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ABSTRACT
Low-dose computed tomography (CT) is a potent strategy to minimize X-ray
radiation and its detrimental effects on patients. However, reducing radiation
significantly boosts noise in reconstructed images, causing blur and obscuring critical
tissue details. This obscurity poses significant challenges for doctors in making
accurate diagnoses. Traditional techniques like sinogram domain filtration and
iterative reconstruction algorithms require inaccessible raw data. Thus, this article
introduces HybridFormer, a revolutionary image-denoising model utilizing the
Residual Convolution-Swin Transformer Network, designed to enhance images
while preserving vital details. Firstly, this algorithm constructs residual convolution
for local feature extraction and Swin Transformer for global feature extraction,
boosting denoising efficacy. Secondly, to address texture detail errors, we introduced
a combined attention transformer unit (CATU) with a cross-channel attentive fusion
layer (CCAFL), integrated with residual blocks to form a residual convolution and
Swin Transformer Fusion Block (RSTB). Finally, using RSTB, we developed a deep
feature refinement module (DFRM) to preserve image details. To avoid smoothing,
we combined multi-scale perceptual loss from ResNet-50 with Charbonnier loss into
a composite loss function. Validated on the AAPM2016 Mayo dataset,
HybridFormer outperformed other state-of-the-art algorithms, achieving
improvements of 0.02 dB, 0.16%, and 0.28% in PSNR, SSIM, and FSIM, respectively.
Compared with other advanced algorithms, the proposed algorithm achieved the best
performance indicators, confirming its superiority.

Subjects Computational Biology, Artificial Intelligence, Computer Networks and
Communications, Neural Networks
Keywords Low-dose CT, Deep learning, CT image denoising, Transformer

INTRODUCTION
X-ray computed tomography (CT) has found extensive applications in clinical, industrial,
and diverse fields. The widespread application of medical CT has heightened concerns
regarding the accumulated radiation dose received by patients. To address this challenge,
researchers and medical professionals are actively exploring various innovative
approaches, including ongoing research endeavors dedicated to investigating novel
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methods and refining existing techniques to minimize CT radiation dose while
maintaining image quality (Huynh et al., 2016; Lell et al., 2015; Brenner & Hall, 2007;
Coxson et al., 1999). The ultimate objective is to strike a balance between providing
essential diagnostic information to patients and minimizing their radiation exposure.
There have been several studies on image denoising using deep neural networks. Multiple
studies have proposed various deep-learning architectures for image denoising. Zhang
et al. (2017) introduced a deep convolutional neural network (CNN) with skip
connections. Hsieh (1998) focused on radon domain adaptive filtering for low-dose CT
images. Kim, Lee & Lee (2016) proposed a residual encoder-decoder CNN (REDCNN).
Zhang et al. (2018) utilized a multi-scale deep CNN (MSDCNN). Karimi & Ward (2016)
developed a clustering-based CT denoising algorithm. Tai, Yang & Liu (2017) added a
spatial attention module (SAM) to their CNN. Xie et al. (2017) used a multiplier
alternating direction algorithm for CT imaging. Zhang, Zuo & Zhang (2019) proposed a
residual dense network. Yang et al. (2019) combined a generic deep denoiser with a detail
enhancement module. Wang et al. (2022) employed channel and spatial attention with
multi-scale residual fusion. Zhang, Li & Li (2018) used a dual-attention network. Zhang
et al. (2021) hybridized deep CNN and Swin Transformer. Liang et al. (2021) introduced
SwinIR, a Swin Transformer-based network. Lu et al. (2001) applied a distributed
logarithmic transformation and Wiener filtering. Zhang et al. (2016) designed a Gaussian
mixture Markov random field model (GM-MRF). Liu et al. (2015) used total variation
(TV) regularization with median prior constraints. Chen et al. (2009) integrated adaptive
weighted non-local means. Xu et al. (2012) and Bai et al. (2013) utilized dictionary
representation for detail preservation. Chen et al. (2016) combined block matching and 3D
filtering with context optimization. Zamyatin et al. (2014) improved multiscale filtering
and TV cost functions.Hashemi et al. (2014) designed a non-local total variation denoising
method. Chen et al. (2013) proposed a post-processing algorithm based on dictionary
learning. Deep neural networks (DNNs), Yang et al. (2017), He et al. (2016), Simonyan &
Zisserman (2014), Goodfellow et al. (2020) including CNNs and generative adversarial
networks (GANs), have significantly advanced image denoising techniques.

DNNs, including CNNs and GANs, have revolutionized image denoising (Zhang et al.,
2017; Mao, Shen & Yang, 2016), achieving state-of-the-art results. CNNs capture spatial
information, and recent advances like ResNets and attention mechanisms have improved
performance. GANs can produce visually appealing results but are unstable and difficult to
train (Ledig et al., 2017). Wang et al. (2021) proposed DuDoTrans, a Transformer-based
model for CT image reconstruction, overcoming CNN limitations. Sparse representation
and dictionary learning methods (Elad & Aharon, 2006; Mairal, Elad & Sapiro, 2008) use
sparsity to remove noise while preserving image structures. Some studies combine CNNs
with analytical or iterative reconstruction for better low-dose CT images (Wu et al., 2017;
Kang et al., 2018). Non-local means filtering (Buades, Coll & Morel, 2005; Rodrigues
Jonathan et al., 2019; Yu et al., 2021) leverages self-similarity to reduce noise while
preserving edges and textures (Fan, Liu & Liu, 2022). Liang et al. (2020) designed a densely
connected denoising model for low-dose CT images, while Chen et al. (2022) revealed that
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non-linear activation functions may not be necessary for image restoration. Recent
breakthroughs integrate Transformer architectures for global context modeling: TransCT
(Kang et al., 2018) and Uformer (Wang et al., 2022) synergize self-attention mechanisms
with CNNs, while dual-branch deformable Transformers (Gholizadeh-Ansari, Alirezaie &
Babyn, 2020) enhance spatial adaptability. Cutting-edge solutions like Restomer (Zamir
et al., 2022) address computational complexity through efficient tokenization, and
WavResNet (Kang et al., 2018) simultaneously optimizes sinogram and image domains.
These related works provide a comprehensive overview of the different approaches (Niu
et al., 2024) used for image denoising. Each approach has its (Zhang, Zhang & Lu, 2010)
strengths and weaknesses, and the choice of method depends on the specific traits of the
noise and the desired output.

This article introduces an innovative network architecture named Hybrid Former,
specifically designed for preserving crucial details in images. Hybrid Former harmoniously
integrates the strengths of residual convolution for capturing local features and Swin
Transformer for global feature extraction, yielding remarkable results in de-noising tasks.
Furthermore, an internal feature extraction module is meticulously crafted and seamlessly
integrated into the encoder framework to elevate the model’s proficiency in extracting vital
image details. During the network’s training phase, a sophisticated composite loss
function, amalgamating Charbonnier loss and multiscale perceptual loss, is devised to
mitigate the risk of over-smoothing image edges that may arise from using a solitary loss
function. Ultimately, through a comprehensive series of ablation and comparative
experiments, Hybrid Former’s superiority in denoising low-dose CT images is
unequivocally demonstrated through rigorous numerical evaluations of various metrics.

METHODOLOGY
Noise reduction model
Because of the significant noise in low dose computer tomography (LDCT) images, they
are frequently perceived as possessing substandard quality. This article introduces an
advanced algorithm leveraging deep learning techniques to eliminate noise from these
images and elevate their quality. Mathematically, the challenge of denoising LDCT images
can be formulated as follows:

Let X 2 Rm�n represent an LDCT image and Y 2 Rm�n represent a normal-dose CT
image.

X ¼ rðYÞ: (1)

Equation (1), r represents the process by which noise degrades the image quality.
Reducing noise from LDCT images to produce NDCT images can be conceptualized as the
inverse of this degradation process. The ultimate objective is to discover a function that can
accurately map LDCT images to their corresponding NDCT images while minimizing a
specified cost function.

argmin
F

jjFðXÞ � Y jj22 (2)
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where F is the strongest approximation of r�1 and represents a deep-learning neural
network based on a learnable transformer architecture. The detailed analysis process of the
denoising method is shown in the following subsections.

Overall network design
As shown in Fig. 1, the proposed model is a U-shaped hierarchical network with skip
connections between the encoder and decoder. For an LDCT image X ∈ RC × H × W input
into the network, a 3 × 3 convolutional layer is first used to extract low-level features,
which are then input into the encoder stage. In the encoder, each stage contains several
RSTBs and a down-sampling layer. Simultaneously, several DFRMs run in parallel in each
encoder stage. The RSTB and DFRM structures are illustrated in Figs. 1A and 1B,
respectively. Each RSTB includes a Combined Attention Transformer module and a
residual convolutional module, fusing these two modules through two 1 × 1 convolutional
layers, splitting, concatenation, and residual connections. In the down-sampling section, a
4 × 4 convolutional layer with a stride of 2 is used to down-sample the feature map, halving
the output feature size and doubling the number of channels. Subsequently, a bottleneck
layer with an RSTB is added at the end of the encoder. At this stage, the RSTB can capture
longer dependencies.

The feature reconstruction stage consists of a decoder with the same number of stages as
the encoder. Each stage includes an up-sampling layer and several RSTBs identical to those
in the encoder. In the up-sampling section, a 2 × 2 deconvolutional layer with a stride of 2
is selected for up-sampling. The size of the up-sampled features is doubled, while the
number of channels is halved. The features input into the RSTBs come from the encoder’s
output through skip connections and the up-sampled features. After several decoder
stages, a 3 × 3 convolutional layer is applied to generate the residual image R. Finally, the
LDCT image is added to the residual image to obtain the restored image Y, i.e., Y = X + R.

Feature extraction and global feature extraction layer
Residual convolution and swin transformer fusion module
The architecture of the RSTB, illustrated in Fig. 1A, involves splitting the input feature X
into two halves, X1 and X2, via a 1 × 1 convolutional layer and a splitting mechanism. This
segmentation is mathematically expressed as:

X1;X2 ¼ Split Conv Xð Þð Þ: (3)

Subsequently, X1 and X2 are processed through a residual convolutional block and a
Combined attention Transformer (CATU) module, respectively, producing:

Y1;Y2 ¼ ResConv X1ð Þ;CATU X2ð Þ: (4)

ResConv signifies a residual convolutional block, detailed in Fig. 1C, comprising
convolutional layers with activation functions and residual connections. The CATU
module, introduced later, is a combined attention transformer.
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Afterward, Y1 and Y2 are concatenated and passed through another 1 × 1 convolutional
layer, with a residual connection to X, yielding the final RSTB output:

Z ¼ Conv Concat Y1;Y2ð Þð Þ þ X: (5)

The RSTB harmoniously combines the local processing capabilities of residual
convolutions with the non-local modeling strengths of the Swin Transformer. The 1 × 1
convolutional layers blend information from the residual convolutional block and CATU.
Furthermore, the split and concatenation operations optimize computational efficiency
and parameter count.

Deep feature refinement module
This article introduces the deep feature refinement module (DFRM), integrated into the
encoder, to bolster the model’s extraction of intricate details from input features. The

Figure 1 Hybridformer structure diagram. Full-size DOI: 10.7717/peerj-cs.2952/fig-1

Jui et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2952 5/23

http://dx.doi.org/10.7717/peerj-cs.2952/fig-1
http://dx.doi.org/10.7717/peerj-cs.2952
https://peerj.com/computer-science/


DFRM’s structure is depicted in Fig. 1B. Initially, it performs patch embedding on input
features, halving their size. These internal feature blocks are then processed through
multiple RSTBs. In scenarios with small feature blocks, the DFRM excels at capturing fine
details.

Operating in parallel with the main encoder block, each DFRM enhances the encoder’s
output. Except for the initial stage, DFRM features are summed with encoder features
and fed into the subsequent model stage. Consequently, each encoder stage can be
formulated as:

Zi ¼ RSTBi Xið Þ þ RSTB
0
i P Xið Þð Þ (6)

where i denotes the encoder stage, Xi represents input features, RSTBi signifies the main
encoder block, RSTB

0
i indicates the parallel RSTBi within the DFRM, and P represents the

internal feature map creation process.

Combined attention transformer unit
In sophisticated Transformer architectures designed for image feature extraction, the
conventional approach involves computing global self-attention across the entire image.
However, this method entails a substantial computational burden that grows quadratically
with the input image’s size, leading to considerable processing overhead. To mitigate this
issue, the Swin Transformer introduces innovative techniques such as window attention
(W-MSA) and shifted window attention (SW-MSA), which build upon the traditional
Transformer framework. The Swin Transformer achieves significant computational
efficiency by alternately applying W-MSA and SW-MSA across adjacent Transformer
layers. Nevertheless, the restricted information scope of window attention mechanisms
may give rise to inaccuracies in texture feature restoration when deploying the Swin
Transformer in denoising networks. This problem could be alleviated if the model could
access a broader range of input data.

Regarding channel attention, it leverages global information to assign weights to each
feature channel, activating more pixels within the input features. Integrating a channel
attention module into the Swin Transformer architecture enhances the network’s ability to
express features. Traditional channel attention modules consist of stacked convolutional
layers followed by an attention layer. Still, the attention layer typically only receives the
output of the final convolutional layer, leading to a disconnect between the attention
weights and earlier convolutional layer outputs. In response, this article introduces the
Cross-Channel Attentive Fusion Layer (CCAFL).

CCAFL begins by processing the input features through two 3 × 3 convolutional layers
with a stride of 1 and an activation function. To optimize computational costs, the first
convolutional layer reduces the number of output feature channels to one-third of the
original, which is then restored to the original count by the second convolutional layer.
Both the activation function’s output and the second convolutional layer’s output are fed
into the CCAFL independently. Within CCAFL, the two input features undergo global
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average pooling to extract global information, which is then processed through respective
convolutional and batch normalization layers. The combined results are passed through a
ReLU activation function for non-linear transformation, followed by another
convolutional layer and a sigmoid function for non-linear mapping. Finally, this processed
result is multiplied by the output of the last convolutional layer to produce a channel
feature vector refined by the attention mechanism.

In the Combined Attention Transformer Unit (CATU), the input features are first
normalized and then processed using (S)W-MSA to capture local information.
Simultaneously, global information is introduced through CCAFL to compute channel
attention weights, which weigh the features using global information, thereby enhancing
the utilization of input information. To prevent optimization conflicts between CCAFL
and (S)W-MSA, the CCAFL’s output is scaled by a small constant a before being added to
the (S)W-MSA and residual connections. The comprehensive computation process of
CATU entails these steps:

XLN ¼ LN Xinð Þ
X1 ¼ MSA Xinð Þ þ aCCAFL XLNð Þ þ Xin

Xout ¼ X1 þMLP LN X1ð Þð Þ

8<
: (7)

XLN and X1 denote intermediate representations, with LN signifying layer normalization.
Xout stands for the output generated by CATU, while MLP refers to a sophisticated
multilayer perceptron.

In the (S)W-MSAmodule, the input feature map XLN ∈ RC×H×W is divided into HW/M2

non-overlapping local windows, each size M × M, and self-attention is computed within
each window. For the local window feature XW ∈ RM3�C , the Q, K, and V matrices are
computed as follows:

Q ¼ XW � PQ
K ¼ XW � PK
V ¼ XW � PV

8<
: (8)

where PQ, PK , and PV are projection matrices, and Q, K, V ∈ RM3�C, the self-attention
mechanism calculation is as shown in the formula:

Attention ¼ SoftMax
QKTffiffiffi

d
p þ B

� �
V : (9)

In this context, d signifies the dimensionality of Q/K, while B denotes the learnable relative
positional encoding. Furthermore, to facilitate efficient interaction among adjacent
non-overlapping windows, W-MSA and SW-MSA are employed in an alternating
sequence, with the stride size configured to be half the window size.

Loss function
During the optimization process, various loss functions were tested to enhance the
proposed network’s performance (Zhao et al., 2022). Initially, the mean squared error
(MSE) loss was used, but it led to overly smooth and blurred images. To address this, the
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Charbonnier loss was employed, which measures the difference between the model’s
output and the normal-dose image. Additionally, a multi-scale perceptual loss function
was integrated with the Charbonnier loss, using ResNet-50 as the feature extractor, to
mitigate over-smoothing and blurring. The composite loss function, combining both
losses, was derived by tuning the hyperparameter λ to adjust the weight of the multi-scale
perceptual loss.

The Charbonnier loss measures the difference between the model’s output and the
NDCT image and is defined as:

Lchar ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjF Xið Þ � Yjj þ e2

p
(10)

Xi represents the input image, F denotes the denoising process, Y is the normal-dose
image, and ε is a tiny constant, typically 10−3 (0.001).

ResNet-50 is selected due to its exceptional capacity to derive intricate, deep-level
information from images and incorporate residual learning frameworks, thereby
guaranteeing a more stable and reliable acquisition of image features during the
computation of perceptual loss. The precise methodology entails stripping away the
pooling and fully connected layers from ResNet-50, retaining solely the convolutional
layers for further utilization, at the front of the model. When calculating the perceptual
loss, the restored image and the NDCT image were input into the feature extractor for
forward propagation. Then, the Charbonnier loss was computed using the features from
four stages, and these values were averaged to obtain the multi-scale perceptual loss, which
is expressed as follows:

Lper ¼ 1
M

XM
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jj�j F Xið Þð Þ � �j Yð Þjj þ e2

q
(11)

Xi is the input image, F represents the denoising process, Y is the normal-dose image, and
Φ denotes the pre-trained ResNet-50 model with fixed weights.

Combining the Charbonnier loss with the multi-scale perceptual loss yields the
composite loss function, as shown below:

Lcompound ¼ Lchar þ kLper (12)

where the weight of the multi-scale perceptual loss in the composite loss is adjusted by
tuning the hyperparameter λ.

EXPERIMENTAL RESULTS AND ANALYSIS
Materials and network training
Dataset

In the experimental design and results section, the dataset comprises low-dose CT scans
from the “2016 NIH-AAPM-Mayo Clinic Low-Dose CT Grand Challenge” licensed by
Mayo Clinic. Specifically, CT scan images with a thickness of 3 millimeters are selected,
including both normal-dose and quarter-dose CT images. The training set consists of 2,039
image pairs (Zamir et al., 2021) from eight patients, the validation set contains 128 image
pairs from one patient, and the test set utilizes 211 image pairs from another patient. Data
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augmentation is performed before training, involving converting the image data into
PyTorch-compatible Tensor format and cropping random patches of size 64 × 64 from
each slice. During testing, full 512 × 512 image slices from patient scans are directly used.

Experimental setup

The experiments were conducted on aWindows 11 system with the PyTorch deep learning
framework and CUDA-Toolkit10.1 for GPU acceleration. The hardware configuration
consisted of an Intel Core i7-9700K CPU @ 3.2 GHz, 16 GB of RAM, and an NVIDIA
GeForce RTX 3080 series GPU equipped with 8 GB of video memory (VRAM). During the
optimization phase, we employed the highly efficient AdamW optimizer (Kang et al., 2018;
Wright et al., 2024) with its default settings. We meticulously adjusted the learning rate to

2� 10�4 and incorporated the optimizer betas of 0.9. We implemented a stringent 100-
epoch training protocol to ensure reliable model convergence. Table 1 presents the detailed
hyperparameter configurations for all experiments detailed in this article, highlighting the
high-performance computing resources utilized for the experiments.

Results and analysis
To evaluate the effectiveness of the proposed algorithm, two highly detailed abdominal CT
images, depicted in Fig. 2, (a) sample 1 and (b) Sample 2, were chosen as benchmarks for
comparison. To perform cross-validation with various splits, sample 3 is selected, and
Fig. 3 presents the comprehensive comparison of the test results for sample 3 along with

Table 1 Experimental hyperparameter settings.

Parameter name Parameter value

Batch size 12

Learning rate 2� 10�4

Optimizer AdamW

Optimizer betas 0.9

Training epoch 100

Image size 64 � 64

Figure 2 (A) Sample 1 and (B) sample 2, (C) sample 3. Full-size DOI: 10.7717/peerj-cs.2952/fig-2
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the magnified ROI area. We have carefully chosen these samples at random from a diverse
array of patients.

In this experiment, we compared five algorithms: EDCNN (Liang et al., 2020),
CTformer (Dayang et al., 2023), Restormer (Zamir et al., 2022), Uformer (Wang et al.,
2022), and DDT (Liu et al., 2023). Our comparison also includes low-dose CT images,
normal-dose CT images, and Hybrid Former. All parameters for the algorithms were set
according to their respective papers. We selected a test sample containing complex image
details from the test set to perform denoising processing. The upper middle side of test
sample 1, containing an obvious lesion tissue area, is selected as the region of interest (ROI)
for our comparison. Here, Fig. 4 displays the overall comparison of test sample 1. We
magnified and displayed the comparison results along with Fig. 4. A test sample with
similar background structures is selected from the test set as test sample 2 and test
sample 3. Figure 5 shows the comparison results of the residual images after denoising
sample 1. It can be noted that in low-dose CT images with similar background structures,
the proposed method successfully eliminates noise, significantly improving image quality.
Figure 6 shows the comparison results of selecting a lesion area from test sample 2 along
with the ROI area. Upon close examination, it is evident that the transformer-based
algorithms such as Restormer, CTformer, and Uformer are significantly similar to the
proposed method. To further elucidate the superiority of the proposed method, we have

Figure 3 Overall comparison of test sample 3 (A) NDCT (B) LDCT (C) Uformer (D) CTformer (E) Restormer (F) EDCNN (G) DDT
(H) Proposed. Full-size DOI: 10.7717/peerj-cs.2952/fig-3
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included Figs. 5, 7, and 8, which depict the residual images and error map, respectively. It
can be seen that the proposed algorithm can effectively remove noise from low-dose CT
images with similar background structures and preserve detailed information well.

Upon examining the magnified ROI depicted in Figs. 3 and 4, it is evident that the
LDCT image, plagued by substantial quantum noise, exhibits excessively blurred edge
details, as highlighted by the red regions, resulting in the loss of some sharp edge features.
Conversely, HybridFormer demonstrates a superior visual impact in terms of intuitive
noise contrast, aligning more closely with the NDCT image than alternative approaches, as
illustrated in Fig. 4. A thorough comparison of the magnified ROI among various
denoising methods in Fig. 4 reveals that the proposed algorithm effectively preserves image
edges. By scrutinizing the areas indicated by both red and green areas, it becomes apparent
that HybridFormer offers sharper edge details and a more distinct contrast against the
surrounding background. Figure 6 presents a comprehensive comparison of another
exemplary specimen within test sample 2, along with an enlarged region of interest (ROI)
featured, while Fig. 7 delves into a detailed comparison of residual images featured by
Fig. 6. Upon visually inspecting Fig. 6, it becomes evident that the proposed method
exhibits an exceptional denoising capability on CT images comprising diverse structural
elements. When scrutinizing the magnified ROIs depicted in Fig. 6, it is apparent that the
introduced denoising algorithms similarly demonstrate remarkable denoising proficiency

Figure 4 Overall comparison of test sample 1 (A) LDCT (B) NDCT (C) Uformer (D) Restormer (E) EDCNN (F) CTformer (G) DDT
(H) Proposed. Full-size DOI: 10.7717/peerj-cs.2952/fig-4
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in areas with comparable background structures, efficiently preserving the edge contours
of similar components. Notably, this algorithm not only preserves a higher degree of edge
details but also attains a denoising effect that most closely approximates the quality of an
NDCT image, rendering the overall image significantly cleaner.

Tables 2 and 3 display the evaluation outcomes for test sample 1, test sample 2, and test
sample 3, highlighting the optimal values in each metric in bold. Meanwhile, Table 4
presents a comparative analysis of the Hybrid Former alongside other image-denoising
algorithms, focusing on their overall impact across the entire test dataset. The findings
underscore notable advancements in performance metrics compared to existing models. In
essence, the Hybrid Former excels in achieving superior denoising results across the entire

Figure 5 Noise distribution image of sample 1 after de-noising, LDCT, and different algorithms
(A) LDCT; (B) Restormer; (C) Performer; (D) CTformer; (E) EDCNN; (F) DDT; (G) Proposed.

Full-size DOI: 10.7717/peerj-cs.2952/fig-5
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image and demonstrates enhanced preservation of local details within ROI compared to its
counterparts.

ABLATION EXPERIMENTS AND ANALYSIS
Impact of different network structures on performance
Table 5 compares the effects of different structures within Hybrid Former on enhancing
the model’s denoising performance. By removing the DFRM from the model and replacing
the RSTB in the network structure with an equivalent number of Swin Transformer layers,
while keeping other parts unchanged, we obtained a U-shaped network serving as the
“Baseline”. Subsequently, we replaced the Swin Transformer layers in the Baseline with the
CATU to verify its enhancement on model performance. After incorporating CATU, the
peak signal-to-noise ratio (PSNR) improved by approximately 0.1, and the structural
similarity index measure (SSIM) increased by about 0.001, indicating that introducing the
CATU structure effectively boosts the model’s performance. Additionally, on top of the
Baseline, we employed a parallel structure combining Swin Transformer layers with
residual blocks, referred to as “Use RSTB without CCAFL” in the table, to validate whether
the integration of CNN and Transformer proposed in this article can significantly enhance
model performance. Compared to the Baseline, combining CNN and Transformer yields
notable improvements in performance metrics. When experimenting with the complete

Figure 6 Overall comparison of test sample 2 (A) LDCT (B) NDCT (C) Uformer (D) Restormer (E) EDCNN (F) CTformer (G) DDT
(H) Proposed. Full-size DOI: 10.7717/peerj-cs.2952/fig-6
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RSTB structure proposed in this article to replace the Swin Transformer layers in the
Baseline, denoted as “Use RSTB”, both PSNR and SSIM show improvements, proving the
effectiveness of the RSTB structure in enhancing the model’s performance. Finally, by
incorporating the DFRM module, we obtained the complete structure of the proposed
model, achieving the best evaluation scores.

Comparison between CCAFL and channel attention layer
Replacing the CCAFL in CATUwith a standard channel attention layer (CAL), where CAL
and CCAFL share the same number of convolutional layers, batch normalization (BN)
layers, pooling layers, and activation functions with identical parameter settings, the
experimental results are shown in Table 6. Here, “None” represents the results without
using any channel attention block. It can be observed that the attention layer in CCAFL

Figure 7 Noise distribution image of sample 2, after denoising LDCT, and different algorithms
(A) LDCT; (B) Restormer; (C) Uformer; (D) CTformer; (E) EDCNN; (F) DDT; (G) Proposed.

Full-size DOI: 10.7717/peerj-cs.2952/fig-7
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receives outputs from all convolutional layers, capturing pixel information from input
features to a greater extent and more effectively addressing the issue of texture restoration
errors in the Swin Transformer structure.

Figure 8 Error map of the algorithm (A) Uformer (B) Restormer (C) EDCNN (D) CTformer (E) DDT (F) Proposed.
Full-size DOI: 10.7717/peerj-cs.2952/fig-8

Table 2 Evaluation metric results for test sample 1 and test sample 2.

Methods Test sample 1 Test sample 2

PSNR SSIM FSIM PSNR SSIM FSIM

LDCT 18.0145 0.7146 0.6037 19.5628 0.7410 0.6267

EDCNN (Liang et al., 2020) 24.1536 0.7719 0.6385 26.0578 0.8169 0.6454

CTformer (Dayang et al., 2023) 23.1605 0.7290 0.6304 24.2325 0.8018 0.6435

Restormer (Zamir et al., 2022) 24.3402 0.7827 0.6493 26.3010 0.8271 0.6652

Uformer (Wang et al., 2022) 22.3337 0.7253 0.6495 23.9155 0.7971 0.6638

DDT (Liu et al., 2023) 21.3093 0.7245 0.6454 20.7690 0.7880 0.6137

Hybrid former (Proposed) 24.3610 0.7848 0.6529 26.3256 0.8304 0.6680
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Table 3 Evaluation metric results for test sample 3.

Methods PSNR SSIM FSIM

LDCT 18.5628 0.7410 0.6267

EDCNN (Liang et al., 2020) 22.8693 0.7823 0.6454

DDT (Liu et al., 2023) 22.2613 0.7652 0.6435

Restormer (Zamir et al., 2022) 24.3028 0.7790 0.6552

Uformer (Wang et al., 2022) 24.3155 0.7771 0.6638

CTformer (Dayang et al., 2023) 24.3600 0.7800 0.6637

Hybrid Former 24.3713 0.7982 0.6705

Table 4 Comparison of experimental results of different algorithms.

Methods PSNR SSIM FSIM

LDCT 21.6048 0.8017 0.6481

EDCNN (Liang et al., 2020) 25.9639 0.8243 0.6498

CTformer (Dayang et al., 2023) 26.6431 0.8314 0.6630

Restormer (Zamir et al., 2022) 27.2664 0.8441 0.6804

Uformer (Wang et al., 2022) 25.8862 0.8393 0.6785

DDT (Liu et al., 2023) 24.9213 0.8029 0.6407

Hybrid Former (Proposed) 27.3043 0.8455 0.6835

Table 5 Impact of different structures in the model on denoising performance.

Methods PSNR SSIM FSIM

Baseline 27.1571 0.8395 0.6808

Use CATU 27.2588 0.8413 0.6813

Use RSTB without CCAFL 27.2761 0.8423 0.6825

Use RSTB 27.2890 0.8425 0.6826

Use RSTB + DFRM (Hybrid Former) 27.3043 0.8455 0.6835

Table 6 Impact of different structures in the model on denoising performance.

Methods PSNR SSIM FSIM

None 27.2797 0.8427 0.6824

With CAL 27.2843 0.8428 0.6825

With CCAFL (Hybrid Former) 27.3043 0.8455 0.6835

Table 7 Experimental results with different loss functions.

Methods PSNR SSIM FSIM

MSE loss 27.2474 0.8416 0.6816

Charbonnier loss 27.2843 0.8424 0.6824

Compound loss (Hybrid Former) 27.3043 0.8455 0.6835
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Comparison of different loss functions
Table 7 compares the model’s denoising performance when using MSE loss, Charbonnier
loss, and a composite loss function, respectively. It can be observed that the composite loss
function employed in this article achieves more efficient denoising results than using either
MSE loss or Charbonnier loss alone.

Comparison with existing Transformer-based models
As shown in Table 8, the network introduced in this article achieves a PSNR of 0.009%,
outperforming numerous prevalent model architectures and establishing the highest
denoising metrics to date. This exceptional performance marks a 0.0639 dB (PSNR)
improvement over Swin-UNET (Cao et al., 2022), which has a comparable infrastructure,
and a 0.009 dB (PSNR) enhancement compared to TransUNET (Chen et al., 2021). Our
method exhibits superior precision in delineating the boundaries of the right ventricle
when compared to other transformer-based approaches, further confirming that the
proposed method surpasses existing techniques in understanding structural morphology
and characteristics.

Impact of the different optimization algorithms and different image sizes
Tables 9 and 10 present a comparative analysis of various optimization algorithms and
image sizes using PSNR, SSIM, and FSIM as performance metrics. SGD serves as a
baseline, with Nadam and Adam offering incremental improvements. AdamW, however,
stands out with the highest metrics. Additionally, larger image sizes yield better

Table 8 Comparison with other Transformer based network.

Methods PSNR SSIM FSIM

Swin-UNET 27.2404 0.8436 0.6826

Trans-UNET 27.2953 0.8444 0.6832

Proposed network (Hybrid Former) 27.3043 0.8455 0.6835

Table 9 Presents a comparative analysis of various optimization algorithms.

Optimizer PSNR SSIM FSIM

SGD 24.8835 0.8223 0.6627

Nadam 26.6925 0.8392 0.6781

Adam 26.8306 0.8317 0.6628

Adamw 27.3043 0.8455 0.6835

Table 10 Showcases the experimental outcomes resulting from the input of images with different
sizes.

Size PSNR SSIM FSIM

32 × 32 24.2409 0.8417 0.6816

64 × 64 27.3043 0.8455 0.6835
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performance metrics. In conclusion, AdamW and higher-resolution images significantly
enhance image quality and similarity assessments.

CONCLUSION AND FUTURE OUTLOOK
This article introduces a residual convolution and swin transformer fusion network to
overcome limitations in extracting global features from CT images using full CNNs and
preserve key image details beyond current post-processing methods. While our proposed
algorithm (Hybrid Former) framework underwent rigorous validation and evaluation on
the widely utilized AAPM dataset and successfully denoises low-dose CT images, there is
still ample opportunity for further enhancement and refinement. In future projects, our
goal is to explore the extensive capabilities of the Hybrid Former model across a wider
range of larger datasets and images with higher resolution. We plan to train and test this
data on devices from various manufacturers and apply it to different patients. This will
help us gain a deeper understanding of the model’s performance and adaptability in
real-world scenarios, enabling us to further refine and improve its accuracy and reliability.
Additionally, we will strive to enhance the generalization capabilities of the network
structure. Building upon our impressive results across various image quality evaluation
metrics. In the next stage of our research, we plan to enhance the correlation between
denoising tasks and subsequent image processing or analysis tasks to bolster the overall
effectiveness and utility of our model. Additionally, we will refine the model to address
artifact introduction during the denoising process, ensuring high fidelity and accuracy in
the output images. We will meticulously review and improve every aspect of the model and
experimental setups to ensure the robustness and reproducibility of our results. Our
expected research objectives include developing a high-performance LDCT denoising
model that effectively reduces noise and preserves fine details with strong generalization
capabilities. Furthermore, we aim to optimize the model to improve its correlation with
downstream tasks, enhancing the recovery of important image regions and consequently,
the diagnostic value of the denoised images.
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