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ABSTRACT
Sepsis is a life-threatening complication caused by infection that leads to extensive
tissue damage. If not treated promptly, it can become fatal. Early identification and
diagnosis of sepsis are critical to improving patient outcomes. Although recent
technological advancements have aided sepsis detection, challenges remain in timely
diagnosis using standard clinical practices. In this article, we present a new deep
learning model to detect the occurrence of sepsis and the African vulture
optimization algorithm (AVOA) to enhance the model performance. The system
comprises four crucial steps: First, the enhanced convolutional learning framework
(ECLF) with atrous convolutional and multi-level strategies that aim to learn
high-level features from the nonlinear mapping of the medical data. Second is the
spatio-channel attention network (SCAN), which has a neural architecture designed
to focus on significant regions, such as spatial and channel regions, but not restricted
to them. Third is the hierarchical dilated convolutional block (HDCB), which utilises
a stacked dilated deep convolutional architecture for spatial feature context retrieval.
Last is the residual path convolutional chain (RPCC), which uses a multi-residual
convolutional approach for feature propagation, preserving important information.
The sepsis detection model we bring forth involves many components, as mentioned
above, and thus achieves a higher accuracy for timely intervention during sepsis. The
combination of AVOA into the model ensures that it is robust and easily transferable,
delivering high performance for adaptation to complicated structures inside medical
datasets. The proposed model was evaluated on a clinical dataset and achieved
outstanding performance, with an accuracy of 99.4%, precision of 98%, recall of
99.2%, F1-score of 99.0%, and an area under the curve (AUC) of 0.998. These results
demonstrate the model’s superior ability to detect sepsis accurately and reliably,
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outperforming traditional clinical scoring methods and conventional machine
learning approaches.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, DataMining andMachine
Learning, Data Science, Optimization Theory and Computation
Keywords Sepsis detection, Deep learning, African vulture optimization algorithm, Enhanced
convolutional learning, Spatio-channel attention, Dilated convolution

INTRODUCTION
Sepsis is a critical health condition resulting from an abnormal response to infection. It
ranks as the sixth leading cause of death worldwide, responsible for more than 11 million
fatalities each year. Early fluid therapy, antibiotics, and source control management are
essential to improve survival rates. However, diagnosing sepsis is challenging due to its
complex presentation and rapidly changing symptoms. Current diagnostic methods often
lack sensitivity and fail to predict outcomes accurately, making the detection process
time-consuming and unreliable (Rudd et al., 2020). Since septic shock is the most severe
form of sepsis, the management of sepsis must begin early through fluid and antibiotic
therapy as well as source control. Unfortunately, sepsis is more complex than it seems,
owing to its very disparate characteristics, and many of the current approaches aimed at
determining whether an individual has sepsis are either inadequately sensitive or
inaccurately predict the sepsis outcome, rendering the sepsis detection process time-
consuming. As a result of this rapid adoption, predictive algorithms have been developed
and utilised to improve the likelihood of finding sepsis at the right time (Henry et al., 2015).
Currently, the approach recommended for diagnosis of neonatal sepsis involves
bacteriologic examination of blood cultures performed before commencing treatment with
antibiotics. Nevertheless, sepsis, unable to be treated in time, can have very non-defining
symptoms and lead to organ failure within no time. That is why, while the cultures are
pending, patients are usually given empirical treatment with ampicillin, gentamicin, or
cefotaxime (Hussaini, 2021).

Even though there are clinical scoring systems like Sequential Organ Failure Assessment
(SOFA) and Simplified Acute Physiology Score II (SAPS II), such methods have many
shortcomings. Their dependence upon empirical findings and antiquated markers lowers
their applicability in contemporary medicine, particularly considering the accelerated
course of sepsis that hinders the development of data relative to the patient as opposed to
chronic diseases where such illness develops (Hu et al., 2022). Hence, estimating the
mortality rate in cases of sepsis continues to be complex. To appreciate these limitations,
using machine learning (ML) methods to improve estimating sepsis outcomes has become
widespread (Hu et al., 2022). Moreover, since the definition of sepsis is poorly defined in the
literature, which makes comparing various predictive pre-model and post-model surveys
even more complex, the lack of well-defined, cross-validation enabled, multi-centre
databases has made it impossible to validate sepsis models externally (Wong et al., 2021).
Sepsis is still a leading cause of death, where cases remain unabated, resulting in death rates
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that are over 30%. Long-term complications such as physical disability, cognitive disability,
and psychological disability are common among survivors of sepsis. A series of disabilities
powerfully puts a strain on the healthcare systems. The Surviving Sepsis Campaign states
that one year after a discharge, 33% of survivors display signs of cognitive impairment, 43%
are not able to perform some tasks, and 27% have post traumatic stress disorder (PTSD)
(Iwashyna et al., 2010).

Immune system malfunction is widely seen in sepsis. The infection affects the immune
system with such force that the organism cannot fight off invading microorganisms.
Although some antibiotics work on sepsis with positive results, the shipment of fighting
the infection can lead to an attack of resistance. There are several issues with early
diagnosis, but the recent paradigm shift in the concept of the disease provides sufficient
information for its explanation and selection of effective antibiotics (Singer et al., 2016).
While space-limited clinical notes filled with typos/abbreviations/free text are complicated,
structured clinical information such as age, lab tests, and vital signs is pretty
straightforward. Helpful information is retrieved from this unstructured data by
employing natural language processing techniques; these often require clinicians’
intervention (Spasic & Nenadic, 2020). Considering the latest technology trends, this
article proposes improving sepsis detection using artificial intelligence (AI) algorithms,
which can find more relevant sepsis indicators and risk factors from large clinical datasets,
including echocardiograms, electrodes, and many others. Although AI also faces this
problem, it is solved through the fast analysis of vast datasets, which minimises errors
related to human interpretation and estimate while enhancing the speed and reliability of
dosages (Giordano et al., 2021).

The widespread adoption of electronic health records (EHRs) has made it feasible to
incorporate machine learning and data mining techniques into the fight against sepsis.
Unfortunately, tools like quick Sepsis-related Organ Failure Assessment (QSOFA),
Modified Early Warning Score (MEWS), National Early Warning Score (NEWS), and
Systemic Inflammatory Response Syndrome (SIRS) also have problems. They do not
predict sepsis’s occurrence, making it difficult for early treatment (Bone et al., 1992). The
treatment of sepsis is vital, mainly because the more extended treatment is delayed, the
chances of death increase by 4 to 8% each hour (Parlato et al., 2018). There have been
approaches targeting different possible biomarkers to diagnose sepsis, but none have
proven practical in clinical settings (Parlato et al., 2018). Due to the outstanding
complexity of sepsis, which is dynamic and includes both the infection and the host
response, accurate prediction is difficult (Iskander et al., 2013).

Sepsis continues to be an important health issue threatening people around the world,
causing more than 11 million deaths each year–surpassing many other infectious diseases
in mortality. Even with technological advancements, timely detection is still out of reach
because of the disease’s intricate progression and vague early symptoms. SOFA and SAPS
II scores are more traditional diagnostic methods that heavily depend on clinical
benchmarks and slow lab results, hitting a brick wall when trying to support immediate
action. In this research, a new framework is proposed, guided by AI technology that
incorporates real-time clinical data through deep learning constructs for precise and early

S. Almasoud et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2958 3/33

http://dx.doi.org/10.7717/peerj-cs.2958
https://peerj.com/computer-science/


sepsis identification. With this model, real-life problems where healthcare professionals
can execute treatment hours in advance are the focus, saving thousands of people, which
can be considered the most valuable feature. ICU and in-hospital settings are not the only
areas where this research can be helpful. It can significantly change the odds of patient
survival, lessen long-term disabilities among patients, and lessen the burden on healthcare
systems globally. Delayed treatment is known to escalate mortality rates by 8% every hour,
so integrating such predictive models with electronic health record’s label systems will alter
clinical thinking for the better—lowering mortality rates and enhancing the quality of life
for patients around the globe.

The significant contributions of this article are,

1. This work proposes a novel hybrid deep learning model for early sepsis detection,
combining convolutional neural networks (CNN) with spatio-channel attention
mechanisms and residual path convolutional chains.

2. This model is claimed to overcome the drawbacks of conventional clinical scoring
systems by exploring multidimensional clinical data, such as structured patient data,
clinical notes, and unstructured data.

3. Moreover, the article provides the African vulture optimization algorithm (AVOA)
approach for model tuning and performance enhancement efforts. The model aims to
provide a reasonable prediction of the time of sepsis development and, thus, improve
patient treatment by preventing sepsis.

This study has taken a quantitative approach using deep learning algorithms and
analytics on clinical datasets, although the application of mixed-method strategies is
recognised. For the case of sepsis detection, a mixed approach—blending machine analysis
with clinical expert narratives—can be helpful for issues related to explainability, model
output confidence, deployment, and acceptance by healthcare providers. However, because
this effort’s scope is technical and focused on the design, optimization, and performance
evaluation of clinical models with structured clinical datasets, qualitative elements such as
clinician interviews, surveys, or ethnographic studies were not included in this work. This
blended approach may help future research explore gaps focused on practical barriers and
user-centred design evaluation in clinical workflows. SCr, SOFA, SIRS, and MEWS as
clinical scoring systems give a relatively weak response both temporally and in sensitivity.
They also rely heavily on the clinical input and/or laboratory results, which are usually
slow and unmanned. Given the nature of these systems, they become less valuable in
critical situations where prompt action is needed. In addition, many current machine
learning approaches also lack the ability to deal robustly with incomplete and
heterogeneous patient data, or they deal with the explicit temporal patterns in clinical data
observations.

To address these challenges, the model proposes a hybrid deep learning architecture
that includes spatio-channel attention mechanisms, hierarchical dilated convolutional
blocks, and residual path convolutional chains. This configuration permits precise
multi-scale feature extraction and guided attention learning, improving predictability
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while ensuring interpretability. Furthermore, model accuracy and generalization are
optimized using the AVOA for hyperparameter tuning, advancing model performance.
Thus, this study builds an advanced yet clinically useful model designed to enable reliable
and prompt detection of sepsis in operational healthcare settings, closing gaps in
computation and clinical focus within the literature.

The article is organised as follows: “Related Works” surveys the literature on sepsis
detection based on traditional approaches and those relying on machine learning.
“Methods and Materials” presents the details of the hybrid deep learning architecture,
including architecture, preprocessing and optimisation. “Result and Discussion” presents
the cases used in the experiments and evaluates the results, including the evaluation with
baseline models, ablation studies, and exploring hyperparameters settings. “Conclusion”
provides the article’s conclusions, indicating the prospects offered by the new model for
improved sepsis detection and further research development.

RELATED WORKS
Using critical health indicators and laboratory results, usually available within several
hours of an emergency admission, Faisal et al. (2018) created a logistic regression model
(CARS) to forecast the likelihood of sepsis. An ML model for sepsis clinical decision
assistance in the ED was constructed by Horng et al. (2017) using a linear support vector
machine. They showed that incremental improvements include free text input, vital signs,
and demographic data (Horng et al., 2017). This methodology relies on the rapid collection
of patients’ medical parameters. Attempting to gather patient data from a more extended
period, the second model prediction of long-term sepsis explored the prediction. This
study considered 33 patients with an average age of 49. Of these, 19% were female, and the
remaining patients were male. A more intricate framework and suitable medical
parameters are necessary to detect long-term sepsis. A technique that aids in the early
identification of various degrees of sepsis was created by Burdick et al. (2017).

The exact location also provided the data for a distinct cohort used for temporal
validation. All visits to the emergency department (ED) between March 1, 2018, and
August 31, 2018, were included in the cohort, not only inpatient admissions. Everything
from the variables used to define the outcomes to the criteria for inclusion and exclusion
remained constant. Interactions that started in the emergency department but did not lead
to inpatient admission were included in the temporal validation cohort, in contrast to the
model development cohort (Hochreiter & Schmidhuber, 1997). The report emphasises that
sepsis is a significant problem in medicine all around the world, causing millions of cases
and deaths annually, especially in susceptible groups like youngsters. This highlights the
critical need for better sepsis diagnosis tools (Daothong, Jampa-ngern & Senavongse, 2024).
The intensive care unit (ICU) makes sepsis diagnosis even more challenging because many
patients there have other illnesses that present with identical laboratory and physiological
changes as sepsis (Pierrakos et al., 2020).

ICU outcomes and sepsis prediction have long piqued the curiosity of medical
professionals. Computer scientists are becoming more interested in finding practical
answers to this challenge because of its importance. Modern computers’ improved
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processing power, along with the encouraging results seen by AI and deep learning
techniques in various contexts, has cleared the way for more efficient and effective
methods of studying and analysing sepsis (Vellido et al., 2018). If septic patients can be
identified early and given the right drugs when they need them, their prognosis and
chances of survival will be much improved (Marik & Farkas, 2018). Because of the growing
complexity and possible impact, it is crucial to comprehend the implementation policy
layer, which records the operational restrictions, reaction protocols, and clinical workflow.
Specifically, the area under the receiver operating characteristic curve, which is one of the
most popular ML evaluation methods, frequently disregards the impact of this policy layer
on model performance (Reyna, Nsoesie & Clifford, 2022).

A significant contributor to healthcare costs, sepsis is a leading cause of hospital and
ICU admissions, as well as morbidity and mortality. To prevent additional organ
dysfunction and restore a normal circulating blood volume, intravenous fluids and/or
vasopressors are essential for sepsis treatment. The problem is that human doctors have
difficulty figuring out when and how much of these therapies to administer (Van der Ven
et al., 2022). The targeted real-time early warning score (TREWScore) was suggested by
Henry et al. (2015) as a means of predicting septic shock using the Cox-proportional
hazard model. When specific clinical characteristics change over time, this support system
will sound an alarm to alert the patient to the possibility of septic shock. The suggested
model attained a discrimination ability of 0.83. This analysis does not address the
likelihood of mortality and fails to account for the impact of preexisting illness conditions.
When it comes to sepsis, the majority of expert systems treat clinical aspects separately.
However, physiological variables are probably not independent (Henry et al., 2015).
Significant constraints, such as a lack of validation and variations in the definition of sepsis,
limit their generalisability and prevent any of these models from being widely employed in
the clinic, even if some demonstrate excellent discriminative power (Kang et al., 2008).

One of the biggest problems with studying sepsis in emergency departments is the
absence of trustworthy labels. Due to the absence of a universally accepted standard, sepsis
modelling labels are currently generated using diagnostic tools and claims-based
procedures. However, it is well-known that these tagging approaches are not ideal (de Hond
et al., 2022). While this approach did a decent job of making predictions, it could not detect
changes that occurred over time since it did not consider patients’ temporal data. Further
increases in predicting performance were likely limited by the model’s simplicity, which
hindered its capacity to detect complicated data patterns. One model, Gong et al.’s (2022),
integrated time-series data with four vital signs to predict near-termmortality risks in sepsis
patients. However, this model only considered a few variables. A total of ninety-two ICU
patients had their blood tested for the start of sepsis using real-time polymerase chain
reaction (RT-PCR) expression and genetic network analysis. In this investigation, 83.09% of
cases could be predicted 1 to 4 days before the clinical diagnosis, with a specificity of 80.20%
and a sensitivity of 91.43% (Lukaszewski et al., 2008). Raghu et al. (2017) utilised a Duelling
Double-Deep Q Network in continuous space to develop medical treatment plans for
sepsis. This method expanded sepsis treatment to a continuous space using a vector
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representation of constant conditions (Raghu et al., 2017). Sun et al. (2021) used a hybrid
approach that combined supervised learning and reinforcement learning using the deep
deterministic policy gradient (DDPG) method to create strategies in a continuous
value space.

The study to trace the interactions of berberine with inflamed molecular targets,
proteins, and pathways of interest (Wang et al., 2024; Sun et al., 2025). This allows
simultaneous detection of both pathogens in one assay without separate reactions (Zhang
et al., 2025).

Using data from electronic health records (EHRs), (Lauritsen et al., 2020) created a
deep-learning model to identify sepsis in its early stages. They drew on electronic health
record data collected retrospectively from various Danish hospitals, encompassing ICUs
and other departments over 7 years. Time stamps from things like lab tests, notes,
prescriptions, and more were included in the data. They used sparse vectors to represent
each occurrence. They built a convolutional neural network long short-term memory
(CNN-LSTM) model consisting of CNN layers to capture temporal dependencies and
extract features from event sequences. They pitted it against multilayer perceptron (MLP)
and gradient boosting on vital signs (GB-Vital), two baseline models. At 3 h before the start
of sepsis, the CNN-LSTM model outperformed the baselines with an AUROC of 0.856.
Even before the beginning, 24 h before, the area under the receiver operating characteristic
(AUROC) was 0.756. To measure the model’s value across various forecasts made
throughout a patient’s hospital stay, they suggested a novel “sequence evaluation”method.
They also checked the algorithm’s usefulness by counting the number of hopeful forecasts
already receiving antibiotics or having blood cultures taken to determine howmuch sooner
the model could have assisted. To summarise, they created a sequential deep learning
model for early sepsis diagnosis that was more effective than previous models and
suggested new ways to evaluate its clinical usefulness. The concept has the potential to be
applied to several departments within the hospital (Lauritsen et al., 2020).

METHODS AND MATERIALS
This research aims to develop a method for enabling early and timely detection of sepsis,
which is a significant clinical challenge because it increases the risk of death by 4% to 8%
with every hour treatment is delayed. Routinely used clinical scoring systems disregard
aiding the patient until sepsis is well underway, and then, treatment options are minimal
and outcomes are grim. Unlike the proposed model, which endeavours to predict sepsis at
the earliest possible stage using real-time analyses of continuously collected clinical data,
including vital signs, lab results, and demographic details. The incorporation of
sophisticated deep learning components such as the spatio-channel attention network
(SCAN) and the hierarchical dilated convolutional block (HDCB) enables the model to
detect the most subtle early-stage physiological alterations effectively, ensuring it is fit for
use in clinical settings that require immediate action. Moreover, applying the African
vulture optimisation algorithm (AVOA) further augments the model’s accuracy and
generalisation strength across diverse clinical settings and patient populations.
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Data collection
The Kaggle dataset (Hussaini, 2021) contains clinical data from patients diagnosed with
sepsis, including vital signs, laboratory results, demographics, and other relevant clinical
information. To prepare the data for models developed with deep learning, it is
pre-processed to deal with missing values, normalise numerical parameters, and encode
variable categories.

Experimental setup
Python software was used for the experiments in a system with an Intel(R) Core(TM)
i5-4590S CPU, 1TB HDD and 8GB of RAM memory.

Dataset access
The dataset can be accessed at the following URL: https://www.kaggle.com/datasets/
salikhussaini49/prediction-of-sepsis.

The dataset includes 44 clinical features, grouped as three vital signs, lab results, and
demographic information.

Vital signs encompass measurements of heart rate (HR), oxygen saturation (O2Sat),
body temperature (Temp), blood pressure (systolic SBP, mean MAP, and diastolic DBP),
respiration rate (Resp), and EtCO2. Laboratory diagnosis encompasses white blood cell
count, platelet count, lactate, bilirubin, creatinine, glucose, and other hormones related to
organ function and infection. Demographic data contain the patient’s age and gender and
the time of hospitalization.

Each patient’s information is carefully arranged as a series of time-stamped events,
illustrating the evolution of clinical conditions through an evolving timeline. The target
variable, SepsisLabel, marks the presence or absence of sepsis at each timestamp, allowing
us to build models capable of predicting the onset of sepsis using past clinical data. The
ordered characteristic of the dataset allows for the creation of predictive models that can
identify the onset of sepsis in advance, given the urgency of the required clinical action.

Assessment metrics
The evaluation metrics used to assess the proposed model—accuracy, precision, recall, F1,
and AUC, classify its early sepsis detection capabilities as exceptional. Having an accuracy
of 99.4%, the model also indicates the power of classifying the majority of cases correctly.
At 98.7%, precision alone assures the model’s reliability in correctly labeling actual cases of
sepsis and lowering false positives. Recall value of 99.2% demonstrates the model’s ability
of capturing nearly all true sepsis cases, something that is important in clinical practice in
order to not miss any diagnoses. The AUC of 0.998 which reflects the model’s ability to
discriminate sepsis from non-sepsis cases also validates the model’s performance towards
other metrics such as F1 and Recall. These metrics yield evidence of the model’s reliability,
generalizability, and applicability in deployment in healthcare for early sepsis detection, a
life-critical task.
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Data preprocessing
Preprocessing is critical to ensure that the rawmedical data is suitable for feeding into deep
learning models. The preprocessing phase includes several key operations: handling
missing data, normalisation, feature encoding, and outlier detection. Each step transforms
the data into a consistent format and scale, allowing the deep learning model to learn from
it effectively. Missing values are common in medical datasets, and handling them
appropriately is crucial for the quality of the model. Missing values are filled in using
statistical methods such as mean, median, or mode imputation. For numerical features
with missing values, the missing entry is replaced using the mean of the available values,
excluding the missing entry. In some cases, advanced techniques like multiple imputation
by chained equations (MICE) or k-nearest neighbours (KNN) imputation can be
employed if the missingness is not random. Medical data can span different ranges, with
some features having significantly larger scales than others (e.g., heart rate vs. body
temperature). Normalising and scaling the data ensures all features are treated equally in
the model’s learning process. The Min-Max Scaling method usually scales the data to a
specified range ½0; 1�.

The Z-score normalization (standardization) method standardises the feature with a
mean of 0 and a standard deviation of 1. Categorical variables were converted into
numerical representations using one-hot encoding to ensure compatibility with the deep
learning model. Numerical features were standardised using Z-score normalization to
maintain consistent scaling across features. A common approach is the Z-score method,
where data points that deviate more than a specified threshold from the mean are
considered outliers.

Deviation. If jZij > 3, the data point is flagged as an outlier and can be removed or
adjusted. To further improve the robustness of the model, data augmentation techniques,
such as noise injection or random cropping, may be applied, especially for limited datasets.
This can help the model generalize unseen data better and prevent overfitting. By applying
these preprocessing techniques, the dataset is transformed into a format that can be
efficiently used for training deep learning models, ensuring better performance in the
subsequent detection of sepsis.

xi ¼ 1
n

Xn
i¼1

xi if xi is missing (1)

where 1
n

Pn
i¼1 xi is the mean of the feature across the dataset. For time-series data, missing

values are filled based on the previous or next observed values:

xi ¼ xi�1 or xi ¼ xiþ1 if xi is missing (2)

In some cases, advanced techniques like MICE or k-nearest neighbours (KNN)
imputation can be employed if the missingness is not random. Medical data can span
different ranges, with some features having significantly larger scales than others (e.g.,
heart rate vs. body temperature). Normalising and scaling the data ensures all features are
treated equally in the model’s learning process. The Min-Max Scaling method usually
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scales the data to a specified range [0, 1]. For a feature xi; the transformed value x0i is
calculated as:

x0i ¼
xi �minðxÞ

maxðxÞ �minðxÞ (3)

where minðxÞ andmaxðxÞ are the minimum and maximum values of the feature across all
samples. The Z-score normalization (standardization) method standardises the feature
with a mean of 0 and a standard deviation of 1. Categorical variables were converted into
numerical representations using one-hot encoding to ensure compatibility with the deep
learning model. Numerical features were standardised using Z-score normalization to
maintain consistent scaling across features.

The transformation for each feature xi is given by:

x0i ¼
xi � lx
rx

(4)

where lx is the mean of the feature and rx is the standard deviation of the feature.
Standardisation is generally preferred when the model requires features to be on the same
scale, especially for algorithms like gradient-based optimisation, which are sensitive to
feature scaling. Categorical variables in the dataset, such as gender or ethnicity, need to be
transformed into numerical values that the deep learning model can understand. Common
methods include:

In One-Hot Encoding, each category is represented by a binary vector. For example, a
categorical feature with three possible values (e.g., “Male,” “Female,” “Other”) would be
encoded as:

Male! ½1; 0; 0�; Female! ½0; 1; 0�;Other ! ½0; 0; 1� (5)

This method ensures that the model does not assume ordinal relationships between
categories. In Label Encoding, each category is assigned an integer value. For example, the
categories “Male,” “Female,” and “Other” could be encoded as:

Male! 0; Female! 1;Other ! 2 (6)

Label encoding is often used when the categorical feature has an inherent order. Still, it
is not recommended for features with no ordinal relationship, as the model may
misinterpret the encoding. Outliers can significantly distort training, especially in sensitive
models like deep learning. Outlier detection and removal techniques help mitigate this
issue. A common approach is the Z-score method, where data points that deviate more
than a specified threshold from the mean are considered outliers. The Z-score for a feature
xi is computed as:

Zi ¼ xi � lx
rx

(7)

where lx is the mean and rx is the standard deviation. If j Zi j > 3; the data point is
flagged as an outlier and can be removed or adjusted. To further improve the robustness of
the model, data augmentation techniques, such as noise injection or random cropping,
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may be applied, especially for limited datasets. This can help the model generalise unseen
data better and prevent overfitting. By applying these preprocessing techniques, the dataset
is transformed into a format that can be efficiently used for training deep learning models,
ensuring better performance in the subsequent detection of sepsis.

Experimental setup
The experimental design for this work involved leveraging the Kaggle Sepsis Prediction
dataset, which has 1,552,210 records from 40,336 unique patients. The target variable
SepsisLabel marks whether sepsis is present or not, and has a notable class imbalance:
1,524,294 samples flagged as non-sepsis and 27,916 flagged as sepsis. This dataset is nearly
representative of actual clinical situations, where early identification of sepsis is difficult
because it is infrequently encountered. As a preparatory step towards model training,
mean imputation was applied for handling missing values for numerical features, along
with forward filling for time-series data where applicable. Categorical variables were
transformed into one-hot variables. Numerical features were standardized using Z-score
normalization to ensure uniform feature scaling. Using Z-score outliers detection, outliers
were capped at three standard deviations. The dataset was split into three disjoint subsets
for a patient-wise split to prevent data leakage: 80% for training (1,241,768 samples), 10%
for validation (155,221 samples), and 10% for testing (155,221 samples). This ensures that
all records from a single patient are not present in multiple subsets. The suggested
architecture integrates state-of-the-art components of deep learning, namely enhanced
convolutional learning framework (ECLF), spatio-channel attention network (SCAN),
hierarchical dilated convolutional block (HDCB) and residual path convolutional chain
(RPCC ). Model training was carried out on the Adam optimizer with a starting learning
rate of 0.001, 128 batch size, and regularization set to a 0.5 dropout rate. The network was
trained with ReLU activation and overfitting mitigated by early stopping based on
validation loss, capping training at 100 epochs. The model’s performance was assessed on
multi-dimensional accuracy, precision, recall, F1-score, area under the ROC curve (AUC),
specificity, FPR and FNR. All experiments were implemented on a Python 3.8
environment with TensorFlow and Keras libraries, running on a system with NVIDIA
GPU and sufficient memory to handle the computations.

Proposed methodology
The proposed model structure intends to capture more complex patterns and
spatial-temporal dependencies in medical data for efficient sepsis detection. The
architecture includes four broad components: ECLF, SCAN, HDCB and RPCC. Each
module uses advanced techniques involving convolutional layers, attention mechanisms,
and residual connections to improve the model’s performance and facilitate feature
extraction and model interpretability. Figure 1 shows the architecture of the Proposed
methodology with ECLF, SCAN, HDCB and RPCC.

The enhanced convolutional learning framework, spatial-channel attention network,
hierarchical dilated convolutional block, and residual path convolutional chain collectively
form the advanced components of the deep learning architecture for the purposed sepsis
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detection model. The floodgates to the model lie on the been trained on enhanced
convolutional learning framework, which stacks on batch normalisation layer after its
ReLU activated first layer with a dilation of 1 using 64 3� 3 convolutional filters; this layer
is then followed closely by a MaxPooling layer with a pool size of 2� 2. Most importantly,
the model’s performance does not significantly deteriorate by an increase in the number of
parameters as local and global diagonal convolutions seem to be covered in the ECLF.
Following that, the SCAN module serves its purpose quite efficiently; this module has two
attention mechanisms: spatial attention and channel attention. The former requires the
kernel to be set at 7� 7 and only applies a 2D attention map with a single channel to the
sigmoid output. In contrast, the latter first performs pooling, which is then set through two
biasing-connected layers with 64 set units, and the second layer matches the units to the
channels.

For the HDCB, 3� 3 convolution at 64 filters at a dilated rate of 1, 2, and 3 is performed
on the model. This method allows the network to process information from dilated
convolutions by combining features extracted at multiple receptive field sizes, facilitating

Figure 1 The architecture of proposed methodology with Enhanced Convolutional Learning
Framework (ECLF), Spatio-Channel Attention Network (SCAN), Hierarchical Dilated
Convolutional Block (HDCB), and Residual Path Convolutional Chain (RPCC).

Full-size DOI: 10.7717/peerj-cs.2958/fig-1

S. Almasoud et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2958 12/33

http://dx.doi.org/10.7717/peerj-cs.2958/fig-1
http://dx.doi.org/10.7717/peerj-cs.2958
https://peerj.com/computer-science/


the capture of local and global contextual information. This method helps the
network to use information obtained from the dilated convolutions in a multifaceted
manner, as it helps aggregate features obtained from several receptive field sizes. Once the
results of all dilated convolution processes have been concatenated, a 1� 1 Convolution
having 128 filters is applied on the output with batch normalisation followed by
ReLU activation functions to enhance diversity in the production by compressing
facets from multiple scales together. The RPCC block supports residual connections in
which each block always has two layers of 3� 3 convolutional blocks with 128 kernel
filters and a layer of batch normalisation. The output of the last convolutional layer
is fed back to the input layer via a skip connection, which lets the model preserve
such information in deeper layers. Thus, in conjunction with this, the vanishing
gradient problem is also solved, and properties are correctly disseminated inside
the network.

In the last stage, the model is global average pooled, and then fully dense output layers
are incorporated. Standard activation functions and normalization layers were
incorporated throughout the architecture to ensure stable and efficient training. There are
dense layers of 512 units and 256 units, and both are followed by ReLU activation
functions accompanied by layers of dropout, which is set to 0.5 for regularization purposes.
Whereas the final layer utilises a single neuron with binary functions and sigmoid
activation as it encapsulates jumping off whether sepsis exists or not. This architecture can
generalise well across different patients’ data while still being able to learn intricate
patterns within clinical data at the same time.

Enhanced convolutional learning framework
The ECLF is the first module in the model architecture, designed to capture both local and
global features from medical data using advanced convolutional techniques. It employs
atrous convolutions (or dilated convolutions) and a multi-level learning process to learn
hierarchical feature representations from the input data. This framework enables the
model to capture rich and diverse patterns at different scales, which is critical for detecting
complex clinical data patterns that indicate sepsis. Atrous convolution helps in increasing
the receptive field without introducing additional parameters. This is especially useful
when working with medical time-series data, as it allows the model to capture context from
more significant regions without the need for huge kernels. The dilated convolution
operation for a feature map X can be defined as:

Yi;j;k ¼
X
m;n

Xiþm�d;jþn�d;k �Wm;n;k (8)

where, Yi;j;k is the output of the convolution for the location ði; jÞ in the feature map, Xi;j;k is
the input feature map, Wm;n;k is the convolution kernel, d is the dilation rate (controls the
spacing between kernel elements), m and n are the filter coordinates.

The dilation rate d expands the kernel by inserting zeros between its elements, allowing
the model to cover a larger area without increasing the number of parameters. This is
important for capturing long-range dependencies within the data.
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Multi-level learning

The ECLF employs a multi-level learning process to capture features at different scales and
increase the depth of the feature extraction process. This process applies convolutions with
varying kernel sizes to extract information at various levels of granularity. Each framework
level is designed to focus on different spatial scales, enabling the algorithm to detect both
broad and specific trends in the provided data.

For example, the input feature map X 2 RH�W�C is passed through multiple
convolutional layers with different kernel sizes, such as:

Y1 ¼ Conv1ðX;K1Þ (9)

Y2 ¼ Conv2ðX;K2Þ (10)

Y3 ¼ Conv3ðX;K3Þ (11)

where, Y1;Y2;Y3 are the feature maps obtained after applying convolutions with diverse
kernel sizes K1;K2;K3;ConviðX;KiÞ represents the convolution operation applied to the
input feature map X with kernel Ki, H; W; and C represent the height, width, and
number of channels of the input feature map X. The multi-level learning process helps the
model learn more abstract and complex features, improving its ability to identify
sepsis-associated patterns. The features are combined after obtaining feature maps from
multiple convolutional layers with different kernel sizes. This can be done through
concatenation, aggregating information across the other scales. The resulting feature map
is a richer representation of the input data.

XECLF ¼ ConcatenateðY1;Y2;Y3Þ (12)

where XECLF is the combined feature map after applying the multi-level convolutions. This
combination allows the model to maintain fine-grained and high-level features, facilitating
a more comprehensive understanding of the data. Non-linear activation functions (ReLU)
were applied after convolutional layers to support complex feature transformations. The
network is made non-linear by applying non-linear activation functions, like ReLU, after
convolutional layers have been applied. This allows the model to learn complex mappings
from input to output.

XECLF ¼ ReLUðXECLFÞ (13)

where ReLUðxÞ ¼ maxð0; xÞ is the element-wise ReLU function, which sets all negative
values to zero and passes positive values unchanged. To stabilise the training process and
reduce overfitting, batch normalisation is applied after each convolutional operation.
Batch normalisation normalises the output of each layer, ensuring that the network trains
faster and more efficiently. The batch normalisation operation is defined as:

X̂ ¼ X � lB
rB þ e

(14)

where, X is the input to the batch normalisation layer, lB and rB are the mean
and standard deviation of the batch, e is a small constant added to prevent division
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by zero. The normalised output is then scaled and shifted using learnable parameters
c and b:

BNðXÞ ¼ cX̂ þ b (15)

The ECLF effectively learns multi-scale features from the data, enabling the model to
detect complex clinical patterns indicative of sepsis. Using dilated convolutions,
multi-level learning, and advanced activation functions ensures the model is powerful and
efficient for sepsis detection tasks.

Spatio-channel attention network
The SCAN focuses on the feature learning enhancing process through the regions and
channels in the feature map that are most significant. SCAN aspires to refine the attention
maps generated by the previous layers of the network by selectively emphasising regions of
importance (spatial attention) and channels of importance (channel attention). This allows
the model to detect more relevant patterns in the medical data for sepsis identification,
thus increasing its discriminative ability. The SCAN comprises two attention schemes:
spatial attention mechanism (SAM) and channel attention mechanism (CAM).
Approaching it now sequentially, both mechanisms are employed to refine the generated
feature map further, thereby increasing the model’s ability to discriminate and, vice versa,
the unnecessary details.

Spatial attention mechanism

The SAM aims to assist the model in concentrating on the essential parts of the feature’s
map. It enhances areas that have relevant information and suppresses the rest. This is
crucial in medical data, where some input bits have more information than others. Let

X 2 RH�W�C be the input feature map, where H is the height,W is the width, and C is the
number of channels. The goal of SAM is to generate a spatial attention map

Aspatial 2 RH�W�C that can be used to weight the feature map spatially.

First, a convolutional layer is applied to the input feature map X to compute the spatial
attention map. This operation reduces the channel dimension of the feature map by
applying a convolutional filter and then uses a sigmoid activation to obtain the attention
map:

Aspatialði; jÞ ¼ rðConv1ðConv2ðXÞÞÞ (16)

where, Aspatialði; jÞ is the spatial attention value for each spatial location ði; jÞ, Conv1 and
Conv2 are convolutional layers with kernel sizes chosen to capture spatial features, r is the
sigmoid activation function applied to ensure the attention map values are between
0 and 1. Once the spatial attention map Aspatial is obtained, the feature map X is
multiplied element-wise by Aspatial, focusing the model’s attention on the most relevant
spatial regions:

Xspatial ¼ X � Aspatial (17)
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Channel attention mechanism

The CAM focuses on emphasising the most informative channels of the feature map. Not
all channels in the feature map are equally important; some channels carry more valuable
information about the presence of sepsis. The goal of CAM is to generate a channel-wise
attention map Achannel 2 RC , which can be used to reweight the channels of the feature
map. The input feature map X 2 RH�W�C is first passed through a global average pooling
(GAP) operation along the spatial dimensions H and W to produce a global summary for
each channel:

X̂k ¼ 1
H �W

XH
i¼1

XW
j¼1

Xi;j;k (18)

where X̂k 2 RC is the channel-wise pooled representation, capturing global features for
each channel k. The pooled feature vector X̂ is then passed through a two-layer fully
connected (FC) network to compute the channel attention map Achannel:

Achannel ¼ rðFC2ðReLUðFC1ðX̂ÞÞÞÞ (19)

where, X̂ is the pooled feature vector, C1 and C2 are fully connected layers, ReLU is the
activation function applied after the first fully connected layer, r is the sigmoid activation
applied to obtain the final channel attention map Achannel 2 RC , which contains values
between 0 and 1 for each channel. The feature map Xspatial from the spatial attention
mechanism is then multiplied element-wise by the channel attention map Achannel, focusing
the model’s attention on the most informative channels:

Xfinal ¼ Xspatial � Achannel (20)

The SCANmodule applies spatial and channel attention mechanisms to refine the input
feature map in a two-stage process. By zeroing in on the most important areas, the spatial
attention process improves the feature map. By highlighting the most important channels,
the channel attention mechanism continuously adjusts the feature map. The final refined
feature map Xfinal is the result of applying both attention mechanisms sequentially:

Xfinal ¼ ðX � AspatialÞ � Achannel (21)

This refined feature map is then passed on to the next module in the network, which
may be a dilated convolutional block or residual path convolutional chain, to process the
features further for sepsis detection.

Hierarchical dilated convolutional block
The HDCB is a powerful tool for obtaining hierarchical features crucial for recognising
low-level patterns associated with sepsis in medical data sets. HDCB considers local and
global contexts concurrently by utilising stacked dilated convolutions, thereby processing
input at different scales. The combination of parameters for the convolutional neural
networks with dilation rates enables the model to learn multi-level complexities affordably.
From a mathematical perspective, the model can cover a wider overall field with minimal
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computational resources. In summation, HDCB utilises convolutional layers possessing
multi-dilation rates to achieve a state-of-the-art contraction. A standard convolution
operation with a kernel of size K � K applied to an input feature map X 2 RH�W�C can be
expressed as:

Yi;j;k ¼
X
m;n

Xiþm;jþn;k �Wm;n;k (22)

where, Yi;j;k is the output feature map, Wm;n;k is the kernel weight, ðm; nÞ are the
coordinates of the kernel. For dilated convolutions, the dilation rate d introduces spacing
between the kernel elements. The dilated convolution operation is defined as:

Yi;j;k ¼
X
m;n

Xiþm:d;jþn:d;k �Wm;n;k (23)

where, d is the dilation rate that controls the spacing between kernel elements. The dilation
rate allows the model to capture larger contexts without increasing the size of the kernel.
For example, a dilation rate of d ¼ 2 will effectively double the receptive field of the kernel,
capturing more distant dependencies within the feature map. The HDCB stacks several
dilated convolutional layers to capture information at multiple scales, each with a different
dilation rate. Let’s consider N dilated convolutional layers, each with a different dilation
rate d1; d2; . . . ; dN . The output of each layer can be written as:

Y1 ¼ Conv1ðX; d1Þ (24)

Y2 ¼ Conv2ðX; d2Þ (25)

YN ¼ ConvNðX; dNÞ (26)

where, Y1;Y ; . . . ;YN are the outputs of each dilated convolutional layer, Conv1ðX; d1Þ
represents the convolution operation with a dilation rate di applied to the input X. Each
convolutional layer captures different levels of context, with more significant dilation rates
focusing on more global information and smaller dilation rates capturing local details. The
outputs from the stacked dilated convolutional layers are then concatenated or summed to
combine the features from different scales. The aggregated feature map XHDCB can be
obtained as:

XHDCB ¼ ConcatenateðY1;Y2; . . . ;YNÞ: (27)

Alternatively, a summation approach can be used:

XHDCB ¼ Y1 þ Y2 þ � � � þ YN : (28)

This step combines the features learned at different scales, resulting in a richer and more
hierarchical representation of the input data. The model can learn more abstract features
essential for detecting sepsis by capturing local and global information. After the dilated
convolutions and feature aggregation, non-linear activation functions and Batch
normalization are applied. The activation function is applied element-wise:

XHDCB ¼ ReLUðXHDCBÞ (29)
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where ReLU xð Þ ¼ max 0; xð Þ. Batch normalisation is applied to the aggregated feature map
to normalise the activations, improving the convergence speed and preventing overfitting.
The batch normalisation operation is defined as:

X̂ ¼ X � lB
rB þ e

(30)

where, lB and rB are the mean and standard deviation of the batch, e is a small constant
added to prevent division by zero. The normalised output is then scaled and shifted using
learnable parameters c and b :

BNðXÞ ¼ cX̂ þ b: (31)

After applying the dilated convolutions, feature aggregation, activation, and
normalisation, the final output of the HDCB is the refined feature map XHDCB. This feature
map contains hierarchical information from local and global contexts, enabling the model
to learn complex patterns indicative of sepsis.

XHDCB ¼ ReLU BN
XN
i¼1

Yi

 ! !
: (32)

The HDCB enhances the model’s ability to capture long-range dependencies and subtle
patterns in medical data, making it particularly effective for detecting sepsis in clinical
environments.

Residual path convolutional chain
The RPCC is one of the model components meant to facilitate the information flow
through the network and make it easier to train intense networks. It uses their residual
connections, also called skip connections, to address the vanishing gradient problem and
to aid the learning of complex representations. The RPCC architecture reduces feature
overfitting by permitting more efficient gradient flow to the feature maps during
backpropagation, which allows for effective learning by the model. In RPCC, the feature
map undergoes several convolutional operations, and a skip connection is made after each
operation. These connections help a convolutional layer learn the residual over that layer
alongside identity mapping while several layers are bypassed, making it more flexible to fit
intricate structures. A residual connection allows input to cross single or multiple layers
and then be summed up in the output, providing a significantly direct path. This
contributes to retaining important data over layers, such as in deep networks. For a feature
map X, the residual connection is defined as:

Xresidual ¼ X þ FðXÞ (33)

where, X is the input feature map, FðXÞ represents the output of the convolutional
operation applied to X. The function FðXÞ is typically a sequence of convolutional layers,
batch normalisation, and activation functions, and can be expressed as:

FðXÞ ¼ ConvðReLUðBNðConvðXÞÞÞÞ (34)
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where, Conv represents a convolutional layer, BN denotes batch normalisation, ReLU is the
activation function. Thus, the residual connection allows the network to learn an
additional mapping FðXÞ, while also maintaining the original input X directly. The RPCC
is built by stacking multiple convolutional layers, each with its residual connection. Given
an input feature map X, the output of the first residual block is:

X1 ¼ X þ F1ðXÞ (35)

where F1ðXÞ is the output of the first convolutional block, which includes convolution,
batch normalisation, and activation. The input is passed through the residual connection
for subsequent residual blocks and updated at each step. The output of the second residual
block is:

X2 ¼ X1 þ F2ðX1Þ (36)

where F2ðX1Þ is the output of the second convolutional block, and so on. This can be
generalized for N residual blocks as:

XN ¼ XN�1 þ FNðXN�1Þ (37)

where FNðXN�1Þ is the output of the N -th convolutional block. The final output feature
map is produced after passing through all the residual blocks. The RPCC ensures that
essential features are preserved and propagated throughout the network. The final output
of the RPCC block, denoted as XRPCC, is:

XRPCC ¼ XN (38)

where XN is the final feature map after applying all residual connections and convolutional
blocks. An activation function and batch normalisation follow each convolutional
operation in the residual path to introduce non-linearity and stabilise the learning process.
The output of each convolutional layer is first passed through a ReLU activation to
introduce non-linearity:

Xactivated ¼ ReLUðXRPCCÞ: (39)

Batch normalisation is applied to reduce internal covariate shift and ensure more stable
training:

X̂ ¼ X � lB
rB þ e

(40)

where, lB and rB are the mean and standard deviation of the batch, e is a small constant to
prevent division by zero. Finally, the normalised output is scaled and shifted using
learnable parameters c and b :

BNðXÞ ¼ cX̂ þ b: (41)

In some cases, especially when the dimensions of the input and output feature maps are
the same, the residual connection is an identity mapping, meaning the input is directly
added to the output without any transformation. This is particularly useful in maintaining
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information across layers in very deep networks. In this case, the residual connection is
simply:

Xresidual ¼ X: (42)

After passing through several residual layers, the final feature map XRPCC can be
obtained from the last residual block. The complete residual chain can be written as:

XRPCC ¼ X þ F11ðXÞ þ F2ðX1Þ þ � � � þ FNðXN�1Þ: (43)

The output XRPCC is the enriched feature map containing preserved and learned features
across multiple residual paths. The Residual Path Convolutional Chain (RPCC) ensures
efficient feature propagation. It enables the network to learn deeper, more complex
features without the risk of vanishing gradients. This makes it particularly useful for
detecting subtle patterns in data, such as those associated with sepsis detection.

African vulture optimization algorithm pseudocode
The AVOA is a nature-inspired optimization algorithm that mimics the foraging behavior
of vultures. Vultures search for food in an environment by utilizing a combination of
exploration and exploitation strategies.

RESULT AND DISCUSSION
This section discusses the performance of the proposed model based on the architecture
integrating ECLF, SCAN, HDCB, and RPCC. In particular, ResNet was evaluated on a
sizeable clinical dataset.

As part of the model development procedure, the dataset was divided into three subsets:
the test set, the train set, and the validation set. The model parameters were updated using
the defined training set during the learning phase. About the learning phase, the validation
set was used to monitor the model’s performance and control guided hyperparameter
tuning and overfitting using early stopping strategies on the model during each defined
epoch. This form of intermediate assessment is termed validation accuracy and is plotted
on a per-epoch basis in the respective graphs. However, the test set was exclusively held to
evaluate the model after its training. Once the model’s training was completed, the model’s
final configuration was assessed using the test set. This evaluation is known as
generalization evaluation and is performed only once at the end of training. The
performance obtained at this stage is referred to as testing accuracy, which is calculated to
show the model’s performance on completely new data.

This model outperformed the rest with an accuracy of 99.4%, which proves the model’s
efficacy in detecting sepsis at a precocious stage. Such models emerge as competent
predictive models since they accommodate and utilise robust multi-scale feature extraction
and attention mechanisms to enhance the model’s accuracy. Hence, the model trained
demonstrates competitive and outstanding predictions.

The loss and accuracy values for the model’s training and validation were tracked
throughout epochs. The training accuracy kept on enhancing and reached a commendable
99.4% mark during the final phase of the training. Alongside this, validation accuracy
continued to depict a similar trend, hence indicating that the model in question is not
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Algorithm 1 African vulture optimization algorithm.

1: Initialise population P of vultures (each vulture represents a potential solution)
2: Set the maximum number of iterations (maxiter)
3: Set the maximum number of vultures (populationsize)
4: Set parameters for exploration and exploitation phases:
5: Step size (stepsize)
6: Exploration radius (explorationradius)
7: Exploitation factor (exploitationfactor)
8: Reproduction rate (reproductionrate)
9: Breeding factor (breedingfactor)
10: Define fitness_function(x)
11: bestsolution  1
12: bestfitness  1 ⊳ Main AVOA loop
13: for it er in rangeðmaxiterÞ do ⊳ Evaluate the fitness of each vulture in the
population

14: for i in rangeðpopulationsizeÞ do
15: vulture P½i�
16: fitness fitnessfunctionðvultureÞ ⊳ Update the best solution found so far
17: if fitness < bestfitness then
18: bestsolution  vulture
19: bestfitness  fitness
20: end if
21: end for ⊳ Apply foraging and scavenging behaviour (exploration phase)
22: for i in rangeðpopulationsizeÞ do ⊳ Random exploration: move vulture
randomly

23: if randomðÞ < explorationradius then
24: P½i�  P½i� þ randomstepðstepsizeÞ
25: else ⊳ Scavenging: exploit promising areas
26: P½i�  P½i� þ exploitationfactor � ðbestsolution � P½i�Þ
27: end if
28: end for ⊳ Apply reproduction and breeding behaviour
(exploitation phase)

29: for i in rangeðbestsolutionÞ do
30: if randomðÞ < reproductionrate then ⊳ Breeding: combine features of two
solutions to create a new solution

31: parent1 P½i�
32: parent2 P½randomchoiceðpopulationsizeÞ�
33: P½i�  breedingfactor � ðparent1þ parent2Þ=2
34: end if
35: end for ⊳ Optionally apply a local search or mutation strategy to refine
solutions further

(Continued)
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overfitting. Until a certain point, the training and validation loss started low and
subsequently grew to a point where it reached a loss minimum, which predicts the model’s
convergence.

Figure 2 shows the accuracy of the training and validation sets over the 100 epochs. The
model performed well and maintained a high level of accuracy, with very little change in
the validation accuracy during the training.

The training and validation losses also decreased, as depicted in Fig. 3. The convergence
of the loss values is consistent enough to demonstrate that the model has learned
sufficiently and is not overfitting the training set. Additional measures, including precision,
recall, F1-score, and AUC, were used to evaluate the model’s performance and reported
accuracy. Such metrics help determine the model’s effectiveness in distinguishing between
positive (sepsis) and negative (non-sepsis) conditions, which is essential in medical settings
and is depicted in Table 1.

The performance evaluation from the proposed model is exhaustively outlined in
Table 1. Accuracy achieved by the model is exceptionally high at 99.4%, displaying
effectiveness for precise classification of sepsis and non-sepsis cases. The model’s precision

Algorithm 1 (continued)

36: for i in rangeðpopulationsizeÞ do
37: P½i�  localsearchðP½i�Þ
38: end for
39: end for
40: return bestsolution

Figure 2 Accuracy graph of the proposed model. Full-size DOI: 10.7717/peerj-cs.2958/fig-2
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of 98.7% indicates that the model exercises strong control over false positives where
patients diagnosed with sepsis are minimized, and is vital to prevent unnecessary
interventions. The model demonstrated a recall of 99.2% which shows high sensitivity in
identifying the actual sepsis cases, proving vital for diagnosis and treatment. The balanced
F1-score of 99% illustrates that the proposed model also maintained a well-balanced
trade-off between precision and recall, reaffirming the strong figure reported for recall.
AUC value of 0.998 provides further proof the model has strong discriminatory power in
distinguishing between sepsis and non-sepsis conditions. Furthermore, the model achieved
99.3% specificity in correctly classifying non-sepsis patients while maintaining an
extraordinary low false positive rate of 0.7% and false negative rate of 0.8%.

In Fig. 4, this section presents a confusion matrix associated with the performance
outcomes of the model offered in this article for the detection of sepsis. The matrix

Figure 3 Loss graph of the proposed model. Full-size DOI: 10.7717/peerj-cs.2958/fig-3

Table 1 Performance analysis.

Metric Value

Accuracy 99.4%

Precision 98.7%

Recall 99.2%

F1-Score 99.0%

AUC 0.998

Specificity 99.3

False Positive Rate (FPR) 0.7

False Negative Rate (FNR) 0.8
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contains values of correct predictions as considerations of matrices are normalised to
percentages. The model showed 99.30% and 99.39% of efficiency in distinguishing the
cases of non-sepsis and the cases of sepsis, respectively. It can be noted that false negative
rates of 0.61% and false positive rates of 0.70%, as the off-diagonal numbers, mean that the
classification has a mild depth of error for the model, which is even further corroborated by
the model’s ability to detect sepsis and non-sepsis cases accurately.

The relationship between accuracy and hyperparameters are represented in Fig. 5 as
well. The learning rate on the left orthogonal graph shows that the overall accuracy goes
hand in hand with the rate until reaching somewhere about 0.01, at this point,
performance wisely shifts down and can be observed as the learning goes further. The right
graph Instead demonstrates that accuracy loses its power through increments of dropout
from 0.5. On the other hand, the graph suggests a way out, controlling the moderato level
of dropout, as it proved to augment model generalisations. However, a performance a wee
higher than 0.5 could cause impairing effects. Finally, these results show and exemplify
how, in the realm of model performance tuning, both the learning and dropout rates can
prove to be crucial.

The model outlined in the previous sections achieved a perfect score of AUC = 1.00, as
shown in Fig. 6. Actual positive rate (TPR) and the true negative rate (TPR) were plotted
on the y-axis and x-axis, respectively. The ROC region is very far from the dotted diagonal.
Therefore, the model is good at differentiating between different diseases and non-use
cases, with sepsis being one of them. Achieving perfect scores against AUC as high as one
suggests that the evaluated model has achieved high accuracy in differentiating between
positive and negative cases. Through a methodical process of module removal or

Figure 4 Confusion matrix of the proposed model. Full-size DOI: 10.7717/peerj-cs.2958/fig-4
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configuration modification, we conducted ablation research to evaluate the contribution of
each model component. Table 2 summarises the ablation study’s findings by comparing
the full model to subsets of the model that had their components reduced.

To ensure that the model was robust, we ran a 6-fold cross-validation on the dataset. To
train and test the model, we divided the dataset into six sections, and we did it six times,
every single time using an alternate fold as the validation set and the other five as the
training set. The results of cross-validation are shown in Table 3.

Figure 5 Accuracy vs. Dropout rate and learning rate. Full-size DOI: 10.7717/peerj-cs.2958/fig-5

Figure 6 ROC_AUC of the proposed model. Full-size DOI: 10.7717/peerj-cs.2958/fig-6
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The results of six-fold cross-validation are summarized in Table 3. The proposed model
achieved a mean accuracy of 99.38% with a standard deviation of �0.14%, indicating high
consistency across different data splits. Similarly, the precision, recall, and F1-score
maintained low variability, further demonstrating the robustness of the model. The AUC
remained exceptionally high at 0.9978 � 0.0011, highlighting the model’s strong
discriminative ability for early sepsis detection. To test the performance of the model
designed during this study and compare its performance against other popularly known
techniques for detecting sepsis, a comparison was carried out of the model with the rest.
The models compared include logistic regression (LR), support vector machine (SVM),
random forest (RF) models, which are some basic models, and the CNN, which is also
fundamental. The results of the comparison are included in Table 4.

To analyze the effectiveness of the proposed hybrid deep learning model, it was
compared to existing models through evaluation of other machine learning and deep
learning methods. As presented in Table 4, the performance of the proposed model is
compared against benchmarks stemming from logistic regression, SVM, random forest,
and a baseline CNN model. The proposed model significantly outperformed all existing
methods across all critical metrics. The recall and precision metrics of the logistic
regression and SVM models were 85.7% and 92.6% respectively; however, these measures
are not adequate in high-stakes medical environments where detection must be both
timely and accurate. Even strong classifiers such as RF and the baseline CNN model were
incapable of surpassing 94.8% and 96.7% accuracy, respectively. Unlike the other
algorithms, the proposed model achieved 99.4% accuracy, 98.7% precision, 99.2% recall,
and 0.998 AUC, which signifies a remarkable performance benchmark exhibiting
dependability in predictive accuracy alongside sensitivity and specificity necessary to lower
the rate of erroneous diagnosis in sepsis cases. Considerable increase in performance can

Table 2 Ablation study results.

Model variant Accuracy Precision Recall F1-score AUC

Full model 99.4% 98.7% 99.2% 99.0% 0.998

Without SCAN 97.8% 96.2% 97.4% 96.8% 0.985

Without HDCB 98.5% 97.5% 98.0% 97.7% 0.993

Without RPCC 97.1% 95.8% 96.5% 96.1% 0.986

Without ECLF 96.3% 94.6% 95.5% 95.0% 0.978

Table 3 6-Fold cross-validation results.

Metric Mean (%) Standard deviation (%)

Accuracy 99.38% �0.14
Precision 98.78% �0.32
Recall 99.22% �0.27
F1-score 99.0% �0.25
AUC 0.9978% �0.0011
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be linked to the addition of new components like the SCAN, HDCB, RPCC, and the
hyperparameter optimization executed with the AVOA. Such integration allows the model
to capture sophisticated, non-linear relations in multi-dimensional clinical data which
other conventional models would not identify.

In Table 5 we compare the results of our proposed model with multiple reported state-
of-the-art models with applied methods of prediction on sepsis. The results clearly
demonstrate the accuracy challenges faced by conventional machine learning approaches
and even earlier deep learning models from the years 2017 and 2018 which are dominated
by the complex, nonlinear, temporal, and intricate nature of sepsis progression. As an
example neural hybrid models composed from the convolutional and recurrent networks
integrated the use of traditional deep learning models, but their performance remained
stagnant, yielding predictive accuracy of 56.25% (Duan et al., 2023). Followed by this,
Strickler et al. (2023) reported a slightly improved accuracy (75.00%) with the use of LSTM
networks. Most of these results are lower than baseline, indicating that there is still a long
journey ahead before these models can achieve clinically acceptable predictive
performance. While results achieved by more advanced models tend to perform better,
that’s not an argument that ignores the performance forecasts of cutting edge models. In
either case, Zhou, Beyah & Kamaleswaran (2021) OnAI-Comp, and Rosnati & Fortuin
(2021) with their attention time convolutional network (AttTCN), managed to attain
accuracy scores of 81.25% and 68.75%. These findings highlight the significance of
attention mechanisms and temporal modeling for multi scale feature extraction
frameworks. On the other hand, the hybrid deep learning model outperforming the rest
achieves 99.4% accuracy, a figure far exceeding the findings of prior studies. This is because
the model uses the ECLF which deals with spatial feature extraction, the SCAN which
attends to noteworthy clinical features on the fly, and the RPCC which retains key
information across deep network layers. Also, the model’s performance was optimally
complemented with hyperparameter adjustments via the AVOA. This underscores the
novelty of the approach since the model was designed with extensive focus on increasing
accuracy while solving the practical clinical problem of reliably and promptly detecting the
onset of clinical sepsis.

Limitations and future work
While the proposed model demonstrates outstanding performance on the Kaggle Sepsis
Prediction dataset, this study has certain limitations that must be acknowledged. The

Table 4 Results of performance comparison.

Model Accuracy Precision Recall F1-score AUC

Proposed model 99.4% 98.7% 99.2% 99.0% 0.998

Logistic regression 85.7% 81.3% 87.0% 84.1% 0.758

SVM 92.6% 91.4% 93.1% 92.2% 0.873

Random forest 94.8% 93.0% 95.4% 94.2% 0.896

CNN (Simple) 96.7% 95.8% 97.2% 96.5% 0.957
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experimental evaluation is confined to a single publicly available dataset, which may limit
the generalizability of the results across diverse clinical environments and patient
populations. Variations in data quality, patient demographics, clinical protocols, and
sensor accuracy across different healthcare institutions could impact the performance of
the model when applied to other datasets. Additionally, although a detailed comparison
with several state-of-the-art model’s performance models using the same dataset has been
provided, further validation against other benchmark datasets such as the MIMIC-III or
MIMIC-IV clinical databases would strengthen the evidence for the model’s robustness
and adaptability. Future research will focus on validating the proposed model on multiple
datasets from varied clinical settings to ensure broader applicability. Incorporating
real-time streaming data from electronic health records (EHRs) and evaluating the model
in prospective clinical trials will also be explored to assess its performance in practical
deployment scenarios. Moreover, enhancing model interpretability and explainability
through integration with explainable AI (XAI) techniques will be a critical area of future
development to support clinical decision-making effectively.

This study enhances AI systems intended for the early detection of critical healthcare
conditions, especially sepsis, one of the leading causes of mortality globally in the ICU.
Although the model suggests better accuracy than other models, it is worth noting that an
early diagnosis does not resolve the multifaceted issues concerning the management of
sepsis. Incorporating predictive models into clinical workspaces, real-time data
provisioning, and actionable clinical decision support still pose challenges. In addition to
the lack of diverse datasets, the explainability and interpretability of the model’s
predictions should be prioritized in future efforts. Adopted XAI frameworks such as
SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic
Explanations (LIME) could enable medical professionals to appreciate the determinants of
the model’s reasoning, thus strengthening their confidence in an AI-assisted system. Also,
model performance, especially in the early detection of sepsis, can be improved by
addressing data imbalance using advanced focal loss techniques or synthetic data
generation like SMOTE.

Another critical aspect is the real-time model validation within clinical settings through
live EHR data streams. This will assess the model’s latency and efficiency and its impact on

Table 5 Comparison with the state of the art techniques.

Reference Methodology Accuracy (%)

Gholamzadeh, Abtahi & Safdari (2023) Gaussian naïve Bayes (NB), decision tree (DT), random forest (RF) 68.75

Duan et al. (2023) CNN + RNN 56.25

Strickler et al. (2023) LSTM 75.00

Zhou, Beyah & Kamaleswaran (2021) Online Artificial Intelligence Experts Competing Framework (OnAI-Comp) 81.25

Al-Mualemi & Lu (2020) RNN-LSTM, SVM 62.50

Nemati et al. (2018) Attention time convolutional network (AttTCN) 68.75

Proposed methodology ECLF, SCAN, HDCB, and RPCC 99.4

S. Almasoud et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2958 28/33

http://dx.doi.org/10.7717/peerj-cs.2958
https://peerj.com/computer-science/


clinically relevant outcomes. Studying the incorporation of multi-modal data sets such as
genomic, proteomic, and imaging data may enhance the understanding of sepsis
pathophysiology and enable the development of earlier and more precise diagnostic
models. Lastly, investigations should be conducted on the ethical issues and potential
biases in predictive models designed for other healthcare functions. Addressing equity,
clarity, and regulatory alignment concerns will be essential for integrating and functioning
AI-powered solutions in everyday medical practice.

CONCLUSION
The article presents a new method for sepsis detection that is deep learning-based,
achieved by ECLF, SCAN, HDCB, and RPCC. These core components act as a hybrid
model proven to perform well, achieving an accuracy of 99.4% alongside precision, recall,
and F1-score. Due to sepsis detection accuracy, this model dethrones the previous
traditional clinical scoring systems alongside baseline ML systems. The ablation study had
different components due to model parameter tuning and revealing factors. Combining
the ROC curve and the confusion matrix effectively determined the correct classification
with the AUC score and its negligible misclassifications. This study proves that improved
decision-making alongside early detection modes for sepsis management can lead to a
better patient outcome and a lower mortality rate.

Future research could examine incorporating patient demographic and medical history
data, wearable sensors, and real-time monitoring into the model to enhance its
forecasting ability. However, while the model is robust and had a positive outcome in the
controlled experiment, it would need to be validated across several centres to determine if
it is widely applicable to numerous patients and supported in a multi-facility setting.
Despite achieving exceptional predictive performance, the study’s conclusions are drawn
based on results from a single dataset. While this provides a strong foundation, further
evaluations across diverse datasets and real-world environments are essential to
confirm the model’s generalizability. Addressing these limitations in future work will
ensure that the proposed system can be reliably adopted in varied clinical contexts,
ultimately contributing to improved patient outcomes through early and accurate
sepsis detection.
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