
Text-mining forma mentis networks reconstruct public
perception of the STEM gender gap in social media
Massimo Stella Corresp. 1

1 Complex Science Consulting, Lecce, Italy

Corresponding Author: Massimo Stella
Email address: massimo.stella@inbox.com

Mindset reconstruction maps how individuals structure and perceive knowledge, a map
unfolded here by investigating language and its cognitive reflection in the human mind,
i.e. the mental lexicon. Textual forma mentis networks (TFMN) are glass boxes introduced
for extracting, representing and understanding mindsets' structure, in Latin forma mentis,
from textual data. Combining network science, psycholinguistics and Big Data, TFMNs
successfully identified relevant concepts, without supervision, in benchmark texts. Once
validated, TFMNs were applied to the case study of the gender gap in science, which was
strongly linked to distorted mindsets by recent Big Data Analytics studies. Focusing over
social media perception and online discourse, this work analysed 10,000 relevant tweets.
"Gender" and "gap" elicited a mostly positive perception, with a trustful/joyous emotional
profile and semantic associates that: celebrated successful female scientists, related
gender gap to wage differences, and hoped for a future resolution. The perception of
"woman" highlighted discussion about sexual harassment and stereotype threat (a form of
implicit cognitive bias) relative to women in science "sacrificing personal skills for
success". The reconstructed perception of "man" highlighted social users' awareness of
the myth of male superiority in science. No anger was detected around "person",
suggesting that gap-focused discourse got less tense around genderless terms. No
stereotypical perception of "scientist" was identified online, differently from real-world
surveys. This analysis thus identified Twitter discourse as promoting a mostly stereotype-
free, positive/trustful perception of gender disparity, of relevance for closing the gap.
TFMNs enable new ways for monitoring online mindsets emerging from user-generated
content, offering detailed data-informed ground for policy making.
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ABSTRACT9

Mindset reconstruction maps how individuals structure and perceive knowledge, a map unfolded here by

investigating language and its cognitive reflection in the human mind, i.e. the mental lexicon. Textual

forma mentis networks (TFMN) are glass boxes introduced for extracting, representing and understanding

mindsets’ structure, in Latin forma mentis, from textual data. Combining network science, psycholinguis-

tics and Big Data, TFMNs successfully identified relevant concepts, without supervision, in benchmark

texts. Once validated, TFMNs were applied to the case study of the gender gap in science, which

was strongly linked to distorted mindsets by recent Big Data Analytics studies. Focusing over social

media perception and online discourse, this work analysed 10,000 relevant tweets. ”Gender” and ”gap”

elicited a mostly positive perception, with a trustful/joyous emotional profile and semantic associates

that: celebrated successful female scientists, related gender gap to wage differences, and hoped for

a future resolution. The perception of ”woman” highlighted discussion about sexual harassment and

stereotype threat (a form of implicit cognitive bias) relative to women in science ”sacrificing personal skills

for success”. The reconstructed perception of ”man” highlighted social users’ awareness of the myth

of male superiority in science. No anger was detected around ”person”, suggesting that gap-focused

discourse got less tense around genderless terms. No stereotypical perception of ”scientist” was identified

online, differently from real-world surveys. This analysis thus identified Twitter discourse as promoting a

mostly stereotype-free, positive/trustful perception of gender disparity, of relevance for closing the gap.

TFMNs enable new ways for monitoring online mindsets emerging from user-generated content, offering

detailed data-informed ground for policy making.
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INTRODUCTION29

Perception is in the mind of the beholder. Every experience contributes to building a memory or mental30

reconstruction of the outer world which, in turn, deeply impacts future behaviour (Malt et al., 2010;31

Aitchison, 2012; Beasley and Mason, 2015; Seli et al., 2019; Li et al., 2020). Negative perceptions32

can inhibit efficient learning (Chavatzia, 2017) or drastically alter information processing (Shapiro33

and Williams, 2012), while positive perceptions can contribute to the acceptance and establishment of34

social norms (Malt et al., 2010; Welles and González-Bailón, 2020; Waterloo et al., 2018). In this way,35

reconstructing and understanding the cognitive perceptions of social groups is key to achieving insights36

about human behaviour and social patterns.37

Discovering the perception of a given audience is a challenge that can be broken mainly in two parts:38

(i) acquiring cognitive data, reflecting how the public perceives a certain phenomenon, and (ii) processing39

such data in an efficient way, suitable for the extraction of new knowledge (de Arruda et al., 2019). Data40

can be gathered by mining social media (Stella et al., 2018b; Bovet et al., 2018), which represent an41

invaluable source of information about the users’ experiences and perceptions of specific topics (Welles42

and González-Bailón, 2020). Recently, social media, Twitter in particular (Jansen et al., 2009), have43

been increasingly analysed by the scientific community in order to detect complex phenomena such44

as the emotional dynamics of voting events (Stella et al., 2018b; Bovet et al., 2018), the promotion of45
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self-branding and journalistic content also through social bots (Varol and Uluturk, 2020), the spread of46

disinformation (Pierri et al., 2020) and the fostering of online hate dissemination (Waqas et al., 2019).47

Towards a cognitive approach to information processing48

Although Twitter messages provide several types of information, such as visual cues (e.g., pictures49

and videos) or multi-language cues (e.g., emojis and hashtags), their nature is mainly textual (Welles50

and González-Bailón, 2020; Jansen et al., 2009). In this way, the problem of quantifying how an51

audience perceives a given topic can be related to stance detection from their tweets (Mohammad, 2016).52

Approaching stance detection by human coding becomes quickly intractable when faced with the large53

volumes of messages exchanged daily on the Twittersphere. This limitation leads to the above need54

for developing and adopting efficient techniques for knowledge extraction from massive amounts of55

text as exchanged on social media. Given the extraordinary possibility for humans to communicate56

their mental constructs through language (Aitchison, 2012), a key way of detecting perceptions is57

through communication. Both in computer science and linguistics, the problem of detecting positive58

or negative perceptions from language is known as stance detection (Mohammad, 2016). Rather than59

focusing on language in itself, this work shifts the attention to the cognitive reflection of language60

in the human mind, in the so-called mental lexicon (Malt et al., 2010; Aitchison, 2012; Dóczi, 2019;61

De Deyne et al., 2019). Such lexicon includes semantic memory, a well-studied repository of conceptual62

meanings and word features (Kenett et al., 2017; Dóczi, 2019), an also other memory supports storing63

syntactic/phonological/orthographic and even affective knowledge, together with other aspects of language64

(Dóczi, 2019). Whereas syntax, phonology and orthography express word-level conceptual knowledge65

(Aitchison, 2012), affective knowledge links concepts to the emotions they elicit (Malt et al., 2010) and66

therefore it represents an important component of any stance/perception.67

Harnessing the complex cognitive structure of the mental lexicon means accessing how conceptual68

knowledge is structured and emotionally perceived by individuals as the outcome of their previous69

experiences and current attitudes (Aitchison, 2012; Stella et al., 2019; Stella, 2020). In other words,70

accessing the conceptual and affective representation of knowledge in the mental lexicon means reading71

minds(ets), with strong repercussions for information processing. Discovering how an audience perceives72

a given topic, i.e. performing mindset reconstruction, can provide crucial knowledge for understanding73

and intervening upon specific trends (Welles and González-Bailón, 2020; Amancio et al., 2012; Stella74

et al., 2019). An example is represented by the finding that mindsets vehiculating positive emotions reach75

larger audiences on social media whereas negative emotional content can spread at faster rates (Ferrara76

and Yang, 2015). Another example for the relevance of mindset reconstruction is uncovering and acting77

upon traces of science anxiety in student populations in order to improve their learning experiences (Stella,78

2020; Stella and Zaytseva, 2020) or detecting sexual harassment through large-scale web surveys (Karami79

et al., 2020).80

A key area where mindset reconstruction is particularly promising is understanding the sources and81

dynamics of the gender gap in science (Hogue and Lord, 2007; Moss-Racusin et al., 2012).82

As outlined by recent Big Data Analytics studies considering decades of scientific careers (Huang83

et al., 2020; Odic and Wojcik, 2019; Chavatzia, 2017), gender disparities in science cannot be explained by84

intrinsic differences in attitudes to science between genders but rather have to be traced in the establishment85

of implicit gender biases promoted by news media and social media representations of science (Shapiro86

and Williams, 2012; Moss-Racusin et al., 2012; Madsen and Andrade, 2018; Steinke, 2017). In this way,87

the reconstruction of mindsets vehiculated by information systems becomes a key point for understanding,88

acting upon and closing the gender gap in science. Given the recency of the above mentioned Big Data89

Analytics studies and the methodological issues in reconstructing mindsets with black-box machine90

learning techniques (often neglecting contextual information (Nasar et al., 2019)), reconstructing online91

perceptions of the gender gap in social media is a challenge not fully explored yet.92

Research aim93

This work introduces textual forma mentis networks (TFMNs) as quantitative tools for reconstructing94

the mindset of online users engaging in social discourse with the research aim of investigating in detail95

the mindset emerging from user-generated content about the gender gap in science. In other words, this96

work uses textual forma mentis networks with the aim of reconstructing how online users discussed and97

perceived messages revolving around the STEM gender gap. In order to mirror the general perception of98

this gap, a window without special events about women in science was chosen. TFMNs quantified the99
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general stance from 10,000 tweets publicly available on Twitter, produced between October 8 2019 and100

October 22 2019, containing the words or hashtags “science” or “stem” and “women” or “gendergap”.101

These tweets encapsulated information about how the online authors perceived women in science, with102

relevant impact for education research and the computational social sciences.103

Before providing additional details about the adopted methodology, it is necessary to compare TFMNs104

against past approaches, also relating forma mentis networks within the relevant literature about the105

gender gap in science.106

Literature review on relevant past approaches107

It has to be underlined that only recently automatic text-mining studies started investigating gender gap108

in online discourses (Teso et al., 2018; Chavatzia, 2017). However, these approaches mainly focused109

on detecting differences in language use among different genders. Differently from other information110

processing investigations aiming at identifying emotions on social media in relation to phenomena like111

hateful speeches (Waqas et al., 2019) or disinformation spreading (Pierri et al., 2020), gender-focused112

investigations of social media did not explore large-scale mappings of the online perception of the gender113

gap in science as embedded in the messages exchanged between social users of any gender. Within an114

information management setting, the work closest to an investigation of the overall mindset about gender115

biases was the study by Karami and colleagues (Karami et al., 2020). The authors investigated online116

self-reports of sexual harassment experiences and through a topic analysis they highlighted evidence for117

sexual harassment in academia mainly targeting women and involving coercion, gender discrimination118

and retaliation. Building upon the knowledge extraction approach of Karami et al. (Karami et al., 2020),119

this study shifts its attention from explicit sexual harassment to the larger topic of gender biases in science,120

which includes harassment itself but also implicit biases (Shapiro and Williams, 2012), gender pay gaps121

(Courey and Heywood, 2018) and stereotypical perceptions about leadership (Pennington et al., 2016;122

Ely et al., 2011). Furthermore, rather than focusing on self-reports, this study aims at tackling a different123

information system, namely Twitter, where social users can engage in social discourse and reach large124

audiences (Welles and González-Bailón, 2020). This reconstruction of social media attitudes about the125

gender gap in science is the main gap that the current work aims to fulfil by using a network-powered126

approach, which has several similarities and novelties in comparison to past network frameworks.127

Within the literature of network-powered analyses of large volumes of text (de Arruda et al., 2019),128

previous works successfully used word co-occurrences in text (e.g. “like” and “stem” occurring one after129

the other in text, cf. (Cancho and Solé, 2001)) in order to characterise language content through average130

statistical markers (Amancio et al., 2012; Amancio, 2015) or time-evolving dynamics (Akimushkin et al.,131

2017). These networks were considerably powerful at a global level and very successful in tasks like132

author identification (Amancio, 2015; Akimushkin et al., 2017; de Arruda et al., 2019). However, the133

validity of co-occurrence networks as representations of the mental lexicon at the microscopic level134

of individual conceptual associations has been recently reconsidered (Ninio, 2014; Rizvi, 2018). In135

fact, co-occurrences can lead to spurious conceptual links, whose influence vanishes in global statistical136

approaches and that do not represent syntactic similarities in text (Ninio, 2014). In order to overcome137

this limitation and achieve a more faithful microscopic representation of the mental lexicon, TFMNs138

directly harness the full ensemble of syntactic associations of a sentence (e.g. “like” being a verb referring139

to the object “stem”, cf. (i Cancho et al., 2004)) and enrich them by considering also semantic overlap140

between words (e.g. “appreciate” and “like” being synonyms across different sentences, cfr. (Miller,141

1998; Amancio et al., 2012)).142

Textual forma mentis networks automatically extract these conceptual associations from text without143

requiring human supervision and are therefore suitable for processing large volumes of text. The resulting144

network structure is informative of the cognitive layout of conceptual associations emerging from a given145

textual corpus and hence represents how text authors organised, structured and associated microscopically146

their knowledge around topics and concepts. This makes TFMNs “glass boxes” (Nasar et al., 2019),147

where the knowledge structure of a certain stance can be accessed and directly read, differently from148

previous “black box” machine learning approaches which accurately reproduced the positive or negative149

nature of a stance without providing information on its semantic content (Mohammad, 2016; Teso et al.,150

2018; Rudkowsky et al., 2018; Nasar et al., 2019). In addition to conceptual associations, TFMNs151

are endowed also with sentiment labels, indicating the sentiment (Warriner et al., 2013) and the basic152

emotions (Ekman and Davidson, 1994; Mohammad and Turney, 2013) elicited by a given concept in a153
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population of individuals involved in behavioural studies. Sentiment scores of positive/negative affect154

are also called word valence in psycholinguistics (Warriner et al., 2013; Recchia and Louwerse, 2015)155

and represent how positively or negatively a given concept was perceived in a behavioural study. Word156

valence and emotional profiles add more emotional contextual information about the stance reconstructed157

by conceptual associations (Stella, 2020). Although large-scale datasets about sentiment and emotions158

have only been recently made available to the scientific community by cognitive studies (Warriner et al.,159

2013), they have quickly become predominant in predicting a wide variety of human behaviour (Li et al.,160

2020) and information processing patterns such as consensus formation in social networks (Konstantinidis161

et al., 2017) or information sharing on microblogs (Ferrara and Yang, 2015). The combination of network162

patterns and sentiment data is important, as considering only the frequency of sentiment labelled content163

in short media has been reported to lack interpretative contextual power for estimating how people really164

feel about a given topic (Beasley and Mason, 2015).165

Different types of forma mentis networks166

As outlined above, text-based forma mentis networks represent multiplex lexical networks (Stella et al.,167

2018a) of concepts interconnected through syntactic and semantic associations and enriched with senti-168

ment and emotional labels. Previous works showed how lexical networks of concepts including multiple169

layers of associations (i.e. “multiplex”) were better than single-layer complex networks at predicting170

a variety of cognitive processes involved in information acquisition (Stella et al., 2018a; Stella, 2019)171

and search (Castro and Stella, 2019; Siew et al., 2019). However, these approaches did not explore the172

influence that emotions and sentiment can have over information processing (Warriner et al., 2013; Dóczi,173

2019; Rudkowsky et al., 2018; Li et al., 2020). The introduction of behavioural forma mentis networks174

(BFMNs) (Stella et al., 2019; Stella and Zaytseva, 2020) tackled such gap by combining conceptual175

associations with sentiment scores and providing access to knowledge structure and positive/negative176

perceptions of concepts in a given mindset. However, BFMNs’ mindset reconstruction comes at the cost177

of involving individuals in a cognitive experiment (cf. (Stella et al., 2019)). This limitation translates into178

the possibility of reconstructing only the mindsets of those who participated in the experiment, preventing179

access or monitoring of remote systems like social media. Textual forma mentis networks do not require180

behavioural experiments but can rather be built starting from any written text. As a consequence, TFMNs181

are suitable for the investigation of speech over online platforms, whereas BFMNs are unstuitable for such182

task. However, as outlined above, both the representations exploit the theoretical framework of mental183

lexicon representations (Dóczi, 2019) and language processing in cognitive network science (Siew et al.,184

2019). Thanks to such foundations, TFMNs are applied here for reconstructing the mindset of online185

discourse about the gender gap in science, as motivated in the next subsection.186

Recent literature identifies a link between the gender gap and distorted mindsets187

Overwhelming evidence indicates that the gender gap in science is a complex phenomenon deeply188

affecting society, economics and science advancement (Ely et al., 2011; Madsen and Andrade, 2018;189

Hogue and Lord, 2007; Pietri et al., 2018). The gender gap in the scientific, technological, engineering190

and mathematical (STEM) disciplines is a disparity of how different genders enter in and progress191

through a career in science (Shapiro and Williams, 2012). Between 2014 and 2016, UNESCO estimated192

only around 30% of all female students in higher education enrolled in STEM-related fields of study193

at University level (Chavatzia, 2017). This gender gap in STEM education and participation is almost194

absent at the level of primary education but then becomes particularly apparent during upper secondary195

education, coincidentally with subject selection, and it gets worse at higher levels of education (Ely et al.,196

2011; Chavatzia, 2017; Hogue and Lord, 2007). Globally, only 28% of all the world’s researchers are197

women. This disparity is deeply embedded in educational systems, in particular in terms of attitudes and198

perceptions towards science (Shapiro and Williams, 2012; Hogue and Lord, 2007; Huang et al., 2020).199

The PISA 2015 report Excellence in Education reported that across 35 OECD countries, only 22% of200

15-years old girls intend to pursue a career in STEM, less than half the proportion (48%) of STEM driven201

15-years old boys (cf. (Chavatzia, 2017)). In the last few years, a great attention has been devoted to202

explaining such gap by using either external, e.g. system embedded discrimination (Chavatzia, 2017; Ely203

et al., 2011), or internal factors, e.g. implicit stereotypes (Shapiro and Williams, 2012; Pietri et al., 2018).204

Studies trying to explain gender gap through gender-based learning achievements reported a complex205

landscape, with boys and girls being more or less proficient than each other according to the task being206

measured (cf. (Chavatzia, 2017)). This complex mosaic of multiple findings makes it complicated to state207
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that any gender is more or less advanced in any given STEM subject: the gender gap has to be rooted in208

more subtle forms of discrimination, stereotypes and perceptions (Moss-Racusin et al., 2012; Lane et al.,209

2012). Despite this fragmentation, the data unanimously indicate that women are paid less and leave210

STEM careers way more than their male colleagues either at University level or at subsequent stages of211

professional growth in science (Courey and Heywood, 2018).212

Even professional impact in STEM is influenced by a strong gender gap. The recent longitudinal213

study by Huang and colleagues (Huang et al., 2020) considered professional impact of women in STEM214

through bibliographic Big Data spanning over 60 years of publications. The authors reported evidence215

for gender differences in the cumulative productivity of research output but not in the annual rate of216

publication or career-wise impact. Through a quantitative, longitudinal analysis, Huang and colleagues217

related such gender gap to dropout rates and differences in length of publishing careers between men218

and women. The authors could not explain such disproportion only in terms of intrinsic gender-based219

proficiency in STEM, thus providing additional large-scale evidence for the presence of strong contextual220

factors affecting everyone’s experience of the STEM gender gap. Analogous differences through Big Data221

approaches were recently found also by Odic and Wojcik in psychology, a field where 3 in 4 students are222

women whereas 3 in 4 academic professionals are male (Odic and Wojcik, 2019).223

The need to expose distorted mindsets about the gender gap in information systems224

The predominance of strong academic biases in contrast with educational patterns suggests the presence225

of hidden roots to the STEM gender gap, as indicated by several independent studies on the topic226

(Pennington et al., 2016; Shapiro and Williams, 2012; Pietri et al., 2018). Hence, understanding the227

overall experience and subsequent perception of this gender gap in a large audience can provide key228

elements for better detecting the presence of potentially subtle yet strong gender-based stereotypes, as229

perceived and communicated by the main actors of STEM. Given that most of these stereotypes can act at230

a subconscious level and take place without the explicit awareness of those perpetrating them (Pennington231

et al., 2016; Madsen and Andrade, 2018; Lane et al., 2012), detecting the presence of such distorted232

perceptions remains a difficult challenge.233

Monitoring and detecting the diffusion of stereotypical endorsements in social media represents an234

important way of better understanding and countering gender discrimination in science (Karami et al.,235

2020), especially in the current society dominated by virtual social media (Welles and González-Bailón,236

2020; Jansen et al., 2009).237

Manuscript organisation238

This manuscript is organised in several subsections. The Methods section contains quantitative details239

about the implemented methodology and analysed data. The Results section is split in two subsections.240

The first part is a quantitative benchmark, reporting on the effectiveness for TFMNs in finding semantically241

relevant concepts and topic features in short texts annotated by authors. The second part explores the242

reconstructed mindset of online users towards the gender gap by considering the stance towards key243

domains and aspects of the gender gap, e.g. concepts like “woman”, “man”, “person”, “scientist”, and244

related aspects, e.g. “gender”, “gap” and “stem”. The detected conceptual associations and emotional245

patterns are investigated and related with previous studies within the Discussion section.246

METHODS247

This section introduces the following elements: (i) the dataset about the online perception of the gender248

gap in STEM as retrieved from Twitter, (ii) the methodology behind the construction of text-based forma249

mentis networks, and (iii) the cognitive data used for detecting conceptual overlap in meaning between250

words and their valence. This section also reports on the benchmark data used for testing TFMNs, namely251

the text “Complexity Explained” (https://complexityexplained.github.io/ - Last Accessed: 16/03/2020)252

and the behavioural forma mentis network of international STEM researchers analysed in (Stella et al.,253

2019) and (Stella, 2020).254

Twitter dataset255

The main dataset used in this investigation was a collection of 10384 tweets publicly available on256

Twitter and produced between October 8 2019 and October 22 2019. Tweets were gathered through the257

ServiceConnect[] function for Twitter crawling implemented in Mathematica 11. Crawling was performed258
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in accordance with Twitter’s policies via the account of Complex Science Consulting, which received259

authorisation by Twitter for research-focused text mining. Tweets were included in the dataset if they260

contained either the hashtags (or the words) “#science” or “#stem” and “#women” or “#gendergap”.261

Twitter’s policy prevents the redistribution of these tweets outside of the Twitter platform. Nonetheless,262

for the sake of scientific reproducibility, the IDs of these tweets were attached to this manuscript as263

Supplementary Information.264

Each tweet contained a short text. Pictures and emoticons were discarded. Hashtag characters were265

removed. Tweets with less than three words were not included in the analysis but constituted less than 1%266

of the whole dataset.267

Network construction268

Text-based forma mentis networks were built in three different stages:269

1. Extraction of syntactic relationships between concepts/words from a sentence;270

2. Addition of semantic relationships (synonyms) between concepts as indicated by an external dataset;271

3. Addition of valence labels (“positive”, “negative”, “neutral”) to each single concept as indicated by272

another external dataset.273

The above three steps were repeated for all the sentences in a given tweet. At the end, all connections274

between the extracted and labelled concepts formed a multiplex lexical network (Stella et al., 2018a)275

where nodes represented words/concepts and were connected across multiple linguistic layers, namely: (i)276

a semantic layer indicating meaning overlap between words (e.g., “famous” and “notable” sharing the277

same meaning), and (ii) a syntactic layer indicating dependencies in meanings as encapsulated within a278

sentence. In general, syntactic structure defines how entities (e.g. nouns) are specified in a given sentence279

through verbs, determiners, prepositions, adjectives and adverbs (i Cancho et al., 2004). Although more280

or less convoluted syntactic structures can be encoded in sentences, the simplest form of the syntactical281

dependencies is a subject being specified as an object. For instance, in the sentence “love is weakness”,282

“love” is specified as “weakness” through the verb “is”. The verb “is” does not encapsulate any intrinsic283

meaning but it can be replaced by a link between “love” and “weakness”. Syntactic dependencies can be284

more general, for instance in the sentence “the cat sat on the chair” the nominal subject “cat” is linked to285

the prepositional object “chair” through the verb “to sit”, which retains some meaning. The determiner286

“the” and the preposition “on” do not retain meaning by themselves but connect the other parts of speech287

and are thus essential for extracting syntactic dependencies. The specification of such dependencies was288

implemented through the TextStructure[] command in Mathematica 11, which produces all syntactic289

relationships between the parts of speech of a given sentence. From the resulting network of directed290

dependencies, prepositions and auxiliary verbs were removed as nodes and replaced by syntactic links. In291

order to avoid the inflection of lemmas with the same meaning, i.e. having “weak” and “weakness” in the292

same network, word stemming was performed at the network level.293

After the extraction of syntactic dependencies, the resulting syntactic network identified a set of294

connected, stemmed concepts. Syntactic structure can be informative about conceptual links in the mental295

lexicon and be predictive of language learning and processing (i Cancho et al., 2004; Stella et al., 2018a).296

However, syntactic dependencies neglect the possibility of using and exchanging synonyms in the same297

syntactic structure providing the same meaning (e.g. saying “he has a quiet character” conveys the same298

meaning of saying “he has a quiet nature”). In order to account also for meaning overlap, the syntactic299

structure was enriched with synonym relationships from WordNet 3.0 (Miller, 1998), as implemented in300

the curated repository WordData[] available in Mathematica 11. Meaning overlap between concepts is301

also representative of semantic memory patterns in the mental lexicon, with previous works showing how302

synonym networks can predict language learning and facilitate conceptual navigation (Stella et al., 2018a;303

Siew et al., 2019).304

After the construction of the network layers of syntactic relationships and of synonyms, every concept305

was connected either by syntactic or semantic links. From the affective mega-study of Warriner and306

colleagues (Warriner et al., 2013), each concept was endowed with a valence label, e.g. “positive”,307

“neutral” or “negative”. These labels represented the average valence attributed to each concept by a308

population of individuals involved in a large-scale behavioural study rating more than 13,900 English309

words (Warriner et al., 2013). Words were classified as positive, neutral or negative, respectively, according310
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Figure 1. Example of a text-based forma mentis network. A TFMN can be represented either as an

edge-coloured graph (left) or as a multiplex network (right). Positive (negative) words are highlighted in

cyan (red). Syntactic links between positive (negative) words are highlighted in cyan (red) too. Syntactic

links between positive and negative concepts are in purple. All semantic links of meaning overlap are

highlighted in green.

to their location in the upper quartile (higher valence), interquartile range (neutral valence), or lower311

quartile (lower valence) in the distribution of valence scores for over 9000 different word stems. These312

valence scores were obtained from averaging over words with the same stemmed root.313

Figure 1 provides an example of a text-based forma mentis network. A TFMN can be represented314

either as an edge-coloured graph or as a multiplex network (Stella et al., 2018a). These two representations315

are equivalent and their only purpose is to distinguish between syntactic and semantic links.316

Additional cognitive data317

In order to test the power of text-based forma mentis network in identifying relevant concepts in text,318

additional cognitive data was used as benchmark. Semantic similarity and relevance of scientific concepts,319

as extrapolated from short scientific texts, was investigated and compared against free association data320

from the Complex Forma Mentis project (Stella et al., 2019). The benchmark text adopted here was the321

booklet “Complexity Explained”, co-authored by several researchers in complexity science and composed322

of 7 short paragraphs describing one specific concept each (cf. https://complexityexplained.github.io/, Last323

Accessed: 16/03/2020). The analysed paragraphs were about: “interactions”, “emergence”, “dynamics”,324

“self-organisation”, “adaptation”, “interdisciplinarity” and “methods”. The results of such benchmark are325

reported at the beginning of the Results section.326

Emotional profiling327

Compared to previous approaches using behavioural forma mentis networks (Stella, 2020; Stella and328

Zaytseva, 2020; Stella et al., 2019), the current analysis introduces also an emotional profiling of stances329

as encapsulated in the reconstructed mindsets. Emotional profiling is defined in terms of considering how330

many associates of a concept, in the TFMN, elicit a given emotion. Concepts linked to a negation (e.g.331

“not”) were transformed into their antonyms, so that both original concepts and their negated meanings332

were considered for reconstructing an emotional profile. Considered emotions included:333

• Anger, a negative emotion representing reactions of irritation and rage towards an external threat;334
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• Disgust, a negative emotion indicating aversion and closure;335

• Fear, a negative emotion indicating a need to actively avoid and prevent potential threats;336

• Trust, a positive emotion indicating openness towards the outer world;337

• Joy, a positive emotion of excitement and satisfaction;338

• Sadness, a neutral emotion, neither positive nor negative, indicating states of sorrow, thoughtfulness339

and inhibition;340

• Surprise, a neutral emotion relative to being upset or startled by an unexpected event;341

• Anticipation, a neutral emotion indicating one’s projection into future events, including desire or342

anxiety.343

The above constitute basic building blocks of a wide spectrum of emotional states (Ekman and344

Davidson, 1994). For a more detailed description of emotions, please see (Ekman and Davidson, 1994)345

and (Mohammad and Turney, 2013). The mega-study by Mohammad and colleagues is also known as the346

Word-Emotion Association Lexicon, indicating how human participants associated individual concepts to347

emotional states. In other words, the resulting dataset indicated which emotions were elicited or evoked348

in human subjects reading individual concepts. The study used crowd-sourcing on Mechanical Turk for349

achieving a large-scale mapping of English words (including 14,000 unique lemmas) and was used also in350

other successful investigations about affect patterns (cf. (Mohammad and Turney, 2013)).351

Cognitive measures of semantic similarity on language networks352

This work built networks of conceptual associations between concepts. Several independent studies353

have reported that on such networks, metrics like network distance are powerful proxies for quantifying354

semantic relatedness (Kenett et al., 2017; Stella and Zaytseva, 2020). Network distance di j is defined355

as the minimum number of links (here conceptual associations) connecting any two words i and j on a356

network structure (Siew et al., 2019). On multiplex lexical networks, links of any colour/layer can be used357

(Stella et al., 2018a; Stella, 2019). Measures based on network distance such as closeness centrality have358

been found to identify also concepts of relevance from a cognitive perspective when detecting key words359

for word learning (Stella et al., 2018a; Stella, 2019), language processing (Kenett et al., 2017; Siew et al.,360

2019; Castro and Stella, 2019) and knowledge exploration (Stella and Zaytseva, 2020; Akimushkin et al.,361

2017; Amancio, 2015). Closeness centrality (Siew et al., 2019) c(i) is attributed to node i by checking362

how distant it is to its connected neighbours, in formulas:363

c(i) =
N

∑
N
j=1 di j

. (1)

Notice that the above formula applies to fully connected components of a network but does not enable364

direct comparison of components including different numbers of nodes (e.g. a component including only365

5 nodes versus a component with 1000 nodes).366

Forma mentis networks included also structural features of the mental lexicon of individuals combined367

with affective patterns (Warriner et al., 2013). This unique combination allowed for Stella and colleagues368

(Stella et al., 2019) to introduce the network metric of valence auras, i.e. the mode of valence labels369

in a given neighbourhood. In (Stella et al., 2019) a word was defined as having a positive (negative)370

valence aura if mostly linked to positive (negative) words. This measure was used also in the current371

analysis, although it has to be underlined that in here these affect measures represented how a large-scale372

population, independent from the one producing the texts, perceived individual concepts. Since valence373

auras still depended on the connectivity of conceptual associations as assembled by text authors, this374

metric quantified how groups of these authors structured and perceived their knowledge. In the current375

analysis, valence auras rather than single-word valence labels were key to reconstructing positive/negative376

perceptions of individual concepts by checking their conceptual associates in the analysed online discourse.377
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Table 1. Top-ranked concepts in the TFMNs obtained from the 7 paragraphs of the booklet Complexity

Explained. The ranking is based on closeness centrality. Every paragraph revolves around one topic,

clearly established by the authors and reported here too.

Rank/Topic Interactions Emergence Dynamics Self-organisation Adaptation Interdisciplinarity Methods

1 component system system pattern adapt system compute

2 interact property change emerge system understand model

3 whole part state may able science method

4 study component behaviour organ become complex mathematics

5 system whole point become function use lead

6 make sum show interact damage variety require

7 difficult phenomenon variable system evolve manage involve

8 part complex dynamic produce go domain analysis

9 new exhibit tend property may ecology forecast

10 consist deduce depend lead robust biology rule

RESULTS378

The main results of this manuscript are twofold. On the one hand, the current analysis provides a379

cross-validation of the information revealed by TFMNs through a benchmark on short texts, revolving380

around specific topics. Comparison with validated behavioural cognitive data indicates that the structure381

of TFMNs captures semantically relevant information about text like topics or conceptual relevance. On382

the other hand, the rest of the Results section focuses around reconstructing and analysing a data-driven383

picture of the online perception of women in science and the gender gap as reported by online users on384

Twitter.385

Benchmark of text-based forma mentis networks on short texts386

This subsection reports results of the benchmarking analysis of “Complexity Explained” (see Methods)387

through TFMNs. For each of the seven paragraphs of the booklet a TFMN was built. Closeness centrality388

was used for identifying the most central concepts in every TFMN and produce rankings of the most389

relevant words in each text. Overall, the resulting forma mentis network contained a median of 49390

concepts and were fully connected. Table 1 reports the 10 most central words in each network and their391

underlying topic.392

Table 1 indicates that, beyond an overall agreement between key concepts and topics, as identified by393

TFMNs, the network topology of syntactic/semantic associations identified the most distinctive conceptual394

features of topics. For instance, while the ranking for the topic “Interactions” reported mainly concepts395

relative to structure (e.g., component, part, whole, consist), the ranking of “Dynamics” identified concepts396

related to the evolution over time of a system (e.g., change, state, behaviour, dynamic). Words expressing397

resilience and robustness to attacks, like “damage”, “function”, “evolve”, “adapt” and “robust”, were398

found to be central in the textual forma mentis network of “Adaptation”. TFMNs detected “domain” as399

being a relevant concept in the “Interdisciplinarity” paragraph. This was expected in a text describing400

complexity science as an umbrella for different research areas. The “Methods” paragraph revolved, as401

expected, around quantitative concepts, e.g. forecast, compute, model, method, analysis, rule. In the same402

paragraph, mathematics was found to be highly relevant, in agreement with the overall necessity of a403

mathematical language for investigating complex systems (i Cancho et al., 2004; Siew et al., 2019).404

Although the above qualitative analysis indicated an overall agreement between topics and identified405

key concepts, a more quantitative approach was further pursued. With the aim of assessing whether the406

identified concepts were more or less semantically related to the topics designed by text authors, free407

associations and semantic network distance were adopted. In networks of free associations, nodes/words408

are linked if they elicit a quick recall of each other in a behavioural task (De Deyne et al., 2019). Previous409

studies have shown how semantic network distance on networks of free associations are a good proxy410

of semantic relatedness, superior also to semantic latent analysis (Kenett et al., 2017). Although several411

datasets for free associations are available in the literature, this benchmark considered two: the large-scale412

Small World of Words gathered by De Deyne and colleagues (De Deyne et al., 2019) and the small-scale413

Complex Forma Mentis project gathered by Stella and colleagues (Stella et al., 2019). Many of the414

scientific terms present in Complexity Explained were absent in the Small World of Words but present in415

the STEM free associations provided by Stella et al. (Stella et al., 2019). Therefore, this analysis focused416
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on the second dataset of free associations.417

The distance between every relevant word and its reference topic on the network of free associations by418

(Stella et al., 2019) was computed for all topics within the networked mindset of 59 complexity researchers.419

These topics were “interaction”, “emergence”, “dynamics”, “self-organisation”, “interdisciplinary” and420

“methods” and the relevant concepts were the ones in Table 1. The resulting set of empirical semantic421

network distances was then compared against a reference null model with randomised TFMNs having422

the same number of links and nodes of the original networks but with randomly reshuffled links (i.e.423

configuration models (Stella et al., 2018a)). The reshuffling disrupted semantic relationships between424

network structure and meaning (Stella et al., 2018a). A location test between the empirical and the425

randomised network distances (over 50 network realisations) indicated a statistically significant difference426

between the clustering of relevant words around each topic and the null model (Mann-Whitney test,427

U = 17827, p-value: 0.0267 < 0.05) at a significance level of 0.05. In the networked free associations428

representing the scientific knowledge of complexity researchers, the words identified as relevant for429

a topic by TFMNs tended to be closer to their own topic (median network distance: 3.1) than on the430

randomised networks (median network distance: 3.7). Since semantic network distance on networks of431

free associations indicates semantic relatedness (Kenett et al., 2017), these results confirmed that closeness432

centrality on TFMNs was capable of identifying concepts relevant to the specific topic underlying a given433

text.434

Given the successful outcome of such benchmark, TFMNs can therefore be applied to extracting435

relevant features of other short texts. The following section reports on the results of TFMNs when used436

for analysing over 10000 tweets about gender gap in science.437

Analysis of the perception of gender gap in STEM with cognitive networks438

The textual forma mentis network obtained from processing the selected tweets included a largest439

connected component including 3005 stemmed concepts and 28004 connections (24693 in the syntactic440

layer and 3311 in the synonyms layer). The 10 most central concepts in terms of closeness centrality441

were: “stem”, “science”, “we”, “do”, “you”, “learn”, “make”, “get”, “work”, “need”. As expected from442

the benchmark, these words capture the general context of science of the investigated online discourse.443

Concepts like “woman” and “man” ranked 103rd and 246th, respectively, mirroring the relevance of444

women in science for the selected online discourse. “Scientist” ranked higher, at the 54th position, further445

confirming the scientific scope of the dataset.446

0.0.1 Conceptual associations with and around a concept identify word clusters447

The TFMN was more clustered than random expectation (using a single-layer clustering coefficient where448

all links are aggregated together, cf. (Siew et al., 2019)). Concepts linked to a common neighbour tended to449

get connected with each other too. The empirical network displayed a mean clustering coefficient of 0.327450

(0.166±0.007 for reference configuration models (Stella et al., 2018a)). Hence, in the TFMN concepts451

clustering around a given word (e.g. “STEM”) shared syntactic/semantic links too, a tendency that can452

provide a richer structure about the conceptual organisation of knowledge around specific concepts/topics453

in terms of (more) conceptual links. Consequently, investigating clustered networked neighbourhoods of454

words can provide contextual information that would be lost by considering either words in isolation or455

only the list of associates to a given concept. For this reason, the investigation focused on word clusters in456

order to better understand the online perception of the STEM gender gap.457

0.0.2 Valence auras and global network metrics highlight an overall positive online stance towards458

STEM and gender gap459

The 3005 stemmed concepts extracted from relevant tweets and connected in the forma mentis network460

were rated as positive (1045), negative (430) and neutral (1943) according to the procedure described in461

the Methods. Positive concepts were found to have a higher median degree than negative concepts (Mann-462

Whitney test, numerosity n1 = 1045, median degree k1 = 9, n2 = 430, k2 = 4, U = 3 · 106, p < 10−6).463

Positive concepts were also found to be more central in the reconstructed mindset in terms of requiring464

fewer syntactic/synonymy associations in order to reach any other connected concept, i.e. centrality465

as expressed by multiplex closeness (Stella et al., 2018a), (Mann-Whitney test, numerosity n1 = 1045,466

median degree k1 = 0.3601, n2 = 430, k2 = 0.3307, U = 3 ·106, p < 10−6). These comparisons indicate467

that in the analysed corpus of twitter language focusing on women and STEM, positive concepts were468

more predominant, more well connected and more central than negative concepts. The richer network469
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structure of conceptual associations of positive concepts translated into a generally positive attitude of470

twitter users towards the STEM gender gap.471

Figure 2 (top) reports the emotional auras (Stella et al., 2019; Stella, 2020) of hub concepts in the472

reconstructed mindset of social media users. While single-word labels were determined from the sentiment473

of a general population, i.e. participants in an affect mega-study (Warriner et al., 2013), auras emerged474

from the specific syntactic/synonymy relationships traced in the analysed data and therefore characterised475

the reconstructed mindset of the population of interest. Concepts like “stem”, “gender” and “gap” are476

neutral in commonly spoken language but were associated mostly with positive concepts in the language477

of the online discourse, i.e. surrounded by a positive emotional aura. This indicates an overall positive478

perception of these topics that would go undetected when investigating “stem”, “gender” and “gap” in479

isolation. Differently from other investigations with forma mentis networks (Stella et al., 2019; Stella,480

2020), the sampled online audience reported a strongly positive perception/aura of “student”. Also “bias”,481

a negative concept, was surrounded by a positive emotional aura, indicating an overall mixed stance trying482

to figure out positive aspects of a bias (e.g., how to overcome it). Further analysis is required in order to483

better understand the above perceptions.484

Figure 2 (bottom) reports the mindset structure around “bias” and other concepts like “unique”, “hurt”485

and “journal”. The forma mentis neighbourhood of “bias” included associations to positive concepts486

like “face”, “win”, “clear” and to negative concepts like “fight”, “cost” and “stereotype”, all revolving487

around contrasting and overcoming biases. Therefore, the reconstructed TFMN indicates how social488

media users discussed about “bias” in terms of a negative entity to be contrasted, overcome and won,489

thus explaining the above mixed perception. Other words associated to bias gravitated around the gender490

pay gap and economic implications (Courey and Heywood, 2018), e.g. “earn”, “cost”, “value”. Links491

with “unconscious” and “fact” indicate that social media users were aware of hidden, unconscious gender492

biases affecting the gender gap (Pietri et al., 2018).493

Figure 2 (bottom) also reports how “unique” was associated in the online discourse around the gender494

gap. The mixed perception of “unique” included negative associations to concepts eliciting loneliness, e.g.495

“oppress”, “fail”, “alone” and “pretend”, which are unexpected when considering the positive perception496

of “unique” itself. Hence, the TFMN indicates that when associated in messages focusing on women497

in STEM, the meaning of “unique” shifted from positive to mixed and included negative connotations498

of social exclusion and sense of failure. This is an example of contextual valence shifting (Polanyi and499

Zaenen, 2006), a phenomenon in which a concept changes its valence according to its semantic context.500

TFMNs represent a valuable quantitative tool for identifying valence shifting through semantic associates501

and emotional profiling.502

The multiplex structure of TFMNs can influence an emotional aura. Synonymy links (green) do not503

come from text but rather from a pre-determined lexicon of synonyms (i.e. WordNet (Miller, 1998)) that504

has general validity over common language. Instead, syntactic (blue/red/gray) associations come from the505

specifically analysed language. In this way, TFMNs can identify also missing conceptual associations or506

the predominance of synonymy over syntactic links.507
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Figure 2. Bottom: Valence auras in the global forma mentis network of all 10384 analysed tweets.

Positive (negative) words are highlighted in cyan (red). A fraction of 0.4 indicates that 40% of the

neighbours of a word (e.g. STEM) are labelled as positive. Top: Textual forma mentis network for words

linked to the target topics like “bias” (top left), “unique” (top right), “hurt” (bottom left) and “journal”

(bottom right).

The negative aura of “hurt” in Figure 2 was mostly due to general synonyms whereas specific508

syntactic associations included positive concepts like “teach”, “like” or “health”, thus indicating a lack509

of hurtful/painful conceptual associations in the investigated online discourse over women in STEM.510

Network structure was informative also about the negative aura attributed to “journal”, which was linked511

to “politician”, “stereotype”, “bias” and “policy”. These syntactic links indicated a social awareness512

about journals and news media potentially perpetrating gender stereotypes, a role that was investigated in513

previous studies (Steinke, 2017).514

The online social perception of “woman”, “man” and “person” reconstructed by TFMN515

Although it is expected for the online discourse to feature also automatic accounts and social bots, previous516

research identified human users as being more predominant in driving and diffusing message exchanges517

on social platforms (Stella et al., 2018b). Comparing how people identify themselves in a discourse where518

they are the main drivers can be informative about social roles and users’ self-perception (Varol and519
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Uluturk, 2020).520

Figure 3 reports and compares the forma mentis network around “woman” (top left), “man” (top right)521

and “person” (middle right). All these three concepts, commonly perceived as positive entities, were522

surrounded by positive emotional auras in agreement with the overall positive features reported above of523

the whole TFMN.524

The reconstructed social perception of “woman” within the online discourse of gender gap in STEM525

identified mainly semantic clusters expressing three aspects:526

1. leadership and professional recognition in STEM (e.g. “enterpreneur”, “award”, “recognize”,527

“leader”, “power”, “career”, “success”, “deserve”, “science”, “valid”);528

2. learning and education (e.g. “teacher”, “inspire”, “learn”);529

3. social welfare (e.g., “finance”, “advocate”).530

All these aspects were dominated by positive, concrete concepts eliciting a sense of achievement and531

professional establishment. The resulting picture was an overall positive sentiment/perception of the532

online social discourse about the figures of women in science. However, within this positive landscape,533

a closer look at the local community of concepts clustering around “woman” identified also negative534

associations, further highlighted in Figure 3 (middle left).535

The analysed text associated women also to “indebted”, “kill”, “lone” and “cry”, highlighting a536

multifaceted perception of women in STEM and including negative traits that might originate from537

stereotype threat (Shapiro and Williams, 2012; Pennington et al., 2016). In cognitive psychology,538

stereotypes can advantageously form a belief about or characterise key traits of groups of people through539

little cognitive effort. Stereotypical perceptions come at the cost of being not grounded in empirical540

knowledge, providing inexpensive but potentially erroneous information that can: deeply affect perception541

and cognitive processing (Pennington et al., 2016), induce anxiety, and reduce performance under pressure,542

e.g. causing a sense of threatening. For instance, STEM stereotypes like “girls are not good at maths”543

have been reported to affect even the self-perception of female STEM students, causing unconscious544

biases which reduced girls’ performance and retaining of STEM subjects (Shapiro and Williams, 2012;545

Steinke, 2017; Chavatzia, 2017). The TFMN reported in Figure 3 highlighted the stereotype of the546

“oppressive, lonely, big-shot woman in STEM”, relative to women in STEM achieving successful careers547

only at the cost of sacrificing empathy and other positive personality traits (Ely et al., 2011; Madsen548

and Andrade, 2018). Recent studies have overwhelmingly exposed such stereotype, cf. (Steinke, 2017),549

and the permanence of these negative associations in online social discourse represents evidence of how550

such stereotype is still deep-rooted in daily communication. Notice that this might have also positive551

repercussions, as improving the awareness of the effects of stereotype threat by simply talking about it can552

boost self-perception and promote the implementation of effective countermeasures fighting stereotypes553

(Madsen and Andrade, 2018).554

The reconstructed online perception of women was overwhelmingly positive and it indicated how555

women’s success and leadership in STEM deserve recognition (Madsen and Andrade, 2018). This556

perception has to be compared against the one of males. Figure 3 (top left) considers the forma mentis557

network around “man”, which included mostly positive concepts like “science”, “passion” and “smile”.558

However, syntactic links associated “man” also to negative concepts such as “rape”, “issue” and “racist”,559

indicating the presence in the online discourse of forms of accusations or condemnations of the role560

played by men in social issues like sexual harassment, rape and racism (Karami et al., 2020). In the forma561

mentis around “man”, special attention has to be devoted also to the negative particle “not”, which is562

syntactically linked to “god”, “think”, “make” and “consider”. The negation of all these concepts, as563

indicated by the syntactic links, provided a multi-faceted perception where men in STEM were related to564

a superiority complex, a stereotypical self-perception of superiority in science-related achievements, for565

instance in mathematics assessments (Leyva, 2017), promoted by preliminary and incomplete studies (cf.566

(Leyva, 2017) and (Chavatzia, 2017)). This quantitative result, embedded in language and highlighted567

by forma mentis networks, indicates that fighting the gender gap in STEM means also changing men’s568

stereotypical roles in science.569
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Figure 3. Top: Textual forma mentis network for words linked to the target topics like “woman” (top)

and “man” (bottom). On every row, networks on the left include all neighbours adjacent to the target topic

and clustered in communities as obtained from a Louvain algorithm (for more details on community

detection in Twitter data see (Konstantinidis et al., 2017)). Networks on the right include all words in the

same community as the target topic (top) and all words (bottom) but use hierarchical edge bundling for

highlighting within-community clusters. In every visualisation, positive (negative) words and links are

highlighted in cyan (red). Links between positive and negative concepts are reported in purple. Semantic

links between synonyms are in green. Bottom: Emotional profile/richness for the neighbourhood of

“woman” and “man”, indicating what emotions elicit the associates of these concepts.
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In terms of emotional profiles, both “woman” and “man” included associates evoking mainly trust and570

joy. The TFMN around “woman” was slightly richer in anger-eliciting words, like “kill” or “shot”, than571

the TFMN around “man”. In Figure 3, the TFMN around “person” was devoid of any negative concept572

or sign of stereotype threat. Word clusters related “person” to a multifaceted perception about career573

progression, mindfulness and education. The associates of “person” evoked mostly trust (emotional profile574

not shown for brevity), further confirming the positive perception of “person” itself. Given the gender-less575

dimension of “person” in English, it is interesting to underline how the above negative perceptions are576

more tightly connected to gender-rich words for human beings like “man” and “woman” and not to577

genderless words like “person”. Since words in language do not only describe reality but rather contribute578

to forging it (Malt et al., 2010), the above result suggests that reducing the incidence of the gender gap579

might be possible also by speaking more and more in terms of “persons in STEM” rather than in terms of580

contrasting “men versus women in STEM”, always while respecting individual differences.581

The online social perception of gender gap and scientist stereotypes as reconstructed582

by TFMN583

This subsection investigates “gender” and “gap” and their online perceptions. Figure 4 considers the584

TFMN around “gender” and “gap”, which were both considered as neutral concepts in language. The585

online discourse over the social platform associated these two concepts with each other, as expected, and586

related both of them mainly to positive words. Hence, the overall online emotional aura of “gender gap”587

was mostly positive but it also included some negative associates. The community structure for the TFMN588

of “gender” identified three perceptual dimensions in the way online users talked about gender:589

• a positive dimension of respect and consideration (with associates like “balance”, “close”, “consider”590

and “respect”);591

• a research dimension in understanding the science of gender (with associates like “research”,592

“support”, “future”, “highlight” and “explain”);593

• a mostly negative dimension of gender imbalance and biases (with associates like “doubt”, “imbal-594

ance” and “attack”).595

Associations of “gender” with concepts like “stereotype”, “unfounded”, “break” and “tackle” (see Fig.596

4, top left) indicated an attitude of opposition, among online users, against gender stereotypes in the597

considered online communications.598

Analogously to “gender”, also “gap” included negative associations to “bias” and “attack” and positive599

links to concepts like “overcome”, “close” and “consider” (see Fig. 4). The conceptual cluster around600

“gap” highlighted in Fig. 4 (middle left) contained associations mostly focusing on:601

1. the expectation to overcome and reduce the gender gap in the future (e.g.,“reverse”, “break”,602

“crack”, “bridge” and “reduce”);603

2. the economic impact of the gender gap (e.g., “pay”, “income”, “wage”).604

These two dimensions indicate a positive intention for the online discourse to tackle and reduce gender605

gaps, while displaying awareness about the gender pay gap (Courey and Heywood, 2018) and also an606

emotion of anticipation or projection of such challenge in the future (see emotional profiling in Fig. 4,607

bottom). This provides additional quantitative indication for the importance of achieving equal wages608

in STEM in order to reduce the gender gap, in agreement with previous studies (Courey and Heywood,609

2018). Figure 4 contains also negative associations between “gap”, “bias” and “unconscious”, indicating610

a remarkable awareness of online users about the gender gap being rooted in unconscious bias and gender611

preconceptions that are difficult to detect and act upon (Karami et al., 2020; Steinke, 2017; Moss-Racusin612

et al., 2012; Pietri et al., 2018).613
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Figure 4. Top: Textual forma mentis network for words linked to the target topics like “gender” and

“gap”. On every row, networks on the left include all neighbours adjacent to the target topic and clustered

in communities as obtained from a Louvain algorithm. Networks on the right include all words in the

same community as the target topic but use hierarchical edge bundling for highlighting within-community

clusters. In every visualisation, positive (negative) words and links are highlighted in cyan (red). Links

between positive and negative concepts are reported in purple. Semantic links between synonyms are in

green. Bottom: Emotional profile/richness for the neighbourhood of “woman” and “man”, indicating

what emotions elicit the associates of these concepts.

As already mentioned above, a prominent mechanism of unconscious bias is stereotype threat, where614

unconscious perceptions cause anxiety and negative latent emotions that influence performance, e.g. girls615

aware of the preconception that “girls are not good in science” end up performing worse than males616
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in STEM tasks (Moss-Racusin et al., 2012; Shapiro and Williams, 2012; Madsen and Andrade, 2018;617

Chavatzia, 2017). Given the awareness of online users about unconscious biases, it becomes relevant618

to explore the networked TFMN mindset in search of signs of stereotype threat. Because of the STEM619

scope of the dataset, the focus here was devoted to detecting stereotypical perceptions in the figure620

of “scientist”, whose neighbourhood is reported in Fig. 5. The TFMN quantified positive semantic621

associations surrounding “scientist”. Clusters of more tightly associations identified a strong perception622

of scientists in relation to innovation (e.g., “tech”, “society”, “entrepreneur”, “innovate”, “discover”,623

“leadership”). A closer look (cf. Fig. 5, left) revealed also enthusiasm-eliciting concepts (e.g., “great”,624

“notable”, “famous”, “celebrant”, “dream”, “congratulate”) and career-related jargon (e.g., “showcase”,625

“assess”, “work”, “peer”, “academia”). Hence, scientists were perceived as successful professionals by626

online users, analogously to what other social groups like high-school students did in other studies (cfr.627

(Stella, 2020)). Even within this success-centred perception, online users linked scientists to concepts like628

“suffer”, “pain” and “gain”, displaying awareness about the cost of success and the need for hard work.629

Overall, the mental construct of “scientist” represented by the TFMN identified a well-rounded,630

balanced and positive online perception of scientists in terms of successful, hard-working professionals,631

devoid of any significant patterns of stereotype threat associating scientists only to a male-gender sphere,632

differently from stereotypical perceptions found in other datasets and groups via the Implicit Association633

Test (Lane et al., 2012; Steinke, 2017).634
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Figure 5. Top: Textual forma mentis network for “scientist”. The network on the left includes all words

associated to “scientist”, whereas plot on the right zooms in the community of words more tightly

connected to “scientist”. Positive (negative) words and links are highlighted in cyan (red). Links between

positive and negative concepts are reported in purple. Synonymy relationships are in green. Bottom:

Emotional profile/richness for the neighbourhood of “scientist”, indicating what emotions elicit the

associates of “scientist” itself in the analysed corpus.

DISCUSSION635

As outlined in recent Big Data Analytics studies (Huang et al., 2020; Odic and Wojcik, 2019; Chavatzia,636

2017), differences in gender discrimination are strongly influenced by distorted mindsets, with deep, often637

hidden, repercussions over pay gaps (Courey and Heywood, 2018) and sexual harassment (Karami et al.,638
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2020). Combining these findings with the ever-increasing influence of social media over real life (Jansen639

et al., 2009; Waqas et al., 2019; Stella et al., 2018b; Nasar et al., 2019) highlights an urgent necessity640

for using information processing in order to understand “if” and “how” specific massive online social641

platforms promote information on distorted mindsets. The tackling of such research question is essential642

for countering gender biases with data-informed approaches (Huang et al., 2020). This work tackled this643

question by extracting, reconstructing and understanding with textual forma mentis networks (TFMNs)644

how online users perceived and discussed the topics of “women in STEM” and the “gender gap” on645

Twitter.646

As a knowledge extraction technique (Nasar et al., 2019), TFMNs indicated an overall positive647

attitude of the online discourse towards tackling and reducing gender inequality. Going beyond the648

positive/negative polarity of standard sentiment analysis (Mohammad, 2016; Stella et al., 2018b), this649

work attributed TFMNs with a richer emotional profile, using emotional data from (Mohammad and650

Turney, 2013) and providing a quantitative way for detecting contextual connotation shifting (Polanyi651

and Zaenen, 2006), i.e. a concept being perceived in different ways according to its semantic context652

and associates. The reconstructed forma mentis networks outlined “man”, “woman” and “scientist” as653

being associated with concepts eliciting predominantly trust, joy and anticipation and, with way less654

intensity, also anger and fear. Trust is a feeling of confidence, security and positive endorsement (Ekman655

and Davidson, 1994), its predominance in the retrieved TFMNs suggests a willingness for online users656

to provide and exchange endorsements to each others’ messages while debating the topic of “women657

in science”. This result is in contrast with a previous study reporting Twitter as being more prone to658

host general-level negative rather than positive emotional content (Waterloo et al., 2018). This disparity659

might be explained by considering that Twitter interactions focus mainly over weak social ties, including660

mostly acquaintances and casual contacts rather than strongly personal relationships (Waterloo et al.,661

2018). Since the expression of topic-inspired negative emotions along weak social ties is considered662

being less acceptable (Ferrara and Yang, 2015), more positive emotional profiles would be expected from663

topic-specific Twitter public debate, and not from general level content sharing like the one in (Waterloo664

et al., 2018). As a future research direction, it would be interesting to detect whether the mostly trustful665

and positive perception of gender biases would persist also on other social media platforms with stronger666

social ties such as Facebook or WhatsApp (Waterloo et al., 2018).667

Another emotional state prominently featured in all the reconstructed stances towards “woman”,668

“gender”, “gap”, “man” and “scientist” was anticipation, a neutral emotional state including either669

pleasure or anxiety towards future events (Ekman and Davidson, 1994). The predominance of anticipation670

and joy with respect to other emotions like sadness, fear, disgust or anger, suggests the prevalence of671

positive expectations in the analysed text, examples being the excitement-related concepts associated672

with “scientist” or the successful dimension attributed to women in STEM. These patterns indicate the673

occurrence of messages celebrating women in science and their success, contrasting the gender gap with674

stories of excitement and professional achievement. Extensive research (cfr. (Pietri et al., 2018; Chavatzia,675

2017; Madsen and Andrade, 2018)) indicates that promoting professional achievements of women in676

science has strong beneficial effects in favouring women’s representation in STEM, as it enables girls in677

identifying relatable and inspiring stories of success in STEM going beyond discrimination.678

The reconstructed TFMNs reported evidence for online users being aware about unconscious gender679

biases (Shapiro and Williams, 2012). These biases occur when an individual consciously rejects gender680

stereotypes but is still influenced by and makes unconscious evaluations based on such stereotypes681

themselves, see also (Madsen and Andrade, 2018; Ely et al., 2011). At the individual level, unconscious682

and passive discrimination based on gender stereotypes can have smaller repercussions in comparison to683

actively promoting gender inequality. However, at the group level, many unconscious small biases can684

interact in a complex systems fashion (Hogue and Lord, 2007) and lead to the emergence of “powerful yet685

often invisible barriers” of gender discrimination (Ely et al., 2011). These barriers undermine considerably686

women representation and professional growth in a variety of fields including also STEM (Shapiro and687

Williams, 2012; Lane et al., 2012; Madsen and Andrade, 2018; Huang et al., 2020; Odic and Wojcik,688

2019). Forma mentis networks captured signals of unconscious gender bias in online discourse around689

“women in science”. These conceptual links can be beneficial in promoting awareness about the above690

invisible barriers, further suggesting the extreme importance of fighting implicit biases in STEM careers691

for closing the gender gap in STEM (Pietri et al., 2018).692

Another prominent topic emerging from the TFMNs is the gender pay gap, a mismatch between the693
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salaries of individuals of different genders performing the same job (Courey and Heywood, 2018). The694

online perception reconstructed by forma mentis networks indicates that pay gaps are closely semantically695

related to both “gender” and “gap”, thus indicating that closing the gender pay gap is key for fighting696

gender biases in STEM, in agreement with previous relevant studies (Ely et al., 2011; Courey and697

Heywood, 2018).698

Although partial evidence for a stereotypical, angry-eliciting and fearful perception of women in699

STEM as “lone survivors” was present in the neighbourhood of “woman”, the overall perception of700

such concept was positive and elicited mostly trustful and joyous concepts, celebrating women’s success701

in STEM. The reconstructed role of “scientist” did not include stereotypical conceptual associations,702

indicating a lack of stereotype threat phenomena (Shapiro and Williams, 2012) in the considered online703

discourse. In cognitive psychology, stereotype threats represent unconscious mechanisms that affect704

performance of a given group in relation to the stereotypical expectations commonly shared about that705

group (e.g. “girls are bad at maths” is a stereotype harming girls’ performances in maths, cfr. (Pennington706

et al., 2016; Chavatzia, 2017)). Forma mentis networks mostly related the online perception of scientists707

to success and career progression and highlighted a lack of stereotypical perceptions, differently from the708

detection of scientist-centred stereotypes found in previous approaches with cognitive network science709

(Stella, 2020), via the Implicit Association Test (Lane et al., 2012). Such virtuous finding might be the710

consequence of the relatively high participation of STEM professionals over the Twittersphere, which711

can disrupt stereotypical perceptions. As future research, it would be interesting to apply TFMNs for712

detecting potential patterns of stereotype threat in other social platforms like Facebook or WhatsApp, that713

are more exposed to negative content (Waterloo et al., 2018) and also less prone to hosting posts from714

STEM experts.715

From a methodological perspective, TFMNs rely on the recent theory of cognitive networks (Siew716

et al., 2019) and include syntactic and semantic conceptual associations which are informative of the717

structure of knowledge perceived by text authors (Stella et al., 2018a; Stella, 2019). Differently from718

other successful models of knowledge representation such as concept maps (Dóczi, 2019) and knowledge719

graphs (Amancio, 2015; Akimushkin et al., 2017; de Arruda et al., 2019), forma mentis networks contain720

also emotional information, outlining sentiment and emotional patterns in the way individuals assembled721

their stance in a text. This contextual information is essential for the interpretability of a detected stance722

(Nasar et al., 2019).723

The framework of textual forma mentis networks reported here has some important limitations.724

Differently from the behavioural forma mentis networks introduced in previous studies (Stella and725

Zaytseva, 2020; Stella et al., 2019; Stella, 2020), in TFMNs the valence of concepts represents population-726

level averages extracted from mega-studies in psycholinguistics (Warriner et al., 2013). This representation727

assumes an overall shared perception of the emotional content of concepts that might be preserved at the728

global level, i.e. on an online platform where large numbers of users of multiple backgrounds interact729

with each other. However, this assumption might be violated within specific populations. For instance,730

Stella and colleagues (Stella et al., 2019) showed that a population made entirely of high-school students731

perceived “maths” as a negative concept whereas a population of international researchers perceived the732

same concept as positive. The overall perception of “maths” reported in the language norms by Warriner733

et al. (2013) was neutral, as reported also in the TFMNs presented here (Warriner et al., 2013). It is734

important to keep this assumption in mind when applying TFMNs to mindset reconstruction in specific735

and non-heterogenous populations. Nonetheless, even in these populations TFMNs can be informative736

about conceptual associations as expressed by the semantic/syntactic multiplex network structure, since737

the emotional attitude towards a concept can be reconstructed from the attitude and meaning of its738

associates (Polanyi and Zaenen, 2006). As a future research direction, a potential approach for achieving739

population-specific valence labels would be valence extraction from text, a technique that exploits word740

embedding and machine learning (Mohammad, 2016; Rudkowsky et al., 2018) and as such works well for741

longer texts like books or essays but is still relatively less accurate for shorter texts like tweets or posts,742

which are less rich in semantic information (Polanyi and Zaenen, 2006).743

Another assumption underlying TFMNs is treating modifiers of meaning (e.g. negations) as nodes744

equivalent to concepts. Modifiers can alter the meaning expressed by individual concepts, providing a745

contextual richness that is not captured by the so-called “bag of words” models (Polanyi and Zaenen,746

2006; Rudkowsky et al., 2018), where a text is represented by an unstructured list of its concepts. Textual747

forma mentis networks provide syntactic and semantic contextual background to concepts so that the748
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investigation of modifiers cannot be independent on the analysis of conceptual associates. For instance, in749

the current approach, negations were considered in the emotional profiling of conceptual neighbourhoods750

in the following way: antonyms of words linked to negations were added to emotional counts, providing751

information about opposite meanings in addition to the concepts originally available in the TFMN (e.g., if752

“appreciation” was connected to “not” then its antonym “disgust” was considered in the emotional profiling753

too). Other ways of grading the intensity of statements or negations could be tested and implemented754

within future work.755

Another future research direction would be the implementation of TFMNs in synergy with social756

network analysis, much alike what recent approaches suggested (Rodrigues and Pietrocola, 2020; Stella757

et al., 2018b), in order to better capture online social behaviour (Varol and Uluturk, 2020) or better758

understand misinformation spread (Pierri et al., 2020).759

CONCLUSIONS760

Textual forma mentis networks (TFMNs) provide contextual conceptual and emotional information from761

text, providing a rich picture of how text authors perceived and associated multiple topics. When applied762

to the social media discussion of women in science, TFMNs identified a mostly positive, trustful and763

anticipation-rich discourse but also highlighted online awareness about relevant issues like unconscious764

gender biases and the gender pay gap. The application of TFMNs to the analysis of online discourses765

opens new ways for quantitatively assessing the role played by social media in promoting/hampering766

gender biases and distorted mindsets. Textual forma mentis networks can open new ways of accessing767

social media, understanding the content of online communication and providing new bridges for linking768

social dynamics with cognitive and emotional information spread.769
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