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ABSTRACT
Mindset reconstruction maps how individuals structure and perceive knowledge, a
map unfolded here by investigating language and its cognitive reflection in the human
mind, i.e., the mental lexicon. Textual forma mentis networks (TFMN) are glass boxes
introduced for extracting and understanding mindsets’ structure (in Latin forma
mentis) from textual data. Combining network science, psycholinguistics and Big
Data, TFMNs successfully identified relevant concepts in benchmark texts, without
supervision. Once validated, TFMNs were applied to the case study of distorted
mindsets about the gender gap in science. Focusing on social media, this work analysed
10,000 tweets mostly representing individuals’ opinions at the beginning of posts.
‘‘Gender’’ and ‘‘gap’’ elicited a mostly positive, trustful and joyous perception, with
semantic associates that: celebrated successful female scientists, related gender gap
to wage differences, and hoped for a future resolution. The perception of ‘‘woman’’
highlighted jargon of sexual harassment and stereotype threat (a form of implicit
cognitive bias) about women in science ‘‘sacrificing personal skills for success’’. The
semantic frame of ‘‘man’’ highlighted awareness of the myth of male superiority
in science. No anger was detected around ‘‘person’’, suggesting that tweets got
less tense around genderless terms. No stereotypical perception of ‘‘scientist’’ was
identified online, differently from real-world surveys. This analysis thus identified
that Twitter discourse mostly starting conversations promoted a majorly stereotype-
free, positive/trustful perception of gender disparity, aimed at closing the gap. Hence,
future monitoring against discriminating language should focus on other parts of
conversations like users’ replies. TFMNs enable new ways for monitoring collective
online mindsets, offering data-informed ground for policy making.

Subjects Artificial Intelligence, Computational Linguistics, Data Mining and Machine Learning,
Data Science, Network Science and Online Social Networks
Keywords Language modelling, Social media, Text mining, Complex networks, Cognition and
language, STEM education, Cognitive network science, Social computing

INTRODUCTION
Perception is in the mind of the beholder. Every experience contributes to building a
memory or mental reconstruction of the outer world which, in turn, deeply impacts
future behaviour (Malt, Wolff & Wolff, 2010; Aitchison, 2012; Beasley & Mason, 2015;
Seli et al., 2019; Li, Baucom & Georgiou, 2020). Negative perceptions can inhibit efficient
learning (Chavatzia, 2017) or drastically alter information processing (Shapiro & Williams,
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2012), while positive perceptions can contribute to the acceptance and establishment of
social norms (Malt, Wolff & Wolff, 2010; Waterloo et al., 2018; Welles & González-Bailón,
2020). In this way, reconstructing and understanding the cognitive perceptions of social
groups is key to achieving insights about human behaviour and social patterns.

Discovering the perception of a given audience is a challenge that can be broken
mainly in two parts: (i) acquiring cognitive data, reflecting how the public perceives
a certain phenomenon, and (ii) processing such data in an efficient way, suitable for
the extraction of new knowledge (De Arruda et al., 2019). Data can be gathered by
mining social media (Stella, Ferrara & De Domenico, 2018; Bovet, Morone & Makse, 2018),
which represent an invaluable source of information about the users’ experiences and
perceptions of specific topics (Welles & González-Bailón, 2020). Recently, social media,
Twitter in particular (Jansen et al., 2009), have been increasingly analysed by the scientific
community in order to detect complex phenomena such as the emotional dynamics of
voting events (Stella, Ferrara & De Domenico, 2018; Bovet, Morone & Makse, 2018), the
promotion of self-branding and journalistic content also through social bots (Varol &
Uluturk, 2020), the spread of disinformation (Pierri, Artoni & Ceri, 2020) and the fostering
of online hate dissemination (Waqas et al., 2019).

Towards a cognitive approach to information processing
Although Twitter messages provide several types of information, such as visual cues
(e.g., pictures and videos) or multi-language cues (e.g., emojis and hashtags), their
nature is mainly textual (Welles & González-Bailón, 2020; Jansen et al., 2009). In this
way, the problem of quantifying how an audience perceives a given topic can be related
to stance detection from their tweets (Mohammad, 2016). Approaching stance detection
through human coding becomes quickly intractable when faced with the large volumes of
messages exchanged daily on the Twittersphere. This limitation leads to the above need
for developing and adopting efficient techniques for knowledge extraction from massive
amounts of text as exchanged on social media. Given the extraordinary possibility for
humans to communicate their mental constructs through language (Aitchison, 2012), a
key way of detecting perceptions is through communication. Both in computer science
and linguistics, the problem of detecting positive or negative perceptions from language
is known as stance detection (Mohammad, 2016). Rather than focusing on language in
itself, this work shifts the attention to the cognitive reflection of language in the human
mind, in the so-called mental lexicon (Malt, Wolff & Wolff, 2010; Aitchison, 2012; Dóczi,
2019; De Deyne et al., 2019). Such a lexicon includes semantic memory, a well-studied
repository of conceptual meanings and word features (Kenett et al., 2017; Dóczi, 2019),
and also other memory supports storing syntactic/phonological/orthographic and even
affective knowledge, together with other aspects of language (Dóczi, 2019), whereas syntax,
phonology and orthography express word-level conceptual knowledge (Aitchison, 2012),
affective knowledge links concepts to the emotions they elicit (Malt, Wolff & Wolff, 2010);
therefore, it represents an important component of any stance/perception.

Harnessing the complex cognitive structure of the mental lexicon means accessing
how conceptual knowledge is structured and emotionally perceived by individuals as the
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outcome of their previous experiences and current attitudes (Aitchison, 2012; Stella et al.,
2019; Stella, 2020). In other words, accessing the conceptual and affective representation of
knowledge in the mental lexicon means reading minds(ets), with strong repercussions
for information processing. Discovering how an audience perceives a given topic,
i.e., performing mindset reconstruction, can provide crucial knowledge for understanding
and intervening upon specific trends (Welles & González-Bailón, 2020; Amancio, Oliveira
Jr & Costa, 2012; Stella et al., 2019). An example is represented by the finding that mindsets
vehiculating positive emotions reach larger audiences on social media whereas negative
emotional content can spread at faster rates (Ferrara & Yang, 2015). Another example for
the relevance of mindset reconstruction is uncovering and acting upon traces of science
anxiety in student populations in order to improve their learning experiences (Stella,
2020; Stella & Zaytseva, 2020) or detecting sexual harassment through large-scale web
surveys (Karami et al., 2020).

A key area where mindset reconstruction is particularly promising is understanding the
sources and dynamics of the gender gap in science (Hogue & Lord, 2007; Moss-Racusin et
al., 2012).

As outlined by recent Big Data Analytics studies considering decades of scientific
careers (Huang et al., 2020; Odic & Wojcik, 2019; Chavatzia, 2017), gender disparities in
science cannot be explained by intrinsic differences in attitudes to science between genders
but rather have to be traced in the establishment of implicit gender biases promoted
by news media and by social media representations of science (Shapiro & Williams,
2012; Moss-Racusin et al., 2012; Madsen & Andrade, 2018; Steinke, 2017). In this way, the
reconstruction of mindsets vehiculated by information systems becomes a key point for
understanding, acting upon and closing the gender gap in science. Given the recency
of the above mentioned Big Data Analytics studies and the methodological issues in
reconstructing mindsets with black-box machine learning techniques (often neglecting
contextual information; Nasar, Jaffry & Malik, 2019), reconstructing online perceptions
of the gender gap in social media is a challenge not fully explored yet.

Research aim
This work introduces textual forma mentis networks (TFMNs) as quantitative tools for
reconstructing the mindset of online users engaging in social discourse with the research
aim of investigating in detail the mindset emerging from user-generated content about the
gender gap in science. In other words, this work uses textual forma mentis networks with
the aim of reconstructing how online users discussed and perceived messages revolving
around the STEM gender gap. In order to mirror the general perception of this gap, a
window without special events about women in science was chosen. TFMNs quantified the
general stance from 10,000 tweets publicly available on Twitter, produced between October
8 2019 and October 22 2019, containing the words or hashtags ‘‘science’’ or ‘‘stem’’ and
‘‘women’’ or ‘‘gendergap’’. These tweets encapsulated information about how the online
authors perceived women in science, with relevant impact for education research and the
computational social sciences.
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Before providing additional details about the adopted methodology, it is necessary to
compare TFMNs against past approaches, also relating forma mentis networks within the
relevant literature about the gender gap in science.

Literature review on relevant past approaches
It has to be underlined that only recently automatic text-mining studies started investigating
gender gap in online discourses (Teso et al., 2018; Chavatzia, 2017). However, these
approaches mainly focused on detecting differences in language use among different
genders. Differently from other information processing investigations aiming at identifying
emotions on social media in relation to phenomena like hateful speeches (Waqas et
al., 2019) or disinformation spreading (Pierri, Artoni & Ceri, 2020), gender-focused
investigations of social media did not explore large-scale mappings of the online perception
of the gender gap in science as embedded in the messages exchanged between social users of
any gender.Within an informationmanagement setting, thework closest to an investigation
of the overall mindset about gender biases was the study by Karami and colleagues (Karami
et al., 2020). The authors investigated online self-reports of sexual harassment experiences
and through a topic analysis they highlighted evidence for sexual harassment in academia
mainly targeting women and involving coercion, gender discrimination and retaliation.
Building upon the knowledge extraction approach of Karami et al. (2020), this study
shifts its attention from explicit sexual harassment to the larger topic of gender biases
in science, which includes harassment itself but also implicit biases (Shapiro & Williams,
2012), gender pay gaps (Courey & Heywood, 2018) and stereotypical perceptions about
leadership (Pennington et al., 2016; Ely, Ibarra & Kolb, 2011). Furthermore, rather than
focusing on self-reports, this study aims at tackling a different information system, namely
Twitter, where social users can engage in social discourse and reach large audiences (Welles
& González-Bailón, 2020). This reconstruction of social media attitudes about the gender
gap in science is the main gap that the current work aims to fulfil by using a network-
powered approach, which has several similarities and novelties in comparison to past
network frameworks.

Within the literature of network-powered analyses of large volumes of text (De
Arruda et al., 2019; Koponen & Nousiainen, 2019), previous works successfully used
word co-occurrences in text (e.g., ‘‘like’’ and ‘‘stem’’ occurring one after the other
in text, cf. Cancho & Solé, 2001) in order to characterise language content through
average statistical markers (Amancio, Oliveira Jr & Costa, 2012; Amancio, 2015) or
time-evolving dynamics (Akimushkin, Amancio & Oliveira Jr, 2017). These networks
were considerably powerful at a global level and very successful in tasks like author
identification (Amancio, 2015; Akimushkin, Amancio & Oliveira Jr, 2017; De Arruda et al.,
2019). However, the validity of co-occurrence networks as representations of the mental
lexicon at the microscopic level of individual conceptual associations has been recently
reconsidered (Ninio, 2014; Rizvi, 2018). In fact, co-occurrences can lead to spurious
conceptual links, whose influence vanishes in global statistical approaches and that do not
represent syntactic similarities in text (Ninio, 2014). In order to overcome this limitation
and achieve a more faithful microscopic representation of the mental lexicon, TFMNs
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directly harness the full ensemble of syntactic associations of a sentence (e.g., ‘‘like’’ being
a verb referring to the object ‘‘stem’’, cf. Cancho, Solé & Köhler, 2004) and enrich them
by considering also semantic overlap between words (e.g., ‘‘appreciate’’ and ‘‘like’’ being
synonyms across different sentences, cfr.Miller, 1998; Amancio, Oliveira Jr & Costa, 2012).

Textual formamentis networks automatically extract these conceptual associations from
text without requiring human supervision and are therefore suitable for processing large
volumes of text. The resulting network structure is informative of the cognitive layout
of conceptual associations emerging from a given textual corpus and hence represents
how text authors organised, structured and associated microscopically their knowledge
around topics and concepts. This makes TFMNs ‘‘glass boxes’’ (Nasar, Jaffry & Malik,
2019), where the knowledge structure of a certain stance can be accessed and directly
read, differently from previous ‘‘black box’’ machine learning approaches which accurately
reproduced the positive or negative nature of a stance without providing information on
its semantic content (Mohammad, 2016; Teso et al., 2018; Rudkowsky et al., 2018; Nasar,
Jaffry & Malik, 2019). In addition to conceptual associations, TFMNs are endowed alsowith
sentiment labels, indicating the sentiment (Warriner, Kuperman & Brysbaert, 2013) and the
basic emotions (Ekman & Davidson, 1994;Mohammad & Turney, 2013) elicited by a given
concept in a population of individuals involved in behavioural studies. Sentiment scores
of positive/negative affect are also called word valence in psycholinguistics (Warriner,
Kuperman & Brysbaert, 2013; Recchia & Louwerse, 2015) and represent how positively
or negatively a given concept was perceived in a behavioural study. Word valence
and emotional profiles add more emotional contextual information about the stance
reconstructed by conceptual associations (Stella, 2020). Although large-scale datasets
about sentiment and emotions have only been recently made available to the scientific
community by cognitive studies (Warriner, Kuperman & Brysbaert, 2013), they have quickly
become predominant in predicting a wide variety of human behaviour (Li, Baucom &
Georgiou, 2020) and information processing patterns such as consensus formation in social
networks (Konstantinidis, Papadopoulos & Kompatsiaris, 2017) or information sharing on
microblogs (Ferrara & Yang, 2015). The combination of network patterns and sentiment
data is important, as considering only the frequency of sentiment-labelled content in short
texts has been reported to lack interpretative contextual power for estimating how people
really feel about a given topic (Beasley & Mason, 2015).

Different types of forma mentis networks
As outlined above, text-based forma mentis networks represent multiplex lexical
networks (Stella et al., 2018) of concepts interconnected through syntactic and semantic
associations and enrichedwith sentiment and emotional labels. Previous works showed how
lexical networks of concepts including multiple layers of associations (i.e., ‘‘multiplex’’)
were better than single-layer complex networks at predicting a variety of cognitive processes
involved in information acquisition (Stella et al., 2018; Stella, 2019) and search (Castro &
Stella, 2019; Siew et al., 2019). However, these approaches did not explore the influence
that emotions and sentiment can have over information processing (Warriner, Kuperman
& Brysbaert, 2013; Dóczi, 2019; Rudkowsky et al., 2018; Li, Baucom & Georgiou, 2020). The
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introduction of behavioural forma mentis networks (BFMNs) (Stella et al., 2019; Stella &
Zaytseva, 2020) tackled such a gap by combining conceptual associations with sentiment
scores and providing access to knowledge structure and positive/negative perceptions
of concepts in a given mindset. However, mindset reconstruction of BFMNs comes at
the cost of involving individuals in a cognitive experiment (cf. Stella et al., 2019). This
limitation translates into the possibility of reconstructing only the mindsets of those who
participated in the experiment, preventing the monitoring of remote systems like social
media. Textual forma mentis networks do not require behavioural experiments but can
be built starting from any written text, instead. As a consequence, TFMNs are suitable
for the investigation of speech over online platforms, whereas BFMNs are unstuitable for
such task. However, as outlined above, both TFMNs and BFMNs exploit the theoretical
framework of mental lexicon representations (Dóczi, 2019) and language processing in
cognitive network science (Siew et al., 2019). Relying on these foundations, TFMNs are
applied here for reconstructing the mindset of online discourse about the gender gap in
science, as motivated in the next section.

Recent literature identifies a link between the gender gap and
distorted mindsets
Overwhelming evidence indicates that the gender gap in science is a complex phenomenon
deeply affecting society, economics and science advancement (Ely, Ibarra & Kolb, 2011;
Madsen & Andrade, 2018; Hogue & Lord, 2007; Pietri et al., 2018). The gender gap in the
scientific, technological, engineering and mathematical (STEM) disciplines is a disparity
of how different genders enter in and progress through a career in science (Shapiro &
Williams, 2012). Between 2014 and 2016, UNESCO estimated only around 30% of all
female students in higher education enrolled in STEM-related fields of study at University
level (Chavatzia, 2017). This gender gap in STEM education and participation is almost
absent at the level of primary education but then becomes particularly apparent during
upper secondary education, coincidentally with subject selection, and it gets worse at higher
levels of education (Ely, Ibarra & Kolb, 2011; Chavatzia, 2017; Hogue & Lord, 2007).

Globally, only 28% of all the world’s researchers are women. This disparity is deeply
embedded in educational systems, in particular in terms of attitudes and perceptions
towards science (Shapiro & Williams, 2012; Hogue & Lord, 2007; Huang et al., 2020). The
PISA 2015 report Excellence in Education reported that across 35 OECD countries, only
22% of 15-years old girls intend to pursue a career in STEM, less than half the proportion
(48%) of STEM driven 15-years old boys (cf. Chavatzia, 2017). In the last few years, a great
attention has been devoted to explaining such gap by using either external, e.g., system
embedded discrimination (Chavatzia, 2017; Ely, Ibarra & Kolb, 2011), or internal factors,
e.g., implicit stereotypes (Shapiro & Williams, 2012; Pietri et al., 2018). Studies trying to
explain gender gap through gender-based learning achievements reported a complex
landscape, with boys and girls being more or less proficient than each other according to
the task being measured (cf. Chavatzia, 2017). This complex mosaic of multiple findings
makes it complicated to state that any gender is more or less advanced in any given STEM
subject: the gender gap has to be rooted in more subtle forms of discrimination, stereotypes
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and perceptions (Moss-Racusin et al., 2012; Lane, Goh & Driver-Linn, 2012). Despite this
fragmentation, the data unanimously indicate that women are paid less and leave STEM
careers way more than their male colleagues either at the University level or at subsequent
stages of professional growth in science (Courey & Heywood, 2018).

Even professional impact in STEM is influenced by a strong gender gap. The recent
longitudinal study by Huang and colleagues (Huang et al., 2020) considered professional
impact of women in STEM through bibliographic Big Data spanning over 60 years of
publications. The authors reported evidence for gender differences in the cumulative
productivity of research output but not in the annual rate of publication or career-wise
impact. Through a quantitative, longitudinal analysis, Huang and colleagues related such
gender gap to dropout rates and differences in length of publishing careers between men
and women. The authors could not explain such disproportion only in terms of intrinsic
gender-based proficiency in STEM, thus providing additional large-scale evidence for the
presence of strong contextual factors affecting everyone’s experience of the STEM gender
gap. Analogous differences through Big Data approaches were recently found also by Odic
and Wojcik in psychology, a field where three in four students are women whereas three
in four academic professionals are male (Odic & Wojcik, 2019).

The need to expose distorted mindsets about the gender gap in
information systems
The predominance of strong academic biases in contrast with educational patterns suggests
the presence of hidden roots to the STEM gender gap, as indicated by several independent
studies on the topic (Pennington et al., 2016; Shapiro & Williams, 2012; Pietri et al., 2018).
Hence, understanding the overall experience and subsequent perception of this gender gap
in a large audience can provide key elements for better detecting the presence of potentially
subtle yet strong gender-based stereotypes, as perceived and communicated by the main
actors of STEM. Given that most of these stereotypes can act at a subconscious level and
take place without the explicit awareness of those perpetrating them (Pennington et al.,
2016; Madsen & Andrade, 2018; Lane, Goh & Driver-Linn, 2012), detecting the presence of
such distorted perceptions remains a difficult challenge.

Monitoring and detecting the diffusion of stereotypical endorsements in social media
represents an important way of better understanding and countering gender discrimination
in science (Karami et al., 2020), especially in the current society dominated by virtual social
media (Welles & González-Bailón, 2020; Jansen et al., 2009).

Manuscript organisation
This manuscript is organised in several subsections. The ‘‘Methods’’ section contains
quantitative details about the implemented methodology and analysed data. The ‘‘Results’’
section is split in two subsections. The first part is a quantitative benchmark, reporting on
the effectiveness for TFMNs in finding semantically relevant concepts and topic features in
short texts annotated by authors. The second part explores the reconstructed mindset of
online users towards the gender gap by considering the stance towards key domains and
aspects of the gender gap, e.g., concepts like ‘‘woman’’, ‘‘man’’, ‘‘person’’, ‘‘scientist’’, and
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related aspects, e.g., ‘‘gender’’, ‘‘gap’’ and ‘‘stem’’. The detected conceptual associations
and emotional patterns are investigated and related with previous studies within the
‘‘Discussion’’ section.

METHODS
This section introduces the following elements: (i) the dataset about the online perception
of the gender gap in STEM as retrieved from Twitter, (ii) the methodology behind the
construction of text-based forma mentis networks, and (iii) the cognitive data used for
detecting conceptual overlap in meaning between words and their valence. This section
also reports on the benchmark data used for testing TFMNs, namely the text ‘‘Complexity
Explained’’ (https://complexityexplained.github.io/-Last Accessed:16/03/2020) and the
behavioural forma mentis network of international STEM researchers analysed in (Stella
et al., 2019; Stella, 2020).

Twitter dataset
The main dataset used in this investigation was a collection of 10,384 tweets publicly
available on Twitter and produced between October 8 2019 and October 22 2019. Tweets
were gathered through the ServiceConnect[] function for Twitter crawling implemented
in Mathematica 11. Crawling was performed in accordance with Twitter’s policies via
the account of Complex Science Consulting, which received authorisation by Twitter for
research-focused text mining. Tweets were included in the dataset if they contained either
the hashtags (or the words) ‘‘#science’’ or ‘‘#stem’’ and ‘‘#women’’ or ‘‘#gendergap’’.
This means that the combinations required for the twitter query were: (i) ‘‘science’’ and
‘‘women’’, or (ii) ‘‘science’’ and ‘‘gendergap’’, or (iii) ‘‘stem’’ and ‘‘women’’, or (iv) stem
and ‘‘gendergap’’. The query service implemented in Mathematica works analogously to
the search service implemented on Twitter, which can search tweets both at the start of
conversations or in middle of them as long as they contain the above hashtags or words.
Searching for either hashtags of words and including only two requirements for query
made the search itself flexible in identifying a variety of tweets over such a specific topic, in
a time window outside of specific events focusing over the gender gap.

Users’ replies and mentions containing the same keywords as above were included in
the analysis. However, threaded tweets or users’ replies and mentions not including the
above keywords were not added to the dataset. This choice made the dataset more focused
over individuals’ original statements about the gender gap, giving more voice to those
users starting a conversation (with the above considered keywords) in order to express
their points of view. This focus was motivated by the cognitive grounding of TFMNs,
which combines linguistic knowledge and emotional perceptions as directly coming from
people’s mindsets/mental lexica, without strong influences from other people’s behaviours
or stances that might be present in users’ replies (Tagg, 2015).

Twitter’s policy prevents the redistribution of these tweets outside of the Twitter
platform. Nonetheless, for the sake of scientific reproducibility, the IDs of these tweets
were attached to this manuscript as Supplementary Information.
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Each tweet contained a short text. Pictures and emoticons were discarded. Hashtag
characters were removed. Tweets with less than three words were not included in the
analysis but constituted less than 1% of the whole dataset.

Network construction
Text-based forma mentis networks were built in three different stages:
1. Extraction of syntactic relationships between concepts/words from a sentence;
2. Addition of semantic relationships (synonyms) between concepts as indicated by an

external dataset;
3. Addition of valence labels (‘‘positive’’, ‘‘negative’’, ‘‘neutral’’) to each single concept as

indicated by another external dataset.
The above three steps were repeated for all the sentences in a given tweet. At the end,

all connections between the extracted and labelled concepts formed a multiplex lexical
network (Stella et al., 2018) where nodes represented words/concepts and were connected
across multiple linguistic layers, namely: (i) a semantic layer indicating meaning overlap
between words (e.g., ‘‘famous’’ and ‘‘notable’’ sharing the same meaning), and (ii) a
syntactic layer indicating dependencies in meanings as encapsulated within a sentence.
In general, syntactic structure defines how entities (e.g., nouns) are specified in a given
sentence through verbs, determiners, prepositions, adjectives and adverbs (Cancho, Solé &
Köhler, 2004). Although more or less convoluted syntactic structures can be encoded in
sentences, the simplest form of the syntactical dependencies is a subject being specified as
an object. For instance, in the sentence ‘‘love is weakness’’, ‘‘love’’ is specified as ‘‘weakness’’
through the verb ‘‘is’’. The verb ‘‘is’’ does not encapsulate any intrinsic meaning but it
can be replaced by a link between ‘‘love’’ and ‘‘weakness’’. Syntactic dependencies can
be more general, for instance in the sentence ’’the cat sat on the chair’’ the nominal
subject ‘‘cat’’ is linked to the object ‘‘chair’’ through the verb ‘‘to sit’’, which retains
some meaning. The determiner ‘‘the’’ and the preposition ‘‘on’’ do not retain meaning
by themselves but connect the other parts of speech and are thus essential for extracting
syntactic dependencies. The specification of such dependencies was implemented through
theTextStructure[] command inMathematica 11, which produces all syntactic relationships
between the parts of speech of a given sentence. From the resulting network of directed
dependencies, prepositions and auxiliary verbs were removed as nodes and replaced
by syntactic links. In order to avoid the inflection of lemmas with the same meaning,
i.e., having ‘‘weak’’ and ‘‘weakness’’ in the same network, word stemming was performed
at the network level.

After the extraction of syntactic dependencies, the resulting syntactic network
identified a set of connected, stemmed concepts. Syntactic structure can be informative
about conceptual links in the mental lexicon and be predictive of language learning
and processing (Cancho, Solé & Köhler, 2004; Stella et al., 2018). However, syntactic
dependencies neglect the possibility of using and exchanging synonyms in the same
syntactic structure providing the same meaning (e.g., saying ’’he has a quiet character‘‘
conveys the same meaning of saying ’’he has a quiet nature’’). In order to account also
for meaning overlap, the syntactic structure was enriched with synonym relationships
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from WordNet 3.0 (Miller, 1998), as implemented in the curated repository WordData[]
available in Mathematica 11. Meaning overlap between concepts is also representative
of semantic memory patterns in the mental lexicon, with previous works showing how
synonymnetworks can predict language learning and facilitate conceptual navigation (Stella
et al., 2018; Siew et al., 2019). Notice that in this analysis, ‘‘word’’ and ‘‘concept’’ are used
interchangeably.

After the construction of the network layers of syntactic relationships and of synonyms,
every concept was connected either by syntactic or semantic links. From the affective
mega-study of Warriner, Kuperman & Brysbaert (2013), each concept was endowed with
a valence label, e.g., ‘‘positive’’, ‘‘neutral’’ or ‘‘negative’’. These labels represented the
average valence attributed to each concept by a population of individuals involved in a
large-scale behavioural study rating more than 13,900 English words (Warriner, Kuperman
& Brysbaert, 2013). Words were classified as positive, neutral or negative, respectively,
according to their location in the upper quartile (higher valence), interquartile range
(neutral valence), or lower quartile (lower valence) in the distribution of valence scores for
over 9,000 different word stems. These valence scores were obtained from averaging over
words with the same stemmed root.

A single TFMN was made by considering all 10k tweets together, with syntactic links
bridging words within the same sentence. Since the same words could be repeated across
sentences, the overall syntactic network bridged different sentences together, either from
the same or from different tweets.

Figure 1A provides an example of a text-based forma mentis network. A TFMN can be
represented either as an edge-coloured graph or as a multiplex network (Stella et al., 2018).
In network science, multiplex networks contain different sets of relationships/associations
between elements of the same group, e.g., the same set of words being linked either through
synonyms or syntactic dependencies. All the links expressing a certain type of relationship
form a so-called network layer. A multiplex network is then a collection of multiple
network layers, each one featuring replicas of the same set of nodes, e.g., see Fig. 1A. In
edge-coloured graphs, replicas are aggregated together and all different relationships are
expressed on one layer, e.g., see Fig. 1A. In TFMNs, where there is no explicit transition
between syntactic and semantic replicas of the same word/node, these two representations
are equivalent and their only purpose is to distinguish between syntactic and semantic
links.

Figure 1A provides a pictorial representation of the way a TFMN is built from text.
The starting point is the assumption that knowledge and emotions about the real world
are encoded in people’s mental lexica. Individuals express their opinions, combining
knowledge, sentiment and emotions, through language. TFMNs are based on the
syntactic/semantic links between words as extracted from text. The resulting network
structure identifies the organisation of conceptual associations as expressed by online users
in social discourse. Network neighbourhoods correspond to the syntactic/semantic frame
of concepts associated to a given word and investigated by the so called semantic frame
theory (Fillmore, 2006). Analysing the associates of a concept gives information about: (i)
how it was framed in terms of associated meanings, (ii) how it was perceived in terms
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of valence and emotions. With reference to Fig. 1B, a concept linked to mostly positive
concepts acquires by association a positive connotation in text, which corresponds to a
positive aura on the TFMN. In the following, a valence aura will identify the most frequent
sentiment label (e.g., positive, negative, neutral) attributed to the semantic associates of
a concept, analogously to previous studies (Stella et al., 2019; Stella, 2020). Also emotional
auras will be considered, indicating the contextual feelings and emotions elicited by the
conceptual associates of a word in a given semantic frame.

Additional cognitive data
In order to test the power of text-based forma mentis network in identifying relevant
concepts in text, additional cognitive data was used as benchmark. Semantic similarity and
relevance of scientific concepts, as extrapolated from short scientific texts, was investigated
and compared against free association data from the Complex FormaMentis project (Stella
et al., 2019). The benchmark text adopted herewas the booklet ‘‘Complexity Explained’’, co-
authored by several researchers in complexity science and composed of 7 short paragraphs
describing one specific concept each (cf. https://complexityexplained.github.io/, Last
Accessed: 16/03/2020). The analysed paragraphs were about: ‘‘interactions’’, ‘‘emergence’’,
‘‘dynamics’’, ‘‘self-organisation’’, ‘‘adaptation’’, ‘‘interdisciplinarity’’ and ‘‘methods’’. The
results of such benchmark are reported at the beginning of the Results section.

Emotional profiling and emotional flowers
Compared to previous approaches using behavioural forma mentis networks (Stella, 2020;
Stella & Zaytseva, 2020; Stella et al., 2019), the current analysis introduces also an emotional
profiling of stances as encapsulated in the reconstructed mindsets. Emotional profiling is
defined in terms of considering how many associates of a concept, in the TFMN, elicit a
given emotion. Concepts linked to a negation (e.g., ‘‘not’’) were transformed into their
antonyms, so that both original concepts and their negated meanings were considered for
reconstructing an emotional profile. Considered emotions included:

• Anger, a negative emotion representing reactions of irritation and rage towards an
external threat;
• Disgust, a negative emotion indicating aversion and closure;
• Fear, a negative emotion indicating a need to actively avoid and prevent potential
threats;
• Trust, a positive emotion indicating openness towards the outer world;
• Joy, a positive emotion of excitement and satisfaction;
• Sadness, a neutral emotion, neither positive nor negative, indicating states of sorrow,
thoughtfulness and inhibition;
• Surprise, a neutral emotion relative to being upset or startled by an unexpected event;
• Anticipation, a neutral emotion indicating one’s projection into future events, including
desire or anxiety.

The above constitute basic building blocks of a wide spectrum of emotional states
(Ekman & Davidson, 1994). For a more detailed description of emotions, please see Ekman
& Davidson (1994) and Mohammad & Turney (2013). The mega-study by Mohammad
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Figure 1 (A) Example of a text-based formamentis network. A TFMN can be represented either as
an edge-coloured graph or as a multiplex network. Positive (negative) words are highlighted in cyan
(red). Neutral words are in black. Syntactic links between positive (negative) words are highlighted in
cyan (red) too. Syntactic links between positive and negative concepts are in purple. All semantic links
of meaning overlap are highlighted in green. (B) Infographics about how a TFMN is assembled. Indi-
viduals organise their knowledge and emotional perception of the real world in their mental lexicon
(comic clouds). People express their mental stances on Twitter through text messages. Language from text
is processed and syntactic/semantic links between words are aggregated in order to form a TFMN. Net-
work neighbourhoods define the emotional auras of concepts.

Full-size DOI: 10.7717/peerjcs.295/fig-1
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and colleagues is also known as the Word-Emotion Association Lexicon, indicating how
human participants associated individual concepts to emotional states. In other words,
the resulting dataset indicated which emotions were elicited or evoked in human subjects
reading individual concepts. The study used crowd-sourcing on Mechanical Turk for
achieving a large-scale mapping of English words (including 14,000 unique lemmas) and
was used also in other successful investigations about affect patterns (cf. Mohammad &
Turney, 2013).

Comparing the emotional richness of different semantic frames is problematic, as those
frames might involve different numbers of words. Comparing an observed emotional
profile with a null model represents a more appropriate comparison, especially considering
that there are more words eliciting fear and joy than anticipation and sadness in the dataset.
A statistical comparison can answer questions like ‘‘Was trust the most prominent emotion
just because there are more words eliciting trust in language?’’.

As a null model for comparison with an observed emotional profile, random sampling
was used here. Fixing the same number m of words eliciting at least one emotion and
observed in an empirical semantic frame, m random samples were selected uniformly at
random from the Word-Emotion Lexicon. The emotional profile of this random sampling
was then computed and stored. This operation was repeated 1,000 times, obtaining a
random distribution of emotional profiles from which mean, standard deviation and z-
scores were computed. The expectedmean and standard deviations were used in visualising
the emotional richness of a semantic frame through a bar plot. Instead, z-scores were
organised in a bar sector chart reminiscent of the atlas of emotions (Ekman & Davidson,
1994). In visualisation, the rejection region relative to z < 1.96 is a semi-transparent circle.
Bars are shaped like petals, one per emotion, and coloured differently. Those petals going
out of the rejection region indicate a semantic frame with jargon eliciting a given emotion
more than random expectation (within a significance level of 0.05). Concentric rings
indicate units of z-scores after 2. For their resemblance with flowers, these visualisations
are called emotional flowers.

Cognitive measures of semantic similarity on language networks
This work built networks of conceptual associations between concepts. Several independent
studies have reported that on such networks, metrics like network distance are powerful
proxies for quantifying semantic relatedness (Kenett et al., 2017; Stella & Zaytseva, 2020).
Network distance dij is defined as the minimum number of links (here conceptual
associations) connecting any two words i and j on a network structure (Siew et al., 2019).
On multiplex lexical networks, links of any colour/layer can be used (Stella et al., 2018;
Stella, 2019). Measures based on network distance such as closeness centrality have been
found to identify also concepts of relevance from a cognitive perspective when detecting key
words for word learning (Stella et al., 2018; Stella, 2019), language processing (Kenett et al.,
2017; Siew et al., 2019;Castro & Stella, 2019) and knowledge exploration (Stella & Zaytseva,
2020; Akimushkin, Amancio & Oliveira Jr, 2017; Amancio, 2015). Closeness centrality (Siew
et al., 2019) c(i) is attributed to node i by checking how distant it is to its connected
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neighbours, in formulas:

c(i)=
N∑N
j=1dij

. (1)

Notice that the above formula applies to fully connected components of a network
but does not enable direct comparison of components including different numbers of
nodes (e.g., a component including only 5 nodes versus a component with 1,000 nodes).
Remember that TFMNs are multiplex but do not feature any weight or inter-layer links,
hence for them multiplex closeness is equivalent to the single-layer closeness on the
aggregate network obtained by considering all edge types as equivalent, as considered in
previous cognitive approaches (Stella et al., 2018). Therefore, multiplex closeness on the
TFMN considers both syntactic and semantic links when outlining shortest paths between
concepts.

Forma mentis networks included also structural features of the mental lexicon of
individuals combined with affective patterns (Warriner, Kuperman & Brysbaert, 2013).
This unique combination allowed for Stella et al. (2019) to introduce the network metric
of valence auras, i.e., the mode of valence labels in a given neighbourhood. In Stella et al.
(2019) a word was defined as having a positive (negative) valence aura if mostly linked to
positive (negative) words. Thismeasure was used also in the current analysis, although it has
to be underlined that in here these affectmeasures represented how a large-scale population,
independent from the one producing the texts, perceived individual concepts. Since valence
auras still depended on the connectivity of conceptual associations as assembled by text
authors, this metric quantified how groups of these authors structured and perceived their
knowledge. In the current analysis, valence auras rather than single-word valence labels
were key to reconstructing positive/negative perceptions of individual concepts by checking
their conceptual associates in the analysed online discourse.

RESULTS
The main results of this manuscript are twofold. On the one hand, the current analysis
provides a cross-validation of the information revealed by TFMNs through a benchmark
on short texts, revolving around specific topics. Comparison with validated behavioural
cognitive data indicates that the structure of TFMNs captures semantically relevant
information about text like topics or conceptual relevance. On the other hand, the rest of
the Results section focuses around reconstructing and analysing a data-driven picture of
the online perception of women in science and the gender gap as reported by online users
on Twitter.

Benchmark of text-based forma mentis networks on short texts
This subsection reports results of the benchmarking analysis of ‘‘Complexity Explained’’
(see Methods) through TFMNs. For each of the seven paragraphs of the booklet a TFMN
was built. Closeness centrality was used for identifying the most central concepts in every
TFMN and produce rankings of the most relevant words in each text. Overall, the resulting
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Table 1 Top-ranked concepts in the TFMNs obtained from the seven paragraphs of the booklet Complexity Explained. The ranking is based on
closeness centrality. Every paragraph revolves around one topic, clearly established by the authors and reported here too.

Rank/Topic Interactions Emergence Dynamics Self-organisation Adaptation Interdisciplinarity Methods

1 component system system pattern adapt system compute
2 interact property change emerge system understand model
3 whole part state may able science method
4 study component behaviour organ become complex mathematics
5 system whole point become function use lead
6 make sum show interact damage variety require
7 difficult phenomenon variable system evolve manage involve
8 part complex dynamic produce go domain analysis
9 new exhibit tend property may ecology forecast
10 consist deduce depend lead robust biology rule

formamentis network contained amedian of 49 concepts and were fully connected. Table 1
reports the 10 most central words in each network and their underlying topic.

Table 1 indicates that, beyond an overall agreement between key concepts and topics, as
identified by TFMNs, the network topology of syntactic/semantic associations identified
the most distinctive conceptual features of topics. For instance, while the ranking for the
topic ‘‘Interactions’’ reported mainly concepts relative to structure (e.g., component, part,
whole, consist ), the ranking of ‘‘Dynamics’’ identified concepts related to the evolution
over time of a system (e.g., change, state, behaviour, dynamic). Words expressing resilience
and robustness to attacks, like ‘‘damage’’, ‘‘function’’, ‘‘evolve’’, ‘‘adapt’’ and ‘‘robust’’,
were found to be central in the textual forma mentis network of ‘‘Adaptation’’. TFMNs
detected ‘‘domain’’ as being a relevant concept in the ‘‘Interdisciplinarity’’ paragraph. This
was expected in a text describing complexity science as an umbrella for different research
areas. The ‘‘Methods’’ paragraph revolved, as expected, around quantitative concepts,
e.g., forecast, compute, model, method, analysis, rule. In the same paragraph, mathematics
was found to be highly relevant, in agreement with the overall necessity of a mathematical
language for investigating complex systems (Cancho, Solé & Köhler, 2004; Siew et al., 2019).

Although the above qualitative analysis indicated an overall agreement between topics
and identified key concepts, a more quantitative approach was further pursued. With the
aim of assessing whether the identified concepts were more or less semantically related
to the topics designed by text authors, free associations and semantic network distance
were adopted. In networks of free associations, nodes/words are linked if they elicit a
quick recall of each other in a behavioural task (De Deyne et al., 2019). Previous studies
have shown how semantic network distance on networks of free associations are a good
proxy of semantic relatedness, superior also to semantic latent analysis (Kenett et al., 2017).
Although several datasets for free associations are available in the literature, this benchmark
considered two: the large-scale Small World of Words gathered by De Deyne et al. (2019)
and the small-scale Complex Forma Mentis project gathered by Stella et al. (2019). Many
of the scientific terms present in Complexity Explained were absent in the Small World of
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Words but present in the STEM free associations provided by Stella et al. (2019). Therefore,
this analysis focused on the second dataset of free associations.

The network distance between every relevant word and its reference topic was computed
for all paragraphs within the the network of free associations by Stella et al. (2019), i.e., a
behavioural forma mentis network based on the collective mindset around science of 59
complexity researchers. Hence, relevant words were extracted from textual forma mentis
networks (of syntactic/semantic relationships). The semantic proximity of these relevant
words with their reference topic was tested on a behavioural forma mentis network (of
free associations). The reference topics were ‘‘interaction’’, ‘‘emergence’’, ‘‘dynamics’’,
‘‘self-organisation’’, ‘‘interdisciplinary’’ and ‘‘methods’’ and the relevant concepts were
the ones in Table 1. The resulting set of empirical semantic network distances was then
compared against a reference null model with randomised TFMNs having the same number
of links and nodes of the original networks but with randomly reshuffled links (i.e.,
configuration models Stella et al., 2018). The reshuffling disrupted semantic relationships
between network structure and meaning (Stella et al., 2018). A location test between the
empirical and the randomised network distances (over 50 network realisations) indicated
a statistically significant difference between the clustering of relevant words around each
topic and the null model (Mann–Whitney test, U = 17827, p-value: 0.0267< 0.05) at a
significance level of 0.05. In the networked free associations representing the scientific
knowledge of complexity researchers, the words identified as relevant for a topic by
TFMNs tended to be closer to their own topic (median network distance: 3.1) than on the
randomised networks (median network distance: 3.7). Since semantic network distance
on networks of free associations indicates semantic relatedness (Kenett et al., 2017), these
results confirmed that closeness centrality on TFMNs was capable of identifying concepts
relevant to the specific topic underlying a given text.

Given the successful outcome of such benchmark, TFMNs can therefore be applied to
extracting relevant features of other short texts. The following section reports on the results
of TFMNs when used for analysing over 10,000 tweets about gender gap in science.

Analysis of the perception of gender gap in STEM with cognitive
networks
The textual forma mentis network obtained from processing the selected tweets included a
largest connected component including 3,005 stemmed concepts and 28,004 connections
(24,693 in the syntactic layer and 3,311 in the synonyms layer). The 10 most central
concepts in terms of closeness centrality were: ‘‘STEM’’, ‘‘science’’, ‘‘we’’, ‘‘do’’, ‘‘you’’,
‘‘learn’’, ‘‘make’’, ‘‘get’’, ‘‘work’’, ‘‘need’’. Notice that closeness centrality captures semantic
prominence, i.e., a concept being semantically related to all other concepts connected to
it. The identification of ‘‘STEM’’ and ‘‘science’’ as semantically prominent in the dataset
confirms the scientific scope of the latter. This finding importantly indicates that TFMNs
are able to identify semantically prominent concepts not only in well-ordered, short texts
(see the benchmark) but also in the collection of short texts represented by tweets. This
should not be given for granted, since tweets also include hashtags, emojis and linguistic
abbreviations that do not appear in well-ordered paragraphs and which were not included
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in TFMNs. Despite this limitation, TFMNs identified words capturing the general context
of science of the investigated online discourse. Concepts like ‘‘woman’’ and ‘‘man’’ ranked
103rd and 246th, respectively, mirroring the relevance of women in science for the selected
online discourse. ‘‘Scientist’’ ranked higher, at the 54th position, further confirming the
scientific scope of the dataset.

Conceptual associations with and around a concept identify word clusters
The TFMN was more clustered than random expectation (using a single-layer clustering
coefficient where all links are aggregated together, cf. Siew et al., 2019). Concepts linked
to a common neighbour tended to get connected with each other too. The empirical
network displayed a mean clustering coefficient of 0.327 (0.166± 0.007 for reference
configuration models Stella et al., 2018). Hence, in the TFMN concepts clustering around
a given word (e.g., ‘‘STEM’’) shared syntactic/semantic links too, a tendency that can
provide a richer structure about the conceptual organisation of knowledge around specific
concepts/topics in terms of (more) conceptual links. Consequently, investigating clustered
networked neighbourhoods of words can provide contextual information that would be
lost by considering either words in isolation or only the list of associates to a given concept.
For this reason, the investigation focused on word clusters in order to better understand
the online perception of the STEM gender gap.

Valence auras and global network metrics highlight an overall positive
online stance towards STEM and gender gap
The 3,005 stemmed concepts extracted from relevant tweets and connected in the forma
mentis network were rated as positive (1045), negative (430) and neutral (1943) according
to the procedure described in the Methods. Positive concepts were found to have a
higher median degree than negative concepts (Mann–Whitney test, numerosity n1= 1045,
median degree k1 = 9, n2 = 430, k2 = 4, U = 3 ·106, p< 10−6). Positive concepts were
also found to be more central in the reconstructed mindset in terms of requiring fewer
syntactic/synonymy associations in order to reach any other connected concept, i.e.,
centrality as expressed by multiplex closeness (Stella et al., 2018), (Mann–Whitney test,
numerosity n1 = 1045, median degree k1 = 0.3601, n2 = 430, k2 = 0.3307, U = 3 · 106,
p< 10−6). These comparisons indicate that in the analysed corpus of twitter language
focusing on women and STEM, positive concepts were more predominant, more well
connected and more central than negative concepts. The richer network structure of
conceptual associations of positive concepts translated into a generally positive attitude of
twitter users towards the STEM gender gap.

Figure 2A reports the emotional auras (Stella et al., 2019; Stella, 2020) of hub concepts
in the reconstructed mindset of social media users. While single-word labels were
determined from the sentiment of a general population, i.e., participants in an affect
mega-study (Warriner, Kuperman & Brysbaert, 2013), auras emerged from the specific
syntactic/synonymy relationships traced in the analysed data and therefore characterised
the reconstructed mindset of the population of interest. Concepts like ‘‘STEM’’, ‘‘gender’’
and ‘‘gap’’ are neutral in commonly spoken language but were associated mostly with
positive concepts in the language of the online discourse, i.e., surrounded by a positive
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Figure 2 (A) Valence auras in the global formamentis network of all 10,384 analysed tweets. Positive
(negative) words are highlighted in cyan (red). A fraction of 0.4 indicates that 40% of the neighbours of
a word (e.g., STEM) are labelled as positive. (B–E) Textual formamentis network for words linked to
the target topics like ‘‘bias’’ (B), ‘‘unique’’ (C), ‘‘hurt’’ (D) and ‘‘journal’’ (E).

Full-size DOI: 10.7717/peerjcs.295/fig-2

emotional aura. This indicates an overall positive perception of these topics that would
go undetected when investigating ‘‘STEM’’, ‘‘gender’’ and ‘‘gap’’ in isolation. Differently
from other investigations with forma mentis networks (Stella et al., 2019; Stella, 2020), the
sampled online audience reported a strongly positive perception/aura of ‘‘student’’. Also
‘‘bias’’, a negative concept, was surrounded by a positive emotional aura, indicating an
overall mixed stance trying to figure out positive aspects of a bias (e.g., how to overcome
it). Further analysis is required in order to better understand the above perceptions.
Figure 2 reports the mindset structure around ‘‘bias’’ (B) and other concepts like ‘‘unique’’
(C), ‘‘hurt’’ (D), and ‘‘journal’’ (E). The forma mentis neighbourhood of ‘‘bias’’ included
associations to positive concepts like ‘‘face’’, ‘‘win’’, ‘‘clear’’ and to negative concepts
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like ‘‘fight’’, ‘‘cost’’ and ‘‘stereotype’’, all revolving around contrasting and overcoming
biases. Therefore, the reconstructed TFMN indicates how social media users discussed
about ‘‘bias’’ in terms of a negative entity to be contrasted, overcome and won, thus
explaining the above mixed perception. Other words associated to bias gravitated around
the gender pay gap and economic implications (Courey & Heywood, 2018), e.g., ‘‘earn’’,
‘‘cost’’, ‘‘value’’. Links with ‘‘unconscious’’ and ‘‘fact’’ indicate that social media users were
aware of hidden, unconscious gender biases affecting the gender gap (Pietri et al., 2018).

Figure 2C also reports how ‘‘unique’’ was associated in the online discourse around the
gender gap. The mixed perception of ‘‘unique’’ included negative associations to concepts
eliciting loneliness, e.g., ‘‘oppress’’, ‘‘fail’’, ‘‘alone’’ and ‘‘pretend’’, which are unexpected
when considering the positive perception of ‘‘unique’’ itself. Hence, the TFMN indicates
that when associated in messages focusing on women in STEM, the meaning of ‘‘unique’’
shifted from positive to mixed and included negative connotations of social exclusion and
sense of failure. This is an example of contextual valence shifting (Polanyi & Zaenen, 2006),
a phenomenon in which a concept changes its valence according to its semantic context.
TFMNs represent a valuable quantitative tool for identifying valence shifting through
semantic associates and emotional profiling.

The multiplex structure of TFMNs can influence an emotional aura. Synonymy links
(green) do not come from text but rather from a pre-determined lexicon of synonyms
(i.e., WordNet Miller, 1998) that has general validity over common language. Instead,
syntactic (blue/red/gray) associations come from the specifically analysed language. In this
way, TFMNs can identify also missing conceptual associations or the predominance of
synonymy over syntactic links.

The negative aura of ‘‘hurt’’ in Fig. 2D was mostly due to general synonyms whereas
specific syntactic associations included positive concepts like ‘‘teach’’, ‘‘like’’ or ‘‘health’’,
thus indicating a lack of hurtful/painful conceptual associations in the investigated online
discourse over women in STEM. Network structure was informative also about the negative
aura attributed to ‘‘journal’’, which was linked to ‘‘politician’’, ‘‘stereotype’’, ‘‘bias’’ and
‘‘policy’’. These syntactic links indicated a social awareness about journals and news media
potentially perpetrating gender stereotypes, a role that was investigated in previous studies
(Steinke, 2017).

The online social perception of “woman”, “man” and “person”
reconstructed by TFMN
Although it is expected for the online discourse to feature also automatic accounts and
social bots, previous research identified human users as beingmore predominant in driving
and diffusingmessage exchanges on social platforms (Stella, Ferrara & De Domenico, 2018).
Comparing how people identify themselves in a discourse where they are the main drivers
can be informative about social roles and users’ self-perception (Varol & Uluturk, 2020).

Figure 3 reports and compares the forma mentis network around ‘‘woman’’ (A), ‘‘man’’
(B) and ‘‘person’’ (D). All these three concepts, commonly perceived as positive entities,
were surrounded by positive emotional auras in agreement with the overall positive features
reported above of the whole TFMN.
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Figure 3 (A–D) TFMN frames around ‘‘woman’’ (A), ‘‘man’’ (B) and ‘‘person’’ (D). Words are clus-
tered in communities obtained via the Louvain algorithm (cf.Konstantinidis, Papadopoulos & Kom-
patsiaris, 2017). Words in the same community of ‘‘woman’’ in A are plotted through a hierarchical
edge-bundling visualisation in C. Positive (negative) words and links are highlighted in cyan (red).
Links between positive and negative concepts are reported in purple. Semantic links between synonyms
are in green. (E–F) Emotional profiles for the frames of ‘‘woman’’ (E) and ‘‘man’’ (F) indicate the frac-
tion of concepts in a frame eliciting a certain emotion. Comparison against random sampling is re-
ported, with z-scores plotted as emotional flowers (see Methods).

Full-size DOI: 10.7717/peerjcs.295/fig-3
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The reconstructed social perception of ‘‘woman’’ within the online discourse of gender
gap in STEM identified mainly semantic clusters expressing three aspects:
1. leadership and professional recognition in STEM (e.g., ‘‘enterpreneur’’, ‘‘award’’,

‘‘recognize’’, ‘‘leader’’, ‘‘power’’, ‘‘career’’, ‘‘success’’, ‘‘deserve’’, ‘‘science’’, ‘‘valid’’);
2. learning and education (e.g., ‘‘teacher’’, ‘‘inspire’’, ‘‘learn’’);
3. social welfare (e.g., ‘‘finance’’, ‘‘advocate’’).
All these aspects were dominated by positive, concrete concepts eliciting a sense of

achievement and professional establishment. The resulting picture was an overall positive
sentiment/perception of the online social discourse about the figures of women in science.
However, within this positive landscape, a closer look at the local community of concepts
clustering around ‘‘woman’’ identified also negative associations, further highlighted in
Fig. 3C.

The analysed text associated women also to ‘‘indebted’’, ‘‘kill’’, ‘‘lone’’ and ‘‘cry’’,
highlighting a multifaceted perception of women in STEM and including negative traits
that might originate from stereotype threat (Shapiro & Williams, 2012; Pennington et al.,
2016). In cognitive psychology, stereotypes can advantageously form a belief about or
characterise key traits of groups of people through little cognitive effort. Stereotypical
perceptions come at the cost of being not grounded in empirical knowledge, providing
inexpensive but potentially erroneous information that can: deeply affect perception and
cognitive processing (Pennington et al., 2016), induce anxiety, and reduce performance
under pressure, e.g., causing a sense of threatening. For instance, STEM stereotypes like
‘‘girls are not good at maths’’ have been reported to affect even the self-perception of
female STEM students, causing unconscious biases which reduced girls’ performance and
retaining of STEM subjects (Shapiro & Williams, 2012; Steinke, 2017; Chavatzia, 2017). The
TFMN reported in Fig. 3A, and its inset (C), highlighted the stereotype of the ‘‘oppressive,
lonely, big-shot woman in STEM’’, relative to women in STEM achieving successful careers
only at the cost of sacrificing empathy and other positive personality traits (Ely, Ibarra &
Kolb, 2011; Madsen & Andrade, 2018). Recent studies have overwhelmingly exposed such
stereotype, cf. Steinke (2017), and the permanence of these negative associations in online
social discourse represents evidence of how such stereotype is still deep-rooted in daily
communication. Notice that this might have also positive repercussions, as improving
the awareness of the effects of stereotype threat by simply talking about it can boost
self-perception and promote the implementation of effective countermeasures fighting
stereotypes (Madsen & Andrade, 2018).

The reconstructed online perception of women was overwhelmingly positive and it
indicated how women’s success and leadership in STEM deserve recognition (Madsen
& Andrade, 2018). This perception has to be compared against the one of males. Figure
3B considers the forma mentis network around ‘‘man’’, which included mostly positive
concepts like ‘‘science’’, ‘‘passion’’ and ‘‘smile’’. However, syntactic links associated ‘‘man’’
also to negative concepts such as ‘‘rape’’, ‘‘issue’’ and ‘‘racist’’, indicating the presence
in the online discourse of forms of accusations or condemnations of the role played by
men in social issues like sexual harassment, rape and racism (Karami et al., 2020). In
the forma mentis around ‘‘man’’, special attention has to be devoted also to the negative
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particle ‘‘not’’, which is syntactically linked to ‘‘god’’, ‘‘think’’, ‘‘make’’ and ‘‘consider’’. The
negation of all these concepts, as indicated by the syntactic links, provided a multi-faceted
perception where men in STEM were related to a superiority complex, a stereotypical
self-perception of superiority in science-related achievements, for instance in mathematics
assessments (Leyva, 2017), promoted by preliminary and incomplete studies (cf. Leyva,
2017; Chavatzia, 2017). This quantitative result, embedded in language and highlighted
by forma mentis networks, indicates that fighting the gender gap in STEM means also
changing men’s stereotypical roles in science.

In terms of emotional profiles, both ‘‘woman’’ and ‘‘man’’ included associates evoking
mainly trust, joy and anticipation, see Figs. 3E–3F. The TFMN around ‘‘woman’’ was
slightly richer in anger-eliciting words, like ‘‘kill’’ or ‘‘shot’’, than the TFMN around
‘‘man’’, but both levels were compatible with random expectation.

In Fig. 3D, the TFMN around ‘‘person’’ was devoid of any negative concept or sign of
stereotype threat. Word clusters related ‘‘person’’ to a multifaceted perception about career
progression, mindfulness and education. The associates of ‘‘person’’ evoked mostly trust
(emotional profile not shown for brevity), further confirming the positive perception of
‘‘person’’ itself. Given the gender-less dimension of ‘‘person’’ in English, it is interesting to
underline how the above negative perceptions are more tightly connected to gender-rich
words for human beings like ‘‘man’’ and ‘‘woman’’ and not to genderless words like
‘‘person’’. Since words in language do not only describe reality but rather contribute to
forging it (Malt, Wolff & Wolff, 2010), the above result suggests that reducing the incidence
of the gender gap might be possible also by speaking more and more in terms of ‘‘persons
in STEM’’ rather than in terms of contrasting ‘‘men versus women in STEM’’, always while
respecting individual differences.

The online social perception of gender gap and scientist stereotypes
as reconstructed by TFMN
This subsection investigates ‘‘gender’’ and ‘‘gap’’ and their online perceptions. Figure 4
considers the TFMN around ‘‘gender’’ (A,B) and ‘‘gap’’ (C,D), which were both considered
as neutral concepts in language.

The online discourse over the social platform associated these two concepts with each
other, as expected, and related both of them mainly to positive words. Hence, the overall
online emotional aura of ‘‘gender gap’’ was mostly positive but it also included some
negative associates. The community structure for the TFMN of ‘‘gender’’ identified three
perceptual dimensions in the way online users talked about gender:

• a positive dimension of respect and consideration (with associates like ‘‘balance’’,
‘‘close’’, ‘‘consider’’ and ‘‘respect’’);
• a research dimension in understanding the science of gender (with associates like
‘‘research’’, ‘‘support’’, ‘‘future’’, ‘‘highlight’’ and ‘‘explain’’);
• a mostly negative dimension of gender imbalance and biases (with associates like
‘‘doubt’’, ‘‘imbalance’’ and ‘‘attack’’).
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Figure 4 (A–D) TFMN frames around ‘‘gender’’ (A) and ‘‘gap’’ (C). Words are clustered in commu-
nities obtained via the Louvain algorithm (cf.Konstantinidis, Papadopoulos & Kompatsiaris, 2017).
Words in the same community of ‘‘gender’’ in A and ‘‘gap’’ in C are plotted through a hierarchical edge-
bundling visualisation in B and D, respectively. Positive (negative) (continued on next page. . . )

Full-size DOI: 10.7717/peerjcs.295/fig-4
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Figure 4 (. . .continued)
words and links are highlighted in cyan (red). Links between positive and negative concepts are reported
in purple. Semantic links between synonyms are in green. (E–F) Emotional profiles for the frames of ‘‘gen-
der’’ (E) and ‘‘gap’’ (F) indicate the fraction of concepts in a frame eliciting a certain emotion. Compari-
son against random sampling is reported, with z-scores plotted as emotional flowers (see Methods).

Associations of ‘‘gender’’ with concepts like ‘‘stereotype’’, ‘‘unfounded’’, ‘‘break’’ and
‘‘tackle’’ (see Fig. 4B) indicated an attitude of opposition, among online users, against
gender stereotypes in the considered online communications.

Analogously to ‘‘gender’’, also ‘‘gap’’ included negative associations to ‘‘bias’’ and
‘‘attack’’ and positive links to concepts like ‘‘overcome’’, ‘‘close’’ and ‘‘consider’’ (see Fig.
4C). The conceptual cluster around ‘‘gap’’ highlighted in Fig. 4D contained associations
mostly focusing on:
1. the expectation to overcome and reduce the gender gap in the future (e.g.,‘‘reverse’’,

‘‘break’’, ‘‘crack’’, ‘‘bridge’’ and ‘‘reduce’’);
2. the economic impact of the gender gap (e.g., ‘‘pay’’, ‘‘income’’, ‘‘wage’’).
These two dimensions indicate a positive intention for the online discourse to tackle

and reduce gender gaps, while displaying awareness about the gender pay gap (Courey &
Heywood, 2018) and also an emotion of anticipation or projection of such challenge in
the future (see emotional profiling in Figs. 4E–4F). This provides additional quantitative
indication for the importance of achieving equal wages in STEM in order to reduce
the gender gap, in agreement with previous studies (Courey & Heywood, 2018). Figure 4
contains also negative associations between ‘‘gap’’, ‘‘bias’’ and ‘‘unconscious’’, indicating a
remarkable awareness of online users about the gender gap being rooted in unconscious
bias and gender preconceptions that are difficult to detect and act upon (Karami et al.,
2020; Steinke, 2017;Moss-Racusin et al., 2012; Pietri et al., 2018).

As already mentioned above, a prominent mechanism of unconscious bias is stereotype
threat, where unconscious perceptions cause anxiety and negative latent emotions that
influence performance, e.g., girls aware of the preconception that ‘‘girls are not good in
science’’ end up performing worse than males in STEM tasks (Moss-Racusin et al., 2012;
Shapiro & Williams, 2012;Madsen & Andrade, 2018;Chavatzia, 2017). Given the awareness
of online users about unconscious biases, it becomes relevant to explore the networked
TFMN mindset in search of signs of stereotype threat.

Because of the STEM scope of the dataset, the focus here was devoted to detecting
stereotypical perceptions in the figure of ‘‘scientist’’, whose neighbourhood is reported
in Fig. 5A. The TFMN quantified positive semantic associations surrounding ‘‘scientist’’.
Clusters ofmore tightly associations identified a strong perception of scientists in relation to
innovation (e.g., ‘‘tech’’, ‘‘society’’, ‘‘entrepreneur’’, ‘‘innovate’’, ‘‘discover’’, ‘‘leadership’’).
A closer look (cf. Figure 5B) revealed also enthusiasm-eliciting concepts (e.g., ‘‘great’’,
‘‘notable’’, ‘‘famous’’, ‘‘celebrant’’, ‘‘dream’’, ‘‘congratulate’’) and career-related jargon
(e.g., ‘‘showcase’’, ‘‘assess’’, ‘‘work’’, ‘‘peer’’, ‘‘academia’’). Hence, scientists were perceived
as successful professionals by online users, analogously to what other social groups like
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Figure 5 (A–B) Semantic frame for ‘‘scientist’’ (A). The plot on the right zooms in the community of
words more tightly connected to ‘‘scientist’’ (B). Positive (negative) words and links are highlighted in
cyan (red). Links between positive and negative concepts are reported in purple. Synonymy relation-
ships are in green. (C) Emotional profile and flower for the neighbourhood of ‘‘scientist’’, indicating
what emotions elicit the associates of ‘‘scientist’’ itself in the analysed corpus.

Full-size DOI: 10.7717/peerjcs.295/fig-5

high-school students did in other studies (cfr. Stella, 2020). Even within this success-
centred perception, online users linked scientists to concepts like ‘‘suffer’’, ‘‘pain’’ and
‘‘gain’’, displaying awareness about the cost of success and the need for hard work.

Overall, the mental construct of ‘‘scientist’’ represented by the TFMN identified a well-
rounded, balanced and positive online perception of scientists in terms of successful, hard-
working professionals, devoid of any significant patterns of stereotype threat associating
scientists only to a male-gender sphere, differently from stereotypical perceptions found
in other datasets and groups via the Implicit Association Test (Lane, Goh & Driver-Linn,
2012; Steinke, 2017).

In line with the semantic analysis, according to the emotional profile in Fig. 5C, scientists
elicited strong feelings of trust, joy and anticipation.

A frequency analysis confirms the above general positive perception
The above approach relies on the syntactic structure of language used in tweets, which is
indicative of the way online users discussed the gender gap. However the results relying
on language structure should be cross-validated with other approaches like frequency
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counts, which neglect linguistic structure but keep into account word repetitions in a given
discourse.

In the considered dataset, after stemming words, their frequency of appearance across
tweets was counted. 430 negative words were featured in the considered dataset and
appeared in total 1,192 times. The most frequent negative stemmed words included
‘‘problem’’, ‘‘lack’’, ‘‘miss’’, ‘‘critic’’, ‘‘pain’’, ‘‘doubt’’, ‘‘old’’, ‘‘kill’’, ‘‘forget’’ and ‘‘toxic’’.
Some of these concepts were featured in the semantic frame of ‘‘woman’’, as reported
above. The dataset included also 1045 positive words, which appeared in total 13,905
times. The most frequent positive stemmed words included ‘‘girl’’, ‘‘career’’, ‘‘student’’,
‘‘learn’’, ‘‘new’’, ‘‘support’’, ‘‘great’’, ‘‘like’’, ‘‘research’’ and ‘‘thank’’. Most of these words
were featured in the semantic frames of ‘‘woman’’, ‘‘man’’, ‘‘person’’ and ‘‘scientist’’.
1943 neutral words appeared in total 16,711 times. Hence, the considered social discourse
represented as a TFMNhere not only featuredmore than twice as many positive words than
negative concepts but positive words also occurred with a total frequency more than ten
times higher than the one of negative words. These patterns confirm the results obtained
with the TFMN about the considered social discourse around the gender gap being mostly
dominated by positive concepts but also modestly riddled with negative concepts. In
comparison with this simplistic frequency approach, the network structure investigated
up above provided insightful results on the ways positive and negative words were used
and linked across the above investigated semantic frames of ‘‘woman’’, ‘‘man’’, ‘‘scientist’’,
‘‘gender’’ and ‘‘gap’’.

DISCUSSION
As outlined in recent Big Data Analytics studies (Huang et al., 2020; Odic & Wojcik, 2019;
Chavatzia, 2017), differences in gender discrimination are strongly influenced by distorted
mindsets, with deep, often hidden, repercussions over pay gaps (Courey & Heywood,
2018) and sexual harassment (Karami et al., 2020). Combining these findings with the
ever-increasing influence of social media over real life (Jansen et al., 2009; Waqas et al.,
2019; Stella, Ferrara & De Domenico, 2018; Nasar, Jaffry & Malik, 2019) highlights an
urgent necessity for using information processing in order to understand ‘‘if’’ and ‘‘how’’
specific massive online social platforms promote information on distorted mindsets. The
tackling of such research question is essential for countering gender biases with data-
informed approaches (Huang et al., 2020). This work tackled this question by extracting,
reconstructing and understanding with textual forma mentis networks (TFMNs) how
online users perceived and discussed the topics of ‘‘women in STEM’’ and the ‘‘gender
gap’’ on Twitter.

As a knowledge extraction technique (Nasar, Jaffry & Malik, 2019), TFMNs indicated
an overall positive attitude of the online discourse towards tackling and reducing gender
inequality. Going beyond the positive/negative polarity of standard sentiment analysis
(Mohammad, 2016; Stella, Ferrara & De Domenico, 2018), this work attributed TFMNs
with a richer emotional profile, using emotional data from (Mohammad & Turney, 2013)
and providing a quantitative way for detecting contextual connotation shifting (Polanyi &
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Zaenen, 2006), i.e., a concept being perceived in different ways according to its semantic
context and associates. The reconstructed forma mentis networks outlined ‘‘man’’,
‘‘woman’’ and ‘‘scientist’’ as being associated with concepts eliciting predominantly
trust, joy and anticipation and, with way less intensity, also anger and fear. Trust is a
feeling of confidence, security and positive endorsement (Ekman & Davidson, 1994), its
predominance in the retrieved TFMNs suggests a willingness for online users to provide
and exchange endorsements to each others’ messages while debating the topic of ‘‘women
in science’’. This result is in contrast with a previous study reporting Twitter as being
more prone to host general-level negative rather than positive emotional content (Waterloo
et al., 2018). This disparity might be explained by considering that Twitter interactions
focus mainly over weak social ties, including mostly acquaintances and casual contacts
rather than strongly personal relationships (Waterloo et al., 2018). Since the expression of
topic-inspired negative emotions along weak social ties is considered being less acceptable
(Ferrara & Yang, 2015), more positive emotional profiles would be expected from topic-
specific Twitter public debate, and not from general level content sharing like the one
in (Waterloo et al., 2018). As a future research direction, it would be interesting to detect
whether the mostly trustful and positive perception of gender biases would persist also
on other social media platforms with stronger social ties such as Facebook or WhatsApp
(Waterloo et al., 2018).

Another emotional state prominently featured in all the reconstructed stances towards
‘‘woman’’, ‘‘gender’’, ‘‘gap’’, ‘‘man’’ and ‘‘scientist’’ was anticipation, a neutral emotional
state including either pleasure or anxiety towards future events (Ekman & Davidson,
1994). The predominance of anticipation and joy with respect to other emotions like
sadness, fear, disgust or anger, suggests the prevalence of positive expectations in the
analysed text, examples being the excitement-related concepts associated with ‘‘scientist’’
or the successful dimension attributed to women in STEM. These patterns indicate the
occurrence of messages celebrating women in science and their success, contrasting the
gender gap with stories of excitement and professional achievement. Extensive research
(cfr. Pietri et al., 2018; Chavatzia, 2017;Madsen & Andrade, 2018) indicates that promoting
professional achievements of women in science has strong beneficial effects in favouring
women’s representation in STEM, as it enables girls in identifying relatable and inspiring
stories of success in STEM going beyond discrimination.

The reconstructed TFMNs reported evidence for online users being aware about
unconscious gender biases (Shapiro & Williams, 2012). These biases occur when an
individual consciously rejects gender stereotypes but is still influenced by and makes
unconscious evaluations based on such stereotypes themselves, see also (Madsen &
Andrade, 2018; Ely, Ibarra & Kolb, 2011). At the individual level, unconscious and passive
discrimination based on gender stereotypes can have smaller repercussions in comparison
to actively promoting gender inequality. However, at the group level, many unconscious
small biases can interact in a complex systems fashion (Hogue & Lord, 2007) and lead
to the emergence of ‘‘powerful yet often invisible barriers’’ of gender discrimination
(Ely, Ibarra & Kolb, 2011). These barriers undermine considerably women representation
and professional growth in a variety of fields including also STEM (Shapiro & Williams,
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2012; Lane, Goh & Driver-Linn, 2012; Madsen & Andrade, 2018; Huang et al., 2020; Odic
& Wojcik, 2019). Forma mentis networks captured signals of unconscious gender bias in
online discourse around ‘‘women in science’’. These conceptual links can be beneficial in
promoting awareness about the above invisible barriers, further suggesting the extreme
importance of fighting implicit biases in STEM careers for closing the gender gap in STEM
(Pietri et al., 2018).

Another prominent topic emerging from the TFMNs is the gender pay gap, a mismatch
between the salaries of individuals of different genders performing the same job (Courey &
Heywood, 2018). The online perception reconstructed by forma mentis networks indicates
that pay gaps are closely semantically related to both ‘‘gender’’ and ‘‘gap’’, thus indicating
that closing the gender pay gap is key for fighting gender biases in STEM, in agreement
with previous relevant studies (Ely, Ibarra & Kolb, 2011; Courey & Heywood, 2018).

Although partial evidence for a stereotypical, angry-eliciting and fearful perception of
women in STEM as ‘‘lone survivors’’ was present in the neighbourhood of ‘‘woman’’, the
overall perception of such concept was positive and elicited mostly trustful and joyous
concepts, celebrating women’s success in STEM. The reconstructed role of ‘‘scientist’’ did
not include stereotypical conceptual associations, indicating a lack of stereotype threat
phenomena (Shapiro & Williams, 2012) in the considered online discourse. In cognitive
psychology, stereotype threats represent unconscious mechanisms that affect performance
of a given group in relation to the stereotypical expectations commonly shared about
that group (e.g., ‘‘girls are bad at maths’’ is a stereotype harming girls’ performances
in maths, cfr. Pennington et al., 2016; Chavatzia, 2017). Forma mentis networks mostly
related the online perception of scientists to success and career progression and highlighted
a lack of stereotypical perceptions, differently from the detection of scientist-centred
stereotypes found in previous approaches with cognitive network science (Stella, 2020),
via the Implicit Association Test (Lane, Goh & Driver-Linn, 2012). Such virtuous finding
might be the consequence of the relatively high participation of STEM professionals over
the Twittersphere, which can disrupt stereotypical perceptions. As future research, it would
be interesting to apply TFMNs for detecting potential patterns of stereotype threat in other
social platforms like Facebook or WhatsApp, that are more exposed to negative content
(Waterloo et al., 2018) and also less prone to hosting posts from STEM experts. It would
also be of interest to investigate different patterns of social denounce about gender-related
issues like workplace sexism or discrimination towards LGBT+ people.

From a methodological perspective, TFMNs rely on the recent theory of cognitive
networks (Siew et al., 2019) and include syntactic and semantic conceptual associations
which are informative of the structure of knowledge perceived by text authors (Stella et al.,
2018; Stella, 2019). Differently from other successful models of knowledge representation
such as concept maps (Koponen & Nousiainen, 2019; Dóczi, 2019) and knowledge graphs
(Amancio, 2015; Akimushkin, Amancio & Oliveira Jr, 2017; De Arruda et al., 2019), forma
mentis networks contain also emotional information, outlining sentiment and emotional
patterns in the way individuals assembled their stance in a text. This contextual information
is essential for the interpretability of a detected stance (Nasar, Jaffry & Malik, 2019). The
combination of rational knowledge and emotional perceptions is the main strength of
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this methodology. Combining knowledge and emotions is particularly relevant when
investigating problems as complex as the gender gap, which spans several cognitive,
educational and organisational aspects (Easterly & Ricard, 2011; Beede et al., 2011).

The framework of textual forma mentis networks reported here has some important
limitations. Differently from the behavioural forma mentis networks introduced in
previous studies (Stella & Zaytseva, 2020; Stella et al., 2019; Stella, 2020), in TFMNs the
valence of concepts represents population-level averages extracted from mega-studies in
psycholinguistics (Warriner, Kuperman & Brysbaert, 2013). This representation assumes
an overall shared perception of the emotional content of concepts that might be preserved
at the global level, i.e., on an online platform where large numbers of users of multiple
backgrounds interact with each other. However, this assumption might be violated within
specific populations. For instance, Stella et al. (2019) showed that a population made
entirely of high-school students perceived ‘‘maths’’ as a negative concept whereas a
population of international researchers perceived the same concept as positive. The overall
perception of ‘‘maths’’ reported in the language norms byWarriner, Kuperman & Brysbaert
(2013) was neutral, as reported also in the TFMNs presented here (Warriner, Kuperman &
Brysbaert, 2013). It is important to keep this assumption in mind when applying TFMNs
to mindset reconstruction in specific and non-heterogenous populations. Nonetheless,
even in these populations TFMNs can be informative about conceptual associations as
expressed by the semantic/syntactic multiplex network structure, since the emotional
attitude towards a concept can be reconstructed from the attitude and meaning of its
associates (Polanyi & Zaenen, 2006). As a future research direction, a potential approach
for achieving population-specific valence labels would be valence extraction from text,
a technique that exploits word embedding and machine learning (Mohammad, 2016;
Rudkowsky et al., 2018) and as such works well for longer texts like books or essays but
is still relatively less accurate for shorter texts like tweets or posts, which are less rich
in semantic information (Polanyi & Zaenen, 2006). Another limitation of this study was
neglecting emojis and hashtags included in tweets. These elements were not included in
the exploratory analysis here because they do not possess clear syntactic dependencies
like words do. Future research could translate emojis, hashtags and even abbreviations in
full words, connect them in TFMNs through relationships of semantic overlap, and test
the impact that their addition could have in terms of enriching the stance expressed in
online social discourse. Despite neglecting emojis and hashtags, TFMNs were still able to
identify concepts of semantic prominence in the considered dataset, mostly because the
tweets gathered here were mostly at the beginning of conversations and were thus richer
in common language than hashtags or emojis. In these tweets, by construction, emojis and
hashtags played a more peripheral role in expressing meaning.

Another assumption underlying TFMNs is treating modifiers of meaning (e.g.,
negations) as nodes equivalent to concepts. Modifiers can alter the meaning expressed by
individual concepts, providing a contextual richness that is not captured by the so-called
‘‘bag of words’’ models (Polanyi & Zaenen, 2006; Rudkowsky et al., 2018), where a text is
represented by an unstructured list of its concepts. Textual forma mentis networks provide
syntactic and semantic contextual background to concepts so that the investigation of
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modifiers cannot be independent on the analysis of conceptual associates. For instance, in
the current approach, negations were considered in the emotional profiling of conceptual
neighbourhoods in the following way: antonyms of words linked to negations were added
to emotional counts, providing information about opposite meanings in addition to the
concepts originally available in the TFMN (e.g., if ‘‘appreciation’’ was connected to ‘‘not’’
then its antonym ‘‘disgust’’ was considered in the emotional profiling too). Other ways of
grading the intensity of statements or negations could be tested and implemented within
future work.

It has to be underlined that the dataset investigated here did not include users’
conversations, e.g., replies without the considered keywords. This choice was motivated by
the framing of TFMNs, which combine linguistic knowledge and emotional perceptions
as directly coming from people’s mindsets/mental lexica (see Fig. 1B). This requires an
immediate translation of thoughts into texts without being excessively influenced by other
users’ behaviour on the online social platform. Message production in conversations is
considerably more dependent on other users’ behaviour than conversation starting (Tagg,
2015). Reading the stance promoted by the beginning of a conversation can give rise to a
wide variety of behaviours like agreeing with an influential user just because of their fame
or trolling a user because of their background, includinng frequently observed extremes
like flaming, i.e., starting insulting discussion without concrete logical arguments. Trolling,
flaming and social bias can greatly alter social discourse and the perception of a given topic
because of dynamics taking place within the online social platform but not encoded in the
mental lexica of online users. For instance, a lack of social cues and exposure to other users’
replies were found to boost the likelihood of online trolling or flaming (Tagg, 2015). The
mostly positive perceptions reported in this investigation indicate that the starting points
of discussion for the gender gap in Twitter report a mostly trustful perception of the gap,
modestly riddled with traces of gender stereotype threat. Assessing whether this mostly
trustful initial perception evolves through conversation posting, trolling and flaming
represents a fascinating direction for future research. It also indicates that Twitter policies
aimed at reducing discriminating, abusive language should employ strategies flagging more
thoroughly users’ replies and central parts of conversations.

Another future research direction would be the implementation of TFMNs in synergy
with social network analysis, much alike what recent approaches suggested (Rodrigues &
Pietrocola, 2020; Stella, Ferrara & De Domenico, 2018), in order to better capture online
social behaviour (Varol & Uluturk, 2020), expose the exact semantic frame used by texts
for presenting ideas or educational material (Koponen & Nousiainen, 2019), highlight
distorted attitudes towards science, education and educational systems (Stella et al., 2019;
Stella, 2020) or better understand misinformation spread (Pierri, Artoni & Ceri, 2020).

CONCLUSIONS
Textual forma mentis networks (TFMNs) provide contextual conceptual and emotional
information from text, providing a rich picture of how text authors perceived and associated
multiple topics. When applied to the social media discussion of women in science, TFMNs
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identified a mostly positive, trustful and anticipation-rich discourse but also highlighted
online awareness about relevant issues like unconscious gender biases and the gender pay
gap. The application of TFMNs to the analysis of online discourses opens new ways for
quantitatively assessing the role played by social media in promoting/hampering gender
biases and distorted mindsets. Textual forma mentis networks can open new ways of
accessing social media, understanding the content of online communication and providing
new bridges for linking social dynamics with cognitive and emotional information spread.
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