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ABSTRACT

Credit card fraud detection is highly important to maintain financial security. However,
it is challenging to train suitable models due to the class imbalance in credit card
transaction data. To address this issue, this work proposes a novel deep learning
framework, gated attention-based generative adversarial networks (GA-GAN) for credit
card fraud detection in class-imbalanced data. GA-GAN integrates GAN and the
gated attention mechanism to generate high-quality synthetic data that realistically
simulates fraudulent behaviors. Experimental results on two public credit card datasets
demonstrate that GA-GAN outperforms state-of-the-art methods on credit card fraud
detection tasks in class-imbalanced data, indicating the advantage of GA-GAN. The
code is publicly available at https:/github.com/Gejiangmeng/gagan/ree/main.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Cryptography, Data
Mining and Machine Learning

Keywords Credit card fraud detection, Deep learning, Generative adversarial networks, Attention
mechanism, Class imbalance

INTRODUCTION

The advent of online shopping and mobile payments has led to a significant rise in the
use of credit cards as a primary payment method. This shift has concurrently resulted
in a notable increase in both the severity and complexity of credit card fraud. In this
sense, how to accurately detect credit card fraud is highly important to maintain financial
security. Traditional rule-based fraud detection methods (Ming et al., 2024) are insufficient
to handle the increasingly complex fraudulent activities. These traditional methods struggle
to fully comprehend and replicate the intricate and diverse patterns of fraud, making it
challenging to protect consumer interests and maintain economic stability (Shi ¢ Zhao,
2023). Therefore, it is necessary to develop advanced approaches to accurately detect credit
card fraud.

Recently, machine learning methods have shown significant advantages over traditional
rule-based methods (Zhao ¢ Guan, 2023) for credit card fraud detection, since they can
automatically extract useful features from large amounts of high-dimensional data (Ding
et al., 2024). Representative machine learning methods are random forests (Xuan et al.,
2018), support vector machines (SVM), long short-term memory (LSTM) (Jurgovsky et
al., 2018), distributed neural network (DDNN) (Lei et al., 2023), and so on. However, due
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to the class imbalance issue in credit card fraud data, these methods often exhibit limited
performance. Specifically, the volume of normal transaction data far outweighs that of
fraudulent transactions.

To alleviate the above class imbalance issue, generating synthetic data that closely
resemble real-world data, may represent a possible solution. To this end, representative
methods include traditional statistical techniques such as Bayesian networks (Young,
Graham & Penny, 2009) and recently-developed deep learning techniques such as
generative adversarial networks (GAN) (Goodfellow et al., 2014), autoencoder (AE) (Zhou
¢ Paffenroth, 2017), variational autoencoder (VAE) (Pinheiro Cinelli et al., 2021). Among
them, GAN has become an active topic for generating synthetic data in the field of credit
card fraud detection. However, these data generation methods still have a limitation.
Specifically, they have difficulty in generating high-quality synthetic data that realistically
simulate fraudulent behaviors when confronted with intricate fraud patterns. Consequently,
how to create high-quality synthetic data for credit card fraud detection remains a significant
challenge.

To address the above challenge, this work proposes a novel deep learning framework
integrating gated attention with generative adversarial networks (GA-GAN) for credit
card fraud detection in class imbalanced data. The proposed GA-GAN, consisting of four
primary components: training the generator, training the discriminator, iterative training
and the gated attention unit, aims to generate high-quality synthetic data for enlarging the
original fraudulent transactions data, and promoting the performance of credit card fraud
detection. Extensive experiments are implemented on two public datasets, and the results
demonstrate the effectiveness of the proposed GA-GAN on credit card fraud detection
tasks in class imbalanced data.

To sum up, the main contributions of this work are three-fold:

(1) A novel deep learning framework called GA-GAN equipped with a gated attention
mechanism is proposed for credit card fraud detection in class imbalanced data.

(2) GA-GAN is capable of generating high-quality synthetic data that realistically
simulate fraudulent behaviors, resulting in enlarging the original fraudulent transactions
data and promoting the performance of credit card fraud detection.

(3) Extensive experiments on two public datasets demonstrate the validity of the
proposed GA-GAN on credit card fraud detection tasks in class imbalanced data.

RELATED WORK

Credit card fraud detection

Early works often employ machine learning models such as anomaly detection algorithms to
identify fraudulent transactions like credit card fraud. To this end, the popular traditional
machine learning methods are random forest (RF), support vector machine (SVM),
hidden Markov model (HMM) (Iyer et al., 2011), logistic regression (LR) (Kulkarni e~ Ade,
2016), and so on. Recently, due to the excellent ability of feature learning, deep learning
methods have been leveraged to automatically learn relevant features from raw financial
fraud data for credit card fraud detection. The typical deep learning architectures, such
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as convolutional neural networks (CNN) (Fu et al., 2016), recurrent neural networks
(RNN) (Lin et al., 2021), long short-term memory (LSTM) (Jurgovsky et al., 2018), and
gated recurrent unit (GRU) (Xie et al., 2024), have been successfully applied to credit card
fraud detection.

GAN-based generation of synthetic data

GAN (Goodfellow et al., 2014) is a conventional unsupervised deep learning framework.
The key idea of GAN is the adversarial training process, in which the generator and the
discriminator are trained simultaneously in a competitive setting. Recently, GAN and its
variants have been widely utilized to generate synthetic samples that are highly realistic
in various domains. Zhao et al. (2021) presented a conditional table GAN architecture
(CTAB-GAN) to generate diverse data types including a mix of continuous and categorical
variables. Jeon et al. (2022) developed a general time series synthesis based on GAN capable
of synthesizing regular and irregular time series data. Zhao et al. (2024b) designed a
simultaneous generation and anomaly detection with GAN (SGAD-GAN). Zhang et al.
(2023) proposed a CCFD-GAN equipped with a complementary distribution-based penalty
mechanism for credit card fraud detection.

OUR METHOD

Problem definition

For credit card fraud detection in class imbalanced data, given a transaction dataset
Pata(X) containing all transaction data, Py, (X) represents a sequence of samples X;., for
n transactions. Each sample X; = {xil , xiz, ...,xi’”} has a feature dimension of m. Our task is

to detect a sample X; is whether fraudulent or not.

Model architecture

This work proposes a novel GAN framework called GA-GAN equipped with a gated
attention mechanism. The proposed GA-GAN framework comprises of three critical steps:
data preprocessing, GA-GAN for data generation, and fraud detection with fully-connected
(FC) networks. The overall framework of the proposed GA-GAN for credit card fraud
detection in class imbalanced data is shown in Fig. 1.

Data preprocessing
Data preprocessing mainly involves a data normalization, as defined as:

, x —min(x)

(1)

- max(x) —min(x)’

where x represents the original data, x’ represents the normalized data, min(x) and max(x)

are the minimum and maximum values of x, respectively.

GA-GAN for data generation
When using GA-GAN for data generation, we adopt training data to train our GA-GAN for
producing synthetic data. To this end, four primary components: training the generator,
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Figure 1 The overall framework of the proposed GA-GAN for credit card fraud detection.
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Figure 2 The structure of our GA-GAN for data generation.
Full-size Gal DOI: 10.7717/peerjcs.2972/fig-2

training the discriminator, iterative training and gated attention unit, are included, as
depicted in Fig. 2. These four components are described below.
(1) Training the generator

Motivated by the advantage of variational autoencoder (VAE) (Pinheiro Cinelli et al.,
2021), we design a VAE-based generator G with a similar structure to VAE. Specifically,
the training data X is initially fed into a encoding network which maps X into a latent
representation space. The encoding network consists of two FC layers, in which the first
layer is equipped with a ReLU activation function to produce sparse activations, and the
second layer provides the mean value jLand the variance value o2, respectively.

Then, based on the pand o2, a random noise Z = {21,22,...,2”’} with a feature
dimension of m is reparameterized to generate latent representations. Finally, a decoding
network, similar to the encoding network, is leveraged to produce synthetic credit card
transactions data that can deceive the discriminator. To ensure that the learned distribution
accurately approximates the prior distribution of input data, the generator aims to minimize
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the following loss function:
LG = min(—Ex~p,,,x)[logpe (X|G(Z))1+ B - Dx1(q4 (G(2))|X||p(G(2)))), (2)

where pg(X|G(Z)) represents the likelihood of the data X for the obtained output G(Z)
of the generator G.Dk;(q¢(G(Z2)|X)|[p(G(Z))) is the Kullback-Leibler (KL) divergence
between the approximate posterior g4(G(Z)|X) and the prior distribution p(G(Z)). The
parameter 8 controls a trade-off between the reconstruction fidelity and the regularization
term.

(2) Training the discriminator

The real data X and synthetic data G(Z) are mixed together and fed into the model’s
discriminator. In the discriminator, input data are initially fed into three convolutional
layers for feature extraction, each of which has a convolutional kernel of 1 x 3. Then, a gated
attention unit is designed for feature enhancement, which focuses on capturing key clues
while suppressing redundant details in feature representations. Subsequently, flattening
and average-pooling (AvgPool) operations are performed, followed by three FC layers. The
loss function of the discriminator D is defined as:

Lp = min(—Ex~p,,,x)[10gD(X)] = Ez~p,(2)[log (1 — D(G(Z)))]). (3)

(3) Iterative training

The aforementioned two steps are repeated iteratively, continuously updating the
parameters of both the generator G and the discriminator D, until the model converges.
The convergence is reached when the generator G can produce synthetic fraudulent
transactions that sufficiently deceive the discriminator D, while D is capable of accurately
identifying the real fraudulent transactions and the synthetic ones. In this sense, the purpose
of the iterative training process is to solve the resulting minimax optimization problem:

rnGaX rnDil‘lL(D, G)= Ex~p,,.(x) [lOgD(X)] +Ez~p,(2) [ZOg(l —D(G(2)))]. (4)

(4) Gated attention unit
Inspired by the advantage of gated attention mechanisms (Xue, Li ¢ Zhang, 2020; Niu,
Zhong & Yu, 2021; Hua et al., 2022), we design a gated attention unit (GAU) based on gated
attention mechanisms, as illustrated in Fig. 2. The detailed steps of GAU is listed below.
Initially, a linear layer is utilized to transform an input data I to a new tensor Zj, with a
feature dimension of 2H, where H is the number of hidden layer neurons. This process is
expressed as:

Z, = Linear(I). (5)

Then, through a chunk operation, Z is split into two tensors: V' and G,,, each of which
has the same feature dimension H. Among them, V denotes the value matrix, and G,, is
the gated weights. Additionally, the input data I is fed into a linear layer to produce the
query (Q) and key (K') matrices with a dimension of H, as defined as:

(Q,K)=1y -Linear(I)+ 8, (6)

where y and B are are learnable scaling factors and biases, respectively.
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Next, we compute the similarity between each query Q and key K, and then obtain
the attention scores A through a ReLU activation function and a squared operation, as
expressed as:

T
A:ReLUz(QK )

vH

Subsequently, a dropout layer is employed to prevent overfitting. In this case, the

(7)

attention matrix A aims to capture the relationships between the elements of the sequence
in a refined manner. Then, multiplying each value vector by its corresponding attention
weight is performed to adjust the contribution of the value matrix V, as expressed as:

Att_scores = Dropout(A) -V, (8)

where the weighted output Att_scores reflects the relationships between different elements
in input data. Then, Atf_scores is multiplied in an element-wise way by the corresponding
gating vector G,, for producing the final weighted values, as defined as:

0,, = Att_scores© G,,. 9)

Finally, a linear layer is leveraged to transform the feature dimension of O,, into the
appropriate dimensionality for the next layer.

Output of fraud detection

Based on the mixed input data including real data and synthetic data, a linear FC network
consisting of four FC layers is used to train a fraud detection model, and identify a given
transaction sample from testing dataset is whether fraud or not. To train the fraud detection
model, a binary cross-entropy loss function Lgc is utilized, as defined as:

N+U
1
Lpc=——7— Yil X; 1—Y)log(1—f(Xi))|, 10
FC N+Ui:1[ ogf (Xi) + (1—Y)log(1—f(X;))] (10)
where N is the number of original data, U is the number of synthetic data, and Y;
represents the true label for each sample. f(X;) denotes the predicted probability of the
i— th transaction data being fraudulent.

EXPERIMENT STUDY

Datasets and evaluation metric
European dataset (Machine Learning Group - ULB, 2017): This dataset is available at
https:/www.kaggle.com/datasets/mlg-ulb/creditcardfraud. It contains 284,807 transaction
records of European credit card holders in September 2013, covering transactions within
two days. In this dataset, only 0.172% are fraudulent (492 transactions in total). These data
are mainly Principal Component Analysis(PCA)-transformed numeric variables. Due to
confidentiality issues, 28-dimensional features are principal components obtained by PCA,
whereas the original features such as “Time’ and ‘Amount’ are provided.

Card Fraud dataset (R, 2021): This dataset is available at https:/www.kaggle.com/datasets/
dhanushnarayananr/credit-card-fraud. It collects 1,000,000 transactions. Each transaction
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consists of seven features, indicating whether a transaction is fraudulent. Specially, it
includes the distance from the location of the bank card transaction to the cardholder’s
home, the geographical distance between the current transaction and the last transaction,
and five other features. Note that this dataset is usually used for competition.

Following in Zhao et al. (2024a) and Fanai & Abbasimehr (2023 ), four typical evaluation
metrics such as Precision, Recall, F1-Score,and Area Under the Curve (AUC) are leveraged
to evaluate the performance of all used methods on credit card fraud detection tasks in

class imbalanced data.

Implementation details

All used methods are performed in a Pytorch 3.10 framework and a single NVIDIA 4090
GPU with 24 GB of RAM. The Adam optimizer is adopted with a learning rate of 0.002.
The discriminator uses the LeakyReLU activation function with a slope of 0.2. In the GAU,
the number of hidden layer neurons is 128. The batch size is 1024, and the epoch number
is 500. The binary cross-entropy loss function is used for credit card fraud detection in
class imbalanced data.

Each used dataset is divided into two parts: 80% for training, and 20% for testing. On the
European dataset, fraud samples in the divided training set are enlarged by GA-GAN from
383 samples to 113,731 samples. Likewise, on the Card Fraud dataset, fraud samples in the
divided training set are enlarged by GA-GAN from 69,922 samples to 336,501 samples.

Baseline
To demonstrate the effectiveness of our GA-GAN, we compare our method with the
following five baseline models, as listed below:

(1) Logistic regression (Kulkarni ¢ Ade, 2016): LR adopts the logistic function to predict
the probability that an instance belongs to one of two classes.

(2) Support vector machines (Lu ¢ Ju, 2011): SVM aims to find the optimal separating
hyperplane that maximizes the margin between different classes. The typical RBF kernel is
used for SVM.

(3) Random forests (Xuan et al., 2018): RF aims to combine the predictions of multiple
decision trees to improve the predictive accuracy.

(4) Long short-term memory network (LSTM) (Jurgovsky et al., 2018): LSTM is a deep
learning method capturing long-term dependencies of sequence data.

(5) Generative adversarial networks (Goodfellow et al., 2014): GAN is a deep learning
approach to generative modeling by pitting two neural networks against each other in a
competitive setting.

Experimental results and analysis

Table 1 presents a performance comparison of all used methods such as LR, SVM, RF,
LSTM, GAN, and GA-GAN on these two public datasets. The results in Table 1 show that the
proposed GA-GAN model obtains better performance than other methods. In particular,
GA-GAN provides the highest precision (0.903), recall (0.848), F1-Score (0.875) and AUC
(0.929) on the European dataset. Similarily, on the credit fraud card dataset GA-GAN yields
the best precision (0.987), recall (0.978), F1-Score (0.982) and AUC (0.972). This shows the
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Table 1 Performance comparison of different methods on the European and Credit Fraud datasets.

Database Metric LR SVM LSTM RF GAN GA-GAN
Precision 4 0.646 0.733 0.774 0.772 0.830 0.903
European Recall 1 0.697° 0.728 0.750° 0.745 0.819" 0.848
Dataset F1-Score 1 0.671° 0.730° 0.762" 0.758" 0.824 0.875
AUC? 0.848 0.741 0.766 0.872° 0.814° 0.929
Precision 4 0.893 0.847 0.984 0.985 0.972 0.990
Card Fraud Recall 4 0.605 0.746 0.801° 0.772" 0.852" 0.988
Dataset F1-Score 1 0.721 0.793" 0.883 0.870" 0.908 0.989
AUC 1t 0.967 0.956° 0.970° 0.962 0.950 0.983
Notes.
fSignificant level:
*P <0.05.
“P <0.01.
P <0.001.

Bold values denote the best performance.

advantage of our GA-GAN over these baseline methods. The main reason is that GA-GAN
is effective for data augmentation on credit fraud card detection tasks. Moreover, the
order of other baseline methods is GAN, RF, LSTM, SVM and LR. This shows GAN-based
methods outperform other conventional methods without data augmentation. This may
be attributed to the effectiveness and potential of GAN-based methods for generating
synthetic data on credit fraud card detection tasks in class imbalanced data.

To further evaluate the robustness of the obtained results, we perform a statistical
significance testing on all used models. Specifically, the paired t-tests are conducted to
compare the performance metrics of GA-GAN with each of the baseline methods across
both datasets. The obtained P-values from these t-tests indicate that the improvements
achieved by GA-GAN are statistically significant at different levels. The smaller the obtained
P-values, the more significant the achieved results. As shown in Table 1, compared with
other methods, there is a large statistical significance in F1-Score for GA-GAN since its
P-value is less than 0.001. Likewise, since the obtained P-value of GA-GAN is less than 0.01,
a relatively stronger statistical significance in recall is shown for GA-GAN in comparison
with other methods. Similarly, a relatively lower statistical significance in AUC is shown
for GA-GAN since its obtained P-value is less than 0.05. However, the paired T -test
yields a significance level with a P-value more than 0.05 for precision, indicating that no
significant difference in precision is observed. This may be attributed to the imbalanced
data distribution.

Compared with other works

To further show the advantage of the proposed GA-GAN, we compare our method
with several recently-reported works on the European dataset, which are similar to our
experiment settings, as listed below. It is noted that we fail to find existing relevant
literatures for comparison on the Credit Fraud dataset since this dataset is usually used for
competition.
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Table 2 Performance comparison between ours and other works on European dataset.

Method F1-Score 1 Recall ¢ Precision 1 AUCH®

SMEM(2021) 0.833 0.777 0.889 0.813

AE-DNN(2023) 0.857 0.839 0.857 0.907

RUS-CAE(2023) 0.802 0.752 0.860 0.902

SAGAN(2024) 0.847 0.840 0.855 0.857

Ours 0.875 0.848 0.903 0.929
Notes.

Bold values denote the best performance.

SMEM (Forough ¢ Momtazi, 2021): a sequential modeling-based ensemble model that
combines LSTMs and GRUs for detecting fraudulent transactions.

AE-DNN (Fanai ¢~ Abbasimehr, 2023): a two-stage deep neural network that integrates
a deep AE with deep classifiers for credit card fraud detection.

RUS-CAE (Salekshahrezaee, Leevy ¢» Khoshgoftaar, 2023): integrating a data sampling
strategy called Random Undersampling (RUS) with a feature extraction scheme based on
a Convolutional Autoencoder (CAE), followed by an ensemble classifier for credit card
fraud detection.

SAGAN (Zhao et al., 2024a): a deep learning model that integrates self-attention
mechanisms with GAN for credit card fraud detection.

Table 2 provides a performance comparison between our method and other works
on the European dataset. The results in Table 2 indicate that our method achieves better
performance on credit card fraud detection tasks in class imbalanced data than SMEM,
AE-DNN, SAGAN and RUS-CAE in terms of F1-score, recall and AUC. This shows the
superiority of our method to other methods.

Ablation study
Effect of GAU

To demonstrate the effectiveness of the used GAU in the discriminator, Fig. 3 shows a
comparison of the obtained results on the European and Card Fraud datasets, when using
GAU or not. When removing the GAU, our method is implemented by a FC layer.

As shown in Fig. 3, the obtained results with GAU clearly outperform the results achieved
without GAU. In particular, on the European dataset, the obtained F1-score without GAU
is 0.754. In contrast, the obtained F1-score with GAU is 0.854, indicating a increase of
0.1 over the case without GAU. On the Card Fraud dataset, the achieved F1-score with
the GAU is 0.989, yielding an improvement of 0.37 over the case without GAU. This
indicates that the GAU enhances the model’s ability to distinguish between fraudulent and
non-fraudulent transactions.

Effect of the structure of generator

This work designs a VAE-based generator with the similar structure to VAE (Pinheiro
Cinelli et al., 2021). To validate the effectiveness of VAE-generator in our GA-GAN, Fig. 4
illustrates a performance comparison of detection results on two datasets. It can be seen
from Fig. 4 that VAE-based generator obtains a significant improvement in terms of
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Fl-score over the original generator (Goodfellow et al., 2014) without VAE, in which the
generator is implemented by three FC layers. In particular, on the European dataset,
VAE-based generator gives a F1-score of 0.854, whereas the generator without VAE yields
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a Fl-score of 0.791. On Card Fraud dataset, VAE-based generator improves a F1-score
from 0.970 to 0.989 compared with the generator without VAE. This demonstrates the
advantage of VAE-based generator in our GA-GAN for data generation.

Effect of synthetic data

To intuitively demonstrate the impact of synthetic data generated by GA-GAN on credit
card fraud detection tasks, we compare the confusion matrices obtained from training with
and without synthetic data across two datasets, as shown in Fig. 5. The results indicate
that on the original European dataset (Fig. 5A), our model achieves a F1-score of 0.770,
suggesting a certain level of false negatives (missed fraudulent transactions), where actual
fraud cases are not effectively identified. In this case, 46 fraud cases are not correctly
classified. However, after training with synthetic data generated by GA-GAN (Fig. 5B), the
obtained F1-score is improved significantly to 0.875. In this case, 24 fraud cases are not
correctly classified. This demonstrates that GA-GAN not only enhances the identification of
fraudulent transactions but also maintains high accuracy for normal transactions. Similarly,
in the Credit Fraud dataset, the original F1-score is 0.983 (Fig. 5C), which is promoted to
0.989 (Fig. 5D) when using the augmented dataset with GA-GAN, approaching near-perfect
classification. In this case, the number of fraud cases, which are not correctly recognized, is
reduced from 627 to 382. This further validates the effectiveness of GA-GAN in reducing
both false positives and false negatives. Moreover, these findings highlight the potential
of GA-GAN as a powerful tool in addressing class-imbalanced credit card fraud detection
problems. By generating high-quality synthetic data, GA-GAN effectively mitigates the
challenges posed by data imbalance, significantly enhancing the overall performance of
our model.

CONCLUSION AND FUTURE WORK

In this work, we propose a novel GAN framework called GA-GAN equipped with a gated
attention mechanism for credit card fraud detection in class imbalanced data. The proposed
GA-GAN contains three key steps: data preprocessing, GA-GAN for data generation, and
fraud detection with FC networks. GA-GAN is capable of generating high-quality synthetic
data that realistically simulate fraudulent behaviors. Experimental results on two public
credit card fraud datasets demonstrate the advantage of the proposed GA-GAN. It is
pointed out that GA-GAN has a relatively high computational complexity with a network
parameter of approximately 2M, and a FLOP(Floating Point Operations Per Second) of
9.06G. In this sense, it is interesting to further reduce the computational complexity of
GA-GAN in future when applying to large-scale credit card transaction data in real-world
scenarios. Besides, it is noted that the raw tabular data related to credit card fraud detection
may not inherently contain semantic information, resulting in the difficulty of investigating
the interpretability of our model in the context of tabular data, as shown in Borisov et al.
(2024). Nevertheless, it is meaningful to explore the interpretability of our model in the
context of tabular data in future.
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Figure 5 The confusion matrices of detection results on the testing data of two datasets: (A) the results
on the original European dataset, (B) the results on the enlarged European dataset with GA-GAN, (C)
the results on the original Card Fraud dataset, (D) the results on the enlarged Card Fraud dataset with

GA-GAN.
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