been applied to the data? Development,
Deployment

Schelter et al.
(2018)
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in real-world scenarios, where the test accuracy is a proxy for deployment reliability. Q5
traces back the data that played a role in achieving the best test accuracy, providing a clear
link between the input data and model performance. With Q6, data scientists can analyze
the relationship between different hyperparameter configurations and DL model
performance.

Once a model is deployed, the provenance document becomes an important resource
for querying information about its performance and behavior. Post-deployment queries
can focus on the reproducibility of the model’s performance under different conditions or
the impact of any changes made during deployment. These queries provide insights into
how the model interacts with new data and whether adjustments to the deployment
environment are needed. They also play an important role in model monitoring,
troubleshooting, and auditing, ensuring that the model operates as expected. For instance,
Q7 can reveal the exact hyperparameters used during training, which is important for
understanding how different configurations (e.g., learning rate or batch size) influenced the
model’s performance. This knowledge can inform future retraining or tuning efforts.
Understanding the computational environment where the model was trained (e.g., GPU
specifications, memory, OS, or specific software versions), as in Q8, is important for
reproducing the training setup, ensuring consistency across different production
environments, and troubleshooting potential environment-related issues that might arise
during deployment. Q9 identifies the individual or team responsible for training the
model, offering accountability and context when revisiting decisions made during training,
such as choices related to hyperparameters or data preprocessing. Q10 provides a detailed
provenance trail of all steps leading to the creation of a model. This is important in
deployment scenarios where accountability is required, ensuring that all details during
model training and validation are transparent and documented. Q10 also ensures that the
original processes are well-documented, facilitating efficient reproducibility of results. Q11
and Q12 are particularly beneficial as they provide information about the datasets used to
train the model. These queries ensure that the data preparation process is traceable and
that the provenance document includes detailed information about any data
transformations. In a production setting, they help verify that the model was trained on the
intended data and serve as an audit trail for evaluating model performance or addressing
any data-related issues. Finally, knowing the feature transformations applied to the
training data, as queried in Q12, is important for understanding how preprocessing
affected the model’s performance. For example, if feature scaling, encoding, or
dimensionality reduction was used, tracking these steps ensures that future changes in
preprocessing do not unintentionally alter the model’s behavior. Q12 also helps identify
discrepancies between the transformations applied to the data during DL model training
and those used during deployment, ensuring consistency in preprocessing steps and
minimizing the risk of performance degradation due to mismatched transformations.

Given a dataset that underwent multiple preprocessing steps, such as normalization and
augmentation, a data scientist might ask: How did normalization impact model
performance across different training runs? Answering this requires retrieving models
trained on normalized and non-normalized data, comparing their accuracy, and
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preserving the full trace from raw data to final metrics. To support such a query, the
provenance must capture relationships between model accuracy and the processes that
generated it. Specifically, each model’s accuracy is derived from training or evaluation
activities (wasGeneratedBy relationship in W3C PROV graph), which in turn used specific
datasets (used relationship in the provenance graph). These datasets, whether train,
validation, or test, were produced through a data splitting activity that operated on
preprocessed data. This preprocessed dataset resulted from a sequence of preprocessing
activities, such as normalization and augmentation, which must be explicitly linked
through relationships like used, wasGeneratedBy, and wasDerivedFrom, all tracing back to
the original raw data. Thus, to fully answer Q12, it is important to establish and maintain
all these relationships, ensuring a traceable path from raw data to model evaluation.

Consider an example where a DL model is trained on the Framingham Heart Study
(FHS) dataset to predict heart disease risk (Pina et al., 2023), the training data primarily
consists of individuals aged 30–70, with most in their 50s and 60s. When deployed in a
healthcare application monitoring younger individuals (20–30 s), the model may fail to
generalize due to the underrepresentation of this age group in training. To investigate this
issue, scientists can examine the provenance trace with the deployed model. These
relationships can help trace preprocessing steps, understand training data distribution, and
track key transformations. Beyond detecting distribution shifts, provenance traces can also
be used for model comparison. For instance, scientists can query historical provenance
data to identify past models trained on more diverse age groups or alternative
preprocessing strategies. Comparing these models’ performance in production can help
determine whether retraining with additional data or adjusted preprocessing techniques
would improve accuracy.

DLPROV SPECIALIZATIONS
The DLProv suite includes specialized instances tailored to specific use cases of DL
workflows. These specializations are distinguished by their integration with the Training
Service Layer, using components Training Library Core and Provenance Extractor. Initially,
DLProv was considered to support analyses over DL model training and evaluation in
arbitrary execution frameworks (Pina et al., 2021). This section introduces three key
instances: DLProv for Keras, DLProv for PINNs, and DLProv for the DL life cycle.

DLProv for Keras
KerasProv (https://github.com/dbpina/keras-prov) (Pina, 2025b; Pina et al., 2021) was
developed to show that DLProv services can be explicitly invoked from DL scripts or can
be embedded into different DL frameworks. KerasProv components’ architecture acts as
provenance plugins to the software that executes the DL workflows, in this case, Keras API
(https://keras.io/). KerasProv invokes DLProv provenance services within the
functionalities of the Keras API. KerasProv is a library with a Python interface that
provides provenance data to Keras DL applications. The core idea behind KerasProv’s
architecture is to preserve the original Keras structure while enabling the online
registration of model configurations, evaluation metrics, and their relationships as
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provenance data. This ensures minimal interference with the scientist’s workflow while
maintaining provenance documentation.

For KerasProv, the Provenance Extractor is embedded directly within the Keras library,
eliminating the need for manual instrumentation by the data scientist. Instead, the data
scientist selects predefined provenance options, domain data, and hyperparameters to be
captured. The Provenance Extractor then automatically extracts and stores the values of the
hyperparameters used in each training iteration. The code snippet in Listing 2 shows how
provenance data can be captured for a Keras model.

In this example, the hyperparameter_values dictionary defines which hyperparameters
are captured during training. Each key in the dictionary corresponds to the name of a
hyperparameter (e.g., OPTIMIZER_NAME, LEARNING_RATE), while the boolean
values indicate whether the respective hyperparameter should be included in the
provenance data. The model.provenance() function is then invoked to capture this
information, using the dataflow_tag parameter to assign a unique identifier to the
model’s dataflow. This minimal addition to the code is sufficient to enable provenance
capture, as illustrated in Listing 2, without requiring further instrumentation.

This specialization shows how DLProv can be embedded into DL frameworks to avoid
manual instrumentation. However, the current implementation is coupled with a specific
version of Keras, which limits its compatibility. Nevertheless, this approach highlights how
the Keras API and other frameworks could adopt provenance capture as a built-in plugin,
making such capabilities readily available for all users in a compatible representation.

DLProv for PINNs
Since DLProv provides flexibility in terms of arbitrary execution frameworks, we extended
the provenance data model and, consequently, Provenance Extractor, to capture
provenance for PINNs, which have specific model configurations and model metrics and
are often trained using specific frameworks like DeepXDE (Lu et al., 2021) and SciANN
(Haghighat & Juanes, 2021).

To capture provenance when using DeepXDE, a specialized library for PINNs, it is
necessary to create a class that inherits from the deepxde.callbacks.Callback class. This
approach allows PINNProv (de Oliveira, 2025; de Oliveira et al., 2023), an instance of
DLProv for PINNs, to leverage DeepXDE methods, which are executed during key steps in
the training process of the PINNmodel. The code example in Listing 3 shows how manual
instrumentation is carried out, following the structure outlined in Listing 1. Specifically,
the code shows how to capture provenance at key moments during training: when the
model training begins (on_train_begin), when it ends (on_train_end), and after each epoch
(on_epoch_end).

In addition to traditional hyperparameters and metrics, PINNs have specific metrics
unique to their architecture. These include loss components such as WEIGHT_LR,
WEIGHT_LB, and WEIGHT_LD. The ability to capture these specialized metrics, along
with any other relevant data, ensures that the full range of training details can be recorded
as provenance. With the use of callback, PINNProv can be used with DeepXDE for any
PINN specification and any of its back-ends.
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Listing 3 Code snippet showing how to use DLProv for PINNs. Adapted from de Oliveira et al.
(2023).

1 class PINNProv(deepxde.callbacks.Callback):

2 def __init__(self):

3 (…)

4 df = Dataflow(dataflow_tag, [‘OPTIMIZER_NAME’,

5 ‘LEARNING_RATE’, ‘EPOCHS’, ‘BATCH_SIZE’, ‘LAYERS’,

6 ‘WEIGHT_LR’, ‘WEIGHT_LB’, ‘WEIGHT_LD’],

7 [‘epoch’, ‘time_elapsed’, ‘LOSS’, ‘LR_train’, ‘LB_train’,

8 ‘LD_train’, ‘Q_train_error’, ‘U_train_error’])

9 df.save()

10 def on_train_begin(self):

11 (…)

12 t1 = Task(1, dataflow_tag, exec_tag, “Train”)

13 tf1_input = DataSet(“itrain”, [Element([opt_name, l_rate,

14 epoch, batch, layers_list, weight_lr, weight_lb, weight_ld)])

15 t1.add_dataset(tf1_input)

16 t1.begin()

17 def on_epoch_end(self):

18 tf1_output = DataSet(“otrain”, [Element([epoch, elapsed_time,

19 loss_value, lr_value, lb_value, ld_value, err_q_train,

20 err_u_train])])

21 t1.add_dataset(tf1_output)

22 t1.save()

23 model.train(…, callbacks=[PINNProv()])

Listing 2 Code snippet showing how to use DLProv for Keras. Adapted from Pina et al. (2021).

1 hyperparameter_values = {“OPTIMIZER_NAME”: True,

2 “LEARNING_RATE”: True,

3 “DECAY”: False,

4 “MOMENTUM”: False,

5 “NUM_EPOCHS”: True,

6 “BATCH_SIZE”: True,

7 “NUM_LAYERS”: True}

8

9 model.provenance(dataflow_tag=“KerasProv-example”,

10 adaptation=True,

11 hyperparameters = hyperparameter_values)
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DLProv for DL life cycle
The DLProv suite includes an instance as an integration mechanism for provenance data
that enables the capture and merge of information across different stages of a DL
workflow. Specifically, the Provenance Integration Layer serves as a bridge that facilitates
the integration of provenance data, whether it originates from preprocessing, model
training, or other steps within the DL workflow. While the Provenance Integration Layer is
designed to be adaptable and extendable to accommodate different provenance capture
solutions, its current implementation focuses on integrating data from two key sources:
preprocessing steps, as captured by Chapman et al. (2020), and DL model training and
selection, as captured by DLProv.

In the preprocessing step, provenance data is collected by a dedicated module that
tracks transformations and modifications made to the raw data. This could include
normalization, feature extraction, and data augmentation. The provenance information
gathered in this step includes not only the transformations applied to the data but also
metadata such as the parameters used in each operation, the timestamp of when the
transformations occurred, and the resulting data artifacts. By capturing this information, a
solution ensures that the data preparation step is fully traceable, essential for
reproducibility and transparency in DL workflows. Once the data is prepared, the training
process begins. A data scientist can leverage DLProv to capture provenance throughout the
DL model’s training.

The Provenance Integration Layer consolidates this diverse provenance data into a
unified structure that can be queried, visualized, and analyzed. This integration is crucial
for supporting complex analyses, such as identifying correlations between data
transformations and model performance, detecting issues related to data leakage, or
ensuring that the same preprocessing steps used during training are consistently applied
when the model is deployed in production.

To enable the integration of provenance data models from two provenance capture
tools, the first step is to obtain a unique identifier for each data record (e.g., record_id),
which can be retrieved by querying the Data Preparation Provenance database, responsible
for storing the provenance data for the preprocessing operations. Once the record_id is
obtained, it is inserted into the DL Model Provenance database (in MonetDB), along with
the type of data transformation associated with that record (i.e., whether the record will be
used for training or evaluation of a DL model). Since these records play a crucial role in the
model development and selection process of the DL workflow, and MonetDB serves as the
provenance database during this stage, the record_id attribute must be present in both
provenance models to establish a foreign key relationship between the two databases.

DLPROV SUITE EVALUATION
In this section, we discuss the experiments conducted in this article to evaluate the
proposed suite. Three experiments were carried out. The first two aimed to show DLProv’s
provenance capture over data preparation, DL model training, and evaluation, on arbitrary
platforms such as TensorFlow and PyTorch, benefiting from the same provenance
representation. These experiments also show that the DLProv suite can be used with
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popular script parallelization tools like Parsl (https://parsl.readthedocs.io/en/stable/index.
html), which served as a workflow orchestrator by distributing tasks across two GPUs to
maximize resource utilization since our focus is on DL workflows that run on HPC systems
and can be parallelized using different type of libraries. The third experiment focuses on a
handwritten transcription workflow, aiming to show DLProv’s capability to integrate new
data for capture. The provenance data model can be extended to capture new data through
manual instrumentation. Specifically, this experiment highlights DLProv’s ability to
document preprocessing activities tailored to the workflow’s domain. These experiments
were designed to show DLProv’s capability to provide traceability of the DL workflow for
analysis during the training of DL models and after one of these models has been deployed.
They were conducted on an Ubuntu 22.04.4 LTS machine, with an Intel (R) Core (TM) i9-
14900KF processor, featuring 32 logical CPUs and 2 NVIDIA GeForce RTX 4090 GPUs,
each with 24 GB. The system architecture is x86_64, with the processor capable of running
at a maximum frequency of 6.0 GHz. The evaluation process involved analyzing the
captured data by submitting queries to the DLProv provenance database. Additionally, the
overhead associated with provenance data capture was analyzed, comparing the execution
times of DL workflows with and without provenance tracking. The results show that
DLProv introduces minimal overhead, approximately 1.4%. This analysis allowed for an
understanding of the performance trade-offs when integrating provenance services into
DL workflows, highlighting both the benefits in terms of traceability and the
computational cost involved.

Simple DL model on MNIST dataset
In this first experiment, we implemented a code for training a DL architecture using
PyTorch, which was then trained on the MNIST dataset (Lecun et al., 1998). The source
code for these experiments was divided into functions and executed using Parsl via the
@python_app decorator. These functions were organized as follows:

. Data loading: The dataset was loaded and preprocessed using load_data() task.

. Model building: DL architecture was defined in the build_model() task.

. Model training: The model was trained in the train_model() task on both GPUs over
50 and 100 epochs, using the Adam optimizer and a learning rate of 0.001.

. Model evaluation: The model was evaluated in evaluate_model() task on the test set
to measure performance.

The DL training was performed using several hyperparameter configurations. These
configurations included different learning rates and optimizers, each applied to
preprocessed data with distinct sequences. Performance metrics such as accuracy, loss, and
training time were captured throughout the training process. Such performance metrics
can be analyzed during training through the execution of queries in MonetDB to answer
questions such as “What is the hyperparameter configuration used to train the model with
the highest test accuracy?”. By analyzing the results of different configurations, insights can
be gained regarding the impact of hyperparameters on model performance.
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A quantitative experiment was conducted to provide a comparative analysis of the cost
of capturing provenance data using DLProv and MLflow during the training of a DL
model. Specifically, the execution time of the workflow—from loading data to evaluating
the trained model—was analyzed under three conditions: (i) without capturing
provenance data (baseline), (ii) with provenance data capture, including relationships,
using DLProv, and (iii) with metadata capture using MLflow.

Overview
The MNIST dataset, accessed through PyTorch (https://pytorch.org/vision/0.20/
generated/torchvision.datasets.MNIST.html), consists of a training set with 60,000
examples of handwritten digits, covering the 10 digit classes, and a test set with 10,000
examples. For this experiment, we used a simple feed-forward neural network. The
architecture consists of an input layer designed to handle 2D gray-scale images with a
shape of 28 × 28 pixels, as found in the MNIST dataset. This is followed by a Flatten layer, a
Dense layer, a Dropout layer, and a final Dense layer. We chose to train a simple DL
architecture on the MNIST dataset because it is a well-known benchmark in the field of
ML. The dataset offers an accessible starting point for those interested in exploring
learning techniques and pattern recognition methods with real-world data, while requiring
minimal effort in terms of preprocessing. Given that our goal is to show the analysis of DL
workflows during model training, we found that MNIST provided an ideal context for
showcasing these analyses.

Overhead analyses
Figure 6 shows the execution times in seconds for the simple DL model with MNIST. To
obtain a reliable average, each experiment was executed 10 times. In the 50-epoch
experiment with 2 GPUs, DLProv introduces minimal overhead compared to the Baseline,
with an overhead of approximately 1.392%, which is quite small. In contrast, MLflow
introduces a higher overhead of about 5.841%. These results indicate that DLProv has a
relatively low impact on execution time when compared to the Baseline. The standard
deviation for each tool (3.37 for Baseline, 1.96 for MLflow, and 1.95 for DLProv) shows
that the times for DLProv and MLflow are fairly consistent, with a slightly higher variance
for the Baseline. For the 100-epoch experiment with two GPUs, DLProv again shows a
minimal overhead of about 1.393%, while MLflow’s overhead is approximately 4.489%.
The standard deviations for this round (4.03 for baseline, 3.63 for MLflow, and 4.30 for
DLProv) reflect a slightly higher variation in execution times compared to the 50-epoch
experiment, but DLProv still remains stable.

Provenance query analyses

While training a simple DL model with the MNIST dataset, a data scientist’s goal is to
identify the best candidate models and, ultimately, select the most suitable model for
deployment. This process involves exploring hyperparameter configurations and applying
different preprocessing techniques. To make informed decisions, it is important to analyze
and compare the performance and characteristics of the trained models. DLProv facilitates
this analysis by enabling queries on its DL Model Provenance database in MonetDB. To
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support these analyses, we submit queries Q1, Q2, Q3, Q4, and Q5, which provide insights
into hyperparameters, performance metrics, and the data contributing to the models.
Additionally, other queries from Table 2 can be leveraged during this stage to deepen the
analysis.

Q1 focuses on identifying all trained models that used a specific learning rate, such as
0.001. As shown in Fig. 5, this can be achieved by joining the itrain and otrainedmodel
classes. The result of this query in SQL provides details about the trained models, including
an identifier, the model name, and the file path where the model is saved (e.g., /home/
dbpina/parsl-exps/parsl-experiments/Resnet50/resnet50-trained.keras). This approach
allows us to track and compare models based on their learning rate configuration.

Q2 can also leverage the join between the itrain and otrainedmodel tables. First, we filter
the specific DL model by criteria such as learning rate (e.g., 0.001) and batch size (e.g., 32),
or apply additional filters as needed. Then, by joining with the otrain table, we can
calculate the average epoch processing time by aggregating the elapsed time for the
corresponding training task, using the task identification associated with the DL model.
This approach enables us to track and analyze the training performance, providing insights
into the efficiency of the model training process.

Q3 follows a similar approach to Q2, but in this case, the goal is to identify the DLmodel
with the highest training accuracy. To achieve this, we first calculate the average training
accuracy for each model by averaging the accuracy values in the otrain table. We then find

Figure 6 Execution time for 50 and 100 epochs—SimpleNN with MNIST.
Full-size DOI: 10.7717/peerj-cs.2985/fig-6
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the maximum of these average accuracies. Using this maximum value, we can identify the
specific DL model that achieved the highest training accuracy. This is done by performing
a join between the itrain and otrainedmodel tables based on the train_task_id, allowing us
to retrieve the corresponding hyperparameters and other relevant details for the model
with the highest training accuracy. Listing 4 shows a snippet of this query.

Q4 also utilizes theMAX function in SQL, but unlike Q3, there is no need to compute an
average since there is only one test accuracy value for each model. In this case, the goal is to
identify the DL model with the highest test accuracy. By directly applying the MAX
function to the test accuracy values in the otest table, we can find the model with the
highest performance on the test set. We then perform a join with the itrain table, based on
the train_task_id, to retrieve the corresponding hyperparameters and other details of the
model that achieved the highest test accuracy.

Q5 delves further back into the derivation trace, focusing on the data that contributed to
the highest test accuracy. Similar to Q4, which identifies the model with the highest test
accuracy, Q5 examines the underlying data used in the training and evaluation of that
model. The query begins by identifying the highest test accuracy stored in the otest table.
Once this value is determined, a join with the otrainedmodel table is performed to locate
the specific DL model that achieved this accuracy, based on test_task_id. Finally, the query
links this model to the odata_split table, using train_task_id, which holds information
about the datasets used during training and evaluation. This process enables us to trace
back to the exact data that contributed to the training and testing of the model with the
highest test accuracy, providing a comprehensive view of the data’s role in achieving this
result.

Listing 4 Example of SQL syntax for querying Q3, illustrating the structure and components of a
query designed to retrieve specific information about hyperparameters and accuracy.

1 SELECT im.*, om.avg_accuracy

2 FROM itrain im

3 JOIN (

4 SELECT train_task_id, AVG(accuracy) AS avg_accuracy

5 FROM otrain

6 GROUP BY train_task_id

7 HAVING AVG(accuracy) = (

8 SELECT MAX(avg_accuracy)

9 FROM (

10 SELECT AVG(accuracy) AS avg_accuracy

11 FROM otrain

12 GROUP BY train_task_id

13 ) AS subquery

14 )

15 ) om ON im.train_task_id = om.train_task_id;
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ResNet50 architecture on CIFAR-100 dataset
This second experiment involved training the ResNet50 architecture on the CIFAR-100
dataset (Krizhevsky & Hinton, 2009) using TensorFlow. Similar to the first experiment, this
one followed the same process of organizing the source code into functions, which were
applied via the @python_app decorator with Parsl, covering key tasks such as Data
Loading, Model Building, Model Training, and Model Evaluation. In addition, a
quantitative evaluation was performed to conduct a comparative analysis of the cost of
capturing provenance data using DLProv and MLflow, mirroring the approach taken in
the first experiment.

Overview
The CIFAR-100 dataset (https://keras.io/api/datasets/cifar100/), accessed through Keras’
built-in small datasets module (https://keras.io/api/datasets/cifar100/), consists of 100
classes, each containing 600 images. There are 500 training images and 100 testing images
per class. These classes are grouped into 20 broader categories, or superclasses, such as
animals, vehicles, household items, and natural scenes. Every image is annotated with both
a fine label, indicating its specific class, and a coarse label, denoting its superclass.

We chose ResNet50 (He et al., 2016) for our second experiment, a deep residual
network, due to its widespread adoption in the research community. By using ResNet50,
we aimed to assess the provenance capture provided by DLProv in a more complex, state-
of-the-art DL model in comparison to the simpler feed-forward neural network used in the
first experiment. We used a model that builds on the ResNet-50 architecture available on
the Keras webpage (https://keras.io/api/applications/resnet/#resnet50-function). The
ResNet50 model is used as a feature extractor, with the top classification layer removed
(‘include_top=False’). The model is initialized without pre-trained weights
(‘weights=None’), meaning it starts training from scratch.

Overhead analyses
Figure 7 shows the execution times in seconds for the ResNet50 with CIFAR-100. To
obtain a reliable average, each experiment was executed 10 times. The 50-epoch
experiment with two GPUs shows that DLProv adds minimal time compared to the
Baseline, with an overhead of about 1.002%, and MLflow adds 4.265% of overhead.
Interestingly, in the 100-epoch experiment with 2 GPUs, DLProv’s overhead is even lower,
at approximately 0.519%, reinforcing its efficiency in capturing provenance data, while
MLflow showed a higher overhead of about 5.672%.

During the initial runs of the 50-epoch experiment, the Baseline unexpectedly took
longer than DLProv. This led us to investigate CPU usage, which showed fluctuations. In
addition, many CPU cores were idle, causing inconsistent performance. To address this,
we set CPU affinity to “block” in Parsl to assign adjacent cores to workers, and limited the
experiments to use only 15 cores, which were the most active ones during training. After
this change, the execution times became more consistent, and the Baseline ran as expected.
Despite this, the Baseline’s runtime still exhibited a relatively high standard deviation for
50 epochs at 13.35 s, slightly higher than MLflow’s 13.13 s, and significantly higher than
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DLProv’s more stable runtime with a standard deviation of 7.13 s. For 100 epochs, the
standard deviation increased across all cases: the Baseline showed 21.94 s, MLflow had the
highest variation at 33.12 s, and DLProv showed relatively better stability than MLflow
with a standard deviation of 25.45 s.

Provenance query analyses
For the ResNet50 training with CIFAR-100, consider a scenario where we trained different
model configurations and obtained model results. We have analyzed and selected a DL
model among the candidates to be deployed. Following the completion of the experiment,
with the selection of the DL model to be deployed, a provenance document was generated
with the steps that led to it. This graph includes information such as the hyperparameters
used, the preprocessing steps applied, and details of the DL model architecture. By
capturing the full provenance, the graph is a traceable record of the model development
process, enhancing transparency and reproducibility in a production environment.

The provenance document, available in PROV-N or JSON, is generated from the
provenance data stored in MonetDB immediately after the DL model is selected for
deployment. Once generated, the document is packaged with the DL model. Queries can
then be submitted by importing the provenance document into Neo4j, leveraging the
functionality provided by DLProv, or using a dedicated solution such as the PROV
Database Connector (https://github.com/DLR-SC/prov-db-connector). This setup allows

Figure 7 Execution time for 50 and 100 epochs—ResNet50 with CIFAR100.
Full-size DOI: 10.7717/peerj-cs.2985/fig-7
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for the querying of the provenance graph. Figure 8 shows the provenance graph for the
deployed DL model in Neo4j. The blue circles represent entities, the orange circles denote
activities, and the purple circles correspond to agents.

For this deployed DL model, we submit queries Q7, Q8, Q9, Q10, Q11, and Q12. It is
important to note that some of these queries can also be performed during the generation
of DL models and their training. In such cases, they can be answered using MonetDB.

Query Q7 seeks to retrieve the hyperparameters used in the deployed DL model,
identified as M4. During the provenance document’s creation, DLProv assigns a unique
identifier to each model; in this case, it is dlprov:99ad4e82-17b1-49f1-86ad-b52cd7dcab6e.
However, we will avoid using this identifier in the article for better readability. The
response to this query involves the entity oTrainedModel, which captures the details of M4,
the DLmodel resulting from training. This entity is linked to the activity Train through the
wasGeneratedBy relationship and is associated with the hyperparameters entity iTrain via
the used relationship. The hyperparameters recorded include the optimizer Adam,
learning rate 0.001, 100 epochs, 179 layers, and a batch size of 32.

Figure 8 Provenance graph in Neo4j showing the deployed DL model’s derivation trace.
Full-size DOI: 10.7717/peerj-cs.2985/fig-8
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Query Q8 focuses on identifying the computational environment used to train a DL
model. Similar to the approach for Q7, this query retrieves information from the
provenance data associated with the activity Train. However, instead of targeting the
hyperparameters, the emphasis is on the computational environment used during the
training of model M4. The response reveals that the computational setup included the
operating system Ubuntu 22.04.4 LTS, an i9-14900KF processor, 15 CPUs, and 2 NVIDIA
GeForce RTX 4090 GPUs.

Query Q9 seeks to identify the Agent that wasAssociatedWith the activity Train. Similar
to the approaches for queries Q7 and Q8, this query focuses specifically on the agent
responsible for the training process. The response involves the entity oTrainedModel,
which is connected to the activity Train via the wasGeneratedBy relationship. This activity,
in turn, is linked to the agent User through the wasAssociatedWith relationship. The
agent’s information includes the name and may also include additional details, such as an
email address, providing accountability and traceability for the model training process.

Query Q10 investigates the entire process that led to the creation of model M4, tracing
all activities and entities involved in producing this deployed DL model. The answer to this
query relies on navigating the provenance graph to identify the sequence of activities, their
associated agents, and the entities they used or generated. Starting from the entity oTest,
which contains the set of metrics that wasGeneratedBy the activity Test, which used the test
set to evaluate the oTrainedModel, which represents model M4. We traverse its
wasGeneratedBy relationship to the activity Train that used a training set. From here, we
can explore all connected inputs and outputs, such as the preprocessed datasets,
hyperparameters, computational environment, and intermediate steps, such as the activity
SplitData. Additionally, it captures the feature transformations applied to the preprocessed
dataset and links back to the original input dataset. This traversal provides a complete
derivation trace, detailing how each element contributed to the model’s creation.

Query Q11 retrieves the dataset used to train the deployed DL model. Using the DLProv
provenance graph, we can trace the derivation path starting from the trained model,
represented by the entity oTrainedModel, which wasGeneratedBy the activity Train. This
activity used a specific dataset, identified as oTrainSet. In this case, the dataset comprises
images stored in the file located at the path temp_cifar100/train.npz.

Query Q12 focuses on identifying the preprocessing operations applied to the input
data, represented by the entity iInputDataset. With the integration capabilities provided by
the DLProv suite, which connects different steps in the DL workflow, this query can be
executed using Cypher. The result offers a derivation trace starting from the trained model
entity oTrainedModel, traversing back to the preprocessing activities associated with
iInputDataset. For instance, in the training of ResNet50 on the CIFAR-100 dataset, two
preprocessing operations were applied. The resulting preprocessed dataset
oOneHotDataset wasDerivedFrom a OneHotEncoding activity, which, in turn, used an
entity oNormalizeData that wasDerivedFrom a NormalizeData activity. The latter directly
used the original input data iInputDataset.

Although the provenance capture for these experiments was conducted using different
DL frameworks, PyTorch and TensorFlow, it is important to emphasize that the
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provenance data representation remains consistent. This consistency facilitates
interoperability, enabling analysis and comparison of provenance information across
different DL frameworks.

Some of the queries discussed, whether with SQL or Cypher, cannot be answered using
frameworks, such as MLflow and MLflow2PROV, that fail to capture relationships that
allow this type of analysis, and even the level of detail. This limitation arises because
MLflow focuses primarily on high-level experiment tracking, such as logging parameters,
metrics, and artifacts, without integrating detailed provenance information about the data
transformations, computational environments, or derivation traces of entities. Similarly,
MLflow2PROV extends MLflow by mapping its tracking information to PROV, but it
relies on the scope of MLflow’s original data. Queries like Q5, which require tracing data
contributions through a detailed derivation trace, or Q10, which investigates the derivation
process of a DL model, require a richer provenance graph that captures all steps and
entities in the DL workflow. These queries highlight the need for more comprehensive
provenance solutions, such as DLProv, which explicitly integrates fine-grained data and
workflow provenance into its model.

Handwritten transcription workflow execution
The last experiment focused on the inference step for transcribing handwritten Portuguese
texts (https://github.com/MeLLL-UFF/handwriting-transcription-ptbr) (da Silva et al.,
2023). Unlike the previous workflows, which were centered around model training, this
experiment involved inference, where a trained model is used to make predictions. To
accommodate this shift, the DLProv suite’s provenance model was extended to capture the
activities and entities specific to the inference workflow. In this workflow, we added a
comparison step, where the inferred text is compared to the ground truth, which was
included primarily to generate performance metrics for provenance analysis. Although
metrics are typically associated with training and evaluation rather than inference,
incorporating them here allows us to show how DLProv can capture and query
relationships between inputs, outputs, and performance in an inference scenario.

Overview
In this case study, the handwritten transcription process involves several steps: reading an
input image, detecting regions within the image that contain textual information,
recognizing the text within each region, and transcribing it into a file. These transcriptions
are then combined to reconstruct the full text. To evaluate the processes described, we used
the Brazilian Forensic Letter Database (Freitas et al., 2008), consisting of 945 image
samples of the same text, written by 315 authors, with each author having written three
texts by hand. The pages containing the text are scanned using Optical Character
Recognition (OCR) in a gray scale, generating the images contained in the database. From
these scanned text pages, word bounding areas are identified using the CRAFT text
detector. These images undergo an initial processing to obtain only the words contained in
each text. To do this, a technique is applied for detecting word areas based on the
identification of characters in images and their respective affinity regions, combined to
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form the region that corresponds to a word. From the demarcation of these spaces, an
additional process extracts the words, resulting in a new set of images, each containing one
word. OpenCV is used to crop the word images, which are then filtered by computing a
median word size range. In this set, certain regions that encompass more than one word
were detected, resulting in an image containing both. Because of this, a second process is
performed to separate these words into distinct images. In other cases, due to aspects
inherent to the writing style of the text, certain regions of words are not identified, and a
technique is proposed to change aspects of the image in an attempt to make the
information contained therein more expressive, approaching common characteristics of
images in which text identification is possible. The final set of word images goes through a
SimpleHTR inference model that outputs recognized words. These outputs are optionally
refined through a process involving dictionary search using a Portuguese lexicon and
Simhash. The output and its refined version are saved in separate output files. To validate
the recognized words, we compared the inferred text to the original text and computed the
accuracy of this inference. Figure 9 shows the activities in this workflow.

Provenance query analyses
Figure 10 shows a fragment of the provenance graph generated from the inference of a
single sample. For clarity, certain nodes have been omitted, and the identifiers shortened to
enhance readability. This provenance graph traces the handwritten transcription
workflow, starting with loading the dataset (LoadData) and a pretrained model
(LoadPretrainedModel), followed by crafting word regions (RunCraft), cropping images
(CropWordsFromImage), and performing inference (RunInference). The last activity in the
provenance graph is a comparison (RunComparison) between the inferred and the original
text, capturing metrics such as accuracy. The activities RunCraft and
CropWordsFromImage are part of the data preparation step in the DL workflow. In this
experiment, we show not only the capability to extend the data to be captured but also
DLProv’s ability to capture preprocessing operations while seamlessly integrating with DL
model training or inference processes.

To evaluate the provenance captured by DLProv in this experiment, we can adapt the
provenance queries from Table 2 to fit this context. For instance, while Q6 is typically used
during DL model development, it can be modified for the inference step to analyze relevant
metrics, identified as inference_metric in entity labeled as “dlprov:ds_tag”:“oruncomparison”,
which serves as a key evaluation measure here. Since we captured accuracy instead of loss,
we can adapt the query to Given a set of samples of the same text, what are the sample,
threshold, and model decoder values and the evaluation measure values associated with the
inference that has the highest accuracy?. This query is performed over multiple executions,
not only on the one presented in Fig. 10. To answer this, we first need to find the highest
accuracy (inference_metric) and then trace the entity containing this highest value, which
wasGeneratedBy the activity RunComparison. From there, we trace back to the entities
oRunCraftOutput containing the sample, iModelInput containing the decoder, and
iRunCraftInput containing the threshold, which together led to this accuracy.
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This query can also be adapted to answer Given sample Sample_CF00001_01, what are
the values of the threshold used and the accuracy achieved?, maintaining the same structure
as the original query by relating the input data (the sample), the parameter (the threshold),
and the metric (the accuracy). The answer to this query follows a derivation process similar
to that of the previous graph analysis. It reveals that a threshold of 0.4 resulted in an
accuracy of 6.25%, while a threshold of 0.8 achieved an accuracy of 8.59%.

In this experiment, without a provenance represented as a graph document that can be
queried, there is no information about the trained model being used for inference. We do
not know the type of data it was trained on, the hyperparameter values used, or how the
data was prepared. In the query example presented, we used different threshold values,
which led to a variation in the accuracy. This raises the question: could this difference be
caused by a mismatch between the inference process and the original training process, of
which we have no knowledge? This lack of transparency highlights the need for a
provenance document to accompany the DL model, as shown in the ResNet50 experiment.
Such documentation would provide traceability into the training process, including details
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on data, hyperparameters, and data preparation, allowing for a better understanding of
discrepancies during inference.

CONCLUSION AND FUTURE WORK
Supporting traceability of DL workflows is important for enabling thorough analysis
during the generation and selection of DL models. This helps improve decision-making by
helping data scientists identify which aspects of the workflow should be tuned and which
model should ultimately be deployed. Moreover, traceability plays a key role in ensuring
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reproducibility and building trust in deployed DL models. By capturing detailed
information about the DL model, including the data and hyperparameters used, the
preparation steps, and other relevant data, traceability ensures that the process is
transparent and that DL model users can trust the model’s performance and reliability.

In this article, we introduced the DLProv suite, a solution designed to allow traceability
by capturing provenance across the steps of DL workflows and representing key
relationships. The DLProv suite includes specializations for Keras, PINNs, and the DL life
cycle. Our contributions comprise (i) an extensible provenance model capable of
representing activities, agents, and entities specific to DL tasks, such as data preparation,
model training, and evaluation; (ii) integrated provenance capture mechanisms,
exemplified by KerasProv, which enables the automatic capturing of hyperparameters,
configurations, and metrics, and PINNProv, which captures specific components of
PINNs; (iii) the generation of provenance documents that facilitate detailed queries,
enabling traceability and analysis, and promote trust and reproducibility of deployed DL
models; and (iv) the adoption of W3C PROV as a standard representation, which ensures
interoperability across different environments.

Our experiments showed DLProv’s ability to capture and analyze provenance across
multiple DL scenarios. For example, we showed how provenance queries can relate input
data, hyperparameters, and evaluation metrics, enabling detailed insights into the impact
of preprocessing and configuration decisions on model performance. Additionally, we
validated DLProv’s capacity to adapt to different contexts, such as tracking inference
accuracy and thresholds for specific samples, highlighting its flexibility in addressing a
range of provenance-related challenges.

For future work, we plan to explore provenance capture for the execution of DL
workflows at different levels of granularity and bundle them together with their associated
objects, enabling a more detailed representation of the workflow. By capturing provenance
at multiple levels, we can provide greater flexibility for data scientists to analyze workflows
at a high level or drill down into specific details as needed. Moreover, future work involves
addressing the challenge of capturing provenance in continuum computing environments.
Building on our experience with parallel environments using Parsl and edge computing
(Rosendo et al., 2023), we plan to develop methods for capturing and managing
provenance data in dynamic, real-time workflows.

Beyond exploring DLProv, it is important to promote the adoption of provenance
solutions in the DL research and development community. Many DL researchers and
developers are unaware of these tools or view them as an unnecessary burden. To address
this, future work should also focus on enhancing usability, integrating provenance capture
seamlessly into DL workflows, and showing its benefits in model development and
selection, analyses, transparency, and reproducibility. Engaging with the ML community
through case studies, intuitive interfaces, and integration with popular frameworks can
help establish provenance as a standard practice rather than an optional overhead.
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