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ABSTRACT
This article introduces a novel liver and gallbladder segmentation framework, named
Adaptive Multi-Scale Attention YOLO Network (AMAY-Net), designed for
semantic segmentation of laparoscopic cholecystectomy images. Building upon the
powerful feature extraction capabilities of You Only Look Once (YOLO), AMAY-Net
incorporates several advanced modules to enhance performance in medical image
segmentation tasks. First, a multi-scale feature extraction module is employed to
capture anatomical structures of various sizes, ensuring effective detection of large
organs like the liver and smaller structures such as the gallbladder and surgical
instruments. Second, an adaptive class-balancing loss function is implemented to
dynamically adjust the weights of underrepresented classes, improving the
segmentation accuracy of small structures. Additionally, the network integrates a
spatial and channel attention mechanism, enhancing the focus on critical regions in
the image. Finally, residual connections are introduced in the YOLO backbone to
improve feature propagation and gradient flow efficiency. Experimental results
demonstrate that AMAY-Net achieves superior performance on the CholecSeg8k
dataset, with significant improvements in the segmentation accuracy of key
anatomical structures such as the liver and gallbladder.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision,
Optimization Theory and Computation, Neural Networks
Keywords Liver and gallbladder segmentation, Multi-scale feature extraction, Attention
mechanism, Medical imaging

INTRODUCTION
Laparoscopic cholecystectomy, a minimally invasive surgery for gallbladder removal, is
one of the most common procedures worldwide (Agarwal et al., 2015; Zimmitti et al., 2016;
Ye et al., 2015; Agresta et al., 2015). Accurate segmentation of critical anatomical structures
such as the liver, gallbladder, cystic duct, and hepatic veins can provide valuable
intraoperative visual guidance, potentially assisting surgeons in decision-making and
helping reduce procedural complexity (Madani et al., 2022; Mascagni et al., 2022; Tang
et al., 2018). However, traditional image processing methods face challenges due to
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variability in organ shapes, occlusions caused by surgical instruments, and inconsistent
imaging conditions during surgery.

Deep learning-based methods, particularly convolutional neural networks (CNNs),
have made significant advances in medical image segmentation. Widely used architectures
like U-Net (Ronneberger, Fischer & Brox, 2015; Zunair & Hamza, 2021) and Fully
Convolutional Networks (FCN) (Long, Shelhamer & Darrell, 2015; Sun & Wang, 2018)
have set benchmarks for pixel-level segmentation tasks due to their ability to capture fine
details of anatomical structures. Ronneberger, Fischer & Brox (2015) proposed U-Net,
which has gained widespread adoption because of its encoder-decoder structure and skip
connections that help preserve spatial information at different scales. DeepLab (Chen et al.,
2017a) and Mask R-CNN (Chen et al., 2017b) have further advanced segmentation with
their ability to handle multi-scale objects and perform instance segmentation. Despite their
accuracy, these models often struggle with real-time performance in dynamic
environments like laparoscopic surgery, where speed is as crucial as segmentation
precision.

On the other hand, You Only Look Once (YOLO) (Redmon, 2016; Gallagher &
Oughton, 2024) is widely recognized for its efficiency in real-time object detection,
predicting objects at multiple scales in a single forward pass. While YOLO is primarily
designed for object detection, it lacks the pixel-level accuracy needed for segmentation
tasks. This makes it less suitable for medical imaging tasks such as liver and gallbladder
segmentation, which demand precise delineation of anatomical boundaries. In contrast,
models like U-Net and DeepLab are computationally intensive and thus less suited for
real-time applications (Jiao et al., 2020; Xiao et al., 2020). Consequently, there is a need for
a model that balances both speed and accuracy, especially in surgical environments.

To address these challenges, we propose Adaptive Multi-Scale Attention YOLO
Network (AMAY-Net), a framework that extends YOLO’s real-time detection capabilities
to medical image segmentation by integrating multi-scale feature extraction, attention
mechanisms, and an adaptive class-balancing loss function. The objective is not to replace
models like U-Net or DeepLab, but to offer a solution specifically optimized for the
real-time demands of laparoscopic surgery while maintaining segmentation accuracy.
Compared to U-Net, DeepLab, and Mask R-CNN, AMAY-Net provides several
advantages in specific use cases. AMAY-Net leverages YOLO’s speed, making it ideal for
time-sensitive applications such as surgery, where real-time feedback is essential.
Moreover, it introduces a multi-scale feature extraction module that captures both large
and small structures, such as the liver and gallbladder, which is often a challenge for
conventional segmentation models. Additionally, AMAY-Net addresses the issue of class
imbalance—often found in medical datasets—by implementing an adaptive
class-balancing loss function that ensures that smaller but clinically significant structures
are not overlooked during training.

As illustrated in Fig. 1, AMAY-Net bridges the inherent trade-off between segmentation
accuracy and inference speed. Traditional models like U-Net and DeepLab (left) achieve
pixel-level precision but suffer from computational bottlenecks, while YOLO-based
approaches (right) prioritize real-time performance at the cost of boundary delineation
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fidelity. Our framework (center) introduces three critical enhancements: (1) multi-scale
feature fusion for preserving anatomical details, (2) adaptive attention mechanisms to
handle surgical occlusions, and (3) a class-balanced loss function optimized for gallbladder
segmentation. This hybrid architecture enables sub-second inference while maintaining a
high Intersection over Union (IoU) on critical structures, fulfilling the dual requirements
of laparoscopic guidance systems.

RELATED WORK
Semantic segmentation has become widely utilized in medical imaging to effectively
identify and delineate anatomical structures from complex, high-resolution images,
providing valuable assistance in clinical interpretation and treatment planning. Early
approaches to medical image segmentation relied heavily on region-based methods and
classical machine learning techniques. These methods, including region-growing
algorithms and graph-based approaches, often struggled with the variability and
complexity of medical images, especially in scenarios involving soft tissues or structures
with vague boundaries. While transformer-based architectures like SegFormer (Xie et al.,
2021) demonstrate efficient multi-scale modeling through hierarchical attention, their
computational demands remain prohibitive for real-time surgical applications requiring
sub-second latency. While these traditional methods offered some degree of success, they
were largely dependent on hand-crafted features and lacked the robustness needed for
large-scale clinical use.

The advent of deep learning, particularly convolutional neural networks (CNNs),
marked a significant breakthrough in medical image segmentation. Models such as Fully
Convolutional Networks (FCN) (Long, Shelhamer & Darrell, 2015) and U-Net
(Alshomrani, Arif & Al Ghamdi, 2023) introduced the concept of end-to-end learning for
dense pixel prediction, allowing networks to learn hierarchical representations directly
from data. Alshomrani, Arif & Al Ghamdi (2023) proposed U-Net, characterized by its
symmetric encoder-decoder structure and skip connections, which quickly became the
preferred architecture for many medical imaging tasks, particularly organ segmentation.
Leveraging both local and global contexts through skip connections, U-Net demonstrated
superior performance compared to traditional methods. Variants such as Attention U-Net
(Oktay et al., 2018), Res-UNet (Zhou et al., 2021; Alom et al., 2019), and Swin U-Net

Figure 1 Bridging the accuracy-speed gap with AMAY-Net for medical image segmentation.
Full-size DOI: 10.7717/peerj-cs.2961/fig-1
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(Cao et al., 2022) enhanced segmentation performance by incorporating attention
mechanisms and residual learning, respectively. However, while these models excel in
terms of segmentation accuracy, they often suffer from computational inefficiencies,
making them less suitable for real-time applications like laparoscopic surgery.

In parallel, object detection models such as YOLO (Redmon, 2016) gained prominence
for their ability to efficiently detect objects in real-time, achieving impressive speeds by
predicting bounding boxes for multiple objects in a single forward pass. YOLO’s capability
to handle multi-scale objects and perform real-time inference has led to its exploration in
medical image analysis, particularly for tasks requiring rapid feedback, such as surgical
navigation (Ragab et al., 2024; Soni & Rai, 2024). However, YOLO’s design inherently suits
bounding box prediction rather than dense pixel-wise segmentation, limiting its direct
application to tasks like organ segmentation.

Multi-scale feature extraction has been recognized as critical for handling the diverse
sizes of anatomical structures in medical images. Lin et al. (2017) proposed Feature
Pyramid Networks (FPN), introducing a hierarchical structure that aggregates features
from multiple resolutions to capture both large and small structures. In the context of
medical segmentation, DeepLabV3+ (Chen et al., 2018; Gopikrishna et al., 2024) applied
atrous convolutions to enlarge the receptive field while maintaining fine resolution,
enhancing the ability to capture complex structures like tumors or lesions across varying
scales. Yet, while these methods address the issue of multi-scale object handling, their
computational complexity still poses challenges for real-time clinical environments.
Kolbinger et al. (2023) proposed using machine learning methods, specifically DeepLabv3
and SegFormer architectures, for anatomical structure segmentation in laparoscopic
surgery. They compared the performance of these models with human experts in pancreas
segmentation, finding that the machine learning models outperformed most human
participants, demonstrating their potential for real-time clinical assistance.

A common challenge in medical image segmentation is class imbalance, where larger
structures dominate the image while smaller yet clinically important structures (e.g., small
lesions or ducts) are underrepresented. Recent efforts like the Dresden Surgical Anatomy
Dataset (Carstens et al., 2023) have further highlighted the challenges of organ
segmentation in laparoscopic environments, particularly in scenarios involving dynamic
instrument interaction and tissue deformation. Techniques such as weighted
cross-entropy and focal loss (Lin, 2017; Ağralı & Kılıç, 2024) have been developed to
address this issue by assigning higher weights to underrepresented classes, ensuring that
the network focuses on these harder-to-classify regions. Sudre et al. (2017) introduced
Generalized Dice Loss, specifically targeting class imbalance by normalizing each class’s
contribution, thereby improving segmentation of smaller structures. Despite these
advancements, balancing the focus on both small and large anatomical structures
efficiently remains an ongoing research challenge. Attention mechanisms have also gained
traction in improving segmentation performance by guiding the model to focus on the
most relevant regions of an image. Oktay et al. (2018) introduced attention gates in
Attention U-Net to dynamically highlight important regions, while recent models like the
Convolutional Block Attention Module (CBAM) (Woo et al., 2018) combine spatial and
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channel attention to further refine the network’s focus on meaningful features. These
mechanisms have significantly improved segmentation accuracy, particularly in tasks
involving complex structures with overlapping regions.

While each of these advancements has addressed key challenges in medical image
segmentation—multi-scale feature handling, class imbalance, and attention mechanisms—
there remains a gap in models offering both high segmentation accuracy and real-time
performance, particularly in dynamic surgical environments like laparoscopic procedures.
To address this, we propose AMAY-Net, a framework that integrates multi-scale feature
extraction, adaptive class-balancing loss, and dual attention mechanisms into the efficient
YOLO architecture. This novel approach enables precise liver and gallbladder
segmentation while maintaining real-time inference speed, crucial for intraoperative
guidance and decision-making in laparoscopic surgery.

METHODOLOGY
As shown in Fig. 2, the proposed architecture, AMAY-Net, first processes the input image
through a YOLO-based backbone for initial feature extraction. The extracted features are
then passed through both downsample and upsample layers to capture multi-scale
information, with skip connections to preserve spatial details from earlier layers. Following
this, dual attention mechanisms (spatial and channel attention modules) are applied
separately to refine spatial and channel-wise features, and their outputs are combined via
an element-wise addition for feature enhancement. Finally, a dedicated segmentation head
generates the segmentation mask, while a parallel detection head produces bounding box
coordinates (x, y, w, h), objectness scores, class predictions, and IoU scores, leading to the
final segmentation and detection outputs.

YOLO backbone and multi-scale feature extraction
The input image, denoted as I 2 RH�W�C, where H,W, and C represent the height, width,
and number of channels, is first processed by the YOLO backbone for initial feature
extraction. This process generates a feature map Fyolo, which serves as the foundation for
further multi-scale processing:

Fyolo ¼ YOLOðIÞ: (1)

To capture higher-level semantic information, we employ downsampling layers that
progressively reduce the spatial resolution of the feature maps. The first downsampling
operation generates a feature map Fdown1 from the output of the YOLO backbone:

Fdown1 ¼ Downsample1ðFyoloÞ: (2)

This step typically involves convolutional layers with a stride of 2 or max-pooling, which
reduces the spatial dimensions of the feature map while increasing the receptive field. The
second downsampling operation further reduces the resolution, producing Fdown2:

Fdown2 ¼ Downsample2ðFdown1Þ: (3)

At this stage, the model captures even more abstract features, which are useful for detecting
larger structures within the image, but at the cost of spatial resolution. To recover fine
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details that may have been lost during downsampling, the network employs upsampling
layers. The first upsampling layer, Upsample1, takes Fdown1 as input and increases the
spatial resolution:

Fup1 ¼ Upsample1ðFdown1Þ: (4)

Figure 2 Overview of the proposed AMAY-Net architecture, integrating multi-scale feature
extraction, dual attention mechanisms, and parallel segmentation and detection heads.

Full-size DOI: 10.7717/peerj-cs.2961/fig-2
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Similarly, the second upsampling layer, Upsample2, operates on Fdown2:

Fup2 ¼ Upsample2ðFdown2Þ: (5)

These upsampling operations typically use transposed convolutions or bilinear
interpolation to restore the spatial resolution, allowing the model to focus on smaller
anatomical structures. Finally, the output feature maps from both the downsample and
upsample layers are concatenated along with the original Fyolo feature map in the
multi-scale feature extraction module:

Fmulti ¼ ConcatðFyolo; Fdown1;Fdown2;Fup1; Fup2Þ: (6)

This concatenated feature map Fmulti captures information across multiple scales, enabling
the network to effectively handle both small and large anatomical structures in the image.
To prepare these features for the next stage (attention mechanisms), the concatenated
feature map is processed through a 1 × 1 convolution to reduce its channel dimensionality:

Ffinal ¼ Conv1�1ðFmultiÞ: (7)

This resulting feature map Ffinal serves as the input to the subsequent attention modules.

Attention mechanisms
After the multi-scale feature extraction process, where the fused feature map Ffinal is
produced, the network applies two sequential attention mechanisms to further refine these
features: Spatial Attention and Channel Attention. These attention mechanisms help the
network focus on the most relevant regions and feature channels in the image, enhancing
the quality of the segmentation. The spatial attention mechanism is designed to help the
network focus on important regions of the image by adjusting the spatial importance of
different areas. Given the multi-scale feature map Ffinal 2 RH�W�C, the spatial attention
module generates a spatial attention map Aspatial 2 RH�W , which highlights the regions
that are most relevant to the task, such as regions containing organs or other key
anatomical structures. The spatial attention mechanism is typically computed using the
average and maximum pooling operations along the channel dimension. These pooling
operations summarize the channel-wise information into two separate spatial maps, which
are then concatenated and passed through a convolutional layer to produce the final
attention map Aspatial:

Aspatial ¼ r Conv7�7 ½AvgPool Ffinal
� �

;MaxPool Ffinal
� ��� �� �

: (8)

Here, r represents the sigmoid activation function, and �; �½ � denotes concatenation along
the channel dimension. The convolutional layer uses a 7� 7 kernel to capture local spatial
relationships.

The attention map Aspatial is then element-wise multiplied with the input feature map
Ffinal to generate the spatially refined feature map Fspatial:

Fspatial ¼ Aspatial � Ffinal: (9)

This operation ensures that the network emphasizes the regions of the image that are
most relevant to the segmentation task, suppressing less important areas.
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After spatial attention refines the feature map at the spatial level, the next step is to apply
channel attention, which focuses on the importance of each feature channel. Channel
attention adjusts the weight of each channel based on its relevance to the segmentation
task. To compute the channel attention, the feature map Fspatial is first compressed along
the spatial dimensions using global average pooling and global max pooling, resulting in
two vectors that represent the global context across all channels:

Vavg ¼ GlobalAvgPoolðFspatialÞ; Vmax ¼ GlobalMaxPoolðFspatialÞ: (10)

Both Vavg and Vmax are vectors of size C, where C is the number of channels in the feature
map. These vectors are then passed through a shared two-layer fully connected network to
compute the channel attention scores:

Achannel ¼ r FC2 ReLU FC1 Vavg þ Vmax
� �� �� �� �

: (11)

In this equation, r represents the sigmoid activation function, and FC1 and FC2 are fully
connected layers that reduce and then restore the dimensionality of the channel vectors.
The resulting attention map Achannel 2 RC contains a weight for each channel, indicating
its importance. The channel attention map Achannel is then applied to the spatially refined
feature map Fspatial via element-wise multiplication:

Fchannel ¼ Achannel � Fspatial: (12)

This operation adjusts the contribution of each feature channel, allowing the network to
emphasize the most important features for segmentation. The output of the channel
attention mechanism, Fchannel, is the final refined feature map that incorporates both spatial
and channel-wise attention. This refined feature map is then passed to the next stage of the
network, the segmentation head, where it is further processed to produce the final
segmentation output. By sequentially applying spatial and channel attention, the network
ensures that it not only focuses on the most relevant regions of the image but also
prioritizes the most informative feature channels. This two-step attention process
enhances the model’s ability to capture important anatomical structures, leading to more
accurate segmentation results.

Segmentation head and final output
After applying the dual attention mechanisms, the refined feature map Fchannel, which
incorporates both spatial and channel-wise information, is passed to the segmentation
head. The segmentation head is responsible for converting these refined features into
meaningful outputs for object detection and segmentation. Specifically, the segmentation
head consists of several key components, each focusing on a distinct aspect of the task.
First, the classification layer is responsible for classifying the detected regions in the feature
map into predefined categories. Let Fcls be the input feature map to this layer, which is
derived from the output of the channel attention mechanism Fchannel. The classification
layer applies a convolutional operation followed by a softmax function to generate a
probability distribution over K object categories for each pixel:

Pclsðx; y; kÞ ¼ softmaxðConvclsðFÞÞ; k 2 f1; 2; . . . ;Kg: (13)
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Here, Pclsðx; y; kÞ represents the probability that the pixel at position ðx; yÞ belongs to
class k. The classification output provides the likelihood of each pixel being associated with
a specific object category, aiding in both object detection and semantic segmentation.

Next, the IoU layer is responsible for calculating the Intersection� over Union (IoU)
between the predicted segmentation masks and the ground truth masks. The IoU is a
common metric used to measure the accuracy of object localization and segmentation by
comparing the overlap between the predicted and true bounding boxes or masks. Given a
predicted mask Mpred and a ground truth mask Mgt , the IoU is computed as follows:

IoU ¼ Mpred \Mgt

Mpred [Mgt
: (14)

The IoU score provides a measure of how well the predicted regions align with the true
regions, with values ranging from 0 (no overlap) to 1 (perfect overlap). The IoU layer
outputs this score for each detected object, which is then used during training to optimize
the segmentation performance.

The box regression layer refines the bounding box predictions by adjusting their
position and size. This layer takes the output feature map Fbox from the segmentation head
and predicts a set of bounding box coordinates for each detected object. The box regression
process can be formulated as a regression problem, where the goal is to minimize the
difference between the predicted and ground truth bounding box coordinates. Let Bpred

represent the predicted bounding box coordinates, and Bgt represent the ground truth
bounding box coordinates. The objective of the box regression layer is to minimize the
following loss function:

Lbox ¼
X4
i¼1

Bi
pred � Bi

gt

� �2
: (15)

This loss function penalizes the differences between the predicted and ground truth
bounding box coordinates, thereby refining the predicted bounding boxes to ensure they
tightly fit around the detected objects.

The objectness score layer is responsible for determining whether a given region
contains an object or not. This layer outputs a score, Sobjðx; yÞ, for each region of interest,
which indicates the likelihood that an object is present at a particular location in the image:

Sobjðx; yÞ ¼ r Convobj Fobj
� �� �

: (16)

Here, r represents the sigmoid activation function, and Fobj is the input feature map for
this layer. The objectness score layer helps the network distinguish between regions that
contain objects and those that belong to the background. This is crucial for both object
detection and segmentation, as it filters out regions that are not relevant for the task.

One of the primary challenges in medical image segmentation is dealing with the
imbalance between classes, especially in datasets like CholecSeg8k, where larger structures
such as the liver dominate, while smaller structures like the gallbladder and surgical
instruments are underrepresented. Standard loss functions, such as cross-entropy, often
struggle with this imbalance, leading to poor performance on the underrepresented classes.
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To address this issue, we introduce an adaptive class-balancing loss function that not
only accounts for class imbalance but also dynamically adjusts the loss contributions based
on the difficulty of classifying smaller structures. This is achieved by a combination of two
mechanisms: classes that are underrepresented in the dataset are assigned higher weights
during training, ensuring that they receive more attention. The weight for each class is
inversely proportional to the frequency of that class in the dataset, allowing the network to
focus more on difficult-to-learn classes. We further enhance the loss by integrating focal
loss, which is particularly effective for addressing class imbalance. Focal loss places more
emphasis on hard-to-classify examples, such as small structures or objects that are
frequently misclassified.

The adaptive class-balancing loss function assigns different weights to the loss
components for each class based on their frequency in the dataset. Classes that are
underrepresented receive higher weights, while more common classes are given lower
weights. This dynamic adjustment helps the model focus more on learning the less
frequent classes, preventing them from being overshadowed by dominant classes during
training. Let wk represent the weight assigned to class k, andNk be the number of pixels (or
instances) belonging to class k in the training dataset. The weight for each class is
computed as follows:

wk ¼ 1
Nk þ e

(17)

where e is a small constant to avoid division by zero. This formulation ensures that classes
with fewer instances (i.e., smaller structures) receive higher weights, encouraging the
model to pay more attention to them during training.

In addition to class frequency weighting, we integrate the focal loss mechanism to focus
more on hard-to-classify examples. Focal loss is designed to handle class imbalance by
down-weighting easy examples and up-weighting hard examples. This is particularly
useful when dealing with small anatomical structures or objects that are frequently
occluded or hard to distinguish from the background.

The focal loss for class k is defined as:

Lfocal ¼ �wkð1� Pclsðx; y; kÞÞc logðPclsðx; y; kÞÞ (18)

where c is a focusing parameter that controls how much emphasis is placed on hard
examples. When c is increased, the focal loss gives more weight to hard-to-classify
examples, such as small or underrepresented structures.

The total loss Ltotal is composed of four key components: classification loss, IoU loss,
box regression loss, and objectness score loss. Each of these components is scaled by a
corresponding weight that adapts based on the class distribution and the difficulty of the
examples:

Ltotal ¼ kclsLcls þ kIoULIoU þ kboxLbox þ kobjLobj: (19)

Here, kcls, kIoU , kbox, and kobj are the adaptive weights for classification, IoU, box
regression, and objectness score, respectively.
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The classification loss is computed using a combination of weighted cross-entropy and
focal loss to address class imbalance. This ensures that the model does not
disproportionately focus on the dominant classes. The classification loss is defined as:

Lcls ¼
XK

k¼1

wkLfocal (20)

where Pclsðx; y; kÞ is the predicted probability for class k at pixel ðx; yÞ, and Lfocal is the
focal loss for hard-to-classify examples.

The IoU loss penalizes low overlap between the predicted and ground truth
segmentation masks. To maximize overlap, we define the IoU loss as:

LIoU ¼ 1� IoU: (21)

This loss encourages the model to produce segmentation masks that closely match the
ground truth, particularly for small or irregularly shaped structures.

The objectness score loss is a binary cross-entropy loss that measures the accuracy of
predicting whether a region contains an object. It is defined as:

Lobj ¼ � yobj log Sobj þ ð1� yobjÞ logð1� SobjÞ
� �

(22)

where yobj is the ground truth label indicating whether an object is present, and Sobj is the
predicted objectness score.

The outputs of the classification, IoU, box regression, and objectness score layers are
combined to form the final segmentation output. Specifically, the final pixel-wise
prediction for the input image is generated by combining the classification probabilities,
refined bounding box coordinates, and objectness scores. The final segmentation output
Sseg can be represented as:

Ssegðx; yÞ ¼ Pclsðx; y; kÞ � Sobjðx; yÞ: (23)

This output represents the likelihood that each pixel belongs to a particular object class,
and it is further refined by the objectness score, ensuring that only regions containing
objects are considered in the final prediction. The bounding box information is also used to
adjust the regions of interest for object detection. By integrating multiple layers within the
segmentation head and incorporating the adaptive class-balancing loss function,
AMAY-Net is capable of performing both object detection and segmentation with high
accuracy. The classification layer assigns object categories to each region, the IoU layer
evaluates the segmentation quality, the box regression layer refines the object boundaries,
and the objectness score layer filters out irrelevant regions. Together, these components
ensure that the final segmentation output is both accurate and precise, while addressing the
challenges posed by class imbalance in medical image segmentation.

EXPERIMENTAL RESULTS AND ANALYSIS
Dataset
In this work, we utilize the CholecSeg8k dataset, which is specifically designed for semantic
segmentation tasks in laparoscopic cholecystectomy. CholecSeg8k is based on the

Zhou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2961 11/22

http://dx.doi.org/10.7717/peerj-cs.2961
https://peerj.com/computer-science/


widely-used Cholec80 dataset (Hong et al., 2020), a collection of 80 video recordings of
laparoscopic cholecystectomy surgeries. From this dataset, 8,080 frames were extracted
from 17 different surgical videos and annotated at the pixel level with 13 distinct classes.
These classes include key anatomical structures, such as the liver, gallbladder, and
gastrointestinal tract, as well as surgical instruments, like graspers and L-hook
electrocautery devices.

CholecSeg8k provides detailed pixel-level annotations, making it an ideal resource for
developing and evaluating semantic segmentation models in the context of minimally
invasive surgery. The dataset contains images with a resolution of 854 � 480 pixels, and
each image is accompanied by three types of masks: the color mask for visualization, the
annotation mask for training, and the watershed mask for precise boundary delineation
during algorithm development. To ensure rigorous model training and evaluation, the
dataset was split strictly based on surgical cases, meaning that all images from a given
surgical video were assigned entirely to a single subset. This approach prevents data
leakage and ensures that the test set represents truly independent surgical procedures,
which is critical for assessing generalization in clinical settings.

The training set consisted of 6,560 images collected from videos 01, 09, 12, 17, 18, 20, 24,
25, 26, 27, 28, 35, 37, 48, and 52. These cases were used exclusively for training the model.
The validation set included 720 images from video 43 and was used for tuning
hyperparameters and monitoring the model’s performance during training. Finally, the
test set comprised 800 images from video 55, which was completely held out during
training and validation, and used solely for final performance evaluation.

Experimental setup
All experiments were conducted on a system equipped with an Intel Xeon CPU, 64 GB of
RAM, and an NVIDIA GTX 1660 GPU. All models, including our proposed AMAY-Net
and comparison methods (DeepLabV3+, Attention U-Net, U-Net, YOLOv5, YOLOv10,
and SegFormer), were implemented in PyTorch to effectively utilize GPU acceleration. To
ensure reproducibility and fair comparisons, a consistent training protocol was maintained
across all models.

Each model was trained using the Adam optimizer with an initial learning rate of 0.001,
and the learning rate was uniformly reduced by a factor of 0.1 if the validation loss
plateaued for five consecutive epochs. A batch size of 16 was applied during training, and
early stopping was enforced if no improvement in validation performance was observed
after 10 consecutive epochs, with the maximum number of training epochs capped at 100.
All models used a combination of Dice loss and binary cross-entropy loss, except for
AMAY-Net, which employed an adaptive class-balancing loss function to specifically
address class imbalance. Additionally, dataset splits were strictly based on surgical cases to
prevent data leakage, ensuring robust and fair performance evaluation across methods.

For model-specific configurations, DeepLabV3+ utilized atrous spatial pyramid pooling
(ASPP) to capture multi-scale contextual information, while Attention U-Net
incorporated attention gates to enhance feature learning. SegFormer, as a
transformer-based segmentation model, employed hierarchical multi-head self-attention
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mechanisms and a lightweight multi-layer perceptron (MLP) decoder to refine global
feature extraction and segmentation boundaries. YOLOv5 and YOLOv10, originally
designed for object detection, were adapted for segmentation by integrating a custom
segmentation head while retaining their efficient real-time processing capabilities. These
architecture-specific differences were preserved while ensuring identical training settings
to maintain a fair comparative evaluation.

The performance of AMAY-Net was evaluated using the following metrics:

• Precision: the proportion of correctly predicted positive pixels (true positives) out of all
predicted positive pixels, calculated as:

Precision ¼ TP
TP þ FP

: (24)

• Recall: the proportion of correctly predicted positive pixels out of all actual positive
pixels, calculated as:

Recall ¼ TP
TP þ FN

: (25)

• F1-score: the harmonic mean of Precision and Recall, calculated as:

F1-score ¼ 2� Precision� Recall
Precisionþ Recall

: (26)

• Intersection� over Union (IoU): measures the overlap between the predicted
segmentation mask and the ground truth, calculated as:

IoU ¼ Intersection� ðTPÞ
Union ðTP þ FP þ FNÞ : (27)

Experimental results
Table 1 presents a comprehensive comparison of AMAY-Net with several state-of-the-art
segmentation models, including U-Net, DeepLabV3+, Attention U-Net, YOLOv5,
YOLOv10, and SegFormer, for both liver and gallbladder segmentation. We evaluate the
models using Precision, Recall, F1-score, and Intersection over Union (IoU) to capture
multiple aspects of segmentation quality.

In liver segmentation, AMAY-Net achieved the highest overall performance, with a
Precision of 0.951, Recall of 0.961, F1-score of 0.956, and IoU of 0.911. In contrast, U-Net
attained an F1-score of 0.904 and IoU of 0.857, while DeepLabV3+, Attention U-Net, and
SegFormer reached F1-scores of 0.913, 0.928, and 0.930, respectively. AMAY-Net’s
advantage stems from its multi-scale feature extraction and dual attention modules, which
allow for better delineation of liver boundaries even in complex backgrounds.
Furthermore, the adaptive class-balancing loss helped maintain high segmentation
accuracy by mitigating class imbalance.

For gallbladder segmentation, AMAY-Net again led the performance metrics, achieving
a Precision of 0.952, Recall of 0.882, F1-score of 0.916, and IoU of 0.826. U-Net,
DeepLabV3+, and YOLOv5 reported F1-scores of 0.861, 0.862, and 0.873, respectively.
Attention U-Net, YOLOv10, and SegFormer performed slightly better, with F1-scores of
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0.890, 0.898, and 0.893. However, AMAY-Net’s adaptive class-balancing strategy
significantly improved segmentation accuracy of small and often underrepresented
structures like the gallbladder, allowing the model to maintain high precision without
sacrificing recall.

Compared to models like DeepLabV3+ and SegFormer, AMAY-Net strikes an effective
balance between segmentation quality and inference efficiency. DeepLabV3+ uses atrous
convolutions for multi-scale context but at the cost of slower performance, while
SegFormer achieves strong global representation via transformers but suffers from high
latency. AMAY-Net mitigates these issues through its efficient detection-based backbone
and streamlined attention design, enabling it to operate in real-time environments without
compromising accuracy.

Figure 3 illustrates the segmentation performance of AMAY-Net across 13 different
classes using four key metrics: Precision, Recall, F1-score, and IoU. As shown in the
figure, AMAY-Net performs exceptionally well in segmenting large anatomical
structures like the liver and gallbladder with F1-scores of 0.956 and 0.916, respectively.
These results are further supported by the high IoU values for these classes, indicating a
precise overlap between the predicted segmentation and ground truth. For large
background classes, such as Black Background, the model achieves near-perfect
segmentation performance, with all four metrics close to 1.0. This confirms that
AMAY-Net is highly accurate in distinguishing background from foreground objects
during laparoscopic procedures.

To quantitatively evaluate the real-time segmentation capability of AMAY-Net, we
measured the inference speed on modest hardware consisting of an Intel Xeon CPU, 64 GB
RAM, and an NVIDIA GTX 1660 GPU. The results, summarized in Table 2, show that
AMAY-Net achieves an inference speed of approximately 38 frames per second (FPS),
clearly meeting and surpassing the typical real-time segmentation threshold of 25 FPS
required in surgical contexts.

Analysis
Figure 4 displays the segmentation results generated by AMAY-Net compared to the
ground truth annotations for several laparoscopic cholecystectomy images. The top row

Table 1 Performance comparison of AMAY-Net and other models on liver and gallbladder
segmentation.

Class model Liver Gallbladder

Precision Recall F1-score IoU Precision Recall F1-score IoU

U-Net 0.913 0.905 0.904 0.857 0.889 0.832 0.861 0.781

DeepLabV3+ 0.924 0.902 0.913 0.862 0.881 0.841 0.862 0.782

YOLOv5 0.931 0.911 0.922 0.873 0.896 0.851 0.873 0.796

Attention U-Net 0.941 0.916 0.928 0.886 0.921 0.861 0.890 0.811

YOLOv10 0.944 0.931 0.938 0.893 0.931 0.871 0.898 0.817

SegFormer 0.939 0.922 0.930 0.887 0.926 0.866 0.893 0.813

AMAY-Net 0.951 0.961 0.956 0.911 0.952 0.882 0.916 0.826
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shows the ground truth masks, while the bottom row presents the corresponding predicted
segmentation masks produced by AMAY-Net. The visual comparison between the
predicted masks and the ground truth allows for an in-depth evaluation of the model’s
performance.

In the task of segmenting large anatomical structures such as the liver and abdominal
wall, AMAY-Net performs exceptionally well. The predicted segmentation closely aligns
with the ground truth, with most regions showing near-perfect overlap. This indicates that
the model’s multi-scale feature extraction module effectively captures the spatial
information of larger structures, allowing it to accurately delineate the liver and abdominal
wall. For smaller structures, such as the gallbladder and blood vessels, AMAY-Net
demonstrates reasonably stable performance. The gallbladder, highlighted in green in the
segmentation masks, is well separated from the surrounding background, accurately
reflecting its boundaries in most images. However, there are a few instances where the

Figure 3 Performance for each class in CholecSeg8k dataset. Full-size DOI: 10.7717/peerj-cs.2961/fig-3

Table 2 Inference speed comparison on modest hardware (NVIDIA GTX 1660 GPU). Inference
speeds are approximate values based on standard implementations of these models under identical
hardware conditions.

Model Inference speed (FPS)

U-Net 19

DeepLabV3+ 14

YOLOv5 42

Attention U-Net 17

YOLOv10 36

SegFormer 15

AMAY-Net (Proposed) 38
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edges of the gallbladder appear slightly blurred, suggesting that the model encounters some
difficulties when handling the finer details of smaller structures, particularly in the
presence of surgical instruments or overlapping tissues. The model also performs well in
segmenting surgical instruments, such as the graspers. In the images, the green-colored
instruments are clearly distinguishable from the surrounding anatomical structures, such
as the liver and gallbladder. Although there are minor discrepancies in a few areas, the
overall precision and accuracy of the instrument segmentation are high, demonstrating the
model’s ability to manage surgical tool interference while simultaneously segmenting
anatomical structures. However, some challenges remain, especially in areas with more
complex anatomical structures. In certain images, particularly those featuring overlapping
tissues and small objects like blood vessels, AMAY-Net’s predictions show noticeable
deviations from the ground truth. This is most evident in the segmentation of small and
irregularly shaped objects, where the model struggles to capture fine details. For example,
thin structures like blood vessels are often missed or inaccurately segmented, which
indicates a limitation in the model’s ability to handle small-object segmentation. This
suggests that there is room for improvement, particularly in enhancing the model’s
capability to focus on small targets and refine boundaries in complex regions. Overall, the
results presented in Fig. 4 show that AMAY-Net excels at segmenting anatomical
structures, such as the liver and abdominal wall, and effectively handles the interference
caused by surgical instruments.

Original image Predicted resultsGround truth

Figure 4 Qualitative segmentation results illustrating AMAY-Net’s performance in CholecSeg8k
Dataset. Left column: original laparoscopic images. Middle column: corresponding ground truth
masks. Right column: predicted segmentation results by AMAY-Net. In the masks, red represents the
liver, and green represents the gallbladder. The images shown were randomly selected from the test
dataset to transparently represent typical segmentation performance.

Full-size DOI: 10.7717/peerj-cs.2961/fig-4
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To further demonstrate AMAY-Net’s ability to accurately segment smaller anatomical
structures, we conducted additional validation experiments using the publicly available
Retina Blood Vessel Segmentation dataset (Staal et al., 2004). This dataset consists of
retinal fundus images annotated with pixel-level labels of fine-grained blood vessel
structures, providing a representative example of segmentation tasks involving small,
complex anatomical details. The qualitative results shown in Fig. 5 illustrate AMAY-Net’s
capability in effectively segmenting the detailed vascular structures from retinal images.
The segmentation predictions closely match the ground truth annotations, highlighting
AMAY-Net’s potential generalizability and robustness in handling challenging
segmentation tasks beyond its original laparoscopic surgical context.

Ablation study
To demonstrate the effectiveness of the key components in AMAY-Net, we conducted an
ablation study by progressively removing or replacing certain modules and observing their
impact on the model’s performance. Specifically, we tested the contribution of three major
components: the multi-scale feature extraction module, the dual attention mechanisms

Original image Predicted resultsGround truth

Figure 5 Qualitative segmentation results illustrating AMAY-Net’s performance in the Retina Blood
Vessel Segmentation Dataset. Left column: original laparoscopic images. Middle column: corresponding
ground truth masks. Right column: predicted segmentation results by AMAY-Net. In the masks, white
represents the Retina Blood Vessel. The images shown were randomly selected from the test dataset to
transparently represent typical segmentation performance.Full-size DOI: 10.7717/peerj-cs.2961/fig-5
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(spatial and channel attention), and the adaptive class-balancing loss function. The results
of these ablation experiments are shown in Table 3.

The ablation study results shown in Table 3 highlight the contribution of each major
component in AMAY-Net. Removing the multi-scale feature extraction module leads to a
noticeable performance drop. For liver segmentation, the F1-score decreases from 0.956 to
0.923, and the IoU drops from 0.911 to 0.861. This confirms the importance of multi-scale
features in capturing both global context and local anatomical detail. Excluding the dual
attention mechanism also degrades performance, particularly in the gallbladder
segmentation task. The F1-score for gallbladder segmentation falls from 0.916 to 0.890,
and the IoU from 0.826 to 0.801, indicating that attention mechanisms play a key role in
enhancing focus on relevant spatial regions and feature channels, especially for small or
occluded structures. Finally, when the adaptive class-balancing loss is removed, the model
exhibits reduced robustness to class imbalance. Gallbladder segmentation performance
drops to an F1-score of 0.865 and an IoU of 0.771, suggesting the loss function’s vital role
in improving representation of underrepresented classes. This component is particularly
beneficial for small anatomical targets, helping the model maintain high recall without
sacrificing precision.

CONCLUSION
In this work, we introduced AMAY-Net, a novel architecture designed for efficient and
accurate segmentation in laparoscopic surgery images, specifically optimized for
segmenting critical anatomical structures such as the liver and gallbladder. These
structures were selected primarily due to their clinical significance, visibility during
laparoscopic cholecystectomy, and the availability of reliable annotation data, providing a
robust basis for validation. AMAY-Net combines YOLO’s real-time detection capability
with pixel-level segmentation through multi-scale feature extraction, attention
mechanisms, and an adaptive class-balancing loss function. Experimental evaluations
demonstrate that AMAY-Net not only achieves superior segmentation accuracy compared
to established methods such as U-Net, DeepLabV3+, and Attention U-Net but also meets
real-time performance requirements, achieving an inference speed of approximately 38
FPS on modest hardware (NVIDIA GTX 1660 GPU).

Despite these promising results, AMAY-Net currently faces limitations in segmenting
very small and irregular anatomical structures such as the cystic duct and hepatic veins.
The segmentation accuracy for these smaller structures, although improved by the

Table 3 Ablation study on AMAY-Net components for liver and gallbladder segmentation.

Model Liver Gallbladder

Precision Recall F1-score IoU Precision Recall F1-score IoU

Full AMAY-Net 0.951 0.961 0.956 0.911 0.952 0.882 0.916 0.826

w/o Multi-Scale Features 0.926 0.921 0.923 0.861 0.911 0.851 0.879 0.781

w/o Dual Attention Mechanism 0.931 0.912 0.921 0.872 0.921 0.861 0.890 0.801

w/o Class-Balancing Loss 0.921 0.902 0.911 0.851 0.901 0.832 0.865 0.771
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adaptive class-balancing loss function, still requires further enhancement. Future research
will focus on refining attention mechanisms to capture fine-grained details and exploring
additional training strategies, such as targeted data augmentation and self-supervised
learning, to enhance performance on smaller, challenging structures. We also plan to
further evaluate and generalize the model by incorporating other publicly available
datasets with fine-scale anatomical structures.
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