
Submitted 28 April 2020
Accepted 18 August 2020
Published 10 September 2020

Corresponding author
Gaber E. Abutaleb,
gaber_abutaleb@azhar.edu.eg

Academic editor
Lerina Aversano

Additional Information and
Declarations can be found on
page 29

DOI 10.7717/peerj-cs.297

Copyright
2020 ElDahshan et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Data in the time of COVID-19: a general
methodology to select and secure a
NoSQL DBMS for medical data
Kamal A. ElDahshan*, AbdAllah A. AlHabshy and Gaber E. Abutaleb*

Mathematics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
*These authors contributed equally to this work.

ABSTRACT
Background. As the COVID-19 crisis endures and the virus continues to spread
globally, the need for collecting epidemiological data andpatient information also grows
exponentially. The race against the clock to find a cure and a vaccine to the diseasemeans
researchers require storage of increasingly large and diverse types of information; for
doctors following patients, recording symptoms and reactions to treatments, the need
for storage flexibility is only surpassed by the necessity of storage security. The volume,
variety, and variability of COVID-19 patient data requires storage in NoSQL database
management systems (DBMSs). But with a multitude of existing NoSQL DBMSs, there
is no straightforward way for institutions to select the most appropriate. And more
importantly, they suffer from security flaws that would render them inappropriate for
the storage of confidential patient data.
Motivation. This paper develops an innovative solution to remedy the aforementioned
shortcomings. COVID-19 patients, as well as medical professionals, could be subjected
to privacy-related risks, from abuse of their data to community bullying regarding their
medical condition. Thus, in addition to being appropriately stored and analyzed, their
data must imperatively be highly protected against misuse.
Methods. This paper begins by explaining the five most popular categories of NoSQL
databases. It also introduces the most popular NoSQL DBMS types related to each one
of them. Moreover, this paper presents a comparative study of the different types of
NoSQLDBMS, according to their strengths andweaknesses. This paper then introduces
an algorithm that would assist hospitals, andmedical and scientific authorities to choose
the most appropriate type for storing patients’ information. This paper subsequently
presents a set of functions, based on web services, offering a set of endpoints that
include authentication, authorization, auditing, and encryption of information. These
functions are powerful and effective, making them appropriate to store all the sensitive
data related to patients.
Results and Contributions. This paper presents an algorithm to select the most
convenient NoSQL DBMS for COVID-19 patients, medical staff, and organizations
data. In addition, the paper proposes innovative security solutions that eliminate the
barriers to utilizing NoSQL DBMSs to store patients’ data. The proposed solutions
resolve several security problems including authentication, authorization, auditing, and
encryption. After implementing these security solutions, the use of NoSQL DBMSs
will become a much more appropriate, safer, and affordable solution to storing and
analyzing patients’ data, which would contribute greatly to the medical and research
effort against COVID-19. This solution can be implemented for all types of NoSQL

How to cite this article ElDahshan KA, AlHabshy AAA, Abutaleb GE. 2020. Data in the time of COVID-19: a general methodology to se-
lect and secure a NoSQL DBMS for medical data. PeerJ Comput. Sci. 6:e297 http://doi.org/10.7717/peerj-cs.297

https://peerj.com/computer-science
mailto:gaber_abutaleb@azhar.edu.eg
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.297
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.297


DBMSs; implementing it would result in highly securing patients’ data, and protecting
them from any downsides related to data leakage.

Subjects Databases, Security and Privacy
Keywords NoSQL databases, Database security, Key-value stores NoSQL systems, Document-
based stores NoSQL systems, Column-based stores NoSQL systems, Graph stores NoSQL systems,
Object Store NoSQL systems, COVID-19 patients’ data

INTRODUCTION
The exponential increase in the number of patients infected with COVID-19, and the
complex race towards finding treatment and prevention protocols, is a concern shared
by all. Across the globe, researchers are collecting every shred of information related to
the disease, and all data related to patients and their relations, which brings along the
challenge of recording large swaths of information. The volume of data is expected to be
immense—matched only by its diversity and variability. And as the number of patients
increases, and alongside it, the breadth and diversity of data, medical organizations,
researchers, and authorities will require storage systems offering greater flexibility, and
which aren’t beholden to a strict set of options. As it stands, the list of COVID-19 symptoms
remains ill-defined; this entails the need for a database management system (DBMS) that
can handle unstructured data, namely, a NoSQL DBMS. But until now, NoSQL database
systems still struggle with security issues; the lack of security of NoSQLDBMSsmaymake it
an obstacle to its adoption as the preferred standard to store COVID-19 patients’ personal
data.

This paper begins by explaining the five most popular categories of NoSQL databases,
introducing the most popular NoSQL DBMS types under each. Features of NoSQL DBMS
are briefly explained, with a strong emphasis on security. The paper addresses security
problems such as authentication, authorization auditing, and encryption. Not only does the
paper mention security vulnerabilities in each type, but it also lays out a comparative study
of the different types of NoSQL DBMS, compares the strengths and weaknesses of each.
This comparison is built on a set of criteria, namely Data Model, Owner Company, Open
source(Y/N), Implementation Programming Language, Stable Release issue dates, Support
Authentication, Support Authorization, Support Auditing, Support Data Encryption, and
Query Types. The paper then moves to provide an algorithm that would help organizations
choose the most appropriate type for storing COVID-19 patients’ information.

The purpose of this paper is to propose security solutions that resolve this weakness
of NoSQL DBMSs, this eliminating the hurdle preventing medical organizations and
other organizations storing patient information from using them. The proposed solution
solves several security problems, including authentication, authorization, auditing, and
encryption. The implementation of our security solutions will allow NoSQL DBMSs to
become themore appropriate, safer, and affordable solution to store and analyze COVID-19
patients’ data.

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 2/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.297


NoSQL Database Management Systems Classification

Document-based Column-based Graph object storekey-value

Multi model databaseCassandraDynamoDB

MongoDB

CouchDB

Couchbase server

Redis

Voldemort

Oracle BerkeleyDB

HyperTable

HBase

Neo4j

HyperGraphDB

AlleGrograph

GemStone

db4o

Objectivity/DB

Figure 1 NoSQLDatabase Management Systems Classification.
Full-size DOI: 10.7717/peerjcs.297/fig-1

NOSQL SYSTEMS CATEGORIES AND THEIR SECURITY
ISSUES
The NoSQL acronym was introduced in 2009, during an event on distributed databases
(Lakshman & Malik, 2010). New technologies, such as Google’s Bigtable (Chang et al.,
2008) were presented as being capable of managing large amounts of data. Research on
NoSQL databases has blossomed since (Lourenço et al., 2015). In addition to the five major
categories of NoSQL systems, someMulti-model NoSQL database systems, XML databases
(Elmasri & Navathe, 2017), as well as other types of systems that have been available even
before the term NoSQL came into use, grew in popularity and usage. This section thus
discusses the five main categories of NoSQL systems, as well as the Multi-model database
ones, with an emphasis on their security features, in the interest of patient data safety. This
section will also address the most commonly-used NoSQL DBMSs in terms of security.
NoSQL databases suffer from a variety of security issues (Sahafizadeh & Nematbakhsh,
2015). In NoSQL database systems, security mechanisms such as Authentication and data
encryption are either weak or altogether inexistent.

First, we review possible attacks, and security mechanisms used to prevent them.

Introduction to security issues in NoSQL DBMSs
NoSQL database management systems classification
NoSQL databasemanagement systems are classified into five categories, namelyDocument-
based Stores, key-value stores, Column-based or wide column Stores, Graph-based Stores,
and Object Stores. Multi-model database categories may be added as shown in Fig. 1.

NoSQL DBMSs comparison criteria
Database management systems will be analyzed according to their basic information,
security mechanisms, and potential attacks.

• Basic information includes:

– The owner and year of first appearance

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 3/32

https://peerj.com
https://doi.org/10.7717/peerjcs.297/fig-1
http://dx.doi.org/10.7717/peerj-cs.297


– The classification, specifying whether it is open source or proprietary
– The DBMSs implementation programming language
– Some characteristics of the database management system
– The query language used in each database management system.

• Security mechanisms

– Authentication is the process of verifying the entity identity (user or device)
permission to use the resources (data, application, etc.) (Zahid, Masood & Shibli,
2014).

– Verification is usually achieved through accessing control mechanisms, such as users’
passwords and certificates (Grolinger et al., 2013).

– Authorization is themechanism that ensures that only an authorizeduser is allowed to
access system resources. Authorization is usually performed with the user’s permission
(Grolinger et al., 2013).

– Auditing is the process of keeping track and recording all actions performed by
database users (Elmasri & Navathe, 2017).

– Data Encryption refers to protecting and encrypting sensitive data throughout
the communications network so it cannot be read by unauthorized users or
attackers (Elmasri & Navathe, 2017; Grolinger et al., 2013). There are three levels
of encryption solution; Data at rest, Client-to-server communication, and Server-to-
server connections (Grolinger et al., 2013).

• Attacks: some attack types that DBMSs may endure include:

– Script Injection, wherein a security vulnerability is used by an adversary to inject
malicious code in pages or web forms to damage or retrieve data (Sullivan & Vincent,
2011; Jim, Nikhil & Michael, 2007).

– SQL Injection, which may occur when an adversary injects a string input through
the application to damage, change the database, retrieve the sensitive data, and run
commands to deny service (Elmasri & Navathe, 2017).

– Denial of service (DOS), in which an adversary floods the server with requests, thus
preventing legitimate users from accessing the service, or the attacker may delete some
data (Elmasri & Navathe, 2017).

– An inactive connection may occur when an adversary opens the connection for a
long time.

Document-based NoSQL stores
Document-oriented, or document-basedNoSQL systems store data as collections of similar
documents. These types of systems are also known as document stores (Moniruzzaman
& Hossain, 2013; Dindoliwala & Morena, 2017). Each document is similar to a row in
relational databases, but is more flexible because it has no schema (is schema-free) and
is specified as self-describing data (Elmasri & Navathe, 2017). The users or the processing
applications have the schematic responsibility in document databases. This may result in
some disadvantages, such as the lack of referential integrity and normalization. However,

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 4/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.297


the lack of schema provides high flexibility to store a wide range of data, which makes it
suitable for stores of big data. In document-based databases, a record, called a document,
has its own internal structure, and can be stored as a value for every key (document
ID). Documents are separated from one another, but are grouped as a collection of data,
and the database ensures that each query receives the document version with the largest
number of changes. Since this cannot guarantee full concurrency control, it is called
eventual consistency. The consistency takes some time to achieve, which significantly
speeds up the data processing at the expense of transactional security. In document-based
databases, queries can be performed in parallel and, therefore, sped up with themap-reduce
procedure (Meier & Kaufmann, 2019). Document-based databases are also fit for storing
sparse data, or semi-structured data, but that would necessitate an extensive use of Nulls
for data completeness purposes (Moniruzzaman & Hossain, 2013). Documents can be
specified in various formats, such as XML (Extensible Markup Language), YAML (Yet
Another Markup Language) (Kaur & Rani, 2013), or BSON (Binary JSON (JavaScript
Object Notation) (Moniruzzaman & Hossain, 2013; Özsu & Valduriez, 2020). The popular
language to specify documents in NoSQL systems is JSON (Han et al., 2011). Document-
Based NoSQL Systems are suitable for managing Big Data collections of literal documents,
like XMLdocuments, emailmessages, text documents, online shopping, event logging, deep
analytical processing, and content management. Examples of Document-Based NoSQL
DBMSs (database management systems) include CouchDB (JSON), MongoDB (BSON)
(Özsu & Valduriez, 2020), Terrastore, ThruDB, OrientDB, RavenDB, Citrusleaf, SisoDB,
CloudKit, Perservere and Jackrabbit) (Tudorica & Bucur, 2011).

Security issues in document-based NoSQL DBMSs
This subsection discusses the most popular types of document Stores NoSQL Database
Management Systems.

MongoDB
• Introduction:
MongoDB is an open-source document-oriented NoSQL DBMS. It is a schema-free,
highly available, fault-tolerant and scalable NoSQL DBMS.MongoDB supports sharding
by configuring shared clusters (Zahid, Masood & Shibli, 2014). It was developed by
MongoDB Inc., first appearing in 2009; its stable release appeared in June 2018.
MongoDB was written in C++, C, and JavaScript (Nayak, Poriya & Poojary, 2013; Özsu
& Valduriez, 2020), and it consists of one or more collections of documents. A collection
is analogous to a table, but has no pre-defined schema. The document, which is the data
storing unit in MongoDB, has an ID and is equivalent to a record in the relational DB.
Insert, delete, and update operations can be performed on a collection (Dindoliwala &
Morena, 2017). Mongo Query Language is the query language used By MongoDB DBMS
to manipulate certain documents from a database collection. Map-reduce and REST
querying are supported by MongoDB (Chodorow, 2013).

• Security Analysis:
– Authentication: granting to users through the database itself or integration with an
external mechanism like LDAP (Lightweight Directory Access Protocol). MongoDB

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 5/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.297


grant Authentication to entities by using the SCRAM-SHA-1 IETF standard (Zugaj
& Beichler, 2019). An authentication command is used to authenticate the users,
whereas database-nodes are authenticated to the MongoDB cluster via key files. The
default Authentication mechanism in MongoDB is SCRAM-SHA-1, which verifies the
supplied user credentials with the name of the user, user’s password, and Authentication
database. With LDAP, MongoDB can authenticate and authorize users directly via
corporate LDAP infrastructure to enforce centralized access policies (Dindoliwala &
Morena, 2017). MongoDB doesn’t support authentication, however, if running in
shared mode (Sahafizadeh & Nematbakhsh, 2015; Noiumkar & Tawatchai, 2014). When
the authentication in MongoDB is based on the key or the password, it’s called a
pre-shared secret. This password has been hashed with the MD5 algorithm before
being stored in the key file. Hackers can crack the pre-shared secret’s hashed value by
cracking the MD5 (Dindoliwala & Morena, 2017), because the MD5 algorithm is not
secured (Sahafizadeh & Nematbakhsh, 2015). MongoDB uses SSL with X.509 certificates
to secure communication between the user and the MongoDB cluster and intra-cluster
authentication (Zahid, Masood & Shibli, 2014).

– Authorization: Administrators in MongoDB can determine the permissions for users
or applications. They can also decide what data can be seen by users or applications
when performing a database query. The authorizationmechanism inMongoDB contains
LDAP authorization, roles, and Field-Level Security with Read-Only Views. InMongoDB
privileges are assigned to roles, then roles are assigned to users. MongoDB involves
built-in roles that are used by administrators to control access to the MongoDB system.
A privilege consists of a specified resource and actions permitted on this resource. A
resource is a collection, set of collections, databases, or a cluster. MongoDB supports a
simple role-based authentication system that allows administrators to decide who has
access to the database and which level of access they have. Furthermore, MongoDB
supports authorization through LDAP (Dindoliwala & Morena, 2017).

– Auditing: Auditing framework stores actions such as operations that have been
performed by the users in the database, and authentication and authorization activities
along with write and read operations on the database. Administrators can extract and
filter audit trails for any operation with MongoDB. For example, it is possible to audit
and log the identities of users who accessed specific documents and the changes they
made to the database during their session. Administrators can configure MongoDB to
log all the actions or specific actions. MongoDB Enterprise Advanced (Dindoliwala &
Morena, 2017) also supports the role-based auditing. With MongoDB, it is possible to
report the DB activities as well.

– Data Encryption: in MongoDB, data can be encrypted over the network, in backups,
and the rest in permanent storage. MongoDB Enterprise Advanced supports FIPS 140-2
encryption when it run in FIPS Mode (Dindoliwala & Morena, 2017). In MongoDB, the
data files are not encrypted automatically, so all data is stored as plaintext. This means
that any malicious user with access to the file system can extract information from the
files. MongoDB uses RESTful to manage its server via the HTTP protocol. However,
there is no data encryption for these ports, whichmeans that hackers can display, capture

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 6/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.297


and get access to the data since no data encryption was performed while the data was
being sent back and forth between the client and server (Noiumkar & Tawatchai, 2014).

– Script Injection: Using JavaScript, hackers can attack MongoDB. Examples about
the attacks that occurred on MongoDB can be found in this reference (Jim, Nikhil &
Michael, 2007). NoSQL databases are exposed to injection attacks like SQL databases. Son
presented four examples of GitHub site for injection vulnerabilities in PHP MongoDB-
based applications (Son, McKinley & Shmatikov, 2013).

CouchDB
• Introduction:
CouchDB is an open-source NoSQL DBMS. It was developed using Erlang (George,
2013). It became an Apache project in 2008. It was released in 2005 and the stable
release appeared in November 2017. CouchDB runs on Hadoop Distributed File
Systems (HDFS). CouchDB is document-based NoSQL DBMS, fault-tolerant, highly
scalable, available, and flexible (Sahafizadeh & Nematbakhsh, 2015). It supports
document redistribution across nodes by cluster configuration for large performance
improvements. A cluster uses the phenomenon of incremental replication by periodically
copying any changes in a document on a single node to other nodes. The incremental
replication results in inconsistency and data redundancy in the cluster. CouchDB uses
the JavaScript, JSON, and SQL++ as its query language (Özsu & Valduriez, 2020). Map-
reduce and REST querying are supported by CouchDB as well (Noiumkar & Tawatchai,
2014).

• Security Analysis:
– Authentication: CouchDB uses a process called CRUD to perform authentication
(Noiumkar & Tawatchai, 2014). The authentication in CouchDB is based on both
cookies and passwords. It uses the PBKDF2 hash algorithm to encrypt the password and
send it over the network using SSL protocol (Sahafizadeh & Nematbakhsh, 2015; Zahid,
Masood & Shibli, 2014).

– Authorization: There are three levels of users within the CouchDB; database
admin, server admin, and database member (Grolinger et al., 2013). Authorization
is implemented only at the database level where only a single role in access control is
supported (Zahid, Masood & Shibli, 2014).

– Auditing: The level of auditing in CouchDB is moderate (logging of all changes to
user-profiles and the level of database). Auditing is provided to log events and views
in log files. However, CouchDB does not support automatic backups of database logs,
replicas, and automatic logging; the configuration of logs is thus the responsibility of the
database administrators (Zahid, Masood & Shibli, 2014).

– Data Encryption: CouchDB does not have automatic data encryption, so the data
files are at risk of being accessed and read directly (Sahafizadeh & Nematbakhsh, 2015;
Noiumkar & Tawatchai, 2014). Data Encryption is supported in Client/Server via SSL.
Also, data encryption could be supported using HTTPS connections in Server/Server
(Grolinger et al., 2013).

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 7/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.297


– Denial of service attack: Websites such as securityfocus.com display vulnerabilities that
exist only on Apache CouchDB 1.5.0 (SecurityFocus, 2020). These vulnerabilities are
used by hackers to crash it. So CouchDB is potentially vulnerable to Denial of service
attacks (Sahafizadeh & Nematbakhsh, 2015).

– Script Injection: CouchDB uses JSON to manipulate the data, making it vulnerable to
Script Injection. In other words, hackers can launch JSON Injection to attack CouchDB
(Sahafizadeh & Nematbakhsh, 2015; Noiumkar & Tawatchai, 2014).

Couchbase server
• Introduction:
Couchbase Server is an open-source, document-oriented NoSQL DBMS. Couchbase
Server was developed by Couchbase Inc., initially released in August 2010 with the stable
release launched in February 2018. Couchbase Server was developed using Erlang, C, and
C++ (George, 2013). Various data centers contain all the cluster servers. The documents
are stored in vbuckets, which are special data containers uniformly distributed across
the cluster. More nodes can be added and removed because Couchbase cluster scales are
completely horizontal (Zahid, Masood & Shibli, 2014). Map-reduce and REST querying
is supported by the Couchbase server (Grolinger et al., 2013). Couchbase also supports
SQL++, an SQL like language which has been designed to become a unified query
language for NoSQL system.

• Security analysis:
– Authentication: SASL (Simple Authentication and Security Layer) is supported by name
and password on Couchbase Server HTTP. Basic authentication is used in Couchbase
management REST (Representational State Transfer) API (Application Programming
Interface) (Grolinger et al., 2013). External Authentication is also supported (Zahid,
Masood & Shibli, 2014).

– Authorization: Couchbase Server does not support authorization (Grolinger et al.,
2013).

– Auditing: Couchbase Server does not support auditing (Grolinger et al., 2013).
– Data Encryption: Couchbase Server does not support data Encryption in Data at rest,
Client/Server, and Server/Server (Grolinger et al., 2013).

Key-value NoSQL stores
These are the simplest NoSQL databases. Key-value stores focus on high availability,
performance, and scalability, by storing data in a distributed storage system (Abed, 2020).
The data model used in key-value stores is simple, and in most such systems, there is
no query language, but rather a set of operations that can be used by the application
programmers. The key is a unique identifier associated with a value, and is used to rapidly
locate it (Kaur & Rani, 2013). The value may have different formats for different key-value
storage systems. In some cases, the value is just an array or a string of bytes. Key-value
stores are suitable for efficient reading and writing of extensive amounts of data. Some
disadvantages of this model include the lack of some traditional capabilities such as
atomicity and consistency, and as the data volume increases, retaining more values as

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 8/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.297


keys may become more difficult (Dindoliwala & Morena, 2017). The application using the
key-value store has to interpret the structure of the data value. Different key-value stores
can thus store structured, unstructured, or semi-structured data items (Elmasri & Navathe,
2017). NoSQL Key-Value stores are needed for application tasks such as managing user
profiles, sessions, or retrieving product names (Moniruzzaman & Hossain, 2013). Examples
of this type of NoSQL DBMSs include Redis, Voldemort (LinkedIn), Riak, and BerkeleyDB
(Özsu & Valduriez, 2020).

Security issues in key-value stores NoSQL DBMSs
This subsection discusses the most popular types of Key-Value Stores NoSQL Database
Management Systems.

Redis
• Introduction:
Redis is an Open source NoSQL DBMS (Grolinger et al., 2013), developed using C and
C++ (Meier & Kaufmann, 2019) by Salvatore Sanfilippo. Redis was initially released in
May 2009 and the stable release appeared in June 2018. It is a Key-valuememory database,
So, Redis data will be loaded into memory (Dayan, Manos & Stratos, 2018) when it runs
and all operations are run in memory. Redis periodically saves data asynchronously to
the hard disk. It achieves high-performance thanks to its use of pure memory. Redis can
handle more than 100,000 write or read operations per second. The maximum limit of
value is 1GB. However, Redis cannot be used as big data storage, and scalability is poor
because the capacity of the Database is limited by the physical memory. As such, Redis
is suitable for providing high-performance computing for a small amount of data (Han
et al., 2011). SQL-like and Map-reduce querying is not supported in Redis but REST
querying is supported by third-party APIs (Grolinger et al., 2013).

• Security analysis:

– Authentication: Redis provides a password-based authentication to its clients.
Passwords are set by system administrators and stored in plaintext format. Redis
does not provide default authentication and listens on all IP addresses on port 6739
(Han et al., 2011).

– Authorization: Redis does not support any kind of access control (Han et al., 2011)
i.e., it does not support authorization (Paterson et al., 2006).

– Auditing: Redis does not provide support for auditing (Tudorica & Bucur, 2011;
Paterson et al., 2006).

– Data Encryption: Redis does not provide support for Data encryption. It stores data
in plaintext (Paterson et al., 2006). As such, hackers—or anyone who can access the
Redis server - will be able to read all the data in the database. No data encryption
is performed in the communication between client and server, and between other
servers, neither at the same cluster nor different clusters (Nayak, Poriya & Poojary,
2013). Redis does not have data-at-rest encryption (Zugaj & Beichler, 2019).

– Denial of service attack: Denial of service attacks on Redis was not reported (Nayak,
Poriya & Poojary, 2013).

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 9/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.297


– Script Injection: Redis does not have a concept of string escaping, so injection becomes
impossible (Nayak, Poriya & Poojary, 2013; Paterson et al., 2006).

Voldemort
• Introduction:
Voldemort is an Open source key-value NoSQL DBMS, developed by LinkedIn (Dayan,
Manos & Stratos, 2018). Its initial release was in 2009 and the stable release appeared
in July 2017 (Grolinger et al., 2013). Voldemort was developed using Java (Deka, 2013).
Three simple operations are included in Voldemort; reading, writing, and deletion. All
of them are executed using a key (Chen, Shiwen & Yunhao, 2014). There is no SQL-like
querying language in Voldemort but Map-reduce querying is supported (Grolinger et
al., 2013).

• Security Analysis:

– Authentication: There is no authentication mechanism in Voldemort.
– Authorization: There is no authorization mechanism in Voldemort.
– Auditing: There is no auditing in Voldemort.
– Data Encryption: No encryption, neither between the client and the server nor among
the servers (Grolinger et al., 2013).

Oracle Berkeley DB (BDB)
• Introduction:
Oracle Berkeley DB is a closed source key-value NoSQL DBMS. Oracle Berkeley DB
was developed by Sleepycat Software. Oracle Berkeley DB initial release appeared in
1994 and the stable release was in June 2018. It is a high-performance data management
services to applications. It uses a simple function for data access and management
(Sullivan & Vincent, 2011). SQLite and REST querying is supported by Oracle Berkeley
DB, but Map-reduce querying is not (Grolinger et al., 2013). In terms of implementation
of Oracle Berkeley DB, was implemented in C, Oracle Berkeley XML was implemented
in C++ and Oracle Berkeley JE was implemented in Java.

• Security Analysis:

– Authentication: There is no authentication mechanism in Berkeley DB.
– Authorization: There is no authorization mechanism in Berkeley DB.
– Auditing: There is no auditing in Berkeley DB.
– Data Encryption: Berkeley DB supports data at rest encryption. No encryption
between Servers (Grolinger et al., 2013).

NoSQL graph stores
A graph database is a database that uses graph structures for semantic queries with nodes,
edges, and properties to represent and store data. A key concept of this system is the graph,
which relates data items in the store. Both edges and nodes can be labeled to indicate the
types of vertices and associations they represent, and it is generally possible to store data
associated with both individual nodes and individual edges (Elmasri & Navathe, 2017). In
the Graph database model, the database is represented as a network structure containing

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 10/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.297


edges between nodes to illustrate the relationships among nodes. Nodes may also contain
properties that describe the real data contained within each object. Edges may also have
properties. An edge (or a relationship) connects two nodes and it may be directed. When
directions are added, relationships between nodes are identified by the names of the nodes,
and can be traversed in both directions (Kaur & Rani, 2013). The graph uses the Index-Free
adjacency technique, in which each node contains a pointer pointing to the adjacent node.
For every node in the Graph database, the system can access its direct neighbor, without
the need to consider all edges (Abed, 2020). This is known as the index-free adjacency
property; and it is the key feature of the graph databases (Meier & Kaufmann, 2019). Graph
databases are efficient schema-less DBs, which makes them suitable for semi-structured
data storage. The queries in Graph databases are expressed as traversals; which make
them much faster than relational databases (Nayak, Poriya & Poojary, 2013). In general,
graph databases are appropriate when the main interest is the relationships between data
(e.g., generating recommendations, social networks, conducting forensic investigations,
network search, and fraud detection (Moniruzzaman & Hossain, 2013). Examples of Graph
Databases include Neo4j, Sones GraphDB, InfiniteGraph, InfoGrid, and AllegroGraph
(Khasawneh, AL-Sahlee & Safia, 2020).

Security issues in graph NoSQL DBMSs
This subsection discusses the most popular types of graph Stores NoSQL Database
Management Systems.

Neo4j
• Introduction:
Neo4j is an open-source graph NoSQL DBMS (Paterson et al., 2006), developed by Neo
Technology. It was initially released in 2007 and the stable release appeared in April 2018.
It was developed using Java. The advantages of Neo4j include providing object-oriented,
flexible network structure, reliability, highly available, and scalability. Neo4j uses the
graph data model which consists of nodes and edges and the relationships between
them. Neo4j uses CYPHER query language. REST querying is supported by Neo4j
but Map-reduce is not supported (Grolinger et al., 2013). Neo4j is used extensively in
software that has complex relationships such as social networking and recommendation
engines (Moniruzzaman & Hossain, 2013).

• Security Analysis:

– Authentication: Neo4j does not support Authentication (Grolinger et al., 2013).
– Authorization: Neo4j does not support authorization (Grolinger et al., 2013; Paterson
et al., 2006)

– Auditing: Neo4j does not support auditing (Grolinger et al., 2013; Paterson et al.,
2006).

– Data Encryption: Neo4j does not support data at rest encryption, nor does it support
data encryption between servers (Grolinger et al., 2013); however it uses SSL-based
communication protocol between the client and the server (Paterson et al., 2006).

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 11/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.297


HyperGraphDB
• Introduction:

HyperGraphDB is an Open source NoSQL DBMS that implements powerful
knowledge management formalism known as directed hypergraphs (Grolinger et al.,
2013). HyperGraphDB is developed by Kobrix Software, Inc. The stable release of
HyperGraphDB appeared in May 2017. Hyper-GraphDB was developed using Java.
Higher-order Relations are naturally represented by the HyperGraphDB model. The
HyperGraphDB model is very useful in areas related to data modeling such as artificial
intelligence and knowledge of representation and bioinformatics. This data model is
designed for AI, Knowledge representation and the semantic Web (Kobrix Software Inc,
2020; Angles, 2012). HyperGraphDB provides SQL- like query language. REST querying is
supported by HyperGraphDB but Map-reduce is not (Grolinger et al., 2013).

• Security Analysis:
–Authentication: HyperGraphDB does not support authentication.
–Authorization: HyperGraphDB does not support authorization.
–Auditing: HyperGraphDB does not support auditing.

– Data Encryption: HyperGraphDB does not support data encryption (Grolinger et al.,
2013).

AllegroGraph
• Introduction:
AllegroGraph is a closed-source graph NoSQL DBMS, developed by Franz Inc. The
stable release appeared in October 2017 (Khasawneh, AL-Sahlee & Safia, 2020; Grolinger
et al., 2013). It was developed using Common Lisp (Franz Inc, 2020). It offers high-
performance and is mainly used for developing semantic web applications. It can store
data and meta-data as RDF (Resource Description Framework) triples. AllegroGraph
maintains high performance when accessing billions of quads due to efficient memory
utilization along with disk-based storage (Arora & Rinkle, 2013; Franz Inc, 2020).
SPARQL and Prolog are the query languages used by AllegroGraph. REST querying
is supported by AllegroGraph but Map-reduce is not (Grolinger et al., 2013).

• Security Analysis:
– Authentication: Authentication is supported by AllegroGraph.
– Authorization: Authorization is supported by AllegroGraph such as read, write, and
delete.

– Auditing: AllegroGraph can be used to record specific changes in the audit log.
– Data Encryption: AllegroGraph does not support data at rest encryption. But it uses an
HTTPS-based communication protocol between the client and the server (Grolinger et
al., 2013).

Column-based or wide column NoSQL stores
By providing an additional structure, Column-based databases utilize the key-value
concept. In certain uses, it has been proven that to optimize the read operations, it is much
better to store the data into the relational datasets per column, not per row. This is due

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 12/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.297


to the occasional need for all columns in a single row at once; however, there are groups
of columns that are often read together (Meier & Kaufmann, 2019). Column-based data
stores are designed to address the huge number of columns and frequent changes in the
schema (Moniruzzaman & Hossain, 2013). Wide column stores have tables that contain
columns. A column is specified by a combination of a Column Family and a Column
Qualifier; each column family has a name that should be declared when the table is created,
and cannot be changed subsequently. After loading data into a table, each column family
is associated with column qualifiers. Column qualifiers are not declared when the table
is created, but can be dynamically created and inserted into the table. Read and write are
done using columns rather than rows. The reason for structuring the data in groups of
columns—column families—as storage units is that it is a sound way to optimize the data
access. Column-based databases adopt this model; they store the data not in relational
datasets but rather in enhanced and structured multi-dimensional keyspaces (Meier &
Kaufmann, 2019). Wide-column stores have great features such as high performance and
high scalability (Elmasri & Navathe, 2017). These types of DBMSs are suitable for data
processing, distributed data storage, content management, event logging, and categorizing
for analytics (Moniruzzaman & Hossain, 2013). The most common open-source column-
oriented databases are HBase, Hypertable. HBase are derivatives of Bigtable (Kaur & Rani,
2013).

Security issues in column-based NoSQL DBMSs
This subsection discusses the most popular types of column-based Stores NoSQL Database
Management Systems.

Hypertable
• Introduction:
Hypertable is a column-oriented NoSQL DBMS. It was developed by Zvents before 2008
and the stable release appeared in March 2016. Hypertable was developed using C++
(Deka, 2013). It is a high-performance open-source DBMS, and can run on Hadoop
Distributed File Systems (HDFS). It is modeled after Google’s Bigtable DBMS. Like
Bigtable, Hypertable stores data using the column-oriented methodology (Khasawneh,
AL-Sahlee & Safia, 2020). There is no SQL-like query language in Hypertable.

• Security Analysis:
– Authentication: Hypertable does not support Authentication (Nayak, Poriya &
Poojary, 2013; Paterson et al., 2006). Moreover, it does not support Authentication
in communication between the client and the server or among its servers (Nayak, Poriya
& Poojary, 2013).

– Data Encryption: Hypertable does not support encryption for its data files (Nayak,
Poriya & Poojary, 2013; Paterson et al., 2006). Hypertable does not support encryption
in communication between the client and server or between its servers (Nayak, Poriya
& Poojary, 2013).

– Denial of service attack: There is no information reported about denial of service attacks
on Hypertable.

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 13/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.297


– Script Injection: Though Hypertable has an HQL (Hypertable Query Language), which
is similar to the SQL, it is not vulnerable to script injection (Nayak, Poriya & Poojary,
2013).

HBase
• Introduction:
HBase is an open-source column-oriented NoSQL DBMS. HBase was developed by
the Apache Software Foundation (2020). Its initial release was in February 2015 and
the stable release was in April 2018. It was developed using Java (Meier & Kaufmann,
2019). Features include automatic distributability and scalability. HBase is based on the
concept of Google’s Bigtable and implemented in Java (Tudorica & Bucur, 2011; Paterson
et al., 2006). There is no SQL-like query language in HBase, but Map reduce and REST
querying are supported (Grolinger et al., 2013).

• Security Analysis:
– Authentication: HBase supports token-based Authentication, for MapReduce tasks and
user Authentication is done by using SASL (Simple Authentication and Security Layer
with Kerberos Tudorica & Bucur, 2011; Paterson et al., 2006).

– Authorization: HBase supports authorization by access control list. Permissions include
create, read, write and admin (Grolinger et al., 2013; Paterson et al., 2006).

– Auditing: Auditing is supported by HBase (Han et al., 2011).
– Data Encryption: HBase does not support the encryption of data at rest (Tudorica &
Bucur, 2011; Paterson et al., 2006), but HBase supports the encryption in communication
between client and server (Grolinger et al., 2013).

– Denial of service attack: No report for denial of service attack.
– Script Injection: No report for script injection (Paterson et al., 2006).

Object store NoSQL stores
An object-oriented database stores the information or data as objects according to the
object-oriented paradigm (Nayak, Poriya & Poojary, 2013). Object-oriented stores can be
thought of as a combination of object-oriented programming (OOP) methodology and
database principles. Data encapsulation, polymorphism, inheritance, and all other features
ofOOPare offered by other object-based databases. The classes, attributes, and objects in the
Object-oriented stores are comparable to tables, columns, and tuples in a table in RDBMS
respectively. Each object has an identifier that uniquely represents it. Because the object
can easily be retrieved using pointers, data access becomes much faster in object-oriented
databases. Harnessing the Object-based databases can ease the agility of modern software
development processes (Nayak, Poriya & Poojary, 2013). These types of data stores are not
relational databases and are not queried using SQL (Dindoliwala & Morena, 2017). Object
Stores are the most convenient category for storing and retrieving binary large objects such
as files, images, videos, and audio files. They are ideal for applications that require complex
relationships between objects and changing object structures, or if the application defines
members that are grouped in collections. Common uses for the object-oriented databases
are applications of scientific research, telecommunication, computer-aided drafting, etc.

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 14/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.297


The disadvantage of object-oriented databases is the limited programming languages they
are bounded to (Nayak, Poriya & Poojary, 2013). Examples of Object Store NoSQL DBMSs
include Gemstone, db4o, and objective/DB (Dindoliwala & Morena, 2017).

Security issues in object store NoSQL DBMSs
This subsection discusses the most popular types of object Stores NoSQL Database
Management Systems.

Gemstone
• Introduction:
Gemstone is an open-source an Object NoSQL DBMS. It was developed by GemTalk
Systems. Its first appearance was in 1986 and the stable release is 64 Bit 3.3.7. Gemstone is
Proprietary commercial software. Multiuser environments are supported by Gemstone;
each user can have one or more sessions, and multiple user sessions can be active at
the same time. Gemstone provides security at several levels from login authorization
to object access (Dindoliwala & Morena, 2017). There is no general query language like
SQL in Gemstone.

• Security Analysis:
– Authentication: InGemstone, each user is identified by a unique user ID and a password.
The user is represented by an instance of the class User Profile. The User Profile contains
a user ID, password, default authorization information, and the user’s group. Only users
who have a User Profile can logon to the system.

– Authorization: Authorization exists within Gemstone and controls individual object
access.

– Auditing: The DB administrator can also configure the Gemstone system to monitor
failures to login.

– Data Encryption: Gemstone does not support Data Encryption (Dindoliwala & Morena,
2017).

db4o
• Introduction:
db4o is an open-source object NoSQL DBMS. It was developed by Action and the stable
release 8.0. db4o was developed using Java and C# (Noiumkar & Tawatchai, 2014).
db4o-SQL is an interface to allow SQL queries into a db4o database.

• Security Analysis:
– Authentication: db4o provides only an internal authentication mechanism.
– Authorization: db4o offers file-level authorization.
– Auditing: db4o lacks auditing capabilities.
– Data Encryption: db4o uses the eXtended Tiny Encryption Algorithm (Dindoliwala &
Morena, 2017) for data encryption.

Objectivity/DB
• Introduction:
Objectivity/DB is an object NoSQL DBMS. Objectivity/DB is proprietary to Objectivity
Inc. and first commercialized in 1990. Objectivity/DB was developed using Java, C#

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 15/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.297


, C++, and Python. Since the Objectivity/DB schema is created from internal class
definitions from the programming language, it is easier to maintain changes to the
schema (Dindoliwala & Morena, 2017). Objectivity/DB provides OQL (Object Query
Language which is like SQL querying language

• Security Analysis:

– Authentication: For Authentication Objectivity/DB has two mechanisms; the first
(by default) is Kerberos; the second is by using Advanced Multithreaded Server
(AMSprotocol).

– Authorization: Relies on the operating system and file systems for access control.
– Auditing: No auditing capabilities have been mentioned in Objectivity/DB.
– Data Encryption: Objectivity/DB doesn’t provide any inbuilt encryption (Dindoliwala
& Morena, 2017).

Multi-model NoSQL database Stores
This term refers to at least two types of NoSQL categories integrated into one system. In
some of the NoSQL systems, a combination of more than one NoSQL system is used.
This integration ensures that all the features in each category are combined. For example,
Cassandra is a NoSQL DBMS used on Facebook. It combines column stores and key-value
stores (Nayak, Poriya & Poojary, 2013). DynamoDB is a NoSQL database used in Amazon.
It combines document and key-value data models (Sahafizadeh & Nematbakhsh, 2015).

Security Issues in Multi-model NoSQL DBMSs
This subsection discusses the most popular types of Multi-model database Stores NoSQL
Database Management Systems.

Cassandra
• Introduction:
Cassandra is an open-source Multi-model database NoSQL DBMS. It was developed by
Apache Software Foundation and its stable release appeared in February 2018. Cassandra
was developed using Java, and is used by Facebook. Cassandra is a Multi-model database
of both column stores and key-value stores (Moniruzzaman & Hossain, 2013). Its key
characteristics include: a free schema, flexibility, convenience of adding or deleting
fields, support for range queries, partition tolerance, and high scalability (Han et al.,
2011). Cassandra has three basic components; data, centers, and clusters nodes. The
data in a cluster is organized into key spaces (databases), which contain tables. Tables
contain rows, and rows have columns. The query language used is Cassandra Query
Language (CQL) also Cassandra supports Map-reduce querying and REST querying by
Third-party APIs (Dindoliwala & Morena, 2017).

• Security Analysis:

– Authentication: authentication in Cassandra is particularly weak since passwords are
encrypted using the MD5 hash. The entire authentication in Cassandra is provided
between the client and the Cassandra cluster. In other words, the inter-node message
exchange does not support Authentication by default. Hence, a malicious user

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 16/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.297


with access to the network used by the Cassandra cluster can bypass the client-side
Authentication and extract data or damage it. However, the transmission security at
the data center, rack, and a cluster is provided by Cassandra via enabling SSL/TLS in
its configurations (Han et al., 2011). Cassandra supports only internal Authentication
mechanisms. Cassandra 3.0 Authentication is role-based and stored internally in
Cassandra system tables (Dindoliwala & Morena, 2017).

– Authorization: The entire authorizationmechanism inCassandra is provided between
the client and the Cassandra cluster (Han et al., 2011). As such, a malicious user
with access to the network used by the Cassandra cluster can bypass the client-side
authorization and extract data or damage it. In 2015, it had been proven that Cassandra
did not support authorization (Sahafizadeh & Nematbakhsh, 2015; Paterson et al.,
2006). Cassandra uses the GRANT/REVOKE mechanism to manage permissions as
part of the authorization mechanism. In Cassandra 2.2 and later versions, Role-based
access control is available and permissions may be applied on resources such as
keyspace, table, function (Dindoliwala & Morena, 2017).

– Auditing: Cassandra does not support auditing (Tudorica & Bucur, 2011; Paterson
et al., 2006). Cassandra auditing is available in Enterprise Cassandra as a log4jbased
integration and a per-node basis. Filters are available for logging using a combination
of the following categories—ADMIN, AUTH, ALL, DCL, DML, and QUERY
(Dindoliwala & Morena, 2017).

– Data Encryption: Data files in Cassandra are stored without encryption and the
database does not have automatic data encryption, so malicious users can access
the data and read it (Nayak, Poriya & Poojary, 2013; Tudorica & Bucur, 2011). Since
version 3.2, Cassandra supports at-rest data encryption through Transparent Data
Encryption (TDE) (Dindoliwala & Morena, 2017).

– SQL Injection: Cassandra Query Language (CQL) has a similar syntax to SQL’s, so
it is believed that it can be attacked in the same way SQL is vulnerable to attacks by
SQL injection (Nayak, Poriya & Poojary, 2013; Paterson et al., 2006).

– Denial of service attack: Cassandra performs one thread per client. As such, it
is vulnerable to denial of service attacks. A malicious user creating enough fake
connections can drain Cassandra’s resources. If hackers knew the IP addresses of all
Cassandra servers in the cluster and created enough fake connections, they could drive
it out of service (Nayak, Poriya & Poojary, 2013).

– Inactive connections: Cassandra does not set the timeout value for inactive
connections; consequently, it has a problem in managing inactive connections
(Nayak, Poriya & Poojary, 2013; Paterson et al., 2006).

DynamoDB
• Introduction:
DynamoDB is aClosed sourceNoSQLDBMSused byAmazon. Its initial release appeared
in January 2012 (Grolinger et al., 2013). DynamoDB was developed using Java (Meier &
Kaufmann, 2019). It is fast and flexible and supports both the document and key-value

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 17/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.297


data models (Paterson et al., 2006). The query language is proprietary in DynamoDB but
MapReduce and REST query are supported (Grolinger et al., 2013).

• Security Analysis:

– Authentication: Authentication is supported by DynamoDB (Paterson et al., 2006).
It is ensured by the integration of Identity and Access Management (IAM services
Grolinger et al., 2013; Paterson et al., 2006).

– Authorization: Authorization is supported by DynamoDB (Paterson et al., 2006). It
allows users to create policies and operations on domains (Grolinger et al., 2013).

– Auditing: DynamoDB integrates with Amazon Cloud Watch Service. Access
information about latencies for operations, requests throughput, and the amount
of data stored (Grolinger et al., 2013) are subject to auditing at the ACWS.

– Data Encryption: DynamoDB does not support the encryption of data at rest
(Grolinger et al., 2013). Communication between the client and the server uses the
https protocol (Paterson et al., 2006).

QUERY LANGUAGE
A query language is a set of user-entered statements that define, manipulate, and retrieve
data from database and information systems by sending queries. NoSQL DBMSs don’t
use a standard query language, and most of their providers have developed their query
languages. This brings some stumbling blocks when users want to switch from one NoSQL
DBMS to another; for instance, Cassandra supports Cassandra Query Language (CQL),
while MongoDB uses Mongo query language, and so on. To resolve this, a common query
language that can support a variety of NoSQL database users was needed. Unstructured
Query Language, or UnQL (pronounced ‘uncle’), is a joint effort of several NoSQL DBMS
providers that brings a commonplace and standardized data definition, manipulation, and
retrieval language to the NoSQL platform. UnQL is being developed by the creators of
Couch and SQLlite. It is considered as the superset of SQL; providing a SQL-like syntax,
and familiarity to the database developers and users. The model and syntax of the UnQl is
appropriate for the unstructured, self-describing data formats. UnQl provides features to
fetch and process complex document structures. It also provides the elasticity of the NoSQL
schema-less design and the structured table format of the relational database. Data stored
in JSON format as well as in document and non-relational stores can be queried using
UnQl. UnQl is open for developers and academic communities for further enhancements
and development (Nayak, Poriya & Poojary, 2013).

COMPARISON OF NOSQL DATABASES CATEGORIES
A generic introduction to NoSQL databases through the categorization of different NoSQL
databases is presented in Table 1 (Strauch, Sites & Kriha, 2011). If we add the Object Store
NoSQL systems to the table, it becomes as follows:

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 18/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.297


Table 1 Comparison of NoSQL databases categories.

NoSQL DB
categories

Performance Scalability Flexibility Complexity Functionality

Document stores High Variable
(High)

High Low Variable
(Low)

Key-Value Stores High High High None Variable
(None)

Graph DB Variable Variable High High Graph Theory
Column stores High High Moderate Low Minimal
Object Store High Variable

(High)
High Low Object Oriented

Programming

SUMMARIZED TABLE
The aforementioned exhaustive study is summarized in Table 2, which presents the result
of the comparison between the mentioned DBMSs in terms of the selected determining
criteria.

NOSQL DBMS SELECTION ALGORITHM
In this section, we propose a smart agent algorithmwhich selects NoSQLDBMSs according
to the user’s needs –in our case, that would be selecting the most convenient DBMS for
large medical records storage. The algorithm gives a weight to each criterion, measured as
(user weight/total weights). The user sets the appropriate weights based on their needs. The
algorithm arranges weights in an ascending order, and returns an ordered table according
to the arranged weights.
Result: an ordered table (output rows)
Input:10 variables;

• Data Model
• Company
• Open-source
• Implementation Programming Language
• Stable Release issue date
• Support Authentication
• Support Authorization
• Support Auditing
• Support Data Encryption
• Query Types

InputsWeight:

• Data Model weight
• Company weight
• Open source weight
• Implementation Programming Language weight
• Stable Release issue date weight

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 19/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.297


Table 2 Summarized table.

DBMS Model Company Open-source Implementation
Programing
language

Stable
Release
issue
date

Support
authentication?

Support
authorization?

Support
auditing?

Support
data
encryption?

Query
types

MongoDB Document MongoDB Inc. Yes C++, C, JavaScrip June 2018 Yes Yes weak Yes, but not support
data at rest encryption

Mongo Query Language,
REST, MapReduce

CouchDB Document apache Yes Erlang November 2017 Yes Yes weak No, only Client/Server
SSL-based

Map reduce, REST

Couchbase Server Document Couchbase Inc. Yes Erlang, C, C++ February, 2018 Yes No No No SQL++, Map reduce,
REST

Redis Key-Value Salvatore Sanfilippo Yes C, C++ June ,2018 weak No No No REST by Third-party APIs

Voldemort Key-Value LinkedIn Yes Java July, 2017 No No No No Map reduce

Oracle BerkeleyDB Key-Value Oracle No C, C++, Java June, 2018 No No No No, only data at rest SQLite, REST

Neo4j Graph Neo Technology Yes Java April, 2018 No No No No, only Client/Server
SSL-based

Cypher, Gremlin and
SparQL, REST

HyperGraphDB Graph Kobrix Software, Inc. Yes Java May, 2017 No No No No SQL like querying, REST

AllegroGraph Graph Franz Inc. No Common Lisp October, 2017 Yes Yes weak No, only Client/Server
HTTPS

SparQL and Prolog, REST

HyperTable Column-based Zvents before Yes C++ March, 2016 No No No No HQL

HBase Column-based apache Yes Java April, 2018 Yes Yes Yes No, only Client/Server Map reduce, REST

GemStone Object Store GemTalk Yes Smalltalk June, 2018 Yes Yes weak No No querying like SQL

db4o Object Store Actian Yes Java, C# Sep., 2011 weak Yes No weak db4o-sql

Objectivity/DB Object Store Objectivity Inc No Java, C#, C++ and Paython June 2017 Yes weak No No OQL

Cassandra Multi-model apache Yes Java February, 2018 Yes Yes weak Yes CQL, Map reduce,
REST by Third-party APIs

DynamoDB Multi-model Amazon No Java 2012 No No weak No Map reduce REST

ElD
ahshan

etal.(2020),PeerJ
C
om

put.Sci.,D
O

I10.7717/peerj-cs.297
20/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.297


• Support Authentication weight
• Support Authorization weight
• Support Auditing weight
• Support Data Encryption weight
• Query Types weight

Lists:

• arranged weight list
• selected List
• output rows

output: an ordered table
if all input! = null then

sort inputs incrementally according to their weights.
end
arranged weight list = arrange (Inputs Weight).
/* Extract all tuples from the table that satisfy the user’s constraints and store data in the
selected list. */
selected List= Select * from table where column name equal inputs value for each given
input value.
output rows =sort selected List function (the maximum value from arrange weight list,
selected list)

Algorithm: NoSQLDBMS selection algorithm

RESULTS AND DISCUSSION
LDAP is a directory service and a searchable database repository that allows authorized
users and services to find information related to people, computers, network devices,
and applications (Lasisi & Ajagbe, 2012). LDAP directories are used mostly for reads, and
its servers are simple to install and maintain. LDAP is an Open Standard Protocol and
is Lightweight. Moreover, it offers common access for multiple database management
systems such that MongoDB, MySQL, PostgreSQL, Oracle 9i, IBM DB2, etc.

Apache Directory Studio is an integrated directory tool platform intended for use with
any LDAP server, but is specifically designed to be used with ApacheDS. Creating and
launching a new LDAP server now takes less than 10 s (Apache Software Foundation, 2020).

JSONWeb Token (JWT) is an open standard that characterizes a minimized and
independent approach to safely move data between parties as a JSON object. (IETF JWT,
2020).

Spring Boot gives a good platform to Java designers to build up an independent and
production-grade spring application that you can simply run (VMware, Inc, 2020).

Logback is expected as a replacement to the famous log4j venture, picking up where
log4j leaves off.

This paper presents a set of functions, based on web services. The latter offers a set
of endpoints that include authentication, authorization, auditing, and encryption of

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 21/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.297


information. It will be secure to use the client created via these web services in all types of
NoSQL DBMS.

This section will explain the web services identified.
First, web services related to the authentication process depend on authentication

through the Apache directory server. In this process, the users and units they belong to are
defined within the Apache server, so that the username and password are sent via secure
channel. If the user credentials are valid, JSON Web Token (JWT) returns all the user’s
information including their role within the organization and the units they belong to. With
the returned information, NoSQLDB allows the user to log into the database after ensuring
that the user is authorized. If the validation process fails, access is denied. This web service
related to the authentication process not only allows for user verification, but also provides
all the processes related to the user management, such as creating a new user, updating,
or deleting an existing user within the organization. The returned information might
be useful for databases in one way or another. It also facilitates the interaction with the
authentication server. The authentication process is done by the authentication controller,
which contains two main functions: the first is the generate JWT token function, which is
responsible for completing the user authentication process and returning the user’s token.
The second is responsible for validating the token, and ensuring that it is valid for use and
its content has not been changed or that its validity has not expired.

The other user-related processes in the authentication server are performed by the user
CRUD Controller. This controller contains five main functions, which can be described as
follows:

• Get all users: which gets all information to of all users on the authentication server and
returns JWT token with the essential information, such as display name, user name,
organizational unit, . . . etc.

• Get user by UID: which returns specific user’s information by the UID.
• Delete user by UID: which deletes any user by the UID.
• Create a new user: which creates a new user within the organization.
• Update User by UID: which updates the information of any user by UID inside the
authentication server.

All processes related to the authentication processes are shown in Figs. 2. and 3.
Second, the web services related to the authorization process. Most of the processes

related to authorization are built within the databases. in this case, authentication is
done from outside, and the user’s predefined privileges are used within the databases.
But sometimes the authorized operations may be related to the roles of people within
the organization, so that the databases enable users to perform the operations they are
allowed to. We hereby provide a solution to authorize the usage of the role within the
organization, so that they are allowed/rejected to perform their operations through their
organizational units. Databases can thus allow/reject users’ operations based on their roles
in the organization. The authorization process is done using an authorization controller
that performs five basic functions. They can be described as follows:

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 22/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.297


Figure 2 Authentication processes (a).
Full-size DOI: 10.7717/peerjcs.297/fig-2

• Get all groups (organization unit): By using this function within the NoSQL DB, the
whole organization unit inside the server is returned. The returned values contain
important information such as organization unit (OU) name and description.

• Get a group by OU name:By using this function inside theNoSQLDB,OU information
is returned by the OU name.

• Delete the group by OU name.
• Create a new OU: This function enables the NoSQL DB to create a new group within
the organization.

• Update group by OU name:This function enables updating anyOU informationwithin
the apache directory server.

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 23/32

https://peerj.com
https://doi.org/10.7717/peerjcs.297/fig-2
http://dx.doi.org/10.7717/peerj-cs.297


Figure 3 Authentication processes (b).
Full-size DOI: 10.7717/peerjcs.297/fig-3

All processes related to the authorization processes are shown in Fig. 4.
Third, web services related to the auditing process. the auditing process is crucial for

any type of database. Auditing documents all the operations that occur in the databases.
We offer a set of APIs related to the auditing process, based on the Logback. The proposed
solution contains the auditing controller, which contains a basic function to define the
auditing process. Here is either the INFO, ERROR or WARN and the content to be stored

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 24/32

https://peerj.com
https://doi.org/10.7717/peerjcs.297/fig-3
http://dx.doi.org/10.7717/peerj-cs.297


Figure 4 Authorization processes.
Full-size DOI: 10.7717/peerjcs.297/fig-4

in the auditing file. The databases will thus be able to easily record all the processes that have
been performed along with their specific timestamp. Figure 5 shows one such recorded
audit operations.

Fourth, web services related to the encryption process. Since securing such sensitive data
as medical records is absolutely critical on DB, encryption is a basic requirement within
NoSQL DB. Encryption helps to store the information safely and confidentially so that it is
not being accessed by unauthorized users. This paper offers a set of web services to encrypt
sensitive data, such as RSA, Triple DES, AES, and BlowFish. The web services contain

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 25/32

https://peerj.com
https://doi.org/10.7717/peerjcs.297/fig-4
http://dx.doi.org/10.7717/peerj-cs.297


Figure 5 Auditing process.
Full-size DOI: 10.7717/peerjcs.297/fig-5

four types of controllers; namely, AESController, BlowfishSsecretKey, TDESController,
and RSAController. Each controller includes two functions. One is used for encryption,
the other for decryption; with the possibility of storing the used keys easily and changing
them if necessary. Consequently, NoSQL DB can use one of the four strongest encryption
cryptosystems to encrypt sensitive data. All processes related to the encryption processes
are shown in Fig. 6.

The APIs described in the above paragraphs are illustrated in Fig. 7.
This figure shows the integration between the proposed system and NoSQL DBMS.

• Login request: In this request, the user logs in to the NoSQL DBMS. NoSQL DBMS
makes a login request to the Apache directory server with the password and username
sent. The Apache directory server checks the username and password and returns a JWT

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 26/32

https://peerj.com
https://doi.org/10.7717/peerjcs.297/fig-5
http://dx.doi.org/10.7717/peerj-cs.297


Figure 6 Encryption processes.
Full-size DOI: 10.7717/peerjcs.297/fig-6

token in case of success; access is denied in case of failure. The JWT token is sent with
all requests made to the proposed system.

• Authorization request:The usermakes a query that requires verification of its privileges.
The NoSQL DBMS checks the user’s permissions, either from the stored JWT token, or
the Apache directory server. NoSQL DBMS completes or rejects the query based on the
person’s authorization.

• Auditing request: The NoSQL DBMS uses the audit API to record all operations
performed on it. The DB admin obtains the audit report to review all operations that
occurred on the NoSQL DBMS.

• Encryption/Decryption request: The NoSQL DBMS uses the API to encrypt and
decrypt all sensitive information using four different types of encryption algorithms.

It is important to mention that in the testing phase, all communications between
NoSQL DB and web services will be secured with HTTPS instead of HTTP, for the data to

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 27/32

https://peerj.com
https://doi.org/10.7717/peerjcs.297/fig-6
http://dx.doi.org/10.7717/peerj-cs.297


Figure 7 An API based security system.
Full-size DOI: 10.7717/peerjcs.297/fig-7

be transmitted in a protected channel using a self-signed certificate. In the live phase, using
an authentic certificate from a certificate authority is recommended.

CONTRIBUTION:
This paper presented:
1. A taxonomy of NoSQL systems categories and their DBMSs.
2. A comparative study among NoSQL DBMS, along with several criteria including

security issues.
3. An algorithm to select the most convenient NoSQL DBMS for a given application. For

our current purposes, this algorithm can be used to select the appropriate solution for
the COVID-19 patients’, medical staff, and organizations data.

4. An API based security system. It is DBMS independent, and may be used to embed
security in any NoSQL DBMS. This achieves the goal of securing COVID-19 related
data.

CONCLUSIONS
This research paves the way for the use of NoSQL databases to store and protect COVID-
19 patients’ information, removing existing hurdles to their adoption. It does so by
understanding the five main categories of NoSQL databases, offering a comparative study
among these categories based upon a set of comparison criteria, namely Performance,
Scalability, Flexibility, Complexity, Functionality, and Security issues. This comparative
study reveals the strengths and weaknesses of each category. The most commonly used

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 28/32

https://peerj.com
https://doi.org/10.7717/peerjcs.297/fig-7
http://dx.doi.org/10.7717/peerj-cs.297


database management systems in each category were discussed. DBMSs were discussed
from two points of view: the pertained to the information, the second the security analysis.
Building on that discussion, a table was built to compare the strengths and weaknesses
of each DBMS, according to their comparison criteria are Data Model, Company, Open
source, Implementation Programming Language, Stable Release issue dates, Supporting
Authentication, Support Authorization, Support Auditing, Support Data Encryption, and
Query Types. The table provides individuals users and organizations a clear understanding
of the variousNoSQLDBMSs. The choice of aNoSQLDBMSwill depend on its convenience
to store and secure the information of COVID-19 patients. For this purpose, a new decision-
support algorithm was developed, to assist in the selection process of the most secure and
convenient NoSQL DBMS to store and maintain the security of the information collected
on each individual patient.

The paper developed and presented a complete solution to the essential security problems
common to all types of NoSQL DBMSs, thus successfully resolving their weaknesses, which
previously kept them from being the favored storage solution for sensitive data. Those
solutions relate to the processes of authentication, authorization, auditing, and encryption
of sensitive information. Moreover, the proposed solution is sufficiently general to allow
the patients’ database designer to freely choose any NoSQL DBMS to implement their
design, while successfully resolving those security pitfalls.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Kamal A. ElDahshan and AbdAllah A. AlHabshy conceived and designed the
experiments, performed the experiments, analyzed the data, authored or reviewed
drafts of the paper, and approved the final draft.

• Gaber E. Abutaleb conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Code is available atGitHub: https://github.com/GaberAbutaleb/NoSQL-Authentication-
API.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.297#supplemental-information.

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 29/32

https://peerj.com
https://github.com/GaberAbutaleb/NoSQL-Authentication-API
https://github.com/GaberAbutaleb/NoSQL-Authentication-API
http://dx.doi.org/10.7717/peerj-cs.297#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.297#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.297


REFERENCES
Abed AH. 2020. Recovery and concurrency challenging in big data and NoSQL

database systems. International Journal of Advanced Networking and Applications
11(04):4321–4329.

Angles R. 2012. A comparison of current graph database models. In: 2012 IEEE 28th
international conference on data engineering workshops (ICDEW). Piscataway: IEEE,
171–177.

Apache Software Foundation. 2020. Available at https://directory.apache.org/ studio/
(accessed on 24 April 2020).

Arora R, Rinkle RA. 2013. An algorithm for transformation of data from MySQL to
NoSQL (MongoDB). International Journal of Advanced Studies in Computer Science
and Engineering 2(1):6–12.

Chang F, Dean J, Ghemawat S, HsiehWC,Wallach DA, BurrowsM, Chandra T, Fikes
A, Gruber RE. 2008. Bigtable: a distributed storage system for structured data. ACM
Transactions on Database Systems 26(2):1–26.

ChenM, ShiwenM, Yunhao L. 2014. Big data: a survey.Mobile Networks and Applica-
tions 19(2):171–209 DOI 10.1007/s11036-013-0489-0.

Chodorow K. 2013.MongoDB: the definitive guide: powerful and scalable data storage.
Sebastopol: O’Reilly Media, Inc, 1–432.

Dayan N, Manos A, Stratos I. 2018. Optimal bloom filters and adaptive merging for
LSM-trees. ACM Trans Database Syst 43(4):1–48 DOI 10.1145/3276980.

Deka GC. 2013. A survey of cloud database systems. IT Professional 16(2):50–57.
Dindoliwala VJ, Morena RD. 2017. Survey on security mechanisms In NoSQL databases.

International Journal of Advanced Research in Computer Science 8:333–338.
Elmasri R, Navathe S. 2017. Fundamentals of database systems. Boston: Person educa-

tion.
Franz Inc. 2020. AllegroGraph. Available at https:// allegrograph.com/ (accessed on 23

April 2020).
George S. 2013. NoSQL–NOT ONLY SQL. International Journal of Enterprise Computing

and Business Systems 2:1–11.
Grolinger K, HigashinoWA, Tiwari A, Capretz MAM. 2013. Data management in

cloud environments: NoSQL and NewSQL data stores. Journal of Cloud Computing:
Advances, Systems and Applications 2(1):22.

Han J, Haihong E, Le G, Du J. 2011. Survey on NoSQL database. In: 2011 6th interna-
tional conference on pervasive computing and applications. Piscataway: IEEE.

Internet Engineering Task Force (IETF). 2020. JSONWeb Token introduction.
Available at https:// jwt.io/ introduction/ (accessed on 24 April 2020).

Jim T, Nikhil S, Michael H. 2007. Defeating script injection attacks with browser-
enforced embedded policies. In: Proceedings of the 16th international conference on
World Wide Web. ACM, 601–610.

Kaur K, Rani R. 2013.Modeling and querying data in NoSQL databases. In: 2013 IEEE
international conference on big data. Piscataway: IEEE.

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 30/32

https://peerj.com
https://directory.apache.org/studio/
http://dx.doi.org/10.1007/s11036-013-0489-0
http://dx.doi.org/10.1145/3276980
https://allegrograph.com/
https://jwt.io/introduction/
http://dx.doi.org/10.7717/peerj-cs.297


Khasawneh T, AL-Sahlee M, Safia A. 2020. SQL, NewSQL, and NOSQL databases: a
comparative survey (2020). In: 11th international conference on information and
communication systems (ICICS). Piscataway: IEEE.

Kobrix Software Inc. 2020. The HyperGraphDB. Available at http://www.hypergraphdb.
org.2020 (accessed on 23 April 2020).

Lakshman A, Malik P. 2010. Cassandra: a decentralized structured storage system. ACM
SIGOPS Operating Systems Review 44(2):35–40.

Lasisi AN, AjagbeMA. 2012. Samba OPENLDAP: an evolution and insight. Communica-
tions 2(3):354–362.

Lourenço JR, Cabral B, Carreiro P, Vieira M, Bernardino J. 2015. Choosing the right
NoSQL database for the job: a quality attribute evaluation. Journal of Big Data
2(1):18 DOI 10.1186/s40537-015-0025-0.

Meier A, KaufmannM. 2019. SQL & NoSQL databases. Wiesbaden: Springer Vieweg.
Moniruzzaman ABM, Hossain SA. 2013. NoSQL Database: new era of databases for big

data analytics—classification, characteristics and comparison. International Journal
of Database Theory and Application 6(4):1–14.

Nayak A, Poriya A, Poojary D. 2013. Type of NOSQL databases and its comparison with
relational databases. International Journal of Applied Information Systems 5(4):16–19
DOI 10.5120/ijais13-450935.

Noiumkar P, Tawatchai C. 2014. A comparison the level of security on top 5 open source
NoSQL databases. In: The 9th international conference on information technology and
applications (ICITA2014), 6.

ÖzsuMT, Valduriez P. 2020. NoSQL, NewSQL, and polystores. In: Principles of
distributed database systems. Cham: Springer, 519–557.

Paterson J, Stefan E, Henrik H, Reidar H. 2006. The definitive guide to db4o. New York:
Apress; Headquarters, 485.

Sahafizadeh E, NematbakhshMA. 2015. A survey on security issues in Big Data and
NoSQL. Advances in Computer Science: an International Journal 4(4):68–72.

SecurityFocus. 2020. Apache CouchDB Universally Unique IDentifier (UUID) Remote
Denial of Service Vulnerability. Available at https://www.securityfocus.com/bid/
66474/discuss (accessed on 27 April 2020).

Son S, McKinley KS, Shmatikov V. 2013. Diglossia: detecting code injection attacks
with precision and efficiency. In: Proceedings of the 2013 ACM SIGSAC conference
on computer & communications security. ACM, 1181–1192.

Strauch C, Sites U-LS, KrihaW. 2011. NoSQL databases. In: Lecture notes. Stuttgart:
University Hochschule der Medien, Stuttgart (Stuttgart Media University), 20.

Sullivan B, Vincent L. 2011.Web application security, a beginner’s guide. 1 edition. New
York: McGraw-Hill Education, 1–352.

Tudorica BG, Bucur C. 2011. A comparison between several NoSQL databases with
comments and notes. In: 2011 RoEduNet international conference 10th edition:
networking in education and research. Piscataway: IEEE.

VMware, Inc. 2020. Spring Boot. Available at https:// spring.io/projects/ spring-boot
(accessed on 24 April 2020).

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 31/32

https://peerj.com
http://www.hypergraphdb.org.2020
http://www.hypergraphdb.org.2020
http://dx.doi.org/10.1186/s40537-015-0025-0
http://dx.doi.org/10.5120/ijais13-450935
https://www.securityfocus.com/bid/66474/discuss
https://www.securityfocus.com/bid/66474/discuss
https://spring.io/projects/spring-boot
http://dx.doi.org/10.7717/peerj-cs.297


Zahid A, Masood R, Shibli MA. 2014. Security of sharded NoSQL databases: a compara-
tive analysis. In: 2014 conference on information assurance and cyber security (CIACS).
Piscataway: IEEE.

ZugajW, Beichler AS. 2019. Analysis of standard security features for selected NoSQL
systems. American Journal of Information Science and Technology 3(2):41–49.

ElDahshan et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.297 32/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.297

