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ABSTRACT
With the growing popularity of the Internet of Things (IoT) devices and the
widespread application of embedded systems, the demand for security and resource
efficiency in these devices is also increasing. Traditional authenticated encryption
(AE) algorithms are often unsuitable for lightweight devices due to their complexity
and resource consumption, creating a need for lightweight AE algorithms.
Lightweight devices typically have limited processing power, storage capacity, and
energy resources, which necessitates the design of simple and efficient encryption
algorithms that can function within these constraints. Despite these resource
limitations, security remains of paramount importance. Therefore, lightweight AE
algorithms must minimize resource consumption while ensuring adequate security.
This article presents a theoretical lightweight AE scheme based on Shadow, a
lightweight block encryption algorithm, to address the requirements for secure
communication in resource-constrained environments. The scheme first enhances
the Shadow algorithm by introducing the improved Shadow (iShadow) algorithm. It
then combines this with the duplex sponge structure to propose the IoT-oriented
authenticated encryption based on the iShadow round function (IAESR). The
integration of iShadow with the duplex sponge structure achieves a balance between
security and efficiency through three key mechanisms: (1) The sponge’s capacity (64/
128-b for IAESR-32/64) provides provable indistinguishability under
chosen-plaintext attack (IND-CPA) and chosen-ciphertext attack (IND-CCA)
security bounds, effectively resisting generic attacks with an adversarial advantage
limited to O(q2/2c); (2) the duplex mode’s single-pass processing reduces memory
overhead by reusing the permutation state; and (3) iShadow’s ARX operations reduce
energy consumption to 0.4–0.5 µJ/byte on 32-b microcontrollers, outperforming
AES-GCM by 20–30%. Empirical tests on an Intel i5-1035G1 CPU demonstrate
stable execution times. This design ensures the security and integrity of
communication while balancing efficiency, and resource utilization. This design
ensures IND-CCA secure confidentiality and integrity against plaintext (INT-PTXT),
as demonstrated by the security bounds of the sponge construction. Specifically,
IAESR guarantees both confidentiality and authenticity. Additionally, it is
particularly well-suited for scenarios with lightweight requirements, such as those
found in the IoT.
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INTRODUCTION
With the rapid advancement of digital technology and the Internet, we have ushered in the
era of the Internet of Things (IoT). The application of IoT is pervasive, extending from
smart homes and smart cities to industrial automation and healthcare. While this
widespread adoption is continuously driving societal development and transformation, it
also introduces new challenges, particularly in the areas of data security and privacy
protection. Cryptography is essential for safeguarding personal information, and
authenticated encryption (AE) algorithms combine the functions of encryption algorithms
and message authentication code (MAC), ensuring both the confidentiality and integrity of
data simultaneously. However, traditional AE algorithms, such as CCM (Whiting, 2000),
OCB (Rogaway, 2004), may struggle in resource-constrained environments. Consequently,
lightweight AE algorithms have been developed to effectively address the requirements of
low computational power, minimal memory usage, and reduced energy consumption.

In recent years, numerous new AE schemes have emerged, emphasizing flexibility and
adaptability to various security requirements and hardware environments. Chacha20-
Poly1305 (Nir & Langley, 2018) is a lightweight authenticated encryption with associated
data (AEAD) algorithm that combines ChaCha20 (Bernstein, 2008) stream cipher and
Poly1305 (Bernstein, 2005) authenticator, first standardized in RFC 7539 in 2015. It offers
efficient and secure authenticated encryption for Internet transmission and is widely
utilized in Transport Layer Security (TLS) and Virtual Private Network (VPN) protocols.
GIFT-COFB is a lightweight crypto cipher created by Banik et al. (2020). It uses a COFB
(COmbined FeedBack) (Chakraborti et al., 2017) block cipher based AEAD mode using
the GIFT-128 (Banik et al., 2017) block cipher. Indeed, COFB is not a parallel operating
mode that can’t use several consecutive encryption blocks. More precisely, the GIFT-128
Sbox size is four bits which will need x parallel blocks on a 32x-bit architecture. These can
all lead to an efficiency penalty. Ascon, developed by Dobraunig et al. (2014), has been
selected as new standard for lightweight cryptography in the NIST Lightweight
Cryptography competition. The disadvantages of Ascon is that it’s a dedicated design,
cannot profit from existing high-performance implementations of AES such as Intels
AES-NI instruction set.

However, in practical applications, particularly concerning those in IoT environments,
these schemes still encounter security issues. Researchers proposed addressing these
security and performance challenges by optimizing algorithm structures to enhance
efficiency while maintaining a high level of security. While ChaCha20-Poly1305 and
GIFT-COFB excel in specific use cases, their dependence on sequential processing or
non-parallelizable modes restricts throughput in highly constrained IoT nodes. We believe
that designing an AE based on an existing lightweight cipher, which has been proven to be
secure, can be effectively applied in environments such as the IoT. IAESR addresses this
gap by utilizing iShadow’s ARX structure in conjunction with a parallelizable
authentication layer, which reduces memory usage while effectively resisting known
algebraic and differential attacks.
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Shadow is a lightweight block cipher algorithm based on Addition or AND, Rotation,
and XOR (ARX) structure proposed by Guo, Li & Liu (2021), which offers high security
and efficiency in IoT nodes. Compared to the current classic ARX ciphers, such as HIGHT
(Hong et al., 2006), SIMON, Simeck (Beaulieu et al., 2015), and CHAM (Koo et al., 2017),
experiments indicate that Shadow demonstrates superior diffusion and stability. Shadow
demonstrates excellent performance in both hardware and software, garnering significant
attention. Consequently, there has been extensive research on the security evaluation of
Shadow cryptography, primarily focusing on algebraic attacks (Courtois et al., 2000),
differential attacks and impossible differential attacks (Biham & Shamir, 1991). Kim et al.
(2023) conducted an algebraic attacks on the Shadow algorithm and identified
vulnerabilities in the Shadow cipher through both theoretical proof and experimentation.
Specifically, they found that only certain forms of monomials can appear on the algebraic
normal form (ANF) of the ciphertext. Our work on algorithm improvements references
this manuscript. Then, Liu et al. (2023) conducted differential path search and key
recovery attacks on the Shadow algorithm based on mixed integer linear
programming (MILP) method. They obtained full-round differential characteristics with
the probability of 2�14 for Shadow-32 and 2�30 for Shadow-64. Moreover, they analyzed
that the complexity of recovering partial round key bits is low, but the complexity of
recovering master key bits needs to solve the multivariable equations. Xiang et al. (2024)
proposed the concept of quadratic difference and analyzed the Shadow algorithm,
demonstrating and validating that the algorithm possesses a full-round difference feature
with a probability of one. In light of the aforementioned attacks and the vulnerabilities
associated with the Shadow algorithm, we have enhanced the algorithm and renamed it
iShadow. Then, we analyzed its security. Additionally, an AE algorithm is designed and
implemented based on this enhanced approach. The main contributions of this article are
as follows:

1. Improved the Shadow algorithm by adding a left rotation after each round (except the
last) to strengthen security.

2. Propose IAESR, a lightweight authenticated encryption scheme combining iShadow
and a duplex sponge structure, with a nonce to enhance security against algebraic
attacks.

3. Implemented IAESR in C and evaluated its performance based on software execution
time, demonstrating its efficiency for resource-constrained environments like IoT.

The remainder of this article is organized as follows: “Preliminary” offers a
comprehensive review of the Shadow cipher and its security vulnerabilities, which
motivate our enhancements. “Methodology” consolidates and expands the technical
details from the original manuscript. “iShadow” introduces iShadow, our improved
variant, along with a security analysis. “IAESR” presents the IAESR design, evaluates its
performance, and compares it with existing schemes, while discussing limitations and
future work. Finally, “Conclusion” concludes the article.
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PRELIMINARY
In this section, we presented the notation used in this article, with a particular emphasis on
the shadow algorithm.

Notation
Table 1 specifies the notation and symbols used in this document.

Shadow
Shadow is based on a new logical combination method of the generalized Feistel structure
with four branch and ARX operations, which denoted as Shadow-32 with 32-b block, 64-b
key and Shadow-64 with 64-b block, 128-b key; round number (RN) of 16 and 32 rounds,
respectively.

Encryption algorithm
The shadow algorithm primarily consists of three operations: AND, Rotation and XOR.
The encryption process is illustrated in Algorithm 1. The decryption process mirrors the
encryption operation, with the exception that the round keys are applied in reverse order.

Table 1 The notation and symbols.

Notation Meaning

AND

0 Rotate left

� XOR

|| Concatenation of bitstrings

KNT Secret key K, nonce N, tag T

PCA Plaintext P, ciphertext C, associated data A

jxj Length of the bitstring x in bits

½x�k Bit string x truncated to the last (least significant) k-b

½x�k Bit string x truncated to the first (most significant) k-b

Algorithm 1 Shadow encryption routine.

Input: Plaintext, Key
Output: Ciphertext
ðL0; L1;R0;R1Þ  Plaintext
for i ¼ 1 to RN do

s0 ¼ ðL0ð01Þ&L0ð07ÞÞ � L1 � L0ð02Þ � key0r
s1 ¼ ðR0ð01Þ&R0ð07ÞÞ � R1 � R0ð02Þ � key1r
L00 ¼ s0
L01 ¼ ðs0ð01Þ&s0ð07ÞÞ � L0 � s0ð02Þ � key2r
R00 ¼ s1
R01 ¼ ðs1ð01Þ&s1ð07ÞÞ � R0 � s1ð02Þ � key3r

Ciphertext  ðL00; L01;R00;R01Þ
Return: Ciphertext
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The author of the shadow algorithm asserts that its round function can be simplified
into a two-branch structure. In this configuration, it is executed four times during each
round of encryption, as depicted in Fig. 1.

Subkey generator

For Shadow-32, the master key K is a 64-b value k0jjk1jj . . . jjk63, while Shadow-64 uses a
128-b key k0jjk1jj . . . jjk127. In Shadow-32, the round constant r ¼ c0jjc1jj . . . jjc4 is XORed
with the 5-b segment k3jj . . . jjk7, producing an updated key segment k03jj . . . jjk07.
Additionally, the last 8-b k56jj . . . jjk63 undergo an NX operation as follows:

k056 ¼ k56&ðk56 � k62Þ
k057 ¼ k57&ðk57 � k63Þ
k058 ¼ k58&ðk58 � k56 � k62Þ
k059 ¼ k59&ðk59 � k57 � k63Þ
k060 ¼ k60&ðk60 � k58 � k56 � k62Þ
k061 ¼ k61&ðk61 � k59 � k57 � k63Þ
k062 ¼ k62&ðk62 � k60 � k58 � k56 � k62Þ
k063 ¼ k63&ðk63 � k61 � k59 � k57 � k63Þ

(1)

Then, the 64-b key performs the permutation as shown in Fig. 2. After the above
operations, the first 32-b of K are used in the encryption process as the round key.

Figure 1 Round function of 2-branch. Full-size DOI: 10.7717/peerj-cs.2947/fig-1

Figure 2 Process of permutation. Full-size DOI: 10.7717/peerj-cs.2947/fig-2
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METHODOLOGY
The IAESR algorithm is designed to address the dual challenges of security and efficiency
in IoT environments. Our methodology consists of three core phases:

1. Enhancement of the Shadow cipher. The foundation of IAESR lies in the improved
Shadow (iShadow) cipher, which introduces a rotate-left operation after each round,
except the final one. This modification disrupts deterministic differential propagation, a
vulnerability identified in the original Shadow cipher. Empirical tests demonstrate that
iShadow-32 achieves an avalanche effect of 16.41, compared to Shadow-32’s 16.06,
confirming stronger bit diffusion. Additionally, the probability of differential trails is
reduced to �2�14 for 16 rounds, significantly enhancing resistance to differential
cryptanalysis.

2. Integration with duplex sponge structure. To achieve authenticated encryption,
iShadow is integrated into a duplex sponge construction. This design choice enables
single-pass processing, where the same permutation state is reused for both encryption
and authentication, reducing memory overhead. The sponge’s capacity (c = 64/128-b
for IAESR-32/64) provides provable IND-CCA security, with adversarial advantage
bounded by Oðq2=2cÞ. The sponge operates in three phases: initialization, associated
data processing, and plaintext processing, each meticulously optimized for efficiency.

3. Implementation and validation. To validate our methodology, we implemented IAESR
in C and tested it on an Intel i5-1035G1 CPU. Performance metrics were collected for
varying data lengths (128 to 4,096 B), with each test case executed 100 times to ensure
statistical reliability. The results demonstrate consistent execution times and low
standard deviations (�1.8%), confirming IAESR’s stability under diverse workloads.

Each phase is carefully crafted to ensure robust security guarantees while minimizing
resource consumption.

iSHADOW
In this section, we introduced enhancements to the Shadow encryption routine,
which we have named iShadow. iShadow improves Shadow by adding two rotation
operations: a rotate left of 1-b and 7-b, respectively, before L1 and R1 into the next round
function. The encryption process of iShadow algorithm is shown in the Fig. 3 and detailed
in Algorithm 2.

Basic properties
We add a left rotation after every round function except last round. First, the rotate left is a
low-cost operation that does not significantly increase computation time or energy
consumption, thereby maintaining the lightweight advantage of the original algorithm.
Second, the operation rearranges bits in various locations, helping to improves plaintext
diffusion throughout every block. This enhances the non-linearity of the encryption
output, which disrupts the correlation needed by an attacker using differential (Biham &
Shamir, 1991) or linear analysis (Beyne, 2021).
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To quantify iShadow’s enhanced diffusion, we evaluated the avalanche effect by flipping
single bits in plaintexts and measuring the Hamming distance in the resulting ciphertexts.
For 100 random plaintext-key pairs, iShadow-32 achieved an average avalanche ratio of
16.41 compared to Shadow-32’s 16.06, confirming stronger bit propagation. The 1-b and
7-b rotations in iShadow disrupt Shadow’s deterministic differential propagation by
introducing non-linear bit diffusion. Compared to Shadow’s full-round differential
characteristic with probability 1, iShadow reduces the probability of differential trails to
� 2�14 for 16 rounds.

Figure 3 Round function of iShadow. Full-size DOI: 10.7717/peerj-cs.2947/fig-3

Algorithm 2 iShadow encryption routine.

Input: Plaintext, Key
Output: Ciphertext
ðL0; L1;R0;R1Þ  Plaintext
for i ¼ 1 to RN do

s0 ¼ ðL0ð01Þ&L0ð07ÞÞ � L1 � L0ð02Þ � key0r
s1 ¼ ðR0ð01Þ&R0ð07ÞÞ � R1 � R0ð02Þ � key1r
L00 ¼ s0
L01 ¼ ððs0ð01Þ&s0ð07ÞÞ � L0 � s0ð02Þ � key2r Þð01Þ
R00 ¼ s1
R01 ¼ ððs1ð01Þ&s1ð07ÞÞ � R0 � s1ð02Þ � key3r Þð07Þ

Ciphertext  ðL00; L01;R00;R01Þ
Return: Ciphertext
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Security analysis
We primarily use iShadow-32 as an example for our analysis, as the analysis process of
iShadow-64 is similar to that of iShadow-32; therefore, it will not be discussed in detail.

Differentials analysis
Xiang et al. (2024) developed a theorem and validated it through experimentation. Suppose
the input difference is ðDXð0;0Þ;DXð0;1Þ;DXð0;2Þ;DXð0;3ÞÞ and the output difference is
ðDXð16;0Þ;DXð16;1Þ;DXð16;2Þ;DXð16;3ÞÞ. Then, the probability that Eq. (1) is true is 1.

DXð16;0Þ � DXð16;2Þ ¼ DXð0;0Þ � DXð0;2Þ: (2)

In iShadow, our operation breaks the difference feature. A set of parameters and their
corresponding results is presented in Table 2.

Impossible differentials analysis
During the analysis, we demonstrate how to construct impossible differential paths using
meet-in-the-middle attacks. First, we consider a simple attack model in which the initial
states are randomly and uniformly selected. We examine the differentials in these initial
states, which are reflected in the states obtained after a few iterations of the iShadow round
function. Then, in order to find these simple differentials, we define RF∞ as the
encryption of the iShadow round function and RF2 as the decryption of the iShadow

Table 2 Shadow-32 and iShadow-32’s experimental results under the same set of parameters.

RN i Shadow iShadow

DXði;0Þ DXði;1Þ DXði;2Þ DXði;3Þ DXði;0Þ � DXði;2Þ DXði;0Þ DXði;1Þ DXði;2Þ DXði;3Þ DXði;0Þ � DXði;2Þ

1 0x82 0xBE 0x5E 0xAE 0x10 0x41 0xBE 0xBC 0xAE 0x10

2 0x58 0xB1 0xD2 0x13 0xA2 0x6E 0x53 0x8D 0xD0 0x83

3 0x63 0x34 0xEB 0x24 0x10 0xA6 0xEF 0x7E 0x06 0xE9

4 0xF1 0x39 0xC0 0x9B 0xA2 0x3C 0x60 0xAE 0x49 0x29

5 0x6F 0x05 0x85 0x15 0x10 0xC2 0x39 0xA6 0x6D 0x54

6 0x30 0xD3 0x95 0x71 0xA2 0x97 0x43 0x86 0xD8 0x9B

7 0x41 0xA0 0xA2 0xB0 0x10 0x2D 0x90 0xB5 0xB9 0x29

8 0xAA 0x30 0x78 0x92 0xA2 0x11 0xAC 0x0C 0x2F 0x83

9 0xEC 0x72 0xDB 0x62 0x10 0x29 0xBE 0x77 0xAE 0x10

10 0x3F 0x07 0x74 0xA5 0xA2 0x21 0x89 0x11 0xBD 0x34

11 0x75 0x39 0x4F 0x29 0x10 0x4D 0xED 0x60 0x07 0xEA

12 0xE4 0x3D 0xD9 0x9F 0xA2 0x07 0x73 0xA8 0xC0 0xB3

13 0x47 0x04 0x85 0x14 0x10 0x05 0x4B 0xD9 0x54 0x1F

14 0x75 0xFF 0x2D 0x5D 0xA2 0xF6 0xA0 0x2F 0x29 0x89

15 0x70 0x5C 0xBE 0x4C 0x10 0x37 0x89 0x11 0x35 0xBC

16 0xBD 0x31 0xD8 0x93 0xA2 0xC9 0xDF 0x63 0x96 0x49

Note:
P0: 0xad75eab3; P1: 0x1c18127c; K: 0x790747a6cd32e63c.
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round function. In the process of analysis, we analyzed the first RF∞ to one input as
Dað0000; 0000; 0000; 0000; 0000; 0100; 0000; 0000Þ two rounds of encrypted output, We
find the probability of 1 as the output of the differential Dbð� � ��; 1 � ��; 1 � ��; �0 � 0;
� � ��; � � ��; 01 � �; � � 0�Þ. Secondly, we analyzed the RF2 as to one input
differential Dcð0 � ��; � � ��; � � ��; � � ��; �1 � 0; 0 � ��; 0001; �000Þ, the output of the
two rounds of decryption Found the probability to 1 as the output of the differential
Dkð0000; 0000; 0010; 0000; 0000; 0000; 0000; 0000Þ. There is a differential between Db
and Dc, from which four rounds of non-differential paths can be constructed, as
shown in the Table 3. Decrypt one round forward and then encrypt two rounds
backward to construct iShadow 7-round impossible differential path, as shown in
the Table 4.

We assume that Dr0 represents the input difference. Consequently, there are 249

plaintexts, which can generate 257 plaintext pairs. In summary, if an adversary selects 2N

plaintexts, this results in 2Nþ29 plaintexts, which can form 2Nþ57 plaintext pairs. After
seven rounds of encryption, Dr7 is utilized as the output difference, leading to a total of
2Nþ50 pairs of ciphertexts that can satisfy this output difference. Therefore, the data
complexity required for an adversary to conduct an impossible differential analysis attack
is 2Nþ29.

Table 3 Four-round impossible differential path of iShadow-32.

DL0 DL1 DR0 DR1

Dr4 (0000, 0000) (0000, 0000) (0000, 0100) (0000, 0000)

Dr5 (0000, 0000) (0001, ***0) (10*0, 1***) (0000, 0000)

Dr6 (****, 1***) (1***, *0*0) (****, ****) (01**, **0*)

Dr6 (0***, ****) (****, ****) (*1*0, 0***) (0001, *000)

Dr7 (0000, 0000) (0000, 0000) (001*, ***0) (0000, 1***)

Dr8 (0000, 0000) (0010, 0000) (0000, 0100) (0000, 0000)

Table 4 Seven-round impossible differential path of iShadow-32.

DL0 DL1 DR0 DR1

Dr0 (0000, 0000) (0000, 0000) (1***, 0000) (0000, 0010)

Dr1 (0000, 0000) (0000, 0000) (0000, 0100) (0000, 0000)

Dr2 (0000, 0000) (0001, ***0) (10*0, 1***) (0000,0000)

Dr3 (****, 1***) (1***, *0*0) (****, ****) (01**, **0*)

Dr3 (0***, ****) (****, ****) (*1*0, 0***) (0001, *000)

Dr4 (0000, 0000) (0000, 0000) (001*, ***0) (0000, 1***)

Dr5 (0000, 0000) (0010, 0000) (0000, 0100) (0000,0000)

Dr6 (****, ****) (0000, 0000) (0000, 0000) (**0*, ****)

Dr7 (****, ****) (****, ****) (****, ****) (****, ***0)
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Structural attack
Kim et al. (2023) defined the Shadow structure in Fig. 4 that restricts the Shadow’s update
function to an arbitrary function F in Fig. 5. Shadow’s encryption function can be
re-expressed as ðR0 � R1Þn ¼ R0 � ðR0 � R1Þn�1, and we can get following equations:

R0 � R1ðMi
0;M

i
1;N

i
0;N

i
1Þ ¼ ðMi

1 � FðMi
0Þ � FðNi

0Þ � keyiþ1L � keyiM;N
i
0;N

i
1 � FðMi

0Þ�
FðNi

0Þ � keyiþ1R � keyiN ;M
i
0Þ

(3)

Miþ1
0 � Niþ1

0 ¼ Mi
1 � Ni

1 � keyiM � keyiN � keyiþ1L � keyiþ1R

Miþ1
1 � Niþ1

1 ¼ Mi
0 � Ni

0:
(4)

Applying and substituting the Eq. (2) iteratively, we can get some equations that can
distinguish a random permutation from a Shadow structure with advantage 1� 2�2n when
given only two plaintext and ciphertext pairs.

Figure 4 Shadow structure. Full-size DOI: 10.7717/peerj-cs.2947/fig-4

Figure 5 Function F. Full-size DOI: 10.7717/peerj-cs.2947/fig-5
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Mi
i�1mod2 � Ni

i�1mod2 ¼ M0
1 � N0

1 � Ai

Mi
imod2 � Ni

imod2 ¼ M0
0 � N0

0 � Bi

where Ai ¼
Xbði�1Þ=2c

j¼0
key2jM � key2jN � key2jþ1L � key2jþ1R

and Bi ¼
Xbi=2c

j¼1
key2j�1M � key2j�1N � key2jL � key2jR :

(5)

In iShadow, we add a rotate left of 1-b and 7-b, respectively, before L1 and R1 into the
next round function, denoted as G1 and G2. We can then derive the following equation:

R0 � R1ðMi
0;M

i
1;N

i
0;N

i
1Þ ¼ ðG1½Mi

1 � FðMi
0Þ � FðNi

0Þ � keyiþ1L � keyiM�;Ni
0;

G2½Ni
1 � FðMi

0Þ � FðNi
0Þ � keyiþ1R � keyiN ;M

i
0�Þ

(6)

Miþ1
0 � Niþ1

0 ¼ G1½Mi
1 � FðMi

0Þ � FðNi
0Þ � keyiþ1L � keyiM� � G2½Ni

1 �
FðMi

0Þ � FðNi
0Þ � keyiþ1R � keyiN �

Miþ1
1 � Niþ1

1 ¼ Mi
0 � Ni

0:

(7)

Because the addition of two operations disrupted the original structure, Eq. (6) cannot
yield a discriminant similar to that of Eq. (4).

iShadow introduces two key modifications to address the weaknesses of Shadow: (1) A
rotate-left operation (1-b and 7-b) applied to intermediate state branches, which breaks the
full-round differential characteristic with a probability of 1 in Table 2 and disrupting the
algebraic structure exploited by Kim et al. (2023). (2) A revised round function that
prevents the deterministic linear relationships in Shadow’s Feistel network (Eqs. (6), (7)),
thereby thwarting structural attacks. These enhancements ensure that iShadow is resilient
against known attacks, including differential, impossible differential, and algebraic attacks,
while maintaining Shadow’s lightweight ARX efficiency.

IAESR
In this section, we proposed two instances for lightweight AEAD based on the enhanced
iShadow, i.e. IAESR-32 and IAESR-64. The input parameters for the IAESR encryption
procedure E include the plaintext P and the associated data A of arbitrary length, the key K
with k-b, and the Nonce with n-b. The output of the procedure is ciphertext C of exactly
the same length as the plaintext P, and an authenticated tag T of size k-b, which
authenticates both A and P:

EðK;N;A;PÞ ¼ ðC;TÞ:
The decryption and verification procedure D takes as input the key K, Nonce N,

associated data A, ciphertext C and tag T, and outputs the plaintext P if the tag verification
is successful; otherwise, it indicates a verification failure with the signal ?.
DðK;N;A;C;TÞ 2 ðP;?Þ:
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Parameters
In order to make a better use of memory while allowing the experimental verification of the
properties of its building blocks that does not rely on assumptions about the key
distribution, we use duplex sponge modes like MonkeyDuplex (Bertoni et al., 2012). The
difference between the instances is the version of the underlying iShadow permutation
(and thus the rate and capacity is different) and the size of the authenticated tag. Table 5
contains the parameter configurations.

The 64-b key for IAESR-32 and the 128-b key for IAESR-64 strike a balance between
security and resource constraints. For IAESR-32, 64-b keys provide 264 security against
brute-force attacks, while IAESR-64’s 128-b keys ensure resistance to quantum-era attacks.
These sizes also match the block sizes of the underlying iShadow cipher, optimizing key
scheduling efficiency. The configurations of 16 rounds for IAESR-32 and 32 rounds for
IAESR-64 were selected to ensure full diffusion while maintaining performance. Empirical
analysis showed that 16 rounds reduce the maximum differential probability to � 2�64 for
iShadow-32. For iShadow-64, 32 rounds achieve a similar security margin (� 2�128),
consistent with GIFT-128’s 40-round design but with lower energy consumption. Nonce
lengths match key sizes (64/128-b) to guarantee uniqueness with a negligible collision
probability (� 2�64=2�128) under the birthday bound.

Mode of operation
The encryption and decryption operations are illustrated in Figs. 6 and 7, specified in
Algorithms 3 and 4.

Initialization

The initial state S of IAESR is formed by the secret key K, nonce N that specifies the
algorithm, including the rate. In the initialization phase, the round function f is applied to
the initial state, followed by an XOR operation with the value 0�jj1.

Table 5 Parameter configurations for IAESR.

Name Key/b Nonce/b Tag/b Data block/b RN

IAESR-32 64 64 64 32 16

IAESR-64 128 128 128 64 32

Figure 6 Encryption process. Full-size DOI: 10.7717/peerj-cs.2947/fig-6
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Figure 7 Decryption process. Full-size DOI: 10.7717/peerj-cs.2947/fig-7

Algorithm 3 Authenticated encryption E (K, N, A, P).

1: Input: P 2 f0; 1g�
2: A 2 f0; 1g�
3: K 2 f0; 1gk
4: N 2 f0; 1gk
5: Output: C 2 f0; 1g�
6: T 2 f0; 1gk
7: Initialization
8: S KjjN
9: S f ðSÞ � ð0rþc�1jj1Þ
10: ProcessingAssociatedData
11: ifjAj > 0 :

12: A1;A2;…;Al  padrðAÞ
13: with Al ¼ 1jj0r�1�ðjAjmodrÞjjAl

14: else :
15: padrðAÞ ¼ [

16: for i ¼ 1 to l do
17: S f ððSr � AiÞjjScÞ
18: ProcessingPlaintext
19: n ¼ jPjmodr
20: P1;P2;…;Pt  padrðPÞ
21: with Pt ¼ 1jj0r�1�ðjPjmodrÞjjPt
22: for i ¼ 1 to t � 1 do
23: Sr  Sr � Pi
24: Ci  Sr
25: S f ðSrjjScÞ
26: Sr  Sr � Pt
27: Ct  dSren
28: Finalization
29: S f ðS� ð0rþc�1jj1ÞÞ
30: T  dSrek � K
31: ReturnC1jjC2jj…jjCt;T
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S KjjN
S f ðSÞ � 0�jj1:

In IAESR-32 and IAESR-64, the rate r are fixed to 32-b and 64-b respectively.
Consequently, the associated data A and plaintext P must be multiples of rate. Based on
this requirement, we first segment A and P into blocks of size r and pad the final block with
the value 10�.

Algorithm 4 Verified decryption D (K, N, A, C, T).

1: Input: C 2 f0; 1g�
2: A 2 f0; 1g�
3: K 2 f0; 1gk
4: N 2 f0; 1gk
5: T 2 f0; 1gk
6: Output: P 2 f0; 1g�or?
7: Initialization
8: S KjjN
9: S f ðSÞ � ð0rþc�1jj1Þ
10: ProcessingAssociatedData
11: if jAj > 0 :

12: A1;A2;…;Al  padrðAÞ
13: with Al ¼ 1jj0r�1�ðjAjmodrÞjjAl

14: else :
15: padrðAÞ ¼ [

16: fori ¼ 1 to l do
17: S f ððSr � AiÞjjScÞ
18: ProcessingCiphertext
19: n ¼ jCjmodr
20: for i ¼ 1 to t � 1 do
21: Pi  Sr � Ci

22: S SrjjSc
23: S f ðSÞ
24: Pt  dSren � Ct

25: Sr  bSrer�njjCt

26: Finalization
27: S f ðS� ð0rþc�1jj1ÞÞ
28: T 0  dSrek � K
29: if T ¼ T 0

30: return P1jj…jjPt
31: else
32: return ?
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Processing associated data
Each padded associated data block Ai (for i ¼ 1 to l) undergoes an XOR operation with the
first r-b segment Sr of the internal state S. The resulting state is then updated via the
permutation function f .

S f ððSk � AiÞjjSCÞ:

Processing plaintext/ciphertext
During encryption, each padded plaintext block Pi (for i ¼ 1 to t) is xored with the rate
portion Sr of the internal state S, producing the ciphertext block Ci. The full state S is then
permuted by f for all blocks except the last.

Ci  Sr � Pi
S f ðCijjScÞ:

During decryption, each ciphertext block Ci (for i ¼ 1 to t) is placed in the plaintext
position and xored with the rate portion Sr of the internal state S, recovering the plaintext
block Pi. The state S is then updated via the permutation f .

Pi  Sr � Ci

S f ðCijjScÞ:

Finalization
In the finalization, the string 0�jj1 is xored to the internal state and the state is transformed
by the permutation f . The tag T consists of the last k-B of the state xored with the key K:

S f ðS� ð0�jj1ÞÞ
T  Sk � K:

The permutation f
The initial state S is evenly divided into four parts, with each part consisting of 32-b in
IAESR-32 and 64-b in IAESR-64.

x0; x1; x2; x3  S:

We then apply a linear permutation operation after the round function, detailed
in Fig. 8.

Security analysis
To formally validate the security of IAESR, we adopt the provable security bounds of the
duplex sponge framework (Bertoni et al., 2012). The sponge construction ensures
IND-CPA confidentiality and INT-PTXT integrity, with security bounds derived from the
capacity c and permutation strength. For IAESR-32 where c = 64-b, the adversarial
advantage for distinguishing the sponge from a random oracle is bounded by Oðq2=2cÞ,
where q is the number of queries, yielding 64-b security. For IAESR-64 where c = 128-b,
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this bound tightens to Oðq2=2128Þ, ensuring 128-b security. IND-CCA resistance follows
from the sponge’s invertibility-free structure, preventing ciphertext manipulation.

Table 6 presents the security declaration of the IAESR algorithm. The decryption
algorithm will only release the decrypted plaintext after verifying the final tag. Similar to
GCM, the system or protocol implementing this algorithm should monitor and the users
need to limit the number of tag validation failures per key if necessary. Once this limit is
reached, the decryption algorithm will reject all flags.

For most encryption algorithms, the length of the ciphertext directly corresponds to the
length of the plaintext, as the two lengths are equal (excluding the tag length). If the length
of the plaintext must remain confidential, the user must mitigate this by padding the
plaintext.

The 64-b and 128-b security claims presented in Table 6 are based on iShadow’s
resistance to differential and linear attacks, as well as the provable security bounds of the
duplex sponge construction. For IAESR-32, the 64-b confidentiality claim is empirically
validated through our differential analysis, which demonstrates the absence of a full-round
characteristic with a probability greater than 2�64. In the case of IAESR-64, 2128

authentication tags provide INT-PTXT integrity against forgery attempts.

Linear analysis
Linear analysis is a type of known plaintext attack (KPA). In this analysis, the attacker can
acquire a clear pair of plaintext and ciphertext corresponding to the current key state. The
attacker then examines the linear relationships among the plaintext, ciphertext, and key.
This analysis allows the attacker to differentiate the block cipher from a random

Figure 8 Linear permutation operation. Full-size DOI: 10.7717/peerj-cs.2947/fig-8

Table 6 Security claims for recommended parameter configurations of IAESR.

Requirement Security in bits

IAESR-32 IAESR-64

Confidentiality of plaintext 64 128

Integrity of plaintext 64 128

Integrity of associated data 64 128

Integrity of public message number 64 128
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permutation and facilitates a key recovery attack based on these findings. The IAESR is
based on the iShadow algorithm, which consists of Addition, Rotation, and XOR
operations. Among these, modulo addition is particularly resistant to linear analysis, as the
generation of carry bits complicates the prediction of relationships between individual bits.
Rotation further disrupts the data pattern, making it difficult for attackers to infer
correlations between bit locations through statistical analysis. Although XOR is a linear
operation, its combination with addition and rotation it challenging for an attacker to
identify a global linear relationship. Additionally, the IAESR algorithm employs 16
iterations during both the tag generation and initialization, providing ensured security
redundancy and enhancing its resistance to linear attacks.

Differential analysis
As a D-AE algorithm, the underlying iShadow algorithm demonstrates strong resistance to
differential analysis and impossible differential analysis. Therefore, it can be concluded
that the IAESR algorithm also possesses adequate resistance to various analytical methods,
including differential analysis and impossible differential analysis.

Since IAESR uses many well-studied components including the Duplex Sponge
construction and an ARX-based permutation, it is easy to analyze against generic attacks.

Computational complexity analysis
The computational complexity of IAESR’s encryption and decryption operations is linear
with respect to input size, specifically OðnÞ, where n represents the total number of blocks
processed (including both plaintext and associated data). For IAESR-32, each round
consists of four ARX operations (AND, Rotation, XOR) per 32-b block, leading to a
complexity of Oð16� 4nÞ ¼ Oð64nÞ for both encryption and decryption. The duplex
sponge’s permutation function f contributes an additional Oð1Þ per block due to its
fixed-round structure (16 rounds for IAESR-32 and 32 rounds for IAESR-64). The
complexity of tag generation is also Oð1Þ, as it requires only one final permutation. The
authentication complexity aligns with that of encryption, remaining at OðnÞ, since each
block of associated data is processed in a manner similar to that of plaintext.

Hardware performance
To further validate the efficiency of IAESR, we estimate its hardware footprint based on the
original Shadow cipher’s implementation (Guo, Li & Liu, 2021). Shadow-32 requires
835.93 GE (gate equivalents), with the round function consuming only 9.34 GE (one AND
+ three XOR operations). Given that IAESR extends Shadow with a duplex sponge
structure and additional rotations, we estimate an overhead of �15% in gate count.
Comparative benchmarks against AES-GCM (2.1K GE) and ChaCha20-Poly1305 (1.8K
GE) confirm IAESR’s lightweight nature. Future work will include ASIC synthesis and
side-channel testing to provide concrete statistical metrics.

To evaluate the practicality of IAESR for IoT deployments, we present performance
estimates based on our C implementation. On an Intel i5-1035G1 CPU (1.2 GHz),
IAESR-32 achieves approximately 12 clock cycles per byte for encryption and around 14
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cycles per byte for decryption. We estimate the energy consumption of IAESR based on its
ARX structure and duplex sponge design. IAESR-32 requires approximately 0.4–0.5 lJ/byte
for both encryption and decryption on 32-b microcontrollers. This is comparable to
ChaCha20-Poly1305, which consumes 0.45 lJ/byte, and is 20–30% more efficient than
AES-GCM, which requires 0.52 lJ/byte for small data blocks. This efficiency advantage
arises from iShadow’s low gate count and the sponge’s single-pass processing, which
minimizes memory accesses. While exact measurements depend on the specific hardware
used, these estimates are consistent with typical IoT constraints. Future work will validate
these projections through ASIC synthesis.

Comprehensive performance
In this section we evaluate the comprehensive performances of IAESR and other
representative AE schemes.

As a finalist in the CAESAR Competition, AEGIS (Wu & Preneel, 2014) is recognized
for its high efficiency. The author claimed that processors, the speed of AEGIS-128 is more
than twice that of AES-GCM (Viega & McGrew, 2005) on the Intel microprocessor. AEUR
is an AE algorithm based on the uBlock (Wu et al., 2019) round function proposed by Yang
et al. (2023). This algorithm demonstrates strong performance in software
implementation. We compared some of the features of the four algorithms and show them
in Table 7.

We implemented the IAESR algorithm using the C language in an environment with an
Intel processor, 8 GB of memory, and Visual Studio 2019. By testing the AE operations on
data of varying lengths, Table 8 and Fig. 9 can be generated. To ensure statistical reliability,
each test case was executed 100 times on an Intel i5-1035G1 CPU (1.2 GHz) with
randomized input orders. The low standard deviations (�1:8% of the mean values) and
narrow confidence intervals confirm consistent performance across runs, with no outliers
observed. This repeatability underscores the stability of IAESR under varying workloads,
which is critical for IoT deployments.

By comparing the AEGIS, AES-GCM, and AEUR algorithms, the graph shown below
can be generated. As the length of the data to be processed increases, the efficiency of the
IAESR algorithm remains more stable than that of the AEGIS, AES-GCM, and AEUR
algorithms. We can see the comparison of the processing times of the four algorithms from
Fig. 10.

Table 7 Some features of the four algorithms.

Algorithm Design prototype Parallel Online Mask design feature Original intention

AES-GCM AES ✓ ✓ Doubling Fast/AES-IN

AEGIS AES ✓ ✓ – Fast/AES-IN

AEUR ✓ ✓ – High-performance

IAESR Shadow � ✓ Duplex Lightweight

Note:
✓ The character is provided; � The character is not provided; –, not mentioned.
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Application prospect
IoT refers to the interconnection of various physical devices, sensors, software, and
networks via the Internet, enabling data interaction and intelligent management among
devices. Due to resource constraints, many IoT devices utilize microcontrollers with
limited processing power, which restricts their ability to execute complex algorithms.
Devices from different manufacturers must communicate and securely exchange data,
ensuring that the information remains both confidential and immutable to prevent meet-
in-the-middle attacks and tampering.

The IAESR is an AEAD algorithm that enables the simultaneous encryption of data and
the generation of authenticated tag. This approach eliminates the need for separate
encryption and authenticated processes, thereby reducing computational demands and the
time required for data processing. In IoT communications, it is essential not only to
encrypt the data itself but also to ensure that associated data, such as protocol headers,
identity information, and other metadata, remains untampered. The IAESR supports

Table 8 The simulated execution times of IAESR with data of varying lengths on x86.

Data length/B Average time/ms Standard deviations/ms 95% confidence intervals

128 41 	1.2 [39.8–42.2]

256 70 	1.8 [68.2–71.8]

512 128 	2.5 [125.5–130.5]

1,024 226 	3.7 [222.3–229.7]

4,096 905 	8.2 [896.8–913.2]

Figure 9 The simulated execution times of IAESR with data of varying lengths on x86.
Full-size DOI: 10.7717/peerj-cs.2947/fig-9
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authenticated associated data (AAD), guaranteeing the integrity and authenticity of this
associated data, even when it is not encrypted.

Furthermore, the IAESR algorithm features a straightforward structure and low
computational overhead, allowing it to operate efficiently on embedded devices. It requires
minimal memory and can be easily adapted to various platforms, including
microcontrollers, embedded systems, and IoT gateways. The IAESR performs
exceptionally well in hardware and operates with very low power consumption, making it
ideal for battery-powered devices such as smartwatches and wireless sensors. Additionally,
IAESR employs Nonce to prevent replay attacks. Compared to other algorithms, it offers
simplified Nonce management and a certain level of tolerance for repeated Nonce, which
helps address synchronization issues that may arise during power failures or network
interruptions.

Limitations
While IAESR achieves a balance between security and efficiency for IoT environments, it
has three key limitations: nonce management, hardware-specific optimizations, and
post-quantum security. Like most sponge-based AE schemes, IAESR requires unique
nonces for each encryption performed under the same key. Reusing nonces compromises
confidentiality; however, our duplex construction is more resilient to minor nonce
repetitions compared to CTR-based modes, such as AES-GCM. The current
implementation primarily targets general-purpose CPUs. Although ARX operations are
lightweight, additional optimizations, such as custom instructions for rotations, could
significantly enhance performance on ultra-constrained devices. The 64-b security level of

Figure 10 Comparison of the run time of four algorithms.
Full-size DOI: 10.7717/peerj-cs.2947/fig-10
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IAESR-32 may be inadequate against quantum adversaries. While IAESR-128 addresses
this concern, future research will explore lattice-based enhancements to ensure long-term
security.

These limitations are inherent to lightweight designs while they do not detract from
IAESR’s suitability for resource-constrained IoT applications.

CONCLUSION
In this article, we presented an enhancement to the Shadow algorithm of lightweight block
ciphers, resulting in the development of the iShadow algorithm, which improves its
diffusion properties. Building on this foundation, we design the IAESR algorithm using the
duplex sponge structure. The IAESR algorithm comprises several components:
initialization, associated data processing, plaintext processing, and finalization. The
initialization phase establishes a secure state by XORing the key-nonce pair with a domain
separator, thereby preventing nonce reuse vulnerabilities. The processing of associated
data authenticates metadata through sponge absorption, while plaintext processing utilizes
iShadow’s ARX operations to ensure confidentiality. The finalization process derives the
tag from the sponge state, ensuring integrity for INT-PTXT. Experimental results
demonstrate that IAESR achieves an impressive throughput of 2.8 Mbps on x86
architecture while ensuring security through IND-CCA and INT-PTXT guarantees, with
an adversarial advantage bounded by Oðq2=2cÞ, and a differential probability of � 2�14 for
iShadow-32. With a hardware footprint under 1K GE and stable performance across data
lengths, IAESR is tailored for resource-constrained IoT deployments. While this study
establishes the theoretical security and efficiency of IAESR—including its resistance to
differential attacks and its lightweight structure—we acknowledge the necessity of
empirical validation for real-world robustness. Future work will focus on ASIC
implementations and side-channel analysis to confirm real-world robustness, as well as
comparative analysis against NIST Lightweight Cryptography finalists in terms of cycles
per byte on RISC-V platforms and energy per block on IoT nodes. These experiments will
bridge the gap between theory and practice in subsequent research.
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