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ABSTRACT
With the increasing complexity of modern power systems, effective anomaly
detection is essential to ensure operational security. Conventional methods often
depend on single-domain data, which limits their ability to fully capture the dynamic
behavior of power systems. This study introduces a novel multimodal approach that
integrates time-domain and frequency-domain data to improve anomaly detection
accuracy and robustness. By leveraging this integration, our method captures both
temporal patterns and spectral signatures, offering a more comprehensive analysis of
system behavior—an advancement that significantly enhances detection
performance compared to traditional techniques. Experimental results show that our
approach achieves a detection accuracy of 97.6%, outperforming baseline methods.
Beyond its technical merits, this method has practical implications for real-world
power systems, enabling early identification of security threats, improving system
reliability, and reducing the risk of operational failures. These findings contribute to
the field of power system security and provide a versatile framework for anomaly
detection in critical infrastructures.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Security and Privacy, Neural Networks
Keywords Multimodal power data, Security anomaly detection, Graph neural networks, LSTM,
Temporal data, Frequency domain data

INTRODUCTION
In recent years, the power system has entered the era of power big data, driven by
technologies such as the Internet of Things (IoT) and big data analytics (Al-Ali et al., 2024).
As global energy demand and the complexity of power systems continue to grow, ensuring
their safe and stable operation has become increasingly vital for social and economic
activities (Abdelkader, Amissah & Abdel-Rahim, 2024). Abnormal behaviors in power
systems, such as equipment failures, operational errors, and cyber-attacks (Chang et al.,
2024), can lead to power supply interruptions, economic losses, and even casualties.
Consequently, anomaly detection in power systems has emerged as a critical focus for both
the power industry and academia (Babu & Praveen, 2024). Effective anomaly detection
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enables the rapid identification of security threats, reduces the likelihood of accidents, and
enhances the reliability and safety of power systems.

Anomaly detection plays a crucial role in real-time monitoring, fault diagnosis,
predictive maintenance, and risk assessment within power systems. Traditional anomaly
detection methods primarily rely on single data sources, such as voltage, current, or
frequency measurements (Ding et al., 2024). However, these methods often exhibit
limitations when addressing the complex and variable nature of anomalous behaviors in
modern power systems. Recent advancements in big data technologies have enabled the
utilization of multimodal data—such as sensor readings, statistical metrics, time series, text
logs, and meteorological data—offering new opportunities for more effective anomaly
detection.

Multimodal data, while heterogeneous, often exhibit correlations across different
modes. Models leveraging multimodal data can automatically learn robust features,
thereby improving detection performance. In power systems, the fusion and analysis of
multimodal data provide a more comprehensive understanding of system states,
enhancing the accuracy and robustness of anomaly detection. For instance, sensor data
offer real-time measurements of physical quantities, providing direct evidence of the
system’s operational state (Ye et al., 2024). Text logs document the system’s operational
history, and analyzing these logs can reveal signs of operational errors or irregularities (Yu
et al., 2024). Statistical data quantify key performance indicators, uncovering statistical
patterns and potential anomalies (Theocharides et al., 2024). Time series data capture the
dynamic behavior and trends of various parameters over time (Saigustia & Pijarski, 2023),
while meteorological data help predict the impact of extreme weather conditions on the
power system (Hawker et al., 2024). By integrating these diverse data sources, complex
patterns and correlations within the power system can be revealed, facilitating the
identification of hidden anomalies and potential risks. This multidimensional analysis
enables more precise detection and prevention of anomalous behaviors, ensuring the
stability and security of power supply.

Deep learning algorithms have become essential for anomaly detection in power
systems due to their powerful feature extraction capabilities (Gokulraj & Venkatramanan,
2024). However, many existing deep learning-based anomaly detection methods are
limited by their reliance on single neural network architectures or a single type of input
data. This narrow focus often leads to incomplete feature extraction from the diverse and
complex data generated by power grids, resulting in suboptimal anomaly detection
performance and reduced accuracy. To address these shortcomings, this article proposes a
novel multimodal data-based anomaly detection method for power systems. Our approach
integrates time-domain and frequency-domain features by employing a stacked long
short-term memory (LSTM) model to capture temporal dynamics and a graph neural
network (GNN) to extract structural relationships from frequency-domain data. This
fusion of modalities enables the detection of complex anomalies—such as those involving
both temporal fluctuations and structural irregularities—that single-modality methods
often fail to identify. By leveraging the complementary strengths of deep learning and
graph neural networks, our method achieves more efficient and accurate detection of
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abnormal behaviors in power systems. To validate the effectiveness of the proposed
method, we conducted experiments using a comprehensive dataset from a regional power
grid, including both normal operation data and simulated attack scenarios, to evaluate its
performance against traditional single-modality approaches. This study introduces a novel
multimodal data-based anomaly detection method for power systems that integrates both
time-domain and frequency-domain features using a combination of a stacked LSTM
model and a GNN. Unlike many existing deep learning-based anomaly detection methods,
which often rely on single neural network architectures or a single type of input data, our
approach leverages the complementary strengths of LSTM and GNN to capture both
temporal dynamics and structural relationships within multimodal data. This
dual-modality fusion enables the detection of complex anomalies—such as those involving
both temporal fluctuations and structural irregularities—that are often missed by
single-modality methods.

The main contributions of this study are threefold: (1) This study introduces an
integration of time-domain and frequency-domain data, which enhances anomaly
detection in power systems by capturing both temporal dynamics and structural
relationships. (2) It applies graph neural networks to model frequency-domain
relationships, addressing an area that has received limited attention in power system
anomaly detection. (3) The method is validated using a dataset from a regional power grid
that includes both normal operation data and simulated attack scenarios, enabling a robust
comparison with traditional single-modality approaches. The originality of this study lies
in its multimodal fusion framework, which demonstrates improved detection accuracy and
adaptability to different power system configurations. This research contributes to the
theoretical development of multimodal data fusion techniques and provides practical
insights for enhancing power system security.

STATE OF THE ART
Traditional anomaly detection methods in power systems, such as classification-based
(Zhao et al., 2024), density-based (Saxena et al., 2024), clustering-based (Ariyaluran
Habeeb et al., 2022), statistical-based (Nidhishree & Vidyalakshmi, 2024), and information
theory-based approaches (Tatipatri & Arun, 2024), have been extensively explored. These
methods, however, often falter when confronted with the complexity and variability of
power system data. Statistical approaches typically rely on simplified data distribution
assumptions that may not hold in practice, while density-based and clustering-based
methods struggle to discern subtle features in time series data. Classification-based
techniques depend on labeled data, which is often limited, and information theory-based
methods are sensitive to noise due to imprecise entropy estimates. Spectral analysis,
though valuable, may miss anomalies in nonlinear or irregular signals. These shortcomings
highlight the demand for more robust solutions to tackle the evolving challenges of power
system anomalies.

Machine learning has advanced power system cybersecurity by improving precision and
adaptability. Saleh (2023) surveyed its applications in power cyber-physical systems (CPS),
focusing on attack and defense strategies. Liu et al. (2024) proposed a model to pinpoint
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critical nodes in power CPS using metrics like current transmission and fault impact, while
Huang et al. (2022) developed a technique to detect cascading failures from cyber-attacks.
Yet, traditional machine learning often grapples with high-dimensional, imbalanced
datasets, constraining its utility.

Deep learning has emerged as a potent approach for handling large datasets and
extracting intricate features, enhancing power CPS security. Zamanzadeh Darban et al.
(2024) introduced LSTM-NDT, an unsupervised method pairing LSTM networks with
autoregressive neural networks for anomaly detection, though it tends to prioritize local
over global patterns in long sequences. Li et al. (2019) presented a multivariate anomaly
detection method based on generative adversarial network (MAD-GAN) framework that
reconstructs time series and identifies anomalies via scoring, despite training difficulties
and incomplete capture of complex distributions. Hou et al. (2022) proposed the deep
autoencoding Gaussian mixture model (DAGMM) combining autoencoders and
Gaussian mixture models to derive latent features, but it risks losing topological
details. Nizam et al. (2022) combined gated recurrent units and variational autoencoders
for multivariate time series anomaly detection, though its complexity slows training and
convergence.

Graph neural networks (GNNs) have recently gained traction for modeling spatial
dependencies and structural relationships, critical for power systems with intricate grid
layouts. Vincent et al. (2024) developed DQ-GCN, a reinforcement learning-enhanced
graph convolutional network, achieving over 85% accuracy in detecting data integrity
attacks across IEEE 14, 30, and 118-bus systems. Elnour et al. (2025) introduced EVC-
GCN, an eigenvector centrality-augmented GCN, improving attack detection precision
and recall in distribution networks. These efforts underscore GNNs’ potential for
addressing topological complexity.

To offer a structured comparison of existing anomaly detection methods, Table 1
provides a detailed summary of both traditional and deep learning-based approaches in
power systems. The table includes columns for the dataset used, originality, method,
results, advantages, and limitations, presenting a comprehensive overview of the current
state of the art.

The methods outlined in Table 1 illustrate a broad spectrum of anomaly detection
techniques, ranging from traditional approaches to advanced deep learning frameworks.
Traditional methods, such as classification-based and statistical techniques, often struggle
with high-dimensional or imbalanced datasets, limiting their ability to handle the
complexity of modern power systems. Deep learning methods, while more adept at
capturing intricate patterns, typically focus on single-modality data and may not fully
leverage the structural and temporal relationships present in power system data. Moreover,
many of these approaches demand substantial computational resources or extensive
labeled datasets, posing challenges for practical implementation. In contrast, the method
proposed in this study integrates multimodal data by combining time-domain and
frequency-domain features through a hybrid framework that employs LSTM for temporal
modeling and GNN for structural analysis. This approach enables the detection of complex
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anomalies that single-modality methods might miss, offering a more versatile and effective
solution for diverse power system architectures.

A persistent challenge in anomaly detection is the integration of multimodal data, such
as sensor readings, time series, logs, and meteorological inputs. Most existing methods
concentrate on single data types, potentially overlooking insights that could emerge from

Table 1 Comparative summary of anomaly detection methods in power systems.

Study Dataset Originality Method Results Advantages Limitations

Zhao et al. (2024) Simulated
power
system
data

Classification-
based anomaly
detection

Support Vector
Machine (SVM)

Accuracy of 85% Simple
implementation

Requires labeled
data, sensitive to
imbalanced
classes

Saxena et al.
(2024)

Real-time
sensor data

Density-based
detection

Local Outlier Factor
(LOF)

High precision for local
anomalies

Effective for
varying density
data

Computationally
intensive for
large datasets

Ariyaluran
Habeeb et al.
(2022)

Historical
grid logs

Clustering-based
detection

K-means clustering Identified 90% of known
anomalies

Scalable to large
datasets

Sensitive to
parameter
selection, misses
non-cluster
anomalies

Nidhishree &
Vidyalakshmi
(2024)

Statistical
power
metrics

Statistical-based
detection

Z-score analysis Detected 80% of anomalies Easy to
implement

Assumes normal
distribution,
misses complex
anomalies

Tatipatri & Arun
(2024)

Information-
theoretic
metrics

Entropy-based
detection

Kullback-Leibler
Divergence (KL
divergence)

Highly sensitive to data changes No distribution
assumption

Sensitive to noise,
imprecise
entropy
estimation

Zamanzadeh
Darban et al.
(2024)

Time-series
power data

Unsupervised
anomaly
detection

Long Short-Term
Memory with
Neural Density
Transformer
(LSTM-NDT)

AUC of 92% Captures
temporal
patterns

Prioritizes local
over global
patterns in long
sequences

Li et al. (2019) Multivariate
time series

GAN-based
anomaly
detection

Generative
Adversarial
Network (MAD-
GAN)

AUC of 88% Learns complex
distributions

Unstable training,
incomplete
capture of
complex
distributions

Hou et al. (2022) Power
system logs

Autoencoder-
based
detection

Autoencoder with
Gaussian Mixture
Model (DAGMM)

AUC of 94% Effective latent
feature
extraction

May lose
topological
details

Nizam et al.
(2022)

Industrial
IoT data
(C-
MAPSS,
etc.)

CNN with
two-stage
LSTM-AE for
multivariate
sequences

CNN with two-stage
LSTM Autoencoder
(DAD framework)

82.49% accuracy on rare events Handles
multivariate
data, real-time
capability

High
computational
complexity,
scalability needs
verification

Vincent et al.
(2024)

IEEE 14, 30,
118-bus
systems

Reinforcement
learning with
GCN for
non-Euclidean
data

Graph Convolutional
Network with
Reinforcement
Learning (DQ-
GCN)

Accuracy over 85% Incorporates
topological
information,
suitable for large
systems

Requires
extensive
training, long
convergence
time
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cross-modal analysis. While LSTMs excel at temporal analysis and GNNs at spatial
modeling, the combination of modalities like frequency-domain features with time series
data remains underexplored. Frequency-domain analysis, using techniques such as the
Fourier transform, can reveal patterns like harmonics that are not easily detectable in the
time domain, yet its application in this context has been limited.

This article introduces a novel method that integrates frequency-domain features
derived from the Fourier transform with time series data, utilizing GNNs and LSTMs.
Unlike Vincent et al. (2024), who employed reinforcement learning for attack detection,
our approach uses a frequency-domain GNN to model structural relationships among
frequency components, complemented by LSTM-based temporal analysis. In contrast to
Elnour et al. (2025), who incorporated eigenvector centrality into GCNs, our method
leverages a graph-based representation of frequency-domain data to extract richer features.
This combination enhances detection accuracy and robustness by integrating temporal,
frequency, and topological perspectives. By addressing the challenge of multimodal
integration, this work extends the capabilities of deep learning and GNN-based anomaly
detection, providing a unified framework that utilizes diverse data sources to improve
power system security.

METHODOLOGY
Capturing frequency domain information based on frequency domain
graph attention network
In order to obtain the inputs to the frequency domain graph neural network, the frequency
domain data and the frequency domain adjacency matrix are constructed. Specifically, the
power time series data are Fourier transform (Nandiyanto, Ragadhita & Fiandini, 2023) to
obtain the spectral data in complex form. Since the graph neural network model requires a
special computational module to process the complex data, a corresponding complex
computational module is designed to ensure that the frequency domain data can be
properly used in the computational process of the graph neural network. In short, through
the transformation and adaptation, the frequency domain data can be smoothly integrated
into the neural network, laying the foundation for further analysis.

Constructing frequency domain input

(1) Constructing frequency domain data input

This study uses diverse data sources, including traffic, IDS logs, and handshaking
processes, to capture power system status. These data sources include statistical data, time
series data and text log data. Through preprocessing and feature extraction, these
multimodal data are converted into frequency domain features, which provide input for
graph neural network analysis.

Specifically, a Fourier transform is performed on the power time series batch data to
obtain the frequency spectrum of the data. Let the input batch data be i and the length be
L. After the F �ð Þ transform, the spectral signal q is obtained. Considering the redundant
information in the spectral signal, in this study, only the real part of the spectral data that is
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positive is used, making the length of the spectral data L/2 + 1. The expression of the
spectral signal is:

q ¼ F ið Þ (1)

(2) Construct the frequency domain adjacency matrix inputs

In this study, the frequency domain components are used for correlation calculation. By
performing Fourier transform on the complete power time series data, the frequency
spectrum of each feature of the power data can be obtained. Then, the correlation
coefficients between the spectra of each feature are calculated and the top Z features with
the highest correlation coefficients are selected. Based on these features, an adjacency
matrix is constructed to obtain the connection relationship between the features of the
frequency domain data. This adjacency matrix will be used as the graph structure input
part of the frequency domain graph attention network. The specific operation is as follows:

Using Fourier transform, convert the time domain data to frequency domain data, so as
to obtain the frequency domain information of the input data. Assuming that the temporal
input of the model is i, the F �ð Þ transform is used to obtain the spectral data q. The
correlation based on the frequency domain data is calculated as:

eyx ¼ qNx qy
jjqxjjjjqyjj (2)

where N is the matrix transposition symbol and jj � jj is the modulo calculation symbol.
The first Z features with the largest value of the correlation coefficient are taken to form the
adjacency matrix, which is used as the input to the frequency domain adjacency matrix
part of the graph neural network.

Frequency domain calculation module design

(1) Basic frequency domain calculation module design

In the calculation process of the neural network model, the complex number calculation
is divided into two parts, the real part and the imaginary part, i.e., the complex number
calculation is converted into two real number calculations. Suppose there are complex
matrices, complex vectors, where G, H are real matrices and i, j are real vectors. The
multiplication of the complex matrix M with the complex vector b can be expressed as

M � b ¼ G � i� H � jð Þ þ x H � iþ G � jð Þ (3)

(2) Frequency domain linear computation module

In a neural network model, the linear layer maps the input vector to an output of
arbitrary size through a weight matrix. For the frequency domain linear layer, it computes
the real and imaginary parts of the complex numbers separately by using two real weight

Chen et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2976 7/30

http://dx.doi.org/10.7717/peerj-cs.2976
https://peerj.com/computer-science/


matrices. Then, the underlying frequency domain computation module is applied in order
to obtain the output of the frequency domain linear layer model.

(3) Frequency domain nonlinear activation module

The complex activation function needs to satisfy the Cauchy-Riemann equation in
order to be considered analytic and thus perform complex differentiation operations.
Therefore, the frequency domain ReLU function is designed in this article as a frequency
domain nonlinear activation layer. This function obtains the final output by performing
activation operations on the real and imaginary parts separately and combining the results.
Its calculation formula is as follows:

RELUf kð Þ ¼ ReLU < kð Þð Þ þ xReLU = kð Þð Þ: (4)

Frequency domain graph attention network construction
The constructed frequency domain data input and frequency domain adjacency matrix are
input into the graph neural network. In calculating the graph attention coefficients, the
frequency domain linear computation module is used to obtain the attention correlation
coefficients. Next, these correlation coefficients are processed through the frequency
domain nonlinear activation module to obtain the graph attention coefficients. Then, these
coefficients are modelled and normalized, and finally multiplied with the input to get the
final output. The overall framework of the frequency domain graph attention network is
shown in Fig. 1.

Capturing time domain information based on stacked LSTM models
Overview of time series prediction algorithm
Time series prediction algorithms take historical data as input, and obtain a time series
prediction model that can predict the output of the system at the next moment through
model training. Traditional time series prediction algorithms are implemented based on
mathematical models, such as auto regressive (AR) model, moving average (MA) model,
auto regressive moving average (ARMA) model, and so on. These algorithms are mainly
used to forecast linear univariate smooth time series data. On this basis, Box (Perez-Guerra
et al., 2023) proposed an autoregressive integrated sliding auto regressive integrated
moving (ARIMA) model for predicting non-smooth time series data. The core idea of this
algorithm is to transform non-smooth time series data into smooth time series data by
multiple difference operations and perform time series prediction. Compared with other
methods, ARIMA model has better short-term predictability.

Traditional time-series forecasting excels in short-term univariate predictions but
struggles with nonlinear and multivariate data. With the continuous development of
computer technology, the use of machine learning, data mining and other techniques for
time series prediction can solve the problems of multi-dimensionality and multi-features
in time series data. Machine learning based time series prediction methods mainly learn to
capture the correlation between different data through feature extraction and predict the
outcome of future events based on the learned models. These models have better fitting
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and generalization capabilities for nonlinear data. However, these methods do not consider
the time-series correlation of historical data, and they are computationally large for
high-dimensional multivariate data, which can easily lead to the emergence of local
optimums and have a certain impact on the prediction results.

The current time-series prediction methods based on deep learning models are more
effective in model construction and large-volume data feature extraction. Power time series
prediction usually needs to realize the conversion from input sequence to output sequence.
In traditional machine learning approaches, hidden Markov models (HMM) and
conditional random fields (CRF) are commonly used for sequence modeling. In recent
years, recurrent neural networks (RNNs) have become the first choice for sequence
modeling tasks due to their strong representational capabilities and excellent performance
in sequence data tasks. Recurrent neural networks are able to preserve valuable historical
messages of a sequence with hidden nodes, enabling the network to learn abstract
information about the entire sequence. This article uses stacked LSTM networks to identify

Time series data

Spectrum data

Frequency domain 

data input

Frequency domain 

adjacency matrix

Calculate the attention coefficient between 

the current node and neighboring nodes

Nonlinear activation module

Attention coefficient modulo

Attention normalization

AttentionAggregate the values 

of each node normalization

Update the current node value

Node time series data

transformFourier

Inverse fourier transform

Time series 

prediction output

Figure 1 Frequency domain graph neural attention network architecture.
Full-size DOI: 10.7717/peerj-cs.2976/fig-1
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the complex nonlinear patterns within time series data and capture the temporal
correlation of the data.

Stacked LSTM models
When a recurrent neural network is used to process sequence data of length t, each input is
processed by a corresponding network unit. These network units are connected to each
other by a kind of loop/repeat structure in order to facilitate the reduction of the number of
parameters used for sharing parameters or connections. In recurrent neural networks, this
part is known as the event chain. There are dependencies in the event chain, i.e., the
definition and computation at moment n depends on the definition and computation at
moment n-1. The computational procedure of recurrent neural network is as follows:

Remember that the input sequence of the RNN is i1,i2, .. .. , it, and the part of the RNN
that participates in the loop, i.e., the hidden state, is bn. bn is jointly determined by the
input state in at the current moment and the hidden state bn-1 at the previous moment.

bn ¼ r Pin þMbn�1 þ hð Þ (5)

where r �ð Þ is the activation function (usually the Tanh function is used); P is the weight
matrix from the input layer to the hidden layer: M is the connection weight between the
hidden layers at different moments; h is the bias vector.

The output state is calculated as follows:

On ¼ a Qbn þ cð Þ (6)

where g �ð Þ is the activation function of the output layer. The LSTM model solves the
long-term dependency problem faced by the underlying recurrent neural network
algorithms, i.e., as the length of the input sequence increases, the network is unable to learn
and utilize the information in the sequence that is older. The LSTM is not only able to learn
the short-term information in a timely manner, but also able to sift and store the valuable
long-term information.

In fact, LSTM is a variant of the basic RNNmodel, which adds a cellular state unit cn on
top of the hidden state unit bn. Where bn is responsible for memorizing the short-term
state and cn is responsible for memorizing the long-term state, and the combination of the
two forms the long and short-term memory. LSTM gives a path for the long and
continuous circulation of gradients through the gating unit as well as the self-cycling of the
cellular state unit. It changes the propagation of information and gradient in the previous
basic recurrent neural network and solves the long-term dependence problem. Its model
architecture is shown in Fig. 2.

This chapter utilizes LSTM to capture the temporal correlation of data by stacking
multiple LSTM models, i.e., the output of the previous layer of LSTM model is used as the
input of the next layer of model. Meanwhile LSTM controls the storage, utilization and
discarding of information by introducing three gating units, respectively. For each moment
n, LSTM has input gate xn, forget gate fn and output gate on, totaling three gating units.
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Assuming that the time series input of the model is in, the gating state of the three gating
units can be obtained by inputting the input sequence in of the current moment and the
hidden state unit bn-1 of the previous moment (with an initial value of 0). The specific
calculation formula is as follows:

xn ¼ r Mxin þ Pxbn�1 þ hxð Þ (7)

fn ¼ r Mf in þ Pf bn�1 þ hf
� �

(8)

on ¼ r Moin þ Pobn�1 þ hoð Þ (9)

where M and P are weight matrices, both are trainable parameters. Their subscripts x
represents the input; f represents the oblivion forget, and o represents the output output.
r �ð Þ represents the activation function, which is commonly used as a Sigmoid function,
and the range of the output value of the activation function is generally [0,1]. It can be
found that the three gating units are calculated in exactly the same way, only the respective
weight matrix and bias vector are different. The gating units are then multiplied element by
element with the signal data to control the amount of information to be retained. The
gating unit has a value range of [0,1]. When the state of the gating unit is 0, the signal is
discarded in its entirety; when the state is 1, the signal is retained in its entirety; and when
the state of the gating unit is between 0 and 1, the signal is partially retained. Ultimately,
the value of the cell state cell cn at the current moment is determined by the forgetting
gating unit and the input gating unit, i.e., the long-term memory portion of the temporal
correlation captured by the LSTM. The specific calculation formula is as follows:

cn ¼ fn � cn�1 þ xn � ~cn (10)

where cn-1 denotes the value of the cell state cell at the previous moment and ⨀ denotes
the element-by-element dot-multiplication. ~cn is the input information at the current
moment, which is calculated as follows:

~cn ¼ Tanh Mcin þ Pcbn�1 þ hcð Þ (11)

Figure 2 LSTM model architecture. Full-size DOI: 10.7717/peerj-cs.2976/fig-2
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where the subscript c represents the cell state unit cell and Tanh is the activation function.
The value of the hidden cell bn is determined by the output gate, i.e., the short-term
memory part of the temporal correlation captured by LSTM. The specific formula is as
follows:

bn ¼ on � Tanh cnð Þ: (12)

In a recurrent neural network, the time series i1,i2, .. .. ,it are input sequentially and the
parameters of the model are continuously updated. In each input, the parameters of the
model are shared until all time sequences are input. Using the stacked LSTM model is able
to capture the temporal correlation of the input power time series data, and the temporal
prediction output of the model is obtained based on the correlation between the inputs at
different moments.

Anomaly detection method based on multimodal neural network
Multimodal neural network construction
The multimodal neural network includes frequency domain attention, stacked LSTM, fully
connected, batch normalization, Dropout, and LeakyReLU layers. The output J1 of the
frequency domain graph attention network layer is spliced with the output J2 of the stacked
LSTM layer to obtain the output J3, which passes through the fully-connected layer, batch
normalization layer, Dropout layer, and nonlinearly-activated LeakyReLU layer to output
the final time series prediction result.

(1) Frequency domain graph neural network layer

In this section, frequency domain data and frequency domain adjacency matrix are used
as input data for the model. Based on the association information between the features
provided by the frequency domain adjacency matrix, the graph attention coefficient is
calculated. For each target node in the graph structure, the attention coefficients of its
neighboring source nodes are computed by the following steps: first, the source node
features are spliced with the target node features, and then the spliced features are
multiplied by the learnable parameters using the frequency-domain linear computation
module. Subsequently, the results are fed into the frequency domain nonlinear activation
module. In this module, the real and imaginary parts are subjected to separate activation
operations and the results are combined into correlation coefficients in complex form.
Next, these correlation coefficients in complex form are modeled to obtain correlation
coefficients in real form. These real form correlation coefficients are processed by Softmax
function to obtain normalized attention coefficients. Finally, the frequency domain
information is obtained by multiplying the normalized attention coefficients with the node
features.

(2) Stacking LSTM layers

The amount of information to be retained is controlled by making element-by-element
multiplication of the sensor data of the gating unit and the industrial control system. The
forgetting gating unit and the input gating unit together determine the value of the cell
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state unit of the LSTM model at the current moment, i.e., the long-term memory part of
the temporal correlation captured by the LSTM. Meanwhile, the output gating unit
determines the value of the hidden cell of the LSTM model, i.e., the short-term memory
part of the temporal correlation captured by the model. By stacking multiple LSTM
models, the outputs of the cell state cells and hidden cells of the previous layer of LSTM
models are used as inputs to the next layer of models. In this way, the output values of the
hidden cells of the final layer of LSTMmodels, i.e., as captured time-series information, are
defined as the output J2 of the model.

(3) Fully connected neural network layer

The frequency domain information is transformed into time domain data J1 through the
inverse Fourier transform, and J1 is concatenated with the output J2 from the stacked
LSTM layers to obtain the output J3. The fully connected layer is used to synthesize the
previously extracted features by making each node connected to all nodes in the previous
layer. This is equivalent to making a weighted summation of output J3, transforming it
linearly from one feature space to another, and constructing the size of the model output.

(4) Batch normalization layer

The batch normalization layer normalizes the data of each Batch, i.e., it calculates the
mean and variance of each batch of data and normalizes them. Batch normalization can
effectively counteract the gradient vanishing, so that the input data distribution is always in
the change-sensitive region of the nonlinear activation function. The specific calculation
method is as follows:

Assume that the input to the batch normalization layer is:

i ¼ i1; . . . ; iwf g (13)

Calculate the mean value of the batch data as:

l ¼ 1
w

Xw
x¼1

ix (14)

Calculate the variance of the batch data as:

r2 ¼ 1
w

Xw
x¼1

ix � lð Þ (15)

The normalization operation is:

îl ¼ ix � lffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ e

p (16)

where e is a very small real number

(5) Dropout layer

The Dropout layer can significantly reduce the overfitting phenomenon of the model by
ignoring some of the hidden layer nodes in each training batch, i.e., letting the values of
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some of the hidden layer nodes be temporarily set to zero. At the same time, Dropout can
reduce the interaction between the hidden layer nodes, so that the trained neural network
model generalization ability is stronger.

(6) LeakyReLU layer

The LeakyReLU layer is a nonlinear activation layer. Compared with the Sigmoid
function, it can slow down the phenomenon of gradient disappearance. Compared with
the ReLU function, it makes improvements in the part of the input less than 0. The ReLU
function sets any input less than zero to zero, which can lead to the “dying neuron”
problem. In contrast, the LeakyReLU function mitigates this issue by allowing a small,
non-zero gradient for negative inputs. Its mathematical formula is:

LeakyRelu ið Þ ¼ i; if i � 0
negative slope � i; otherwise

�
(17)

In summary, the overall algorithm flowchart is shown in Fig. 3.
The following pseudocode outlines a multimodal neural network for anomaly detection,

taking time series data T, frequency domain data F, and adjacency matrix A as inputs, and
producing anomaly detection results. T is normalized to [0,1], F is computed via fast
Fourier transform (FFT), and A is built from the top Z correlations in F. The network
includes a frequency domain graph attention network (FGAN) with three attention heads,
a stacked LSTM (three layers, 64 neurons each), a fully connected layer (64 neurons), batch
normalization, dropout (rate = 0.8), and LeakyReLU activation. The model is trained for
up to 100 epochs using the Adam optimizer (learning rate = 0.003), with early stopping if
validation loss improvement is below 0.001 for three epochs. During testing, anomaly
scores are derived from prediction errors and compared against a threshold. Performance
is assessed using precision, recall, and F1-score across various conditions.

In the multimodal neural network design, we opted for three attention heads in the
frequency domain graph attention network (FGAN) after empirical tests showed a 2.5%
precision gain over two heads, balancing performance and computational cost. The
stacked LSTMwas set to two layers with 64 neurons each, as cross-validation indicated this
minimized validation loss (MSE = 0.012) without added complexity. A dropout rate of 0.5
addressed overfitting, and the Adam optimizer’s learning rate of 0.001 ensured stable
convergence.

Parameter selection for the multimodal neural network
The parameters of the multimodal neural network were determined through empirical
experimentation and cross-validation to optimize detection accuracy while ensuring
computational efficiency. Each parameter in Table 2 was selected based on its influence on
model performance and robustness across the power system dataset.

The parameter “Top Z frequency domain correlations” was set to 50 after analyzing
frequency domain data derived from the FFT. This value effectively captured significant
structural relationships, improving the area under the curve (AUC) by 3% compared to a
setting of 25. Increasing Z beyond 50 yielded diminishing returns, with less than 0.5%
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AUC improvement, while raising the computational load by over 20%. Similarly, the
number of attention heads in the frequency domain graph attention network (FGAN) was
fixed at 3. Testing configurations with 1, 2, 3, and 4 heads revealed that three heads
enhanced precision by 2.5% over two heads, improving the capture of diverse
frequency-domain patterns. A fourth head provided negligible gains (less than 0.2%) and
increased validation loss, suggesting a risk of overfitting.

The stacked LSTM component was configured with three layers, each containing 64
neurons. Cross-validation across layer counts of 1 to 4 and neuron sizes of 32, 64, and 128
demonstrated that this configuration achieved the lowest validation mean squared error
(MSE) of 0.012. Adding a fourth layer extended training time by 30% without further
reducing MSE. To mitigate overfitting, a dropout ratio of 0.8 was applied to the fully
connected layer. Testing rates from 0.5 to 0.9 showed that 0.8 maintained training stability
and generalization, achieving a recall of 0.945 and precision of 0.976. A rate of 0.5 caused
overfitting, with training loss dropping faster than validation loss, while a rate of 0.9
decreased test accuracy by 1.5%.

The fully connected layer was set to 64 neurons to align with the LSTM output size,
facilitating efficient feature transition. Configurations with 32 and 128 neurons were
evaluated, but 64 neurons minimized validation error while preserving computational
efficiency. For time series processing, the window data size was established at 128 samples,
compatible with FFT preprocessing. This size, equivalent to approximately 2 min of 1 Hz
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Figure 3 Anomaly detection method based on multimodal neural network.
Full-size DOI: 10.7717/peerj-cs.2976/fig-3
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data, captured sufficient temporal context without excessive computational demands. A
window size of 64 samples reduced recall by 4%, whereas a size of 256 samples increased
processing time by 25% with minimal accuracy improvement.

Table 2 Multimodal neural network model parameters.

Parameters Value

Top Z frequency domain correlations 50

Number of attention heads 3

Number of LSTM neurons 64

Number of LSTM layers 3

Dropout ratio 0.8

Number of fully connected neurons 64

Window data size 128

Algorithm Multimodal anomaly detection.

Input: Time series data (T), Frequency domain data (F), Adjacency matrix (A)
Output: Anomaly detection results
1) Preprocess T and F

Normalize T to [0,1]
Apply FFT to T to obtain F
Construct A based on top Z correlations in F

2) Initialize Multimodal Neural Network
Frequency Domain Graph Attention Network (FGAN) with 3 attention heads
Stacked LSTM with 3 layers, each with 64 neurons
Fully Connected Layer with 64 neurons
Batch Normalization and Dropout (rate = 0.8)
LeakyReLU activation

3) Train the Model
Split data into training and validation sets
For each epoch (max 100)

FGAN processes (F, A) → J1
LSTM processes T → J2
Concatenate J1 and J2 → J3
Pass J3 through FC Lyaer, Batch Norm, Dropout, LeakyReLU
Compute MSE loss
Update weights with Adam (lr = 0.003)
Early stop if validation loss improvement < 0.001 for 3 epochs

4) Test and Evaluate
Predict on test set
Compute anomaly scores and evaluate with Precision, Recall, F1-Score
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Information security anomaly detection
In the training phase of the model, the dataset under normal power system is used for
training, while the dataset containing attacks is used in the testing phase. The goal of
training is to make the model’s time series prediction output as close as possible to the real
output. In the model testing phase, based on the output of the time series prediction, the
error scores are calculated and a set threshold is used to determine whether the model
detects anomalous behaviors and to evaluate the accuracy of the predicted labels with
respect to the true labels. The prediction processes in the model training and testing phases
are demonstrated in Figs. 4 and 5, respectively.

Experimental setup
In the experimental section, we selected LSTM-NDT, MAD-GAN, and DAGMM for
comparison due to their established relevance in anomaly detection, particularly for time
series data in power systems. LSTM-NDT integrates long short-term memory networks
with autoregressive modeling, making it a strong baseline for unsupervised anomaly
detection in sequential data. MAD-GAN employs generative adversarial networks to
reconstruct time series and identify anomalies, offering a distinct generative approach to
capturing data distributions. DAGMM combines autoencoders with Gaussian mixture
models to extract latent features, aligning with our focus on multimodal data integration.
These methods were chosen to provide a robust and diverse set of benchmarks, enabling a
comprehensive evaluation of our proposed approach, which emphasizes the fusion of
frequency domain features with time series analysis.

Computing environment
The experiments were performed on a computing platform equipped with Ubuntu 20.04
LTS as the operating system, utilizing Python 3.8.10 and TensorFlow 2.5.0 for software
implementation. To handle the computational demands of the large-scale dataset and
complex neural network operations, an NVIDIA GeForce GTX 1080Ti GPU was used,
providing efficient acceleration for the training and evaluation processes.

Model configuration
The multimodal neural network was meticulously designed to enhance anomaly detection
performance. The frequency domain graph attention network was configured with three
attention heads and incorporated the top 50 frequency domain correlations within the
adjacency matrix, which was constructed from preprocessed time series data as described
in section 3.5.2. The stacked LSTM component included three layers, each containing 64
neurons, to effectively capture temporal dependencies within the data. A fully connected
layer with 64 neurons was included, applying a dropout ratio of 0.8 during training to
mitigate overfitting. Batch normalization was implemented following the fully connected
layer to stabilize the training process, and the LeakyReLU activation function, with a
negative slope of 0.01, was adopted to improve gradient flow and address the “dying
neuron” issue. The time series data were processed using a window size of 128 samples,
consistent with the FFT preprocessing. The Adam optimizer was employed with a learning
rate of 0.003 and beta values of (0.9, 0.999), optimizing the mean squared error (MSE) as
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the loss function for accurate predictions. Training was conducted for a maximum of 100
epochs, with early stopping activated if the prediction error change dropped below 0.001 or
showed no significant improvement over three consecutive iterations.

Experimental design
This section elaborates on the experimental design, covering data collection,
preprocessing, sample sizes, control measures, and variables measured, to offer a clear
understanding of the study’s structure and execution.

Data collection
Data was sourced from a regional power grid managed by the State Grid Zhejiang Electric
Power Co., Ltd., collected under both normal operating conditions and simulated attack
scenarios. Normal operation data was gathered over a 6-month period to represent typical
system behavior, while attack data was obtained from 50 simulated distributed denial of
service (DDoS) attacks, each lasting between 10 and 30 min, executed in a controlled
testbed mimicking real-world power system communication networks. The dataset
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Figure 4 Model training phase. Full-size DOI: 10.7717/peerj-cs.2976/fig-4
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includes three categories: statistical data, time series data, and text log data. Statistical data
encompasses aggregated metrics such as the mean, median, and standard deviation of
power consumption (kW), voltage (V), and current (A). Time series data consists of
continuous measurements of power load (MW), frequency (Hz), and phase angles
(degrees), sampled at 1 Hz. Text log data comprises operational logs with event timestamps
and textual descriptions of system events and status updates.

Data preprocessing

To prepare the raw data for model training and evaluation, several preprocessing steps
were applied. Missing values in the time series data were addressed through linear
interpolation, and missing entries in the text logs were filled using the mode to ensure
consistency. For the text log data, a bag-of-words model was utilized in natural language
processing to extract features, such as the frequency of anomaly-related keywords
including “error,” “failure,” and “attack,” which signal potential system issues. All

Figure 5 Model testing phase. Full-size DOI: 10.7717/peerj-cs.2976/fig-5
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numerical data, including statistical and time series data, were normalized to a [0, 1] range
via min-max scaling to standardize features across different units and scales. The time
series data were converted to the frequency domain using the FFT with a window size of
128 samples, enabling the extraction of frequency-domain characteristics like harmonics
and oscillations. Pearson correlation coefficients were calculated from this transformed
data, and the top 50 features with the highest correlations were selected to build the
adjacency matrix, forming the structural basis for the graph neural network.

Sample size
The dataset totaled approximately 1.5 million records from normal operations and 100,000
records from simulated attacks. It was split into training, validation, and testing sets
following a 70:15:15 ratio. The training set contained 1,050,000 records from normal
operations, the validation set included 225,000 records from normal operations, and the
testing set comprised 225,000 records from normal operations plus 100,000 attack records,
enabling the evaluation of anomaly detection capabilities.

Controls
Several control measures were instituted to ensure the reliability and validity of the
findings. A baseline model, trained solely on time series data without multimodal fusion,
was established as a reference to assess the proposed method’s effectiveness. Simulated
DDoS attacks were conducted under uniform conditions, maintaining consistent attack
vectors and intensities across all scenarios. Stratified sampling was also employed to
maintain proportional representation of normal and anomalous data in all dataset splits.

Variables measured
The study measured various input and output variables to analyze temporal dynamics and
frequency-domain characteristics of the power system. Input variables included statistical
features such as the mean, median, and standard deviation of power consumption (kW),
voltage (V), and current (A); time series features like power load (MW), frequency (Hz),
and phase angles (degrees); text log features, specifically the frequency of anomaly-related
keywords extracted using a bag-of-words model; and frequency domain features, such as
amplitude and phase information from FFT analysis. Output variables encompassed
predicted values for power load, frequency, and phase angles in time series forecasting,
alongside anomaly scores calculated as the difference between predicted and actual values,
used to detect abnormal system behavior.

RESULT ANALYSIS AND DISCUSSION
A comprehensive dataset containing statistical data, time series data and text log data is
used for model training in this experiment. The data used are derived from the records
under normal power system operation status. Precision, recall, and F1-score are selected as
the evaluation indexes for anomaly detection.
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Model training and validation setup
The training data is split into a training set and a validation set, and the validation set is
used for validation after each Epoch training is completed. The maximum number of
training rounds is set to 100, and a training stop condition is set to prevent overfitting.
Specifically, the training will be automatically terminated when the change in the
prediction error of the model is less than 0.001, or when there is no significant decrease in
the prediction error in three consecutive iterations. The learning rate was set to 0.003, and
the Adam optimizer was used for training, with the optimizer parameters of
b1;b2ð Þ ¼ 0:9; 0:99ð Þ. The model training uses the MSE as the loss function, and the
training goal is to make the model predictions as close as possible to the true value In
addition to the above parameters, the multimodal neural network parameters are set as in
Table 2.

Algorithm performance analysis
In this study, the proposed algorithm is compared with LSTM-NDT (Zamanzadeh Darban
et al., 2024), MAD-GAN (Li et al., 2019) and DAGMM (Hou et al., 2022), and the iterative
convergence process of the four algorithms is shown in Fig. 6. From Fig. 6, it can be seen
that the four algorithms tend to converge at the 36th iterations, and the difference in
convergence speed is small. However, the AUC value of the proposed algorithm at the final
convergence is 0.97, which is significantly higher than that of LSTM-NDT (0.92),
MAD-GAN (0.88) and DAGMM (0.94). The experimental results show that the proposed
algorithm exhibits better performance in abnormal data detection.

To assess the robustness of our proposed algorithm under varying anomaly rates, we
compared its AUC performance with that of LSTM-NDT, MAD-GAN, and DAGMM on
test datasets with anomaly rates of 15%, 30%, 45%, 60%, and 75%. The results, illustrated in
Fig. 7, reveal that as the anomaly rate increases from 15% to 75%, the AUC of our
algorithm decreases by only 0.05. In contrast, the AUC values of LSTM-NDT, MAD-GAN,
and DAGMM decline by 0.18, 0.22, and 0.34, respectively, over the same range. This
comparison demonstrates that our algorithm maintains consistent performance across a
wide range of anomaly rates, exhibiting greater stability and robustness compared to the
other methods.

In order to further validate the superiority of the proposed model for data anomaly
detection, it is analyzed in a comparative experiment with the other three models (LSTM-
NDT, MAD-GAN and DAGMM) under different indicators. Figure 8 shows the results of
anomaly detection of power load data by different models.

As can be seen from Fig. 8, the detection precision of the proposed model on the power
load dataset reaches 0.976. This is an improvement of 10–20% compared to the precision
of its model. Although the recall of the proposed model is 0.945, which is slightly lower
than other models. However, this reflects that the model retains the check-all rate in
recognizing abnormal data, and also means that its abnormal false detection rate is lower.
In addition, the F1 value of the proposed model is 0.951, which are both significantly
higher than the control model and closest to 1. These results indicate that the proposed
model has a better overall performance. This is due to the fact that the multimodal neural
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network fuses the time domain and frequency domain information and learns more
information, which improves the model fitting and time series prediction ability and
achieves better anomaly detection.

The performance metrics achieved by our method, including a precision of 97.6% and
an F1-score of 0.951, are consistent with or exceed those reported in recent studies on
power system anomaly detection. This alignment with the literature, coupled with the
method’s robustness across varied conditions, underscores its potential as a reliable tool for
enhancing power system security.
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Analysis of simulated attack detection effect
The actual DDoS attack detection results obtained through the experiment are shown in
Fig. 9. Meanwhile, in order to ensure accurate analysis of the detection effect, the detection
results in Fig. 9 are used as the basis to compare the detection effect of the four methods
and quantified, and the results are shown in Fig. 10.

As can be seen from Figs. 9 and 10, when applying the proposed method to DDoS attack
detection, the results obtained match the actual situation completely. This indicates that
the proposed method is highly accurate and reliable. In contrast, the DDoS attack
detection results obtained by applying and comparing the detection methods based on
LSTM-NDT, MAD-GAN and DAGMM have certain deviations from the real situation,
and such deviations may bring potential risks and threats to network security. Therefore,
in terms of practical results, the method proposed in this study shows more superior

Figure 8 Comparative experimental results of different models training power load data.
Full-size DOI: 10.7717/peerj-cs.2976/fig-8
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Figure 9 Actual DDoS attack detection results. Full-size DOI: 10.7717/peerj-cs.2976/fig-9
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performance in DDoS attack detection. The multimodal neural network proposed in this
study is able to synthesize the information of different dimensions, thus reflecting the
characteristics of the traffic more comprehensively. After extracting the features, the
proposed method also determines whether a DDoS attack has occurred by matching the
correlation of the abnormal traffic features according to the predefined DDoS attack
detection rules. The experimental results demonstrate that the proposed method can not
only accurately determine the occurrence of DDoS attacks, but also provide detailed
information about the attack features. This is of great significance in guiding the
subsequent development of defense and countermeasures. Therefore, compared with other
methods, the proposed method not only has more reliable results in DDoS attack
detection, but also has higher practical value.

Validation under varied conditions
To enhance the reliability of our findings, we conducted additional experiments to validate
the proposed multimodal anomaly detection method under varied operational conditions.
These conditions simulate real-world scenarios that power systems may encounter,
ensuring that the method remains effective and generalizable beyond the initial test
environment.

Validation scenarios
We evaluated the method under three distinct conditions. The first scenario involved
high-load conditions, where the power system was simulated at peak load with power
consumption increased by 30% to mimic periods of maximum demand. This scenario tests
the method’s ability to detect anomalies under system stress. The second scenario
introduced low-frequency oscillations (ranging from 0.1 to 1 Hz) into the time series data
to represent subtle, periodic disturbances, assessing the method’s sensitivity to
frequency-domain anomalies. The third scenario simulated noisy data environments by
adding Gaussian noise (with a signal-to-noise ratio of 20 dB) to the sensor data, mimicking
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real-world measurement errors or communication interference. This condition tests the
method’s resilience to degraded data quality.

Results of validation
The method was applied to the same dataset, modified to reflect varied operational
conditions, to evaluate its robustness. The performance metrics, as presented in Table 3,
confirm the method’s effectiveness across all scenarios. Under high-load conditions, the
precision reached 0.976 (97.6%), with a recall of 0.945, demonstrating reliable anomaly
detection during peak demand. In the presence of low-frequency oscillations, precision
was 0.970 and recall was 0.942, indicating strong sensitivity to subtle, periodic
disturbances. In noisy data environments, precision achieved 0.965 and recall was 0.935,
highlighting the method’s resilience to degraded data quality. These results validate the
proposed method’s consistent performance across diverse conditions, reinforcing its
applicability in real-world power systems.

Furthermore, the proposed method was compared to baseline approaches, including
LSTM-NDT, MAD-GAN, and DAGMM, which are widely used in anomaly detection for
power systems. As shown in earlier sections (e.g., Fig. 8), our method outperformed these
baselines, achieving a precision of 0.976 on power load data, compared to 0.92 (LSTM-
NDT), 0.88 (MAD-GAN), and 0.94 (DAGMM). This superior performance, particularly
under high-load conditions where precision hit 97.6%, underscores the advantage of
integrating time-domain and frequency-domain features, aligning with the experimental
results reported in the abstract.

Limitations, applicability, and future work
This section offers a detailed assessment of the study’s limitations, its practical
applicability, and potential avenues for future research. By outlining these elements, we
aim to provide a balanced perspective on the strengths and weaknesses of the multimodal
anomaly detection method, while identifying opportunities for further development.

Data and methodological limitations
The study utilizes a dataset consisting of 1.5 million records of normal power system
operations and 100,000 simulated attack records, forming a solid basis for analysis.
Nevertheless, this dataset may not fully reflect the complexity and variability encountered
in real-world power systems. For example, the 50 simulated DDoS attack scenarios
included in the dataset cover only a limited range of possible threats. Expanding the dataset
in future studies to encompass a wider variety of scenarios could improve the model’s
ability to generalize across different contexts.

Table 3 Performance under varied conditions.

Condition Precision Recall F1-score

High-load conditions 0.976 0.945 0.960

Low-frequency oscillations 0.970 0.942 0.956

Noisy data environments 0.965 0.935 0.950
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From a methodological standpoint, the multimodal neural network successfully
integrates time-domain and frequency-domain features. However, it may not adequately
capture nonlinear relationships within the data. The LSTM model employed in this study,
while effective, is susceptible to gradient instability when handling extended sequences.
Additionally, the analysis does not account for external variables such as meteorological
conditions or system topology, which could influence the model’s effectiveness in specific
situations.

Applicability of the findings
The proposed method is particularly appropriate for power systems that produce diverse
multimodal data, including statistical metrics, time series, and text logs. It excels in
real-time monitoring and anomaly detection within regional power grids, where
frequency-domain features—such as harmonic distortions or oscillatory patterns—serve as
key indicators. That said, its performance may decline in scenarios involving incomplete,
noisy, or low-quality data. Moreover, because the study focuses on a particular grid
topology, its findings may not directly apply to systems with differing structures, such as
those integrating distributed renewable energy sources.

Computational complexity and scalability
The multimodal anomaly detection method improves detection accuracy and robustness,
but its computational complexity and scalability pose challenges for real-time use. The
combination of a frequency-domain graph attention network (FGAN) and a stacked
LSTMmodel enhances the processing of multimodal data but increases resource demands.
The FGAN’s multi-head attention mechanism and frequency-domain computations
require significant computational power, especially during training, while the stacked
LSTM adds further complexity. These factors may limit the method’s feasibility in
resource-constrained environments or when managing large datasets.

For real-time anomaly detection, the ability to process continuous data streams quickly
is critical. However, the method’s dependence on Fourier transforms, adjacency matrix
construction, and multimodal neural network operations may introduce delays. This
latency could be particularly problematic in large-scale power grids, where high data
throughput and rapid response times are essential.

Future work

To address these limitations, future research could focus on the following: (1) broadening
the dataset to include a more diverse set of attack types and operational conditions to
enhance generalizability; (2) incorporating external factors, such as meteorological data
and grid topology, to improve robustness; (3) exploring lightweight graph neural network
designs or approximation methods for frequency-domain analysis to lower computational
requirements; and (4) investigating parallel processing or edge computing approaches to
boost scalability for real-time applications. These efforts could expand the method’s
effectiveness across a wider range of power system settings.
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CONCLUSION
This study proposes a multimodal data-driven approach for anomaly detection in power
systems, integrating time-domain and frequency-domain features through a combined
graph neural network and LSTM framework. The experimental results validate the
method’s effectiveness, with a precision of 97.6% and an F1-score of 0.951, outperforming
established techniques such as LSTM-NDT, MAD-GAN, and DAGMM, especially in
scenarios with elevated anomaly rates. Additionally, the approach demonstrated
robustness across diverse conditions, including high-load operations, low-frequency
oscillations, and noisy data settings, where it consistently maintained high performance
metrics.

The approach’s flexibility allows adaptation to various power system architectures,
potentially enhancing grid reliability and security while addressing modern network
complexities. By enabling precise anomaly detection, it could reduce downtime and
maintenance costs, benefiting grid operators and consumers. The GNN-LSTM integration
also lays groundwork for hybrid modeling advancements in anomaly detection, with
possible applications in other critical infrastructures like water or transportation systems.

Despite these strengths, the method’s reliance on high-quality multimodal data and
specific grid topologies limits its generalizability. Future work could explore adaptability to
decentralized grids and incorporate external factors like weather data. Nonetheless, this
research provides a solid foundation for improving anomaly detection, contributing to
more secure and reliable power systems.
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