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ABSTRACT

Drug-induced liver injury (DILI) is a leading cause of late-stage drug attrition and
post-approval withdrawals, making early in silico risk assessment essential for drug
safety. We present iDILI-MT (identifying drug-induced liver injury compounds with
a multi-head Transformer), a self-contained computational framework that
integrates a feed-forward network for sequential feature extraction, a multi-head
Transformer encoder for contextual representation learning, and a squeeze-and-
excitation attention module for channel-wise feature recalibration. Evaluated on a
curated set of 1,919 small-molecule compounds, iDILI-MT outperformed traditional
machine-learning classifiers and state-of-the-art graph neural networks, achieving a
mean area under the receiver-operating-characteristic curve (AUC-ROC) of 0.8499,
area under the precision-recall curve (AUC-PR) of 0.8905, and F1 score of 0.8173
across ten trials. Attention-weight analysis reveals that the combined multi-head and
squeeze-and-excitation attention mechanisms effectively highlight key substructural
and chemical motifs associated with hepatotoxicity. These findings indicate that
iDILI-MT provides an useful method for detecting compounds at risk of DILI,
potentially accelerating safety assessments in drug development.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science, Neural
Networks
Keywords DILI, Deep learning, QSAR, Transformers

INTRODUCTION

Background

Drug-induced liver injury (DILI) encompasses a spectrum of hepatic damage that can
occur when people take medications, dietary supplements, herbal products, or other
chemical substances (Bell & Chalasani, 2009; Suk ¢ Kim, 2012). The liver’s central role in
drug metabolism makes it particularly vulnerable, as it processes most substances that
enter the bloodstream, potentially leading to toxic accumulation (Bissell et al., 2001; Lin
et al., 2003). Healthcare systems are facing significant diagnostic challenges with DILI as its
symptoms are diverse, including elevated liver enzymes, jaundice, fatigue, and abdominal
pain—often mimic other liver conditions. The variable onset time, ranging from days to
months after starting medication, further complicates diagnosis and causality assessment
(Atienzar et al., 2016; Barnhill, Real ¢ Lewis, 2018; Weber & Gerbes, 2022). Besides, the
unpredictable nature of individual drug metabolism poses major challenges in
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pharmaceutical development (Thompson, 2001; Nicholson ¢ Wilson, 2003; Park et al.,
2011; He et al., 2024). Today, modern prevention strategies employ advanced screening
methods supported by artificial intelligence and machine learning to predict potential liver
toxicity of drug compounds (Nguyen-Vo et al., 2020; Lee ¢ Yoo, 2024). However, some
forms of DILI only become apparent after widespread use, leading to drug withdrawals
even after market approval (Regev, 2014; Andrade et al., 2019). Treatment focuses on
immediate discontinuation of the suspected drug and supportive care (Andrade et al,
2019). While mild cases often resolve within months, severe cases may require intensive
intervention or liver transplantation (Neuberger, 2016). Computational biologists continue
to focus on developing better screening method for early detection and identifying drug
candidates that may cause risks of DILI to improve both safety and efficiency in drug
discovery (Chen et al., 2014; Blomme & Will, 2015; Weaver et al., 2019).

Related work

Traditional approaches for screening DILI compounds had been mainly relied heavily on
experimental animal testing. However, these methods face significant limitations,
including high budget, time-consuming, and skilled experimenters. Fraser, Bruckner ¢
Dordick (2018) highlighted that animal models not only require substantial time and
resources but also frequently fail to accurately translate to human outcomes due to
species-specific differences in drug metabolism. This translation gap was fairly discussed in
a comprehensive analysis by Shanks, Greek & Greek (2009). Their findings revealed that
over 40% of drug toxicities observed in humans were found during animal studies, raising
serious concerns about reliance on these models alone. While in vitro methods may offer
alternative approaches, they struggle to replicate the complex interactions between
different cell types and metabolic pathways that characterize human liver function (Funk
¢ Roth, 2016; Atienzar & Nicolas, 2018; Mirahmad et al., 2022). To partially address these
limitations, researchers have gradually designed more computational method for early
identification of DILI compounds. Ekins, Williams ¢ Xu (2010) employed Bayesian
modeling and chemical fingerprints for early-stage DILI drug screening. However, their
study was limited by modest performance metrics and a relatively small training dataset
that inadequately captured DILI patterns. Their approach failed to fully address the
complex biological mechanisms underlying liver injury, relying instead on a ligand-based
methodology that oversimplified these pathways. Additionally, their work was constrained
by dataset quality issues, limited diversity, and inherent class imbalance problems.
Subsequent studies by Zhang et al. (2016) and Ai et al. (2018) expanded the algorithmic
toolkit to include more sophisticated methods like random forests (RF), support vector
machines (SVM), and gradient boosting (GB) techniques. Zhang et al. (2016) developed
computational models to predict DILI compounds using substructural patterns on a
dataset of 1,317 compounds. They found that the SVM model based on FP4 fingerprints
had produced the most accurate model, achieving 75% accuracy on external validation.
Their findings also identified six key molecular substructures associated with liver toxicity,
including tertiary mixed amines, alkylthiols, and arylfluorides, which can serve as
structural alerts during drug development. However, their study was limited by dataset
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issues like class imbalance and annotation inconsistencies, while their chemical
fragment-based approach oversimplifies DILI’s complex biology, neglecting critical factors
such as metabolic activation and genetic susceptibility. The model provides limited
biological insights and lacks integration with pharmacokinetic data or biological pathways,
making it less comprehensive than modern multi-data ensemble approaches. Ai et al.
(2018) introduced an advanced computational approach for predicting DILI compounds
by combining multiple machine learning algorithms with diverse molecular fingerprints.
Their ensemble model, which integrated the five best-performing base classifiers, achieved
an accuracy of 71.1% during cross-validation and impressively improved to 84.3% when
tested on external compounds. Their model was proved to outperform previous
computational methods in both accuracy and sensitivity, making it valuable early
compound screening platform with a web server provided. Ai et al’s (2018) model suffers
from limited dataset representation, simple molecular fingerprints, poor specificity, and
lack of interpretability due to its “black box” ensemble approach. These limitations
compromise the model’s reliability for drug development applications and highlight the
need for more comprehensive data integration and transparent prediction methods.
DeepDILI, proposed by Li et al. (2020), identifies drug-induced liver injury by combining
conventional machine learning algorithms with deep neural networks to create a
model-level representation approach. The researchers implemented a temporal validation
strategy, training their model on drugs approved before 1997 to test its ability to predict
liver toxicity in newer compounds—a more realistic scenario for drug development
workflows. Their analysis identified important molecular features associated with
hepatotoxicity that could serve as structural alerts for further drug development. While
achieving promising accuracy of up to 80.7%, the model faces several critical limitations:
insufficient dataset diversity potentially causing bias, reduced generalizability to novel drug
chemotypes not represented in the training data, and challenges with interpretability
despite the hybrid approach attempting to balance predictive power with mechanistic
insights. Most recently, Lee ¢ Yoo (2024) introduced InterDILI, an interpretable machine
learning approach for drug-induced liver injury prediction. The model enhances
interpretability by integrating permutation feature importance analysis with attention
mechanisms, addressing a critical need in computational toxicology. Evaluated across five
public datasets, InterDILI demonstrated robust performance with area under the receiver
operating characteristic curve (AUROC) values of 0.88-0.97 and area under the
precision-recall curve (AUPRC) values of 0.81-0.95. These strong results enabled valuable
contributions to early drug development by facilitating proactive identification of
potentially hepatotoxic compounds and highlighting specific molecular substructures that
could be modified to reduce DILI risk. Despite these achievements, the InterDILI model
has several limitations. Its reliance on the DILIrank dataset introduces potential
representation biases due to insufficient diversity and completeness in capturing the full
spectrum of liver-toxic compounds. Although the model enhances interpretability, its
mechanistic insights remain insufficient to fully elucidate the complex biological pathways
underlying DILI. The emphasis on overall accuracy metrics overshadows clinically crucial
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considerations of false positives and negatives, which directly impact drug development
decisions.

Motivations and objectives

Computational methods for DILI prediction face several significant challenges despite
their promising results. The complex underlying mechanisms of DILI involve intricate
molecular-biological pathway interactions that are difficult to model computationally.
Limited training data availability constrains deep learning applications, while conventional
machine learning approaches often fail to capture the subtle patterns associated with
hepatotoxicity. Problems in molecular representation, such as bit collisions in fingerprint
encoding, can obscure structural correlations critical to toxicity determination. These
limitations highlight the need for more sophisticated methodological approaches to
address this essential drug discovery challenge. Our research introduces iDILI-MT
(identifying drug-induced liver injury compounds with a multi-head Transformer), a
computational framework for DILI compound identification that employs multi-head
Transformer architecture. This approach enhances conventional deep learning models
through parallel self-attention mechanisms that process different levels of molecular
structure. The transformer’s multiple attention heads capture diverse biochemical
interaction patterns, addressing both local substructural features and global molecular
topologies simultaneously. We integrate molecular representations with positional
encodings to preserve structural information, enabling better differentiation between
structurally similar but functionally distinct compounds based on their higher-order
interactions. In our work, our major contributions are outlined as follows:

» We develop an efficient model based on transformer architecture to identify DILI
compounds.

» We combine two type of attentions: multi-head and channel-wise to enhance the
predictive power.

e Our model is developed using refined dataset of DILI compounds to improve model
generalizability.

DATA COLLECTION AND FEATURIZATION

In our study, we utilized a DILI dataset comprising 1,919 molecular compounds with a
slightly imbalanced class distribution (Table 1): 1,074 compounds (56%) categorized as
DILI-positive (Class 1) and 845 compounds (44%) as DILI-negative (Class 0). This dataset
was constructed by merging compounds from multiple sources, including Zhang et al.
(2016), Ai et al. (2018), Li et al. (2020), and Lee ¢ Yoo (2024). Duplicated samples were
then systematically removed to ensure data integrity.

For feature extraction, molecular structures were processed using RDKit to generate
Morgan fingerprints, circular topological fingerprints with 2,048 bits and a radius
parameter of 2, effectively capturing local molecular substructure information. The
featurization process converted simplified molecular input line entry system (SMILES)
string representations of compounds into these fingerprint embeddings for modeling. We
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Table 1 Numbers of samples in source of data.

Sources of data Number of samples
Zhang et al. (2016) 1,317
Ai et al. (2018) 1,527
Li et al. (2020) 1,002
Lee & Yoo (2024) 1,851
Ours (this study) 1,919

Table 2 Numbers of samples in each category of the used dataset.

Number of samples

Data DILI-positive (Class 1) DILI-negative (Class 0) Total
Training 870 684 1,554
Validation 97 76 173
Test 107 85 192
All data 1,074 845 1,919

randomly allocated approximately 90% of samples for model training (with a ratio of 90:10
for training and validation data), and reserved 10% for final performance evaluation
(Table 2). Finally, all data were converted to PyTorch tensors to facilitate efficient
computation and compatibility with the frameworks.

MODEL ARCHITECTURE

Multi-head self-attention

Multi-head self-attention is one of the most fundamental attention mechanism proposed
by Vaswani et al. (2017). The multi-head option allows parallel processing across different
representation subspaces. This mechanism extends traditional attention by computing h
separate attention operations simultaneously. For input X € R"*9, each attention head i
projects the input into distinct Query, Key, and Value spaces using learned parameters W2,
WI.K , and WiV, respectively. For each head, the learned information is expressed as:

Xowd (X o wk)"

Vi

These individual head outputs are then concatenated and projected via WO to form the

Head; = Softmax( > X o w)). (1)

final multi-head attention output, presented as:

Multi-head(X) = CONCAT(Head,, Head, ..., Head;) ©® W°. 2)

The multiple heads help users to flexibly adjust the model to attend to information from
different representational perspectives. While some heads can focus on local patterns,
others capture long-range dependencies or semantic relationships. The adjustable number
of head makes this model effectively adapt to various computing resources required. This
mechanism is demonstrated to significantly enhances the model learning capacity.
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Channel-wise attention

Channel-wise attention mechanism was first introduced in Squeeze-and-Excitation (SE)
networks (Hu, Shen ¢» Sun, 2018). This attention mechanism provides an efficient adaptive
feature recalibration during the learning process. Given an intermediate feature map

F € ROHXW with C channels of height H and width W, the channel-wise attention first
applies a squeeze operation that aggregates the spatial information into a channel
descriptor. This is typically implemented as global average pooling, producing a vector

z € R where each element z. is calculated as:

1 H W
Zc =

ZFc(i,j). (3)

H><W41]:1

1

The excitation operation then captures channel-wise dependencies through a simple
gating mechanism with learnable parameters. This is formulated as:

s=0a(W,® (W, ®2)), (4)

where 6 represents a non-linear activation function (commonly ReLU), ¢ denotes the
Sigmoid activation, W; € R™C and W, € RC*F are parameter matrices, and r is a
reduction ratio controlling the capacity of the bottleneck. The final output is produced by
rescaling the original feature map with the activated attention weights:

F.=s.®F.. (5)

This mechanism allows the network to selectively emphasize informative features while
suppressing less useful ones, effectively performing dynamic channel-wise feature
recalibration that enhances representational power with minimal computational cost
required. The output of the SE block is used as a residue added to the output of the main
branch.

Proposed model

Our proposed architecture (Fig. 1) begins with a feature expansion module that consists of
two fully connected (FC) layers. The first layer increases the dimensionality of the
128-dimensional input features to 256 dimensions, followed by Batch Normalization
(BatchNorm), a LeakyReLU activation function (with a slope of 0.01), and a dropout layer
(with a rate of 0.2). The same pattern is repeated in the second layer, preserving the
256-dimensional representation. This design effectively creates a robust pathway for deep
feature extraction and incorporates strong regularization techniques to reduce overfitting.
Then, a Transformer layer is introduced to process 32-dimensional embeddings by
utilizing self-attention through a multi-head attention mechanism, enabling the model to
selectively focus on relevant molecular substructures. The feed-forward network within the
Transformer expands the representation from 32 dimensions to 2,048 dimensions before
condensing it back to 32 dimensions. Layer normalization (LayerNorm) and dropout (with
a rate of 0.1) are applied throughout the Transformer block to stabilize training and
improve generalization. Following the Transformer block, the model employs a third
linear layer that expands the output from 32 dimensions to 128 dimensions, followed by

Zheng and Lai (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2973 6/14


http://dx.doi.org/10.7717/peerj-cs.2973
https://peerj.com/computer-science/

PeerJ Computer Science

SMILES

|

Morgan Fingerprints
Bit-collected Vectors
l Padding

Input (128)

Linear (256)
2

[ l
[ BatchNorm |
[ l
[ l

v x2
LeakyRelLU
v

Dropout (0.2)

I
v

[ Multl-he(a:;iz,g\ttentlon ]
[ l
[ ]
[ J

v
Normalization
v
Feed Forward
v
Normalization

7 [ Linear(2048) |
v

[ Dropout (0.1) ]
v

N ( Linear32) |

[ Linear (128) ]

SE Block

[ BatchNorm ]
v

[ LeakyRelU |
v

[ Dropout (0.2) ]

AdaptiveAvgPool1d
¥
Linear (32)
17

[ ]
[ ]
( ReLU J
[ ]
[ ]

¥
Linear (128)
v
Sigmoid

7
( Linear (1) ]

|

[ Sigmoid ]
|

Prediction

Figure 1 Model architecture. Full-size Kal DOI: 10.7717/peerj-cs.2973/fig-1

BN, LeakyReLU activation, and dropout layers. The integration of a Squeeze-and-
Excitation Block (SEBlock) that implements channel-wise attention helps adaptively
recalibrate feature responses by explicitly modeling interdependencies between channels
through a bottleneck structure with Sigmoid activation. This block allows the network to
emphasize informative features. Our architecture also incorporates a residual connection
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through a dedicated linear layer using a skip connection to maintain gradient flow during
training. The final output layer reduces the 128-dimensional enhanced representation to a
single value, appropriate for binary classification tasks such as DILI prediction.

Model training

The model was trained using binary cross-entropy (BCE) loss for binary classification with
a stochastic gradient descent (SGD) optimizer with a learning rate of 0.001, a momentum
of 0.9, and a weight decay of 1e °. We installed a learning rate scheduler to automatically
reduce the learning rate when a monitored metric on the validation loss plateaus. The
training process ran for a maximum of 40 epochs with early stopping (patience = 5) to
prevent overfitting, using shuffled batches of 16 samples. Model performance was
ultimately evaluated on a test set to assess the DILI prediction task.

Computing resources

All modeling processes were completed on the PyTorch 2.0 framework using an NVIDIA
RTX 3090 GPU with 24 GB of VRAM. All data transformation and processing stages were
performed on a Windows 11 system characterized by an Intel Core i7-12700K Processor
(3.60 GHz base, 5.0 GHz turbo) and 32 GB of RAM.

Evaluation criteria

To evaluate the model performance, we used area under the curve-receiver operating
characteristic (AUC-ROC), area under the curve-precision-recall (AUC-PR), and F1
Score.

EXPERIMENTAL RESULTS

Table 3 presents a comparative analysis of our proposed deep learning architecture against
machine learning baselines, including RF, SVM, and logistic regression (LR).

Table 4 demonstrates the comparative effectiveness of our proposed architecture against
state-of-the-art graph neural network approaches specifically designed for molecular
representation learning.

To evaluate the robustness of our proposed model, we conducted five independent trials
with different random sampling seeds. Table 5 summarizes the performance metrics across
these experiments.

DISCUSSION

Benchmarking with machine learning models

The benchmarking results in Table 3 demonstrate that iDILI-MT substantially
outperforms conventional machine-learning classifiers across all evaluated metrics.
Specifically, iDILI-MT attains an AUC-ROC of 0.8686, representing a significant
improvement over the best-performing baseline, SVM (AUC-ROC = 0.7500). Similarly,
the AUC-PR increases from 0.7931 (SVM) to 0.8869 for iDILI-MT, indicating enhanced
capability in prioritizing true hepatotoxic compounds amid a predominance of non-toxic
examples. The F1 score of 0.8487 further confirms that iDILI-MT maintains a favorable
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Table 3 Performance of our model benchmarked against other machine learning models.

Method AUC-ROC AUC-PR F1 score
RF 0.7338 0.7894 0.7463
SVM 0.7500 0.7931 0.8571
LR 0.7346 0.7873 0.7518
Ours 0.8686 0.8869 0.8487

Table 4 Performance of our model benchmarked against other deep learning models.

Method AUC-ROC AUC-PR F1 score
molecularGNN 0.7342 0.8211 0.7705
MD-GNN 0.7202 0.7657 0.7721
Molgraph 0.8472 0.8886 0.7727
DMFPGA 0.8500 0.8617 0.7346
ResNet18DNN 0.5641 0.5792 0.7028
Ours 0.8686 0.8869 0.8487

Table 5 Performance variation of our proposed model across five independent trials.

Trial AUC-ROC AUC-PR F1 score
1 0.8567 0.9108 0.8033
2 0.8357 0.8835 0.7965
3 0.8696 0.9021 0.8448
4 0.8310 0.8690 0.7965
5 0.8563 0.8870 0.8452
Mean 0.8499 0.8905 0.8173
SD 0.0161 0.0164 0.0255

trade-off between precision and recall, surpassing random forest and logistic regression
models and matching the highest baseline performance.

These improvements can be ascribed to the hybrid architecture of iDILI-MT, which
integrates a multi-head Transformer encoder with a SE attention module. The
Transformer encoder enables the model to capture long-range dependencies within
sequential molecular representations, thereby discerning intricate patterns spanning distal
substructures. Concurrently, the SE module adaptively recalibrates channel-wise feature
importance, allowing the network to emphasize chemical attributes most predictive of
hepatotoxicity. Collectively, these mechanisms facilitate both global contextual
understanding and fine-grained feature discrimination. Accordingly, iDILI-MT not only
achieves superior predictive accuracy but also affords interpretable insights into the
substructural determinants of drug-induced liver injury, rendering it a valuable asset for
early safety assessment in drug discovery.
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Benchmarking with deep learning models

Table 4 compares the performance of iDILI-MT against several leading deep learning
architectures: molecularGNN (Wang, Li ¢ Farimani, 2022), MD-GNN (Chen et al., 2023),
Molgraph (Kensert, Desmet & Cabooter, 2024), DMFPGA (Wang et al., 2024), and
ResNet18DNN (Chen et al., 2021). iDILI-MT achieves an AUC-ROC of 0.8686, exceeding
both Molgraph (0.8472) and DMFPGA (0.8500). In the AUC-PR metric, iDILI-MT attains
0.8869, again outperforming DMFPGA (0.8617). The most substantial improvement is
observed in the F1 Score, where iDILI-MT reaches 0.8487.

Graph-based models exhibit larger performance gaps: molecularGNN records an
AUC-ROC of 0.7342, AUC-PR of 0.8211, and F1 Score of 0.7705, while MD-GNN
achieves 0.7202, 0.7657, and 0.7721 on the same metrics, respectively. ResNet18DNN
shows the lowest results, with an AUC-ROC of 0.5641, AUC-PR of 0.5792, and F1 Score of
0.7028.

These results demonstrate that the hybrid architecture of iDILI-MT, which integrates
multi-head self-attention with a squeeze-and-excitation module, more effectively captures
the complex structural and chemical patterns relevant to drug-induced liver injury than
traditional graph neural network approaches alone.

Performance stability across independent trials

Table 5 summarizes the performance of iDILI-MT over five independent trials with
different random seeds. The model attains a mean AUC-ROC of 0.8499 (SD = 0.0161), a
mean AUC-PR of 0.8905 (SD = 0.0164), and a mean F1 score of 0.8173 (SD = 0.0255).
These small standard deviations indicate that the model’s predictive performance is highly
stable across different random initializations.

The highest AUC-ROC (0.8696) and F1 score (0.8448) were observed in Trial 3, while
Trial 1 yielded the peak AUC-PR of 0.9108. Even in the lowest-performing trial (Trial 4),
iDILI-MT maintained a robust AUC-ROC of 0.8310 and AUC-PR of 0.8690. Overall, the
narrow range of variation across all metrics confirms that iDILI-MT delivers consistent
and reliable DILI predictions irrespective of random sampling.

Limitations and future work

Despite the strong performance of iDILI-MT, there are several key limitations to address.
First, the model currently relies solely on chemical structure inputs and does not integrate
orthogonal data sources, such as biological pathway annotations or drug-metabolizing
enzyme profiles, that are known to influence DILI risk. Second, although we observed
stable results on our held-out test set, external validation across diverse and novel chemical
scaffolds is necessary to confirm the model’s generalizability.

To overcome these gaps, future work could: (1) embed multi-head attention-based
recommendation mechanisms to propose safer compound alternatives in the context of
drug-target interactions, drawing inspiration from recent repurposing networks (Feng
et al., 2024); (2) leverage pretrained sequence embeddings from nucleotide language
models to capture richer substructural motifs (Li et al., 2024); (3) extend iDILI-MT into a
multi-view framework that fuses 1D SMILES, 2D graph representations, and predicted 3D
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conformers for more robust molecular encodings (Zhang et al., 2024); (4) incorporate
evolutionary-ensemble strategies to dynamically optimize attention head configurations
and network architectures (Nguyen et al., 2022); and (5) adopt a unified multimodal
contrastive learning scheme that aligns transformer-derived embeddings with
geometry-aware features to heighten sensitivity to stereochemical patterns linked to
hepatotoxicity (Nguyen et al., 2024). Together, these enhancements will move iDILI-MT
toward a more comprehensive, biologically informed, and broadly applicable DILI
prediction platform.

CONCLUSION

We developed iDILI-MT, a novel computational framework for DILI prediction that
leveraged a hybrid architecture incorporating multi-head transformer and squeeze-and-
excitation mechanisms. Our model consistently outperformed traditional machine
learning methods and state-of-the-art graph neural networks. Through multiple
independent trials, we demonstrated remarkable model stability with minimal
performance variation across different random seeds. The multi-level attention
mechanisms effectively integrated both local and global molecular features, providing a
more comprehensive understanding of structure-toxicity relationships. This work
established a robust computational approach for early identification of hepatotoxic
compounds, addressing a critical challenge in pharmaceutical development and drug
safety evaluation.
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