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Non-experts have long made important contributions to machine learning (ML) by
contributing training data, and recent work has shown that non-experts can also help with
feature engineering by suggesting novel predictive features. However, non-experts have
only contributed features to prediction tasks already posed by experienced ML
practitioners. Here we study how non-experts can design prediction tasks themselves,
what types of tasks non-experts will design, and whether predictive models can be
automatically trained on data sourced for their tasks. We use a crowdsourcing platform
where non-experts design predictive tasks that are then categorized and ranked by the
crowd. Crowdsourced data are collected for top-ranked tasks and predictive models are
then trained and evaluated automatically using those data. We show that individuals
without ML experience can collectively construct useful datasets and that predictive
models can be learned on these datasets, but challenges remain. The prediction tasks
designed by non-experts covered a broad range of domains, from politics and current
events to health behavior, demographics, and more. Proper instructions are crucial for
non-experts, so we also conducted a randomized trial to understand how different
instructions may influence the types of prediction tasks being proposed. In general,
understanding better how non-experts can contribute to ML can further leverage advances
in Automatic ML and has important implications as ML continues to drive workplace
automation.
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ABSTRACT10

Non-experts have long made important contributions to machine learning (ML) by contributing training

data, and recent work has shown that non-experts can also help with feature engineering by suggesting

novel predictive features. However, non-experts have only contributed features to prediction tasks

already posed by experienced ML practitioners. Here we study how non-experts can design prediction

tasks themselves, what types of tasks non-experts will design, and whether predictive models can be

automatically trained on data sourced for their tasks. We use a crowdsourcing platform where non-experts

design predictive tasks that are then categorized and ranked by the crowd. Crowdsourced data are

collected for top-ranked tasks and predictive models are then trained and evaluated automatically using

those data. We show that individuals without ML experience can collectively construct useful datasets

and that predictive models can be learned on these datasets, but challenges remain. The prediction tasks

designed by non-experts covered a broad range of domains, from politics and current events to health

behavior, demographics, and more. Proper instructions are crucial for non-experts, so we also conducted

a randomized trial to understand how different instructions may influence the types of prediction tasks

being proposed. In general, understanding better how non-experts can contribute to ML can further

leverage advances in Automatic ML and has important implications as ML continues to drive workplace

automation.
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1 INTRODUCTION27

Recent years have seen improved technologies geared towards workplace automation and there is both28

promise and peril in how AI, robotics, and other technologies can alter the job security and prospects of29

the future workforce (David, 2015; Frank et al., 2019). While automation has already upended factory30

work and other traditionally blue collar jobs, machine learning (ML) can have similar effects on offices31

and knowledge work. ML can enable firms to better understand and act on their data more quickly and32

perhaps with fewer employees. But how well can or should employees understand the process and scope33

of ML? Perhaps most importantly, on their own, can individuals apply ML in new problem areas, informed34

by their own domain knowledge, or is such “editorial” control of ML limited to experts with significant35

training and experience in ML and related areas?36

At the same time, machine learning itself is being automated (Feurer et al., 2015), and the emerging37

field of Automatic Machine Learning promises to lower the barrier of entry at least to some extent, and in38

time the role of ML expertise may be supplanted by sufficiently advanced “AutoML” methods. Perhaps39

with sufficient advances, non-experts (meaning those with little prior experience in ML) can use ML for40

their purposes. This leads us to ask: how well can non-experts contribute to ML problems?41

In this paper, we investigate the following research questions (RQs):42

1. Can individuals who are not experts in the details of statistical or machine learning design meaning-43

ful supervised learning prediction tasks?44

2. What are the properties of prediction tasks proposed by non-experts? Do tasks tend to have common45

properties or focus on particular topics or types of questions?46
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3. Does providing an example of a prediction task help clarify the design assignment for non-experts47

or do such examples introduce bias?48

4. Are non-experts able to compare and contrast new prediction tasks, to determine which tasks should49

be deemed important or interesting?50

5. Can data collected for proposed tasks be used to build accurate predictive models without interven-51

tion from an ML expert?52

To study these questions, we employ a crowdsourcing platform where groups of crowd workers53

ideate supervised learning prediction tasks (RQ1), categorize and efficiently rank those tasks according to54

criteria of interest (RQ4), and contribute training data for those tasks. We study the topics and properties55

of prediction tasks (RQ2), show that performant predictive models can be trained on some proposed56

tasks (RQ5), and explore the design of the problem proposal task using a randomized trial (RQ3). We57

discuss limitations and benefits when approaching learning from this perspective—how it elevates the58

importance of specifying prediction task requirements relative to feature engineering and modeling that59

are traditionally the focus of applied machine learning.60

2 BACKGROUND61

Machine learning (ML) requires experts to understand technical concepts from probability and statistics,62

linear algebra, and optimization; be able to perform predictive model construction, training, and diag-63

nostics; and even participate in data collection, cleaning, and validation (Domingos, 2012; Alpaydin,64

2020). Such a depth of pre-requisite knowledge may limit the roles of non-experts, yet fields such as65

automatic machine learning (AutoML) (Hutter et al., 2019) have the promise to further enable non-expert66

participation in ML by removing many of the tasks which non-experts may be unable to complete without67

training or experience (Feurer et al., 2015; Vanschoren et al., 2014). Indeed, understanding the role68

of non-experts in ML is increasingly important as ML become more ubiquitous and affects the future69

of work (Frank et al., 2019). Non-experts have long been able to participate in data collection to train70

predictive models and interactive machine learning allows non-experts and ML to work together to better71

accomplish pre-identified tasks (Fails and Olsen Jr, 2003; Cheng and Bernstein, 2015; Crandall et al.,72

2018). However, as remarked by Yang et al. (2018), despite extensive research in these areas, little work73

has investigated how non-experts can take creative or editorial control to design their own applications of74

ML.75

Crowdsourcing has long been used as an avenue to gather training data for machine learning meth-76

ods (Lease, 2011). In this setting, it is important to understand the quality of worker responses, to prevent77

gathering bad data and to maximize the wisdom-of-the-crowd effects without introducing bias (Hsueh78

et al., 2009). Researchers have also studied active learning in this context, where an ML method is coupled79

in a feedback loop with responses from the crowd. One example is the Galaxy Zoo project (Kamar et al.,80

2012), where crowd workers are asked to classify photographs of galaxies while learning algorithms try81

to predict the galaxy classes and also manage quality by predicting the responses of individual workers.82

While most crowdsourcing applications focus on relatively rote tasks such as basic image classifica-83

tion (Schenk and Guittard, 2009), many researchers have studied how to incorporate crowdsourcing into84

creative tasks. Some examples include the work of Bernstein et al. (2015) and Teevan et al. (2016), both85

of which leverage crowd workers for prose writing; Kittur (2010), where the crowd helps with translation86

of poetry; Chilton et al. (2013), where the crowd develops taxonomic hierarchies; and Dontcheva et al.87

(2011), where crowd workers were asked to ideate new and interesting applications or uses of common88

everyday objects, such as coins. In the specific context of machine learning, Kaggle provides a competition89

platform for expert crowd participants to create predictive models, allowing data holders to crowdsource90

predictive modeling, but prediction tasks are still designed by the data providers not the crowd.91

In many crowdsourcing applications where workers contribute novel information, a propose-and-rank92

algorithm is typically used to ensure that crowd resources are focused on high-quality contributions by93

ranking those contributions in advance (Siangliulue et al., 2015; Salganik and Levy, 2015). For example,94

the “Wiki Surveys” project (Salganik and Levy, 2015) asks volunteers to contribute and vote on new ideas95

for improving quality-of-life in New York City. Wiki Surveys couples a proposal phase with a ranking and96

selection step, to create ideas and then filter and select the best ideas for the city government to consider.97
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None of these studies applied crowdsourced creativity to problems of machine learning or data collection,98

however.99

Two sets of studies are perhaps most closely related to the research here. The first focuses on non-100

experts who built ML tools that enable non-experts to build ML models, and investigated their goals,101

methods, and the challenges they encountered Yang et al. (2018). Yang et al. performed an empirical study,102

conducting interviews and surveys of non-experts, and their study serves as an important complement103

to our work. To the best of our knowledge, our study here is the first experimental consideration of104

non-experts and their ability to design prediction tasks.105

The second set of studies all consider the non-expert design of predictive features, i.e. crowdsourced106

feature engineering (Bongard et al., 2013; Bevelander et al., 2014; Swain et al., 2015; Wagy et al., 2017).107

This work studies the crowdsourcing of survey questions in multiple problem domains. Participants108

answered questions related to a quantity of interest to the crowdsourcer, such as how much they exercised109

vs. their obesity level or how much laundry they did at home compared with their home energy usage.110

Those participants were also offered the chance to propose new questions related to the quantity of111

interest (obesity level or home energy use). Algorithms were deployed while crowdsourcing occurred to112

relate answers to proposed questions (the features) to the quantity of interest, and thus participants were113

performing crowdsourced feature engineering with the goal of contributing novel predictive features of114

interest. Another similar study, Flock (Cheng and Bernstein, 2015), demonstrates that features built by115

non-experts working together with algorithms can improve supervised classifiers. However, these studies116

all limit themselves to feature engineering, and still require experts to design the supervised learning117

prediction task itself, i.e. experts decide what is the quantity of interest to be predicted. Yet non-experts118

will be unable to apply ML to a new area of their own interest if they can only contribute features to119

pre-existing problems. Therefore, our work here generalizes this to ask individuals to design the entire120

prediction task, not just the features, by allowing non-experts to propose not only questions related to a121

quantity of interest, but also the quantity of interest itself.122

3 METHODS123

Here, we describe our procedures for non-experts to design prediction tasks which are then ranked,124

categorized, and data are collected for top-ranked problems. The University of Vermont Institutional125

Review Board granted Ethical approval to carry out the study (determination number CHRBSS: 15-126

039). Collected data are available on Figshare (https://doi.org/10.6084/m9.figshare.127

9468512)128

3.1 Prediction task ideation129

To understand how non-experts can design and use machine learning, we introduce a protocol for the130

creation and data collection of supervised learning prediction tasks. Inspired by “propose-and-rank”131

crowd ideation methods (Sec. 2), the protocol proceeds in three phases: (i) prediction task proposal, (ii)132

task selection by ranking, and (iii) data collection for selected tasks. Proposed prediction tasks may also133

be categorized or labeled by workers, allowing us to understand properties of proposed tasks. This is134

an end-to-end procedure in that crowd workers generate all prediction tasks and data without manual135

interventions from the crowdsourcer, allowing us to understand what types of topics non-expert workers136

tend to be interested in, and whether machine learning models can be trained on collected data to make137

accurate predictions.138

3.1.1 Prediction task proposal139

In the first phase, a small number of workers are directed to propose sets of questions (see supplemental140

materials for the exact wording of these and all instructions we used in our experiments). Workers are141

instructed to provide a prediction task consisting of one target question and p = 4 input questions. We142

focused on four input questions here to keep the proposal task short; we discuss generalizing this in143

Sec. 5. Several examples of tasks proposed by workers are shown in Table 1. Workers are told that our144

goal is to predict what a person’s answer will be to the target question after only receiving answers to145

the input questions. Describing the prediction task design problem in this manner allows workers to146

envision the underlying goal of the supervised learning problem without the need to discuss data matrices,147

response variables, predictors, or other field-specific vocabulary. Workers were also instructed to use their148

judgment and experience to determine “interesting and important” problems. Importantly, no examples149
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Table 1. Examples of non-expert-proposed prediction tasks. Each task is a set of questions, one target

and p inputs, all generated entirely by non-experts. After crowdsourced data collection, answers to input

questions form the data matrix X and answers to the target question form the target vector y. Machine

learning algorithms try to predict the value of the target given only responses to the inputs. Prior work on

crowdsourced feature engineering asks workers to contribute new predictive features (as input questions,

in this case) for an expert-defined target. Here we ask workers to propose the entire prediction task not

just the features.

Prediction task

Target: What is your annual income?

Input: You have a job?

Input: How much do you make per hour?

Input: How many hours do you work per week?

Input: How many weeks per year do you work?

Target: Do you have a good doctor?

Input: How many times have you had a physical in the last year?

Input: How many times have you gone to the doctor in the past year?

Input: How much do you weigh?

Input: Do you have high blood pressure?

Target: Has racial profiling in America gone too far?

Input: Do you feel authorities should use race when determining who to give scrutiny to?

Input: How many times have you been racially profiled?

Input: Should laws be created to limit the use of racial profiling?

Input: How many close friends of a race other than yourself do you have?

of questions were shown to workers, to help ensure they were not biased in favor of the example (we150

investigate this bias with a randomized trial; see Secs. 3.3 and 4.4). Workers were asked to write their151

questions into provided text fields, ending each with a question mark. They were also asked to categorize152

the type of answer expected for each question; for simplicity, we directed workers to provide questions153

whose answers were either numeric or true/false (Boolean), though this can be readily generalized. Lastly,154

workers in the first phase are also asked to provide answers to their own questions.155

3.1.2 Prediction task ranking and selection156

In the second phase, new workers are shown previously proposed tasks, along with instructions again157

describing the goal of predicting the target answer given the input answers, but these workers are asked to158

(i) rank the task according to our criteria (described below) but using their own judgment, and (ii) answer159

survey questions describing the tasks they were shown. It is useful to keep individual crowdsourcing tasks160

short, so it is generally too burdensome to ask each worker to rank all N tasks. Instead, we suppose that161

workers will study either one task or a pair of tasks depending on the ranking procedure, complete the162

survey questions for the task(s), and, if shown a pair of tasks, to rate which of the two tasks they believed163

was “better” according to the instructions. To use these ratings to develop a global ranking of tasks from164

“best” to “worst”, we apply top-K ranking algorithms (Sec. 3.2). These algorithms select the K most165

suitable tasks to pass along to phase three.166

Task categorization As an optional part of phase two, data can be gathered to categorize what types167

of tasks are being proposed, and what are the properties of those tasks. To categorize tasks, we asked168

workers what the topic of each task is, whether questions in the task were subjective or objective, how169

well answers to the input questions would help to predict the answer to the target question, and what kind170

of responses other people would give to some questions. We describe the properties of proposed tasks in171

Sec. 4.172

3.1.3 Data collection and supervised learning173

In phase three, workers were directed to answer the input and target questions for the tasks selected during174

the ranking phase. Workers could answer the questions in each selected task only once but could work175
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on multiple prediction tasks. In our case, we collected data from workers until each task had responses176

from a fixed number of unique workers n, but one could specify other criteria for collecting data. The177

answers workers give in this phase create the datasets to be used for learning. Specifically, the n× p178

matrix X consists of the n worker responses to the p input questions (we can also represent the answers to179

each input question i as a predictor vector xi, with X = [x1, . . . ,xp]). Likewise, the answers to the target180

question provide the supervising or target vector y.181

After data collection, supervised learning methods can be applied to find the best predictive model182

f̂ that relates y and X, i.e., y = f̂ (X). In our case, we focused on random forests (Breiman, 2001), a183

commonly used and general-purpose ensemble learning method. Random forests work well on both184

linear and nonlinear problems and can be used for both regression problems (where y is numeric) and185

classifications (where y is categorical). However, any supervised learning method can be applied in this186

context. For hyperparameters used to fit the forests, we chose 200 trees per forest, a split criterion of MSE187

for regression and Gini impurity for classification, and tree nodes are expanded until all leaves are pure or188

contain fewer than 2 samples. These are commonly accepted choices for hyperparameters, but of course189

careful tuning of these values (using appropriate cross-validation) can only result in better learning than190

we report here.191

3.2 Ranking proposed prediction tasks192

Not all workers will propose meaningful tasks, so it is important to include a ranking step (phase two)193

that filters out low-quality (less meaningful) tasks while promoting high-quality (more meaningful) tasks.194

To ground our ranking process, we define a prediction task as “meaningful” if it is both important and195

learnable. A non-important prediction task may be one that leads to unimportant or unimpactful broader196

consequences, the target variable may not be worth predicting, or the task may simply recapitulate known197

relationships (“Do you think 1+1 = 2?”). As importance can be subjective, here we rely on the crowd to198

collectively certify whether a task is important or not according to their own criteria. Although it may be199

necessary to guide non-experts to specific areas of interest (see discussion), here we avoid introducing200

specific judgments or criteria so that we can see what “important” prediction tasks are proposed by201

non-experts.202

A meaningful prediction task must also be learnable. Indeed, another characteristic of poor prediction203

tasks is a lack of learnability, defined as the ability for a predictive model trained on data collected for the204

prediction task to accurately generalize to unseen data. For a binary classification task, one measure of205

learnability (but not the only measure) is reflected in the balance of class labels. For example, the target206

question “Do you think running and having a good diet are healthy?” is likely to lead to very many “true”207

responses and very few “false” responses. Such data lacks diversity (in this case, in the labels), which208

makes learning difficult. Of course, while a predictive model in such a scenario is not especially useful,209

the relationships and content of the target and input questions are likely to be meaningful, as we saw in210

some of our examples; see supplemental materials). In other words, a predictive task can be about an211

important topic or contain important information, but if it is not learnable then it is not meaningful as a212

prediction task.213

Here we detail how to use crowd feedback to efficiently rank problems based on importance and214

learnability. The outcome of this ranking (Sec. 4) also informs our investigation of RQ4. In the context215

of crowdsourcing prediction tasks, the choice of ranking criteria gives the crowdsourcer flexibility to216

guide workers in favor of, not necessarily specific types of tasks, but tasks that possess certain features217

or properties. This balances the needs of the crowdsourcer (and possible budget constraints) without218

restricting the free-form creative ideation of the crowd.219

3.2.1 Importance ranking220

We asked workers to use their judgment to estimate the “importance” of tasks (see supplemental materials221

for the exact wording of instructions). To keep workloads manageable, we ask workers to compare two222

tasks at a time, with a simple “Which of these two tasks is more important?”-style question. This reduces223

the worker’s assignment to a pairwise comparison. Yet, even reduced to pairwise comparisons, the global224

ranking problem is still challenging, as one needs O(N2) pairwise comparisons for N tasks, comparing225

every task to every other task. Furthermore, importance is generally subjective, so we need the responses226

of many workers and cannot rely on a single response to a given pair of tasks. Assuming we require227

L independent worker comparisons per pair, the number of worker responses required for task ranking228

grows as O(LN2).229
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Thankfully, ranking algorithms can reduce this complexity. Instead of comparing all pairs of tasks,230

these algorithms allow us to compare a subset of pairs to infer a latent score for each task, then rank231

all tasks according to these latent scores. For this work, we chose the following top-K spectral ranking232

algorithm, due to Negahban et al. (2017), to rank non-expert-proposed tasks and extract the K best tasks233

for subsequent crowdsourced data collection. The algorithm uses a comparison graph G = (V,E), where234

the N vertices denote the tasks to be compared, and comparison between two tasks i and j occurs only if235

(i, j) ∈ E. For our specific crowdsourcing experiment, we generated N = 50 tasks during the proposal236

phase, so here we generated a single Erdős-Rényi comparison graph of 50 nodes with each potential237

edge exists independently with probability p = 1.5log(N)/N (this p ensures G is connected), and opted238

for L = 15. Increasing L can improve ranking accuracy, but doing so comes at the cost of more worker239

time and crowdsourcer resources. The choice of an Erdős-Rényi comparison graph here is useful: when240

all possible edges are equally and independently probable, the number of samples needed to produce a241

consistent ranking is nearly optimal (Negahban et al., 2017).242

3.2.2 Learnability ranking243

As discussed above, prediction tasks lack learnability when there is insufficient diversity in the dataset.244

If nearly every observation is identical, there is not enough “spread” of data for the supervised learning245

method to train upon; no meaningful trends will appear if every response to the input questions is identical246

or if every value of the target variable is equal. To avoid collecting data for such tasks, we seek a means for247

workers to estimate for us the learnability of a proposed task when shown the input and target questions.248

The challenge is providing workers with an assignment that is sufficiently simple for them to perform249

quickly yet the workers do not require training or background in how supervised learning works.250

To address this challenge, we designed an assignment to ask workers about their opinions of the set

of answers we would receive to a given question (a form of meta-knowledge). We focused on a lack of

diversity in the target variable. We also limited ourselves to Boolean (true/false) target questions, although

it is straightforward to generalize to regression problems (numeric target questions) by rephrasing the

assignment slightly. Specifically, we asked workers what proportion of respondents would answer “true”

to the given question. Workers gave a 1–5 Likert-scale response from (1) “No one will answer true” to

(3) “About half will answer true” to (5) “Everyone will answer true”. The idea is that, since a diversity

of responses is generally necessary (but not sufficient) for (binary) learnability, classification problems

that are balanced between two class labels are more likely to be learnable. To select tasks, we use a

simple ranking procedure to seek questions with responses predominantly in the middle of the Likert

scale. Specifically, if ti j ∈ {1, . . . ,5} is the response of the i-th worker to prediction task j, we take the

aggregate learnability ranking to be

t j =

∣

∣

∣

∣

3−
∑

W
i=1 ti jδi j

∑
W
i=1 δi j

∣

∣

∣

∣

, (1)

where W is the total number of workers participating in learnability ranking tasks, and δi j = 1 if worker251

i ranked task j, and zero otherwise. The closer a task’s score is to 3, the more the workers agree that252

target answers would be evenly split between true and false, and so we rank tasks based on the absolute253

deviation from the middle score of 3. While Eq. (1) is specific to a 1–5 Likert scale variable, similar254

scores can be constructed for any ordinal variable.255

This learnability ranking task can be combined with a pairwise comparison methodology like the256

one described for importance ranking. In our case, we elected to perform a simpler one-task assignment257

because learnability ranking from Eq. (1) only requires examining the target question and because workers258

are less likely to need a relative baseline here as much as they may with importance ranking, where a259

contrast effect between two tasks is useful for judging subjective values such as importance. Due to time260

and budget constraints we also took K = 5 for experiments using this ranking phase.261

3.3 Randomized trial for assignment design: giving examples262

In addition to the crowdsourced proposal, ranking and data collection, we augmented our study with a263

randomized trial investigating the design of the prediction task proposal assignment (RQ3). Specifically,264

we investigated the role of providing an example of a prediction task.265

Care must be taken when instructing workers to propose prediction tasks. Without experience in266

machine learning, they may be unable to follow instructions which are too vague or too reliant on machine267
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Task Reward Responses Workers

Prediction proposal $3.00 50 50

Importance rating & task categorization $0.25 2042 239

Learnability rating $0.05 835 83

Data collection, importance tasks $0.12 2004 495

Data collection, learnability tasks $0.12 990 281

Table 2. Summary of crowdsourcing assignments. Rewards in USD.

learning terminology. Providing an example with the instructions is one way to make the assignment268

more clear while avoiding jargon. An example helps avoid the ambiguity effect (Ellsberg, 1961), where269

workers are more likely to avoid the task because they do not understand it. However, there are potential270

downsides as well: introducing an example may lead to anchoring (Tversky and Kahneman, 1974) where271

workers will be biased towards proposing tasks related to the example and may not think of important, but272

different prediction tasks.273

Workers who did not participate in previous assignments were randomly assigned to one of three274

comparison groups or “arms” when accepting the prediction task proposal assignment (simple random275

assignment). One arm had no example given with the instructions and was identical to the assignment276

studied previously (Sec. 4.2). This arm serves as a baseline or control group. The second arm included277

with the instructions an example related to obesity (An example target question is: “Are you obese?”),278

and the third arm presented an example related to personal finance (An example target question is: “What279

is your current life savings?”). The presence or absence of an example is the only difference across arms;280

all other instructions were identical and, crucially, workers were not instructed to propose prediction tasks281

related to any specific topical domain or area of interest. The University of Vermont Institutional Review282

Board granted Ethical approval to carry out the study (determination number CHRBSS: 15-039). Collected283

data are available on Figshare (https://doi.org/10.6084/m9.figshare.9468512).284

After we collected new prediction tasks proposed by workers who participated in this randomized trial,285

we then initiated a followup problem categorization assignment (Sec. 3.1.2) identical to the categorization286

assignment discussed previously but with two exceptions: we asked workers to only look at one prediction287

task per assignment and we did not use a comparison graph as here we will not rank these tasks for288

subsequent data collection. The results of this categorization assignment allow us to investigate the289

categories and features of the proposed prediction tasks and to see whether or not the tasks differ across290

the three experimental arms.291

4 RESULTS292

4.1 Crowdsourcing assignments293

We performed our experiments using Amazon Mechanical Turk during August 2017. Assignments were294

performed in sequence, first prediction task proposal (phase one), then ranking and categorization (phase295

two), then data collection (phase three). These assignments and the numbers of responses and numbers of296

workers involved in each are detailed in Table 2, as are the rewards workers were given. Rewards were297

determined based on estimates of the difficulty or time spent on the assignment, so proposing a prediction298

task had a much higher reward ($3 USD) than providing data by answering the task’s questions ($0.12299

USD). No responses were filtered out at any point, although a small number of responses (less than 1%)300

were not successfully recorded.301

We solicited N = 50 prediction tasks in phase one, compensating Mechanical Turk workers $3 for the302

task. Workers could submit only one task. A screenshot of the assignment interface for this phase (and303

all phases) is shown in the supplemental materials. Some example tasks provided by crowd workers are304

shown in Table 1; all 50 tasks are shown in the supplemental materials. After these tasks were collected,305

phase two began where workers were asked to rate the tasks by their importance and learnability and306

to categorize the properties of the proposed tasks. Workers were compensated $0.25 per assignment in307

phase two and were limited to examining at most 25 tasks total. After the second phase completed, we308

chose the top-10 most important tasks and the top-5 most learnable tasks (Sec. 3.2) to pass on to data309

collection (phase three). We collected data for these problems until n = 200 responses were gathered for310
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a

b

Number of proposed tasks

Figure 1. Topical categories of proposed prediction tasks. Panel (b) counts the majority categorization

of each task.

each prediction task (we have slightly less responses for some tasks as a few responses were not recorded311

successfully; no worker responses were rejected). Workers in this phase could respond to more than one312

task but only once to each task.313

For the randomized trial on the effects of providing an example prediction task (Sec. 3.3), we collected314

N = 90 proposed prediction tasks across all three arms (27 in the no-example baseline arm, 33 in the315

obesity example arm, and 30 in the savings example arm), paying workers as before. We then collected316

458 task categorization ratings, gathering ratings from 5 or more distinct workers per proposed task (no317

worker could rate more than 25 different prediction tasks). Since only one task was categorized per318

assignment instead of two, workers were paid $0.13 per assignment instead of the original $0.25 per319

assignment.320

4.2 Characteristics of proposed tasks321

We examined the properties of prediction tasks proposed by workers in phase one (RQ2). We measured the322

prevalence of Boolean and numeric questions. In general, workers were significantly in favor of proposing323

Boolean questions over numeric questions. Of the N = 50 proposed tasks, 34 were classifications (Boolean324

target question) and 16 were regressions (numeric target question). Further, of the 250 total questions325

provided across the N = 50 tasks, 177 (70.8%) were Boolean and 73 were numeric (95% CI on the326

proportion of Boolean: 64.74% to 76.36%), indicating that workers were significantly in favor of Boolean327

questions over numeric. Likewise, we also found an association between whether the input questions328

were numeric or Boolean given the target question was numeric or Boolean. Specifically, we found329

that prediction tasks with a Boolean target question had on average 3.12 Boolean input questions out330

of 4 (median of 4 Boolean input questions), whereas tasks with a numeric target question had 2.31331

Boolean input questions on average (median of 2 Boolean input questions). The difference was significant332

(Mann-Whitney test: U = 368.5,nbool = 34,nnum = 16, p < 0.02). Although it is difficult to draw a strong333

conclusion from this test given the amount of data we have (only N = 50 proposed prediction tasks), the334

evidence we have indicates that workers tend to think of the same type of question for both the target and335

the inputs, despite the potential power of mixing the two types of questions.336

To understand more properties of the questions workers proposed, we asked workers to categorize337

prediction tasks by giving survey questions about the tasks as part of the importance rating assignment.338

We used survey questions about the topical nature or domain of the task (Fig. 1), whether the inputs were339

useful at predicting the target (Fig. 2), and whether the questions were objective or subjective (Fig. 3).340

Prediction task categories (Fig. 1) were selected from a multiple choice categorization we determined341

manually. Tasks about demographic or personal attributes were common, as were political and current342
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0% 10% 20% 30% 40%
Proportion of worker responses

Strongly disagree
Disagree

Neutral
Agree

Strongly agree

Figure 2. Worker responses to, “Are the input questions useful at predicting answers to the target

question?” when asked to categorize proposed prediction tasks.

0% 20% 40% 60% 80%
Proportion of 'objective' question ratings

Health/wellness
Demographic/personal
Politics/current events

Factual
Other/unsure

Figure 3. Proportion of question ratings of ‘objective’ instead of ‘subjective’ vs. the majority category

of the prediction task.

events. Workers generally reported that the inputs were useful at predicting the target, either rating “agree”343

or “strongly agree” to that statement (Fig. 2). Many types of tasks were mixes between objective and344

subjective questions, while tasks categorized as “factual” tended to contain the most objective questions345

and tasks categorized as “other/unsure” contained the most subjective questions, indicating a degree of346

meaningful consistency across the categorization survey questions.347

To rank the learnability of classification tasks, we asked workers about the diversity of responses348

they expected others to give to the Boolean target question, whether they believed most people would349

answer false to the target question, or answer true, or if people would be evenly split between true and350

false (Fig. 4). We found that generally there was a bias in favor of positive (true) responses to the target351

questions, but that workers felt that many questions would have responses to the target questions be split352

between true and false. This bias is potentially important for a crowdsourcer to consider when designing353

her own tasks, but seeing that most Boolean target questions are well split between true and false response354

also supports that workers are proposing useful tasks; if the answer to the target question is always false,355

for example, then the input questions are likely not necessary, and the workers generally realize this when356

proposing their tasks.357

0% 5% 10% 15%
Proportion of ratings

NO ONE will answer 'true'
FEW will answer 'true'

ABOUT HALF will answer 'true'
MOST will answer 'true'

EVERYONE will answer 'true'

Figure 4. Categorized diversity of the (Boolean) target questions.
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4.3 Supervised learning on collected data358

Given the proposed prediction tasks and the selection of tasks for subsequent data collection, it is also359

important to quantify predictive model performance on these tasks (RQ5). Since workers are typically360

not familiar with supervised learning, there is a risk they may be unable to propose learnable prediction361

tasks. At the same time, however, workers may not be locked into traditional modes of thinking, such362

as assumptions that predictors are linearly related to the target, leading to interesting and potentially363

unexpected combinations of predictor variables and the response variable.364

Here we trained and evaluated random forest regressors and classifiers (Sec. 3.1.3), depending on365

whether the proposer flagged the target question as either numeric or Boolean, using the data collected366

for the 15 selected prediction tasks. Predictive performance was measured using the coefficient of367

determination for regressions and mean accuracy for classifications, as assessed with k-fold cross-368

validation (stratified k-fold cross-validation if the problem is a classification). To assess the variability of369

performance over different datasets, we used bootstrap replicates of the original crowd-collected data to370

estimate a distribution of cross-validation scores. There is also a risk that class imbalance may artificially371

inflate performance: when nearly every target variable is equal always predicting the majority class label372

can appear to perform well. To account for class imbalance, we also trained on a shuffled version of each373

problem’s dataset, where we randomly permuted the rows of the data matrix X, breaking the connection374

with the target variable y. If models trained on these data performed similarly to models trained on the real375

data, then it is difficult to conclude that learning has occurred, although this does not mean the questions376

are not meaningful, only that the data collected does not lead to useful predictive models.377

The results of this model assessment procedure are shown in Fig. 5. We quantify the practical effect378

size with Cohen’s d comparing the real training data to the shuffled control, and in Fig. 5 we highlight in379

green any tasks with Cohen’s d > 2. Many of the 10 importance ranked tasks in Fig. 5(a) demonstrate this380

class imbalance but at least two of the ten tasks, one regression and one classification, show significant381

learning1. At the same time, four out of the five learnability-ranked problems (Fig. 5(b)) showed strong382

predictive performance, further indicating the ability of non-experts to perform learnability assessments.383

These results show that, while many of the worker-proposed prediction tasks are difficult to learn384

on, and caution must be taken to instruct non-experts about the issue of class imbalance, it is possible to385

generate tasks where learning can be successful and to assess this with an automatic procedure such as386

testing the differences of the distributions shown in Fig. 5.387

4.4 Randomized trial: giving examples of prediction tasks388

To understand what role an example may play—positive or negative—in task proposal, we conducted389

a randomized trial investigating the instructions given to the workers. As described in Sec. 3.3, we390

conducted a three-armed randomized trial. Workers who did not participate in the previous study were391

asked to propose a prediction task with instructions that either contained no example (baseline arm),392

contained an example related to obesity (obesity arm), or contained an example related to personal savings393

(savings arm). The prediction tasks proposed by members of these arms were categorized and rated and394

from these ratings we study changes in task category, usefulness of input questions at answering the target395

question, if the questions are answerable or unanswerable, and if the questions are objective or subjective,396

as judged by workers participating in the followup rating tasks.397

The results of this trial are summarized in Fig. 6 and Tables 3 and 4. In brief, we found that:398

• Prediction task categories changed due to the examples (Fig. 6), with more ‘demographic/personal’399

tasks, fewer ‘politics/current events’, and fewer ‘factual’ questions under the example treatments400

compared with the baseline. This change was significant (χ2 = 52.73, p < 0.001).401

• Workers shown the savings example were significantly more likely than workers in other arms402

to propose questions with numeric responses instead of Boolean responses: 60% of questions403

proposed in the savings arm were numeric compared with 25% in the no-example baseline (Fisher404

exact, p < 0.001).405

• All three arms were rated as having mostly answerable questions, with a higher proportion of406

answerable questions for both example treatments: 92% of ratings were ‘answerable’ for both407

example treatments compared with 82% for the baseline (Table 3). Proportions for both example408

treatments were significantly different from the baseline (Fisher exact, p < 0.02).409

1One regression problem showed poor performance scores for reasons we detail in the discussion.
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Rating or feature (variable type) Mean x

baseline

Mean x

obesity

Mean x

savings

Task importance (x = 1–5 Likert; 5: Strongly agree) 3.09 3.16 3.50

Inputs are useful (x = 1–5 Likert; 5: Strongly agree) 3.36 3.91 3.67

Questions are answerable (x = 1) or unanswerable (x = 0) 0.82 0.92 0.92

Questions are objective (x = 1) or subjective (x = 0) 0.59 0.67 0.68

Questions are numeric (x = 1) or Boolean (x = 0) 0.25 0.35 0.60

Table 3. Typical ratings and features of prediction tasks proposed under the three instruction types (the

no-example baseline, the obesity example, and the savings example). Bold treatment quantities show a

significant difference (p < 0.05) from the baseline (Chi-square tests for Likert x; Fisher exact tests for

binary x).

Baseline vs. obesity Baseline vs. savings

Difference in Test statistic p-value statistic p-value

problem categories (see Fig. 6) Chi-square 52.73∗ < 10−10 52.73∗ < 10−9

problem importance (see Table 3) Chi-square 8.57 > 0.05 11.84∗ < 0.02

inputs are useful (see Table 3) Chi-square 16.35∗ < 0.005 7.20 > 0.1
answerable/unanswerable (see Table 3) Fisher exact —∗ 0.0083 —∗ 0.012

objective/subjective (see Table 3) Fisher exact — 0.12 — 0.078

numeric/Boolean (see Table 3) Fisher exact —∗ 0.041 —∗ < 10−8

Table 4. Statistical tests comparing the categories and ratings given for problems generated under the

no-example baseline with the categories and ratings of problems generated under the obesity example and

savings example baselines. For categorical and Likert-scale ratings we used a Chi-squared test of

independence while for binary ratings we used a Fisher exact test. Significant results (p < 0.05) are

denoted with ∗.
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(a–j) Top importance problems

(k–o) Top learnability (classification) problems

a b c d e

f g h i j

k l m n o

Figure 5. Cross-validation scores for (a–j) the top-10 importance ranked prediction tasks and (k–o) the

top-5 learnable prediction tasks. Performance variability was assessed with bootstrap replicates of the

crowdsourced datasets and class imbalance was assessed by randomizing the target variable relative to the

input data. At least two of the importance tasks and four of the learnable tasks—highlighted in

green—demonstrate significant and practically meaningful prediction performance over random (Cohen’s

d > 2). Note that the regression task in panel (f) showed poor predictive performance for reasons we

describe in the discussion.

• Workers more strongly agreed that the inputs were useful at predicting the target for prediction tasks410

proposed by workers under the example treatments than the tasks proposed under the no-example411

baseline. The overall increase was not large, however, and tested as significant (χ2 = 16.35, p <412

0.005) only for the savings example vs. the baseline.413

• Questions proposed under the example treatments were more likely to be rated as objective than414

questions proposed under the no-example baseline: 67% and 68% of ratings were ‘objective’ for415

the obesity and savings examples, respectively, compared with 59% for the baseline (Table 3).416

However, this difference was not significant for either treatment (Fisher exact, p > 0.05).417

Taken together, the results of this experiment demonstrate that examples, while helping to explain418

the assignment, will lead to significant changes in the features and content of proposed prediction tasks.419

Individuals may provide better and somewhat more specific questions, but care may be needed when420

selecting which examples to use, as individuals may potentially anchor onto those examples in some ways421

when designing their own prediction tasks. Such anchoring may be undesired but it may also be useful at422

“nudging” non-experts towards tasks related to a problem area of interest; see discussion for more.423

5 DISCUSSION424

Here we studied the abilities of non-experts to independently design supervised learning prediction tasks.425

Recruiting crowd workers as non-experts, we determined that non-experts were able to propose important426

or learnable prediction tasks with minimal instruction, but several challenges demonstrate that care should427

be taken when developing instructions as non-experts may propose trivial or “bad” tasks. Analyzing the428

proposed prediction tasks, we found that non-experts tended to favor Boolean questions over numeric429
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Proportion of worker responses
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Figure 6. Categories of proposed prediction tasks under the different instructional treatments. Tasks

proposed by workers who saw either example were more likely to be rated as demographic or personal

and less likely to be considered factual. Interestingly, the obesity example led to fewer proposed tasks

related to health or wellness.

questions, that input questions tended to be positively correlated with target questions, and that many430

prediction tasks were related to demographic or personal attributes.431

It is worth speculating on the origins of these results. For instance, the crowd workers could favor432

Boolean questions because they can be proposed more quickly (due to being less cognitively demanding)433

and crowd workers wish to work quickly to maximize their earnings. Or they could favor Boolean434

questions because their prior experience leaves them less familiar with numerical quantities. Likewise, a435

focus on demographic or personal attributes within prediction tasks could reflect the inherent interests436

of the participants or could be due to influences from prior work on the crowdsourcing platform. More437

generally, a useful future direction of study is to better understand the backgrounds of the non-experts. For438

example, how is the prediction task associated with the prior experience, domain expertise or education439

level of the non-expert who proposed the task?440

To better understand how framing the problem of designing a prediction task may affect the tasks441

workers proposed, we also conducted a randomized trial comparing tasks proposed by workers shown no442

example to those shown examples, and found that examples significantly altered the categories of proposed443

prediction tasks. These findings demonstrate the importance of carefully considering how to frame the444

assignment, but they also reveal opportunities. For example, it is less common for non-expert workers to445

mix Boolean and numeric questions, but workers that do propose such mixtures may be identified early446

on and then steered towards particular tasks, perhaps more difficult tasks. Likewise, given that examples447

have a powerful indirect effect on prediction task design, examples may be able to “nudge” non-experts in448

one direction while retaining more creativity than if the non-experts were explicitly restricted to designing449

a particular type of prediction task. We saw an example of this in Sec. 4.4: non-expert workers shown the450

savings example were over 2.5 times more likely to propose numeric questions than workers shown no451

example.452

Our experiments have limitations that should be addressed in future work. For one, it is important to453

explore more ML methods than we used here to learn predictive models on non-expert prediction tasks,454

especially as ML is a rapidly-changing field. Likewise, our ranking procedure considered prediction task455

importance and learnability separately, yet the most meaningful tasks should be ranked highly along both456

dimensions. With our prediction task proposal framework, we limited non-experts to numeric or Boolean457

questions, and a total of five questions per prediction task, but varying the numbers of questions and458

incorporating other answer types are worth exploring. For numeric questions, one important consideration459

is the choice of units. Indeed, we encountered one regression task (mentioned previously; see supplemental460

materials) where learning failed because the questions involved distances and volumes, but workers were461

not given information on units, leading to wildly varying answers. This teaches us that non-experts may462

need to be asked if units should be associated with the answers to numeric questions when they are asked463

to design a prediction task.464

Our experiment procedures were used to address this study’s research questions, but in the context of465

crowdsourcing, our end-to-end propose-and-rank procedure for eliciting prediction tasks can serve as an466

efficient crowdsourcing algorithm. To avoid wasting resources on low-quality or otherwise inappropriate467

prediction tasks, efficient task selection and data collection algorithms are needed to maximize the468
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ability of a crowd of non-experts to collectively generate suitable prediction tasks while minimizing the469

resources required from a crowdsourcer. When allowing creative contributions from a crowd, a challenge470

is that workers may propose trivial or uninteresting problems. This may happen intentionally, due to bad471

actors, or unintentionally, due to workers misunderstanding the goal of their assignment. Indeed, we472

encountered a number of such proposed prediction tasks in our experiments, further underscoring the need473

for both careful instructions and the task ranking phase. Yet, we found that the task ranking phase did a474

reasonable job at detecting and down-ranking such prediction tasks, although there is room to improve475

on this further, for example by reputation modeling of workers or implementing other quality control476

measures (Allahbakhsh et al., 2013; Scholer et al., 2011; Lease, 2011) or perhaps by providing dynamic477

feedback earlier, when tasks are being proposed. More generally, it may be worth combining the ranking478

and data collection phases, collecting data immediately for all or most prediction tasks but simultaneously479

monitoring the tasks as data are collected for certain specifications and then dynamically allocating more480

incoming workers to the most suitable subset of prediction tasks (Li et al., 2016; McAndrew et al., 2017).481

Allowing the crowd to propose prediction tasks requires more work from the researcher on prediction482

task specification than in traditional applied machine learning. Traditionally, considerable effort is placed483

on model fitting, model validation, and feature engineering. AutoML will become increasingly helpful484

at model fitting and model validation while non-experts contributing predictive features may take some485

or even all of the feature engineering work off the researcher’s hands. If crowd-proposed tasks are used,486

the researcher will need to consider how best to specify prediction task requirements. While here we487

allowed the crowd to ideate freely about tasks, with the goal of understanding what tasks they were most488

likely to propose, in practice a researcher is likely to instead focus on particular types of prediction tasks.489

For example, a team of medical researchers or a team working at an insurance firm may request only490

prediction tasks focused on health care. Future work will investigate methods for steering the crowd491

towards topics of interest such as health care, in particular on ways of focusing the crowd while biasing492

workers as little as possible.493

Many interesting, general questions remain. For one, more investigation is needed into how non-494

experts work on ML prediction tasks. Which component or step of designing a prediction task is most495

challenging for non-experts? What aspects of ML, if any, are most important to teach to non-experts?496

Can studies of non-experts help inform teaching methodologies for turning ML novices into experts?497

Likewise, can teaching methodologies for learning about ML inform better ways to help non-experts498

contribute to machine learning?499

6 CONCLUSION500

In this study, we investigated how well non-experts, individuals without a background in machine learning,501

could contribute to machine learning. While non-experts have long contributed training data to power502

machine learning methods, it remains unclear whether and to what extent non-experts can apply existing503

ML methods in new problem areas. We asked non-experts to design their own supervised learning504

prediction tasks, then asked other non-experts to rank those tasks according to criteria of interest. Finally,505

training data were collected for top-ranked tasks and machine learning models were fit to those data.506

We were able to demonstrate that performant models can be trained automatically on non-expert tasks.507

We also studied the characteristics of proposed tasks, finding that many tasks were focused on health,508

wellness, demographics, or personal topics, that numeric questions were less common than Boolean509

questions, and that there was a mix of both subjective and objective questions, as rated by crowd workers.510

Using a randomized trial on the effects of instructional messages showed that simple examples caused511

non-experts to change their approaches to prediction tasks: for example, non-experts shown an example of512

a prediction task related to personal finance were significantly more likely to propose numeric questions.513

In general, the more that non-experts can contribute creatively to machine learning tasks, and not514

merely provide training data, the more we can leverage areas such as automatic machine learning to515

design new and meaningful applications of machine learning. More diverse groups can benefit from516

such applications, allowing for broader participation in jobs and industries that are changing due to517

machine-learning-driven workplace automation.518
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