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ABSTRACT
Natural language inference (NLI) is a fundamental task in natural language
processing that focuses on determining the relationship between pairs of sentences.
In this article, we present a simple and straightforward approach to evaluate the
effectiveness of various transformer-based models such as bidirectional encoder
representations from transformers (BERT), Generative Pre-trained Transformer
(GPT), robustly optimized BERT approach (RoBERTa), and XLNet in generating
sentence embeddings for NLI. We conduct comprehensive experiments with
different pooling techniques and evaluate the embeddings using different norms
across multiple layers of each model. Our results demonstrate that the choice of
pooling strategy, norm, and model layer significantly impacts the performance of
NLI, with the best results achieved using max pooling and the L2 norm across specific
model layers. On the Stanford Natural Language Inference (SNLI) dataset, the model
reached 90% accuracy and 86% F1-score, while on the MedNLI dataset, the highest
F1-score recorded was 84%. This article provides insights into how different models
and evaluation strategies can be effectively combined to improve the understanding
and classification of sentence relationships in NLI tasks.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning, Natural
Language and Speech, Text Mining, Sentiment Analysis
Keywords NLI, Natural language inference, Textual entailment, Sentence embedding, Geometry,
Text processing

INTRODUCTION
Textual entailment (TE), or natural language inference (NLI), is a foundational task in
natural language processing (NLP). It involves determining whether a given hypothesis
logically follows from a premise. For instance, given the premise “a person is reading a
novel” the hypothesis “someone is engrossed in a book” can be inferred. This process
requires an understanding of both syntactic structure (e.g., clause dependencies,
grammatical roles) and semantic relationships (e.g., inference, paraphrasing, entailment).
NLI has various applications in NLP, including question answering (Mishra et al., 2021),
information retrieval (Kim et al., 2022), sentiment analysis (Song et al., 2020), machine
translation (Kann et al., 2022), dialogue systems (Dziri et al., 2022) and text summarization
(Laban et al., 2022).
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Recent studies have highlighted the importance of sentence embeddings for NLI
(Alsuhaibani, 2023; Kowsher et al., 2023). Sentence embeddings encode sentences into
fixed-length vectors, capturing their semantic meanings (Sato et al., 2024). This
representation allows for the efficient comparison of sentences, crucial for entailment
detection. Traditionally, sentence embeddings relied on shallow models like word
embeddings aggregated into sentence-level representations. However, these approaches
often struggled with complex syntactic structures and semantic relationships. Deep
learning models, particularly transformer-based architectures (Devlin et al., 2018; Brown
et al., 2020; Yang et al., 2019; Liu et al., 2019), have provided more advanced methods for
sentence embeddings. These models are capable of capturing linguistic patterns by
considering the bidirectional context of words in a sentence.

The utilization of the bidirectional encoder representations from transformers (BERT)
sentence embeddings for entailment recognition was recently investigated (Alsuhaibani,
2023). Various layers within BERT were explored to identify the best layer for extracting
sentence embeddings. Unlike traditional methods, this approach focused on the simple
geometric properties of the embeddings, specifically by directly comparing sentence norms
to evaluate the NLI. The results demonstrated the effectiveness of this geometric approach,
highlighting the potential of sentence embeddings in detecting NLI.

While BERT has shown good results in that study, it covers only one way to enhance
NLI. The aspects of NLI suggest that a more comprehensive exploration of various
transformer-based models could provide deeper insights. The geometry of sentence
embeddings, including different norms and pooling strategies, plays a pivotal role in
understanding the nature of entailment. We believe that there is a compelling need for
more investigation that not only compares multiple transformer-based models but also
systematically evaluates various norms and pooling strategies to uncover the most effective
configurations for NLI. Thus, this article aims to conduct a more expansive study,
examining diverse transformer models and comparing several norms to refine the
evaluation process.

We propose to extend the scope of sentence embedding analysis for NLI. Building on
the foundations established by Alsuhaibani (2023), we aim to explore the geometric aspects
of sentence embeddings derived from a range of transformer-based models such as BERT
(Devlin et al., 2018), Generative Pre-trained Transformer (GPT) (Brown et al., 2020),
robustly optimized BERT approach (RoBERTa) (Yang et al., 2019) and XLNet (Liu et al.,
2019). By comparing multiple norms and pooling strategies, we seek to identify the
configurations that best capture the essence of entailment. Our study utilizes the Stanford
Natural Language Inference (SNLI) (Bowman et al., 2015) dataset. The SNLI dataset is
widely recognized for its diverse and well-annotated collection of sentence pairs, each
categorized into one of three classes: entailment, contradiction, or neutral. It allows us to
ensure a robust evaluation, offering a comprehensive benchmark for assessing the
performance of different models and norms.
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The main contributions of this article are summarized as follows:

. Extending beyond the existing focus on BERT by evaluating a diverse set of
transformer-based models for NLI, providing a broader perspective on each model’s
strengths and limitations in capturing semantic relationships.

. Exploring various geometric properties of sentence embeddings, including different
norms (L1, L2, and L-infinity) and pooling strategies, to identify the most effective
configurations for NLI.

. Utilizing a straightforward evaluation approach for all the three NLI scenarios
(entailment, contradiction and neutral) by measuring textual entailment by directly
comparing the norms of sentence embeddings. This method highlights the geometric
attributes of sentence embeddings, providing an efficient alternative to more complex
evaluation techniques.

. Analyzing the performance of different layers within transformer models to offer
insights into the optimal layer selection for extracting sentence embeddings that best
capture NLI.

. Utilizing the extensive SNLI dataset, and a domain-specific dataset (MedNLI), to
conduct a thorough evaluation across a wide range of sentence pairs for various levels of
textual complexity in NLI tasks.

The remainder of this article is structured as follows: ‘Related Work’ highlights the
related work. ‘Proposed Approach’ describes our proposed approach, encompassing
various models and norms. In ‘Experiments and Results’, we present our experiments and
discuss the results. Finally, the ‘Conclusion’ concludes the article.

RELATED WORK
NLI often involves determining how two sentences are related, specifically whether one
sentence (the hypothesis) can be inferred, contradicted, or remains neutral in relation to
the other (the premise) (Androutsopoulos & Malakasiotis, 2010). This task was considered
challenging because it required a deep understanding of the meaning of both sentences and
how they are connected.

A common approach for addressing NLI tasks is by using sentence embeddings, which
are vector-based representations that encapsulate the meaning of sentences (Yu & Jiang,
2016). These embeddings can then be employed to train models capable of predicting the
relationship between pairs of sentences. There are numerous methods available for
generating sentence embeddings. A frequently used technique involved creating word
embeddings (Pennington, Socher & Manning, 2014; Alsuhaibani et al., 2018; Maillard,
Clark & Yogatama, 2019), and then combine these word-level vectors into a sentence-level
embedding. Another popular approach is to use deep learning models specifically trained
to produce sentence embeddings (Pagliardini, Gupta & Jaggi, 2018; Arora, Liang & Ma,
2019; Gao, Yao & Chen, 2021; Jiang et al., 2023).

Transformer-based models emerged as widely used models for generating sentence
embeddings (Taneja, Vashishtha & Ratnoo, 2023). They are pre-trained on a large text
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corpus, enabling them to effectively capture the meaning of words and sentences, making
them useful for a variety of NLP tasks, including NLI. When many of these models were
first developed, they were trained on tasks like predicting the next word and filling in
masked words. This approach enabled the models to learn meaningful representations of
both words and sentences. This pre-training has made transformer-based models highly
effective for many NLP applications, including NLI.

For example, Lin & Su (2021) studied how well BERT handles NLI tasks, particularly
how it manages potential biases in the data. In their research, they designed a
straightforward entailment task using binary predicates in English. They found that
BERT’s learning was slower than expected, but incorporating task-specific features
enhanced its efficiency. This underscored the value of incorporating domain-specific
knowledge for NLI tasks. Prior to this, Baudis, Stanko & Sedivy (2016) introduced a joint
model that learns sentence embeddings for both relevance and entailment in an
information retrieval context. They proposed a system that integrates multiple pieces of
evidence to determine whether a hypothesis is true or not. Their approach trains sentence
embeddings for both relevance and entailment without explicit per-evidence supervision.
This work highlights the potential of integrating retrieval and entailment systems to
improve reasoning tasks.

Gajbhiye, Moubayed & Bradley (2021) introduced an External Knowledge Enhanced
BERT for Natural Language Inference (ExBERT), a model designed to enhance BERT’s
reasoning capabilities by incorporating external commonsense knowledge. ExBERT
enriches the contextual representations produced by BERT by integrating information
from external knowledge sources, such as knowledge graphs, to better inform the model’s
reasoning process. Similarly, Pang, Lin & Smith (2019) proposed a technique to integrate
syntactic information into NLI models. They used token-level contextual representations
generated from a pre-trained dependency parser. This approach, like other contextual
embedding methods, is compatible with various neural models, including BERT. Their
experiments showed improved accuracy on standard NLI datasets.

Moreover, Cabezudo et al. (2020) explored methods to improve inference recognition
on the ASSIN dataset (Fonseca et al., 2016), which is focused on entailment in Portuguese.
Their research included the use of external datasets, such as multilingual datasets or
corpora that have been automatically translated, to improve training. Their experiments
with a multilingual BERTmodel showed improvements on the ASSIN dataset, though they
found that adding external data did not significantly boost performance. Wehnert et al.
(2022) introduced three distinct approaches for NLI classification. The first approach
combined Sentence-BERT embeddings with a graph neural network. The second approach
utilized LEGAL-BERT, a model fine-tuned specifically for entailment classification. The
third method employed KERMIT to encode syntactic parse trees, which were then
integrated into BERT. Their results indicated that LEGAL-BERT outperformed the
graph-based approach, particularly for legal text entailment tasks.

Shajalal et al. (2022) introduced a new approach to NLI that uses an empirical
threshold-based feature. This feature helps to understand the relationships between a text
and its hypothesis. Their experiments on the SICK-RTE dataset (Marelli et al., 2014) using
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various machine learning algorithms showed that their method improved the model’s
ability to capture semantic entailment relationships. Jiang & de Marneffe (2019) tackled a
common problem in NLI datasets by reworking the CommitmentBank (De Marneffe,
Simons & Tonhauser, 2019) for NLI tasks. Their approach examined the extent to which
speakers are committed to the complements of clause-embedding verbs, particularly in
contexts that negate entailment. This resulted in hypotheses that were more naturally
aligned with the premises and free from dataset-specific artifacts. Although their
BERT-based model achieved solid results, they noted that it still struggled with certain
linguistic details, especially in pragmatic reasoning.

While many of the approaches mentioned above have advanced the NLI tasks, they
often require complex designs. In response, and building on the findings of Alsuhaibani
(2023), our work takes a simpler approach by focusing on sentence embeddings and
transformer-based models capabilities. We examine the impact of using different layers
from transformer-based models like BERT, GPT, RoBERTa, and XLNet to extract sentence
embeddings. By evaluating entailment through a straightforward comparison of sentence
norms, we focus on the geometric properties of these embeddings. This approach provides
a simple and effective approach for NLI tasks. It is grounded in the idea that the norm of a
sentence embedding can reflect the cumulative semantic information it encodes. Prior
work in geometric and probing-based NLP (Kobayashi et al., 2020; Ethayarajh, 2019) has
shown that vector norms often correlate with sentence complexity or informativeness.
Thus, comparing norms offers a lightweight but interpretable proxy for inferring semantic
relationships such as entailment.

PROPOSED APPROACH
We propose a comprehensive and a straightforward approach for NLI by comparing
sentence embeddings generated by several transformer-based models, including BERT,
GPT, RoBERTa, and XLNet. The embeddings are then processed using various
norm-based measures (L1, L2, and L-inf norms) and pooling techniques (max, min, and
mean pooling). This approach ensures an evaluation of different models and methods to
detect NLI.

We utilize four pre-trained models, BERT, GPT-3, RoBERTa, and XLNet—to encode
sentences into contextualized embeddings. Each model processes two input sentences Sx
and Sy, generating word-level token representations for each sentence.

Given sentence Sx, it is tokenized into wx
1;w

x
2; . . . ;w

x
n, where n is the number of tokens

in Sx. Similarly, sentence Sy is tokenized into wy
1;w

y
2; . . . ;w

y
m, where m is the number of

tokens in Sy. The representations are passed through each model, resulting in vector
corresponding to each token in a sentence:

Ex
i ¼ Modelðwx

i Þ; for i ¼ 1; 2; . . . ; n (1)

Ey
j ¼ Modelðwy

j Þ; for j ¼ 1; 2; . . . ;m (2)

where Ex
i and Ey

j are the vectors corresponding to tokens in sentences Sx and Sy,
respectively, and the model can be BERT, GPT-3, RoBERTa, or XLNet. This setup allows
us to compare the performance of these models in generating sentence embeddings for the
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NLI task. To convert token-level embeddings into sentence-level representations, we apply
three different pooling operations, max (Eqs. (3) and (4)), min (Eqs. (5) and (6)), and mean
(Eqs. (7) and (8)) pooling across these token vectors of each sentence. Each pooling
technique captures various aspects of the sentence embeddings.

ESx ¼ maxðEx
1; E

x
2; . . . ; E

x
nÞ (3)

ESy ¼ maxðEy
1;E

y
2; . . . ;E

y
mÞ (4)

ESx ¼ minðEx
1; E

x
2; . . . ; E

x
nÞ (5)

ESy ¼ minðEy
1;E

y
2; . . . ; E

y
mÞ (6)

ESx ¼ 1
n

Xn
i¼1

Ex
i (7)

ESy ¼ 1
m

Xm
j¼1

Ey
j (8)

By utilizing these pooling strategies, we generate sentence embeddings ESx and ESy,
which are fixed-length vectors representing each sentence. We employ three different
norms, L2 (Eq. (9)), L1 (Eq. (10)) and L-inf (Eq. (11)) norms to obtain and compare the
sentence embeddings ESx and ESy. Max works by sorting the token vectors according to
their norm magnitude, selecting the one with the largest norm as the sentence vector
(Eq. (12)). In contrast, min selects the token vector with the smallest norm magnitude to
represent the sentence (Eq. (13)). Pooling operations are standard techniques for
aggregating token embeddings into sentence-level vectors. Max pooling, in particular,
emphasizes salient features and tends to capture strong semantic signals from deeper
transformer layers. Norm-based comparison builds on the observation that embedding
magnitudes often correlate with semantic strength, information density, or certainty.
These geometric intuitions guide our design choices.

jjEx
i jj2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd
k¼1

ðEx
i ½k�Þ2

vuut ; jjEy
j jj2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXd
k¼1

ðEy
j ½k�Þ2

vuut (9)

jjEx
i jj1 ¼

Xd
k¼1

jEx
i ½k�j; jjhyj jj1 ¼

Xd
k¼1

jhyj ½k�j (10)

jjEx
i jj1 ¼ max

k¼1;...;d
jEx

i ½k�j; jjEy
j jj1 ¼ max

k¼1;...;d
jEy

j ½k�j (11)

ESmax
x ¼ max

i¼1;...;n
jjEx

i jj; ESmax
y ¼ max

j¼1;...;m
jjEy

j jj (12)

ESmin
x ¼ min

i¼1;...;n
jjEx

i jj; ESmin
y ¼ min

j¼1;...;m
jjEy

j jj (13)

The entailment decision is made by comparing the norms of the two sentence
embeddings. Specifically, if the norm of the embedding from the premise ESx is greater
than that of the hypothesis ESy, we classify the pair as an entailment:
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Entailment ¼ True; if jjESxjj � jjESyjj
False; otherwise

�
(14)

This decision rule reflects the assumption that a premise supporting a hypothesis will
typically contain more semantic information, hence a larger embedding magnitude under
certain norms. While simple, this geometric assumption aligns with prior work that
explores embedding norms as proxies for meaning representation. Although this
formulation currently addresses binary entailment only, we explore its extension to
multi-class NLI, specifically handling contradiction and neutrality, later in “Experiments
and Results”.

To further clarify the proposed method, Fig. 1 provides a high-level overview of the
overall approach. It summarizes the main components and flow of the system,
complementing the detailed explanation presented in this section.

EXPERIMENTS AND RESULTS
We used the SNLI dataset, one of the largest and most widely used benchmarks for textual
entailment or NLI tasks, alongside the MedNLI (Romanov & Shivade, 2018) dataset, which
focuses on medical domain entailment to further evaluate the model’s generalizability
across distinct contexts. For SNLI, the dataset contains pairs of sentences, labelled as
entailment, contradiction, or neutral, depending on the inferred relationship between
them. SNLI is a large-scale dataset consisting of more than half a million labelled pairs.
Table 1 provides an overview of the number of examples for each split in the SNLI dataset.

As can be seen in Table 1, the SNLI dataset is balanced across its three labels, with a
roughly equal number of examples for entailment, contradiction, and neutral pairs. Since
our objective is to utilize the sentences in the SNLI dataset for generating sentence
embeddings and subsequently measuring their norms, we have opted to use all available
examples from the dataset, irrespective of the original train, validation, or test splits. This
approach is justified as we are not leveraging the data for training purposes.

The dataset provides sentence pairs in the form of a premise and a hypothesis, along
with a label indicating the relationship. Below are some examples (extracted from the
dataset) of sentence pairs and their associated labels:

• Premise: “A man inspects the uniform of a figure in some East Asian country.”

Hypothesis: “The man is sleeping.”

Label: Contradiction

• Premise: “A soccer game with multiple males playing.”

Hypothesis: “Some men are playing a sport.”

Label: Entailment

• Premise: “A black race car starts up in front of a crowd of people.”

Hypothesis: “A man is driving a car.”

Label: Neutral
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These examples illustrate the different types of relationships in the dataset:

. Entailment: The hypothesis is a logical conclusion based on the premise.

. Contradiction: The hypothesis directly contradicts the premise.

. Neutral: The hypothesis has no direct implication based on the premise; the relationship
is ambiguous or uncertain.

The data preprocessing pipeline applied to both datasets involved several key steps to
ensure data consistency and facilitate effective sentence embedding generation. Initially,
the datasets were loaded using either direct file extraction methods (e.g., ‘.xlsx’, ‘.json’) or
through the Hugging Face dataset loader. Each sentence pair was cleaned by trimming
extra spaces and formatted as tuples of the form (sentence 1, sentence 2), resulting in a list
of sentence pairs ready for processing.

Tokenization was conducted using the pre-trained tokenizers associated with each
transformer model (BERT, GPT-3, RoBERTa, XLNet), preserving punctuation as it may
carry semantic significance in NLI tasks. Text was also converted to lowercase to maintain
uniformity across datasets. Following the recommendation in Sonkar et al. (2024),
stopword removal was not applied, as certain stopwords can play a contextual role in
identifying sentence relationships. Additionally, the Hugging Face API (https://
huggingface.co/docs/transformers/) was leveraged to simplify the process of loading
pre-trained model weights and tokenizers for both PyTorch and TensorFlow frameworks.

We present our findings from applying different models, BERT, GPT-3, RoBERTa, and
XLNet to the SNLI dataset. We explore the effect of various pooling techniques and
different norms. By analyzing the performance of these models across different layers and
configurations, we aim to identify the optimal strategies for sentence embeddings in NLI or
entailment detection. We report accuracy as the primary evaluation metric in this section.
This aligns with the binary classification setup used in the initial version of our approach,
where the goal is to detect entailment vs. non-entailment based on norm comparisons.

Table 2 presents the results obtained using max pooling across L2, L1, and L-inf norms
for all models and their respective layers. In general, max pooling captures the most
significant features from the sentence embeddings, highlighting the strongest signal across
tokens.

For the L2 norm, BERT shows strong and consistent performance across layers, with the
highest value of 0.908 at layer 7. XLNet also demonstrates competitive results, particularly
in the middle layers, with a peak value of 0.81 at layer 5. GPT-3, however, maintains a

Premise
“A person is reading a 

novel” Transformer
“BERT, GPT, …, etc.”

Hypothesis
“Someone is engrossed 

in a book”

Pooling
“max, min, mean”

Sentence 
Embedding

Norms & 
Comparison

Figure 1 A high-level overview of the proposed approach illustrating the main components.
Full-size DOI: 10.7717/peerj-cs.2957/fig-1
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relatively stable performance across all layers, with scores ranging around 0.52, indicating
less sensitivity to different layers. RoBERTa shows a peak value of 0.78 at layer 12,
suggesting that the deeper layers might better capture the semantic features of the
sentences.

When examining the L1 norm, BERT remains a top performer, achieving its highest
score of 0.83 at layer 8. XLNet again shows strong performance, with a score of 0.77 at
layer 5. RoBERTa demonstrates a noticeable improvement compared to the L2 norm,
particularly at layer 12, with a score of 0.72. GPT-3 continues to show a stable performance
across all layers, with less variance between scores.

For the L-inf norm, which focuses on capturing the maximum difference in
embeddings, BERT has a peak performance of 0.497 at layer 12, indicating that the later
layers contribute most to the signal strength. XLNet shows comparable results, with a peak
of 0.58 at layer 2. The stable performance of GPT-3 across layers is reflected here as well,
with all scores hovering around 0.46.

Table 3 shows the results using min pooling, which focuses on capturing the minimum
value across token embeddings. This technique highlights the weakest signal or the least
prominent features within the sentence.

With the L2 norm, BERT demonstrates lower performance compared to max pooling,
peaking at 0.641 in layer 2. XLNet also shows a similar trend, with moderate performance
across layers, reaching 0.41 at layer 8. GPT-3’s results are stable yet lower, indicating min
pooling may not effectively capture the relevant features for this model. RoBERTa reaches
its highest score of 0.45 at layer 12, again suggesting that the deeper layers hold more
semantic significance.

In the case of the L1 norm, BERT peaks at 0.708 in layer 11, suggesting that mid to
deeper layers are more effective in capturing the semantic content. RoBERTa exhibits
strong performance throughout the layers, with a peak score of 0.82 in layer 5.
Interestingly, XLNet shows a substantial boost in later layers, reaching 0.61 at layer 9.
GPT-3’s performance remains lower overall but peaks at 0.59 in layers 10 and 11.

For the L-inf norm, which highlights maximum differences in embeddings, BERT
reaches its peak at 0.658 in layer 2. In contrast, XLNet shows a significant performance
boost, with the highest score of 0.65 at layer 7. GPT-3’s scores are generally lower across all
layers, with RoBERTa reaching a moderate score of 0.46 at layer 7.

Table 4 summarizes the results obtained from mean pooling, where the average value of
token embeddings is considered. This pooling method balances the information across all
tokens in the sentence.

Table 1 SNLI dataset statistics.

Split Entailment Contradiction Neutral

Train 183,416 183,187 182,764

Validation 3,329 3,312 3,268

Test 3,368 3,329 3,264

Total 190,113 189,828 189,296
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When using the L2 norm, BERT shows strong performance only at deeper layers, with a
significant jump to 0.759 at layer 11. XLNet follows a similar pattern, with a peak score of
0.63 at layer 11. GPT-3 remains consistent across layers, maintaining lower scores around
0.08 to 0.11, indicating that mean pooling may not be optimal for this model. RoBERTa
also peaks at the deeper layers, reaching 0.52 at layer 12.

In the L1 norm results, BERT maintains its strong performance throughout, with the
highest value of 0.556 at layer 12. This shows that averaging embeddings across tokens
effectively captures the semantic features. RoBERTa demonstrates a steady increase across
layers, peaking at 0.4 in layer 12. XLNet has a more consistent trend, with the best score of
0.22 at layer 7, indicating mean pooling’s ability to balance information across tokens.
GPT-3’s results remain comparatively lower across layers.

Lastly, the L-inf norm shows that BERT has a peak performance of 0.69 at layer 11,
highlighting the effectiveness of deeper layers in capturing significant token differences.
RoBERTa has its highest score of 0.36 at layer 1, but its performance varies across layers.
XLNet, however, reaches its best performance of 0.65 at layer 11. GPT-3, as in other norms,
shows consistently lower scores, indicating less sensitivity to the pooling method.

Overall, BERT and XLNet consistently outperform GPT-3 and RoBERTa across
different norms and pooling techniques. BERT generally achieves higher scores in deeper
layers, suggesting that the later layers of BERT effectively capture rich semantic
information. XLNet also shows competitive performance, particularly with L2 and L-inf
norms, across various pooling strategies. max pooling tends to yield the best results for
both BERT and XLNet across all norms, highlighting the value of focusing on the most
significant features in token embeddings. Min pooling, on the other hand, seems to be less
effective for GPT-3, while mean pooling balances information but with lower performance

Table 2 Results for max pooling across different layers using L2, L1, and L-inf norms.

Layers 1 2 3 4 5 6 7 8 9 10 11 12

L2 norm

BERT 0.75 0.83 0.83 0.84 0.80 0.82 0.90 0.87 0.77 0.77 0.76 0.83

GPT-3 0.52 0.51 0.54 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.51 0.59

RoBERTa 0.68 0.65 0.55 0.56 0.47 0.46 0.42 0.56 0.47 0.45 0.57 0.78

XLNet 0.73 0.74 0.65 0.73 0.81 0.71 0.71 0.66 0.62 0.64 0.73 0.55

L1 norm

BERT 0.73 0.81 0.81 0.81 0.77 0.74 0.80 0.83 0.65 0.59 0.57 0.59

GPT-3 0.48 0.46 0.49 0.48 0.48 0.48 0.48 0.48 0.48 0.49 0.47 0.55

RoBERTa 0.41 0.37 0.42 0.54 0.55 0.56 0.55 0.44 0.54 0.56 0.59 0.72

XLNet 0.64 0.68 0.59 0.69 0.77 0.69 0.71 0.48 0.37 0.35 0.28 0.41

L-inf norm

BERT 0.26 0.22 0.17 0.16 0.18 0.24 0.33 0.22 0.47 0.41 0.32 0.49

GPT-3 0.46 0.46 0.36 0.33 0.46 0.47 0.47 0.46 0.46 0.46 0.46 0.52

RoBERTa 0.55 0.57 0.46 0.31 0.35 0.34 0.42 0.51 0.41 0.39 0.3 0.42

XLNet 0.53 0.58 0.31 0.24 0.19 0.27 0.28 0.57 0.52 0.55 0.64 0.46
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compared to max pooling. The evaluation of different norms (L2, L1, L-inf) provides
further insights into the semantic properties of the embeddings, with L2 norm generally
showing the most balanced and consistent results. This analysis indicates that using max
pooling with deeper layers of BERT or XLNet can be a promising strategy for tasks
involving textual entailment or NLI, leveraging the strengths of these models in capturing
sentence semantics effectively.

Table 3 Results for min pooling across different layers using L2, L1, and L-inf norms.

Layers 1 2 3 4 5 6 7 8 9 10 11 12

L2 norm

BERT 0.60 0.64 0.42 0.24 0.26 0.26 0.32 0.28 0.22 0.25 0.25 0.39

GPT-3 0.22 0.41 0.29 0.32 0.24 0.15 0.16 0.16 0.17 0.19 0.18 0.18

RoBERTa 0.28 0.21 0.18 0.21 0.16 0.21 0.23 0.22 0.19 0.21 0.28 0.45

XLNet 0.25 0.27 0.13 0.37 0.33 0.36 0.4 0.41 0.35 0.41 0.48 0.35

L1 norm

BERT 0.52 0.42 0.27 0.21 0.24 0.31 0.26 0.29 0.60 0.68 0.70 0.57

GPT-3 0.43 0.36 0.34 0.37 0.28 0.29 0.28 0.35 0.49 0.59 0.59 0.31

RoBERTa 0.63 0.75 0.79 0.79 0.82 0.76 0.71 0.73 0.8 0.79 0.72 0.53

XLNet 0.25 0.27 0.14 0.37 0.33 0.36 0.41 0.56 0.61 0.56 0.43 0.37

L-inf norm

BERT 0.31 0.65 0.71 0.69 0.63 0.57 0.58 0.61 0.41 0.47 0.46 0.37

GPT-3 0.21 0.56 0.51 0.48 0.34 0.23 0.24 0.23 0.23 0.2 0.18 0.16

RoBERTa 0.31 0.22 0.20 0.20 0.18 0.25 0.36 0.35 0.25 0.34 0.36 0.45

XLNet 0.36 0.39 0.34 0.64 0.53 0.65 0.60 0.42 0.36 0.42 0.49 0.37

Table 4 Results for mean pooling across different layers using L2, L1, and L-inf norms.

Layers 1 2 3 4 5 6 7 8 9 10 11 12

L2 norm

BERT 0.12 0.10 0.08 0.09 0.09 0.09 0.09 0.09 0.07 0.11 0.75 0.57

GPT-3 0.11 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.59

RoBERTa 0.19 0.15 0.09 0.09 0.08 0.08 0.08 0.09 0.08 0.09 0.11 0.52

XLNet 0.11 0.11 0.12 0.13 0.17 0.13 0.14 0.31 0.18 0.32 0.63 0.42

L1 norm

BERT 0.17 0.14 0.13 0.14 0.14 0.13 0.18 0.21 0.25 0.26 0.30 0.55

GPT-3 0.15 0.11 0.09 0.09 0.09 0.09 0.09 0.1 0.1 0.11 0.14 0.56

RoBERTa 0.13 0.13 0.16 0.16 0.16 0.18 0.16 0.16 0.19 0.21 0.26 0.40

XLNet 0.11 0.11 0.11 0.12 0.17 0.20 0.22 0.20 0.21 0.17 0.17 0.21

L-inf norm

BERT 0.23 0.24 0.17 0.14 0.16 0.23 0.29 0.15 0.17 0.22 0.69 0.61

GPT-3 0.08 0.15 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.61

RoBERTa 0.36 0.23 0.17 0.13 0.1 0.13 0.21 0.22 0.15 0.11 0.12 0.24

XLNet 0.15 0.19 0.3 0.36 0.35 0.46 0.44 0.56 0.52 0.55 0.65 0.43
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To improve readability and provide a clearer understanding of the results, we have
included Figs. 2–4 that visually represent the data from the Tables 2–4, respectively. These
figures highlight the performance trends across different models, pooling strategies, and
norms, making it easier to interpret the comparative effectiveness of each approach.

To move beyond binary entailment detection and fully address all three NLI classes,
entailment, contradiction, and neutral, we extended our geometric comparison technique
and updated Eq. (14) to a three-way classification framework. This approach is based on
the absolute difference between the norm values of the two sentence embeddings.

Let:

D ¼ jjjESxjj � jjESyjjj (15)

where ESx and ESy are the vector embeddings of the premise and hypothesis, respectively,
after applying a pooling strategy and norm function.

To extend the original binary formulation introduced in Eq. (14), we now define two
thresholds, s1 and s2, to partition the range of D into three interpretable classes that
correspond to the full set of NLI labels.

Label ¼
Entailment; if D < s1
Neutral; if s1 � D < s2
Contradiction; if D � s2

8<
: (16)

This formulation assumes that smaller norm differences suggest high semantic
alignment (entailment), whereas larger discrepancies indicate either semantic
independence (neutral) or opposition (contradiction), depending on magnitude. The
thresholds were selected empirically through a simple grid search on a validation subset of
SNLI. For example, for the L2 norm, we used s1 ¼ 0:15 and s2 ¼ 0:40, which consistently
produced stable class separation across models and datasets. This lightweight decision rule
allows our method to generalize to full NLI classification without relying on additional
training or complex classifiers, preserving the interpretability of the geometric embedding
space. Figure 5 below illustrates how the thresholds s1 and s2 divide the range of D into
three regions corresponding to the NLI labels: entailment, neutral, and contradiction.

Figure 2 Accuracy performance of max pooling across different layers (1–12) and norms (L2, L1, L-inf).
Full-size DOI: 10.7717/peerj-cs.2957/fig-2
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To evaluate the effectiveness of the updated classification rule, we report the macro-F1
scores for three-way classification on SNLI in Table 5. These results are computed using
the L2 norm and the best-performing layers identified in earlier accuracy-based
experiments for each combination of model and pooling strategy. As shown, BERT with
max pooling at layer 7 achieves the highest macro-F1 score (0.86), followed by XLNet
(0.81) and RoBERTa (0.76), reinforcing earlier trends observed in the binary setting. The
results demonstrate that Eq. (16) generalizes well to a full multi-class NLI formulation
while preserving the effectiveness of simple geometric comparisons.

Figure 3 Accuracy performance of min pooling across different layers (1–12) and norms (L2, L1, L-inf).
Full-size DOI: 10.7717/peerj-cs.2957/fig-3

Figure 4 Accuracy performance of mean pooling across different layers (1–12) and norms (L2, L1, L-inf).
Full-size DOI: 10.7717/peerj-cs.2957/fig-4

Figure 5 Decision boundaries for three-way classification based on norm difference D.
Full-size DOI: 10.7717/peerj-cs.2957/fig-5
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To evaluate the generalizability of our approach beyond open-domain NLI, we also
utilize the MedNLI (Romanov & Shivade, 2018) dataset. This dataset consists of clinical
sentence pairs derived from medical notes and annotated by domain experts. Each pair is
labeled as entailment, contradiction, or neutral, following the same three-class setup as
SNLI. Table 6 summarizes the dataset composition.

MedNLI is substantially smaller than SNLI and poses additional challenges due to its
specialized clinical language and reasoning requirements. Table 7 reports the macro-F1
scores using L2 norm and the best-performing layer for each model, as identified in earlier
experiments. The results demonstrate that our method maintains strong performance
across domains. Notably, BERT achieves a macro-F1 of 0.84 without any fine-tuning,
closely followed by XLNet (0.82) and RoBERTa (0.75). These findings support the

Table 5 Macro-F1 scores on SNLI with the three-way classification. Results use L2 norm and the
best-performing layer.

Model Pooling Layer Macro-F1

BERT max 7 0.86

min 2 0.60

mean 11 0.72

GPT-3 max 12 0.56

min 2 0.38

mean 12 0.57

RoBERTa max 12 0.76

min 12 0.42

mean 12 0.52

XLNet max 5 0.81

min 8 0.38

mean 11 0.61

Table 6 MedNLI dataset statistics.

Split Entailment Contradiction Neutral Total

Train 5,494 2,589 3,149 11,232

Validation 683 320 392 1,395

Test 694 328 400 1,422

Total 6,871 3,237 3,941 9,211

Table 7 Macro-F1 scores on MedNLI using the updated three-way classification approach with L2
norm. For each model, the best-performing layer is selected.

Model Layer Macro-F1

BERT 7 0.84

GPT-3 12 0.68

RoBERTa 12 0.75

XLNet 5 0.82
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robustness of the proposed norm-based comparison strategy in specialized contexts and
confirm that the approach scales well to challenging domain-specific inference tasks.

CONCLUSION
This study investigated the effectiveness of simple geometric operations, specifically
norm-based comparisons, on sentence embeddings derived from pretrained transformer
models for the NLI task. Rather than proposing a new architecture, our work focused on
analyzing the latent capabilities of existing embeddings, revealing that lightweight and
interpretable operations can still yield highly competitive performance in both general and
domain-specific settings.

Through extensive experiments on SNLI, we showed that performance varies
significantly across models, layers, pooling strategies, and norm types. The combination of
BERT with max pooling and the L2 norm achieved the highest accuracy in the binary
entailment setup. This finding not only provides a practical baseline for zero-shot
inference tasks, but also highlights how the structural and semantic properties of
transformer layers influence sentence-level representations.

The strong performance of configurations such as BERT with max pooling and L2 norm
can be attributed to their complementary properties. Max pooling emphasizes the most
salient token-level features, which helps highlight dominant semantic cues in sentence
representations. Meanwhile, deeper transformer layers (e.g., layers 7–12 in BERT) are
known to capture abstract, high-level semantics, making them well-suited for inference
tasks. The L2 norm acts as a robust measure of embedding magnitude, correlating with
sentence informativeness and meaning density. These factors together contribute to the
effectiveness of the best-performing combinations observed in our experiments.

We extended our method beyond binary classification to support full three-way
prediction of entailment, contradiction, and neutral classes. This was accomplished via a
threshold-based decision function over the norm differences of sentence embeddings.
Macro-F1 scores were introduced to better evaluate performance across the three labels,
and we presented a detailed analysis of how different model configurations perform under
this new formulation. The updated results demonstrated that our method maintains strong
multi-class discrimination while retaining its simplicity and transparency.

To validate the generalizability of our findings, we further evaluated the updated
method on the MedNLI dataset, which consists of domain-specific clinical inference tasks.
Without any additional training or fine-tuning, our method preserved its effectiveness,
achieving macro-F1 scores comparable to those obtained on SNLI. These results affirm the
robustness of the proposed approach and its capacity to transfer across domains.

Overall, this work makes three key contributions: (1) it establishes norm-based
comparisons as a viable interpretative tool for analyzing semantic similarity in pretrained
embeddings; (2) it demonstrates that meaningful NLI classification can be achieved
without any model training; and (3) it provides practical configurations that yield high
performance in both general-domain and specialized inference settings.

Despite the competitive performance demonstrated on both SNLI and MedNLI
datasets, the proposed geometric comparison method is not without limitations. The
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reliance on pre-trained transformer embeddings without fine-tuning may restrict its
effectiveness in domain-specific NLI tasks, although the initial results with MedNLI
suggest some promising potential. Additionally, the use of simple norm-based
comparisons may not fully capture intricate semantic relationships, particularly in
complex contradictions or multi-sentence inferences. Future work could address these
limitations by integrating external syntactic or semantic features, incorporating
fine-tuning with domain-specific data, and expanding the evaluation to more diverse NLI
datasets.
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