
A malware detection method with function
parameters encoding and function
dependency modeling
Ronghao Hou1, Dongjie Liu1, Xiaobo Jin2, Jian Weng1 and
Guanggang Geng1

1 School for Cyberspace Security, Jinan University, Guangzhou, Guangdong, China
2 Department of Electrical and Electronic Engineering, Xi’an Jiaotong-Liverpool University,
Suzhou, Jiangsu, China

ABSTRACT
As computers are widely used in people’s work and daily lives, malware has become
an increasing threat to network security. Although researchers have introduced
traditional machine learning and deep learning methods to conduct extensive
research on functions in malware detection, these methods have largely ignored the
analysis of function parameters and functional dependencies. To address these
limitations, we propose a new malware detection method. Specifically, we first design
a parameter encoder to convert various types of function parameters into feature
vectors, and then discretize various parameter features through clustering methods to
enhance the representation of API encoding. Additionally, we design a deep neural
network to capture functional dependencies, enabling the generation of robust
semantic representations of function sequences. Experiments on a large-scale
malware detection dataset demonstrate that our method outperforms other
techniques, achieving 98.62% accuracy and a 98.40% F1-score. Furthermore, the
results of ablation experiments show the important role of function parameters and
functional dependencies in malware detection.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Networks and
Communications, Security and Privacy, Neural Networks
Keywords Malware detection, API sequence, Deep learning, Run-time parameter

INTRODUCTION
In recent years, with the widespread use of Internet-related applications in various aspects
of people’s work and lives, the diversity and quantity of malware have grown rapidly,
continuously innovating in spreading methods. According to recent data, the number of
malware and potentially unwanted applications (PUA) has risen year by year (AV TEST,
2023; ENISA, 2023). With the emergence of new organizations for advanced persistent
threats (APT), the type, scale, and consequences of network attacks have increased
significantly. Malware-related incidents surged in the first half of 2023 and show no signs
of slowing down. Malware has become one of the most prevalent security threats. For
example, when foundational services such as the domain name system (DNS) are targeted,
malware can inflict widespread damage, including data exfiltration, data encryption for
ransom, and system disruption (Ni, 2019; Zheng, 2018). If left unchecked, malware
propagation poses severe risks to individuals, organizations, and society at large.

How to cite this article Hou R, Liu D, Jin X, Weng J, Geng G. 2025. A malware detection method with function parameters encoding and
function dependency modeling. PeerJ Comput. Sci. 11:e2946 DOI 10.7717/peerj-cs.2946

Submitted 15 October 2024
Accepted 19 May 2025
Published 13 June 2025

Corresponding author
Dongjie Liu, djliu@jnu.edu.cn

Academic editor
Bilal Alatas

Additional Information and
Declarations can be found on
page 25

DOI 10.7717/peerj-cs.2946

Copyright
2025 Hou et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2946
mailto:djliu@�jnu.�edu.�cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2946
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

Therefore, malware detection, including the monitoring of emerging variants and malware
families, is critical to system and network security.

Application programming interface (API) is a set of functions that define the interaction
between software components, allowing different software systems to communicate and
interact with each other, facilitating the interaction of data and functionality (Ofoeda,
Boateng & Effah, 2019). For application software, the API provided by the operating
system plays a crucial role in its development (Microsoft, 2024). Generally speaking,
malware usually needs to directly or indirectly utilize the APIs provided by the operating
system to achieve specific functions. For example, worms often use the file-system API to
search, copy, and create files, as well as the network API to establish connections, transfer
data, and communicate with other systems; Trojan viruses often use the remote code
execution API to execute code on other systems. Ransomware calls the file-system API to
access files.

Currently, many efforts have been made to apply artificial intelligence to analyze API
call sequences for enhancing the accuracy of malware detection. Compared with full code
analysis, API call sequence analysis is relatively lightweight, making real-time detection
more efficient. In addition, API call sequence analysis focuses on interactions between
programs and the operating system rather than specific code implementations, thus
helping to detect both known and unknown malware variants. Importantly, APIs provide
dynamic runtime information, allowing detection systems to observe and analyze
malicious behavior in real time. Some researchers have used machine learning algorithms,
such as K-nearest neighbor (KNN), naive Bayes (NB), decision tree (DT), support vector
machine (SVM), and Random Forest (RF), to analyze API call sequences (Singh & Singh,
2022; Amer et al., 2022; Amer & Zelinka, 2020; Sharma, 2022; Ndibanje et al., 2019). Some
researchers have focused on improving the accuracy of malware detection by employing
deep learning methods for feature extraction (Hemalatha et al., 2021; Shaukat, Luo &
Varadharajan, 2023; Liu & Wang, 2019;Maniriho, Mahmood & Chowdhury, 2023; Zhang
& Li, 2020; Li et al., 2022; Chen et al., 2022). However, two factors still limit the
effectiveness of API-based malware detection: the lack of function-parameter analysis and
the absence of function dependency analysis.

First, existing research often focuses on API names, paying relatively little attention to
API parameters. Both malware and benign software may call the operating-system–

provided APIs to perform specific functions. For example, ransomware often calls the
file-system API for file operations, whereas benign applications also use the file-system API
to read files. Although malware and benign software may invoke the same API functions,
malware typically uses more dangerous parameters, while benign software tends to use
them less frequently. Therefore, analyzing API function parameters can effectively
distinguish malware from benign software.

Secondly, it is crucial to effectively capture dependencies among API calls. Due to the
complex relationships between API calls, API call sequences contain rich information. For
example, APIs such as OpenProcess and CreateFile are used to obtain resource handles
before calling CloseHandle. Additionally, CreateDirectory, CreateFile, and WriteFile are
often used together to write a new file at a specific location. These relationships can reveal

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 2/29

http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

software behavior. Therefore, effectively capturing dependencies among API calls can
enhance malware detection.

Based on the above analysis, we propose a new malware detection method that leverages
parameterized API call sequences. First, considering the characteristics of different API
parameter types, we apply numerical normalization, term frequency–inverse document
frequency (TF–IDF), and ordinal encoding to design encoders that extract features of each
parameter type. Second, we employ a clustering-based discretization of parameters to
produce a parameter-enhanced API call sequence, and we learn API semantics from many
software samples via word embeddings to obtain semantic representations of function
calls. Finally, we design a deep neural network combining temporal convolutional
networks (TCN) and gated recurrent units (GRU) to model dependencies among API
calls. Experimental results on a large-scale malware detection dataset (over 20,000 benign
samples and 40,000 malware samples) demonstrate the effectiveness of our method.
Furthermore, ablation studies show that modeling function parameters and function
dependencies significantly improve the malware detection performance.

The contributions in this article are as follows:

. To address the lack of consideration of API runtime parameters, we propose a new
encoding method for parameters of API: according to the characteristics of different
types of API parameters, various feature engineering coding technologies are used to
encode API parameters; Furthermore, clustering technology is used to discretize various
parameter features, making it easier to generate semantic representations of API as deep
learning networks.

. To address the problem of long API sequence dependencies, we design a deep neural
network architecture to process the extracted features, which combines TCN and GRU,
which can effectively capture the dependencies between API calls, thereby improving the
performance of malware detection.

. We conduct extensive experiments on public datasets and verify the excellent
performance of this method in malware detection. Through ablation studies, we explore
the impact of modeling function API parameters and function dependencies on malware
detection.

RELATED WORK
In this section, the dynamic malware analysis is categorized into the executables based
approach, API based approach, and API call sequence based approach.

Executables based malware detection
Method based on executables typically utilizes machine learning or deep learning methods
to extract patterns and features of malware from a large number of executables, achieving
high-precision malware detection. For example, Hemalatha et al. (2021) propose an
efficient malware detection system based on deep learning which uses the reweighted
class-balanced loss function in the final classification layer of the DenseNet model to
achieve significant performance improvements in classifying malware by handling

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 3/29

http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

imbalanced data issues. Shaukat, Luo & Varadharajan (2023) first visualized portable
executable files as images, then used a fine-tuned deep learning model to extract deep
features from those images. Finally, they employed SVM for malware detection based on
these deep features (Shaukat, Luo & Varadharajan, 2023). Chaganti, Ravi & Pham (2022)
propose a deep learning-based bidirectional-gated recurrent unit-convolutional neural
network (Bi-GRU-CNN) model for detecting and classifying Internet of Things (IoT)
malware using ELF binary file byte sequences as input features. Saleh, Li & Xu, (2018)
introduced a high-performance malware detection system that combines deep learning
and feature selection methodologies to differentiate malware from benign traffic (Alomari
et al., 2023). However, due to the rich information embedded in executables and their large
file size, the time cost of detecting executable files is relatively high.

API based malware detection
Methods based on API mostly focus more on whether the API is called and its frequency.
They often overlook the impact of API parameters on API and usually employ manual
analysis for the relationships between APIs. For example, Singh & Singh (2022) captured
software API calls using the Cuckoo sandbox, selected multiple types of APIs, and used
their invocation as features for optimizing machine learning algorithms to detect malware.
Amer et al. (2022) proposed an Android malware detection technique based on API and
permissions, collecting application features by obtaining the most frequently used API
calls and permissions and utilizing machine learning algorithms for malware detection.
Amer & Zelinka (2020) employed word2vec to extract contextual relationships between
API sequences, cluster similar APIs, and ultimately detect malware based on a Markov
chain. Sharma (2022) extracted important features for malware detection from API call
sequences, invocation situations, and call frequencies obtained from the dynamic analysis
of malicious and benign samples. They used the TF-IDF method to determine the
importance of each feature in these feature sets and evaluated the feature effectiveness
using machine learning algorithms such as decision trees, support vector machines, logistic
regression, and k-nearest neighbors (Sharma, 2022). Ndibanje et al. (2019) calculated the
called frequency of each API in each API sequence, represented each malware sample
using this frequency vector, and then applied the KNN machine learning algorithm for
feature extraction. While these works recognize the superior performance of API calls in
malware detection, methods based on machine learning models often struggle to consider
the internal dependencies within sequences adequately.

API call sequence based malware detection
With the introduction of deep learning-related technologies, researchers have begun to
explore malware detection from the perspective of API call sequences, utilizing deep
learning models to model sequence data and uncover dependencies within the data. For
example, Liu & Wang (2019) analyze malware and normal software samples using the
sandbox software. They collect API calls, and remove duplicate API calls. Then they use
vectorization techniques from natural language processing (NLP) to explore relationships
between the APIs and obtain vectors representing API calls. Finally, they employ

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 4/29

http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

bi-directional long short-term memory (Bi-LSTM) for malware detection (Liu & Wang,
2019). Maniriho, Mahmood & Chowdhury (2023) utilize the tokenizer in the Keras
framework for tokenizing and encoding APIs. They propose an automatic feature
extraction approach based on convolutional neural networks (CNN) and bi-directional
gate recurrent unit (BiGRU) deep learning architecture (Maniriho, Mahmood &
Chowdhury, 2023). Feng et al. (2024) propose a novel documentation-augmented
Windows malware detection framework to extract the information of official Windows
API documentation and construct API graphs. Zhou et al. (2024) leverage a dynamic
instrumentation tool to hook the target program to collect the API sequence and argument
features. Then, it exploits a hierarchical attention network (HAN) model to analyze the
API sequence features (Zhou et al., 2024). The above studies have overlooked the impact of
API parameters on malware detection.

Recently, some researchers have started to explore malware detection from API
sequences with parameters. For example, Zhang, Qi &Wang (2020) used a hash method to
extract heterogeneous features from API names and run-time parameters. These features
were further concatenated and input into a deep learning model that aggregates multiple
gated CNN models and bidirectional long short-term memory (LSTM) (Zhang, Qi &
Wang, 2020). Kishore, Gond &Mohapatra (2024) explored the implementation of machine
learning in malware classification and analysis by enabling dynamic and adaptive threat
recognition. Li et al. (2022) proposed a hybrid feature encoder for extracting semantic
features from API names and parameters. Subsequently, an API call graph was derived
from the API call sequence, transforming the relationships between API calls into
structural information of the graph. Finally, a graph neural network was designed for
malware detection (Li et al., 2022). Chen et al. (2022) introduced a classification method
based on rules and clustering to evaluate the sensitivity of parameters to malicious
behavior, obtaining a parameter-enhanced API call sequence. Based on this sequence,
native embeddings and classification label embeddings were applied to API calls,
connecting the two to represent the APIs. The embedded sequence was then input into a
deep neural network to train a binary classifier for malware detection (Chen et al., 2022).
Zhao et al. (2023) employ parameter-augmented semantic chains to improve the system’s
resilience to unknown parameters and design a deep learning model consisting of gated
CNN, Bi-LSTM, and an attention mechanism to extract semantic features embedded
within the API sequences and improve the overall detection accuracy.

Table 1 Summary of literature review.

Topic Related work Problem

Executables based
malware detection

Hemalatha et al. (2021), Shaukat, Luo & Varadharajan (2023), Chaganti, Ravi & Pham
(2022), Alomari et al. (2023)

High consumption of
resources

API call based malware
detection

Singh & Singh (2022), Amer et al. (2022), Amer & Zelinka (2020), Sharma (2022), Ndibanje
et al. (2019)

Lack of attention to other
features of API

API call sequence based
malware detection

Liu & Wang (2019), Maniriho, Mahmood & Chowdhury (2023), Zhang & Li (2020),
Kishore, Gond & Mohapatra (2024), Zhou et al. (2024), Li et al. (2022), Chen et al. (2022),
Feng et al. (2024), Zhao et al. (2023)

Overly simplistic analysis of
function parameters

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 5/29

http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

In summary, the general description of the above literature is shown in the following
Table 1. API call sequence based malware detection faces two main constraints currently:
Existing research often only considers API names, with weak analysis of API parameters,
and how to effectively capture relationships between APIs. Therefore, the API parameters
are given more attention in this article, and a deep learning model that combines TCN and
GRU is designed to capture the dependencies among APIs.

METHODS
In this section, the proposed approach and the motivation behind it will be described in
detail.

System overview
The system architecture is shown in Fig. 1. The system has two stages: Function
Parameters Encoding and Dependency Modeling.

During Function Parameters Encoding, as shown in Fig. 2, one API with parameters is
first processed by Function Parameters Extraction, which encodes all parameters into
vectors. Then it is clustered by the trained clustering model belonging to this API, and then
the cluster to which these parameters belongs will be predicted. After Discretization of
Real-valued Parameters, the parameters are replaced with their cluster labels. Finally, the
new tokens are converted into vector representations via Word2Vec.

In the Function Parameters Extraction phase, API call sequences with parameters are
input into the parameter encoder. It utilizes various techniques to encode API parameters
of different types, ultimately transforming the raw parameters into feature vectors.

In the Discretization of Real-valued Parameters phase, the clustering-based approach is
employed to generate rules for partitioning the parameter space. Parameters are
partitioned based on the extracted features from encoding, and the partitioned results
replace the original parameters. The real-valued parameters are discretized, resulting in the
API call sequence with augmented parameters. Utilizing word embedding, context
dependencies in the API call sequence are learned, yielding word embeddings that
represent the APIs. Finally, the API call sequence is transformed into the sequence of API
embeddings.

In the Dependency Modeling phase, the API embedding sequence is fed into our
proposed deep neural network. A TCN layer extracts temporal features from the API call
sequence. Subsequently, a GRU layer analyzes those features. Finally, the GRU’s output is
passed through a linear layer followed by a sigmoid activation function to classify whether
the API call sequence corresponds to malware.

Function parameters encoding
Motivation of API run-time parameter
As is well known, malware can directly or indirectly utilize the APIs provided by the
operating system to achieve specific functions. Therefore, APIs are advantageous for
malware detection. However, not only malware but also benign software may use these
APIs. For instance, ransomware typically employs the file-system API for file operations,

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 6/29

http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

and benign software also uses the file-system API when reading external files (Qbeitah &
Aldwairi, 2018; Cozzi et al., 2018; Jamalpur et al., 2018). Currently, most research does not
take this into account and focuses only on raw API call sequences without additional
context. While these studies have demonstrated some effectiveness, their performance has
remained limited due to overlapping API usage between malware and benign software.

Fortunately, even though malware and benign software may use the same API, the
former typically employs more dangerous parameters, which are often rarely used in the
latter. Table 2 presents execution trace snippets of software samples in the sandbox.

Figure 2 An example of function parameters encoding. Full-size DOI: 10.7717/peerj-cs.2946/fig-2

Figure 1 Overview of our malware detection method. The system mainly consists of two parts. (1) Function parameters encoding: to extract the
feature of function parameters, discretize the feature of parameter, and embed API with the discretized parameters. (2) Dependency Modeling: to
build a model that models the dependency of APIs, then train this model to classify. Full-size DOI: 10.7717/peerj-cs.2946/fig-1

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 7/29

http://dx.doi.org/10.7717/peerj-cs.2946/fig-2
http://dx.doi.org/10.7717/peerj-cs.2946/fig-1
http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

Typically, each line records information such as API names, process names, run-time
parameters, return values, etc. For clarity, only API names and related parameters are
listed here. In the execution snippet of malware, the malware calls NtCreateFile to
create a new file. Then it writes malicious code into it using NtWriteFile and
WritePEFile and sets the file as hidden using SetFileHiddenOrReadOnly. It finally
modifies the registry using NtSetValueKey to enable malicious behavior to run
automatically on the operating system startup. In the execution snippets of benign
software, the benign software calls NtCreateFile, NtWriteFile, SetFileHiddenOrReadOnly
to create a read-only error log recording run-time errors and uses NtSetValueKey to
modify the registry, storing information such as the software’s installation directory and
version number. It can be observed that parameters such as ‘ReadOnly’, ‘Hidden’, and
‘HKEY_LOCAL_MACHINEnSOFTWAREnMicrosoftnWindowsnCurrentVersionnRun’
are sensitive and can aid in malware detection. Therefore, the behavior exhibited by API
with different parameters is also viewed differently from a security perspective. This insight
encourages us to utilize API parameters to enhance the effectiveness of malware detection.

Function parameters extraction
As for run-time API parameters, their parameter space can be enormous, and the number
and types of parameters vary significantly among different APIs. Using conventional
embedding methods requires deeper neural networks. Alternatively, one can partition the

Table 2 Snippets of software traces.

(a) Malware

NtCreateFile (“C:nDocuments and SettingsnadminndeadbeefnDEADBEEF”)
SetFileHiddenOrReadOnly (“C:nDocuments and SettingsnadminndeadbeefnDEADBEEF”, ReadOnly)
NtWriteFile (“C:nDocuments and SettingsnadminndeadbeefnDEADBEEF”)
WritePEFile (“C:nDocuments and SettingsnadminndeadbeefnDEADBEEF.exe”)
SetFileHiddenOrReadOnly (“C:nDocuments and SettingsnadminndeadbeefnDEADBEEF.exe”, Hidden)

Process32FirstW ()

CreateProcessInternalW (“C:nDocuments and SettingsnadminndeadbeefnDEADBEEF.exe”)
NtSetValueKey
(“HKEY_LOCAL_MACHINEnSOFTWAREnMicrosoftnWindowsnCurrentVersionnRun”,
“DEADBEEF.exe”)

…

(b) Benign software

NtCreateFile (“C:nUsernlenovonerrorxxxxx.log”)
SetFileHiddenOrReadOnly (“C:nUsernlenovonerrorxxxxx.log”, ReadOnly)
NtWriteFile (“C:nUsernlenovonerrorxxxxx.log”)
…

…

…

NtSetValueKey (“HKEY_CURRENT_USERnSOFTWAREnBaiduninstallDir”, “D:nProgram
FilesnBaiduNetdisk”)

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 8/29

http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

parameter space via rule-based schemes, but manually crafting rules for such diverse API
parameters is time-consuming and labor-intensive.

If the first method is adopted, not only must the issue of how different parameters are
encoded be addressed, but the challenge of aligning parameter features extracted in cases
where the number and type of parameters vary across different APIs must also be faced. In
contrast, the complexity of the problem is reduced by the second method, which uses rules
to partition the parameter space into finite parts. Therefore, our approach to handling API
parameters focuses on the second method, utilizing a clustering-based approach to
automatically partition the parameter space. To ensure that the clustering results align with
expectations, i.e., categorizing API parameters into those associated with either secure or
malicious behavior, the API parameters need to be encoded. They are transformed into
features that represent their inherent security attributes. Directly using the raw string of
API parameters is insufficient, as clusters formed by matching individual Unicode
characters are unlikely to have any meaningful connection to malicious behavior.

Therefore, the parameter encoder is designed to reference feature engineering
techniques for handling various types of parameters from the field of malicious behavior
detection, such as phishing website detection, phishing email detection, and malicious
code detection (Yang, Zhao & Zeng, 2019;Unnithan et al., 2018; Saxe & Berlin, 2017; Saleh,
Li & Xu, 2018; Yang et al., 2019; Zhang & Li, 2020). The parameter encoder can encode
security features for various types of API parameters. Parameters were categorized into two
major types: numerical parameters and string parameters. Numerical parameters were
further divided into two subtypes: integers and floating-point numbers. Complex string
parameters, on the other hand, were further divided into seven subtypes, including IP
address, file path, file name, URL link, registry, and others. For numerical parameters,
different numerical parameters have different dimensions. To remove unit restrictions and
facilitate the comparison of features with different units or magnitudes, numerical
standardization is performed. For string parameters, they are semantically rich, but their
types are complex and varied. The semantic information of a large number of string
parameter types is hierarchical. Since parameters indicative of malicious behavior typically
appear only in samples of malware, while parameters indicative of normal behavior appear
in samples of both benign and malware, the TF-IDF algorithm (Qaiser & Ali, 2018) is
suitable for this scenario. Therefore, this algorithm is used for feature encoding, and
features such as the length of parameter strings, as well as the proportion of numerical
characters, English characters, and special symbol characters, will be considered. More
specifically, for parameters of an IP address, simply converting the four parts of an Internet
Protocol version 4 (IPv4) address or the eight parts of an Internet Protocol version 6 (IPv6)
address into numerical values is not sufficient. The features are added to determine
whether it is an intranet or internet address. For parameters of the file path, the file path is
divided, such as ‘C:nDocuments and Settingsnadminndeadbeef,’ into root directory ‘C’,
first-level directory ‘Documents and Settings’, and second-level directory ‘admin’,
encoding them separately to extract sensitive information from the path. For parameters of
file name, both the file name and file extension will be extracted and encoded. For

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 9/29

http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

Algorithm 1 Function parameters encoding.

Require: parameter_list (a list of input parameters)
Ensure: feature_vector (a feature vector representing the parameters)
1: Initialize an empty list called feature_vector

2: for each parameter in parameter_list do
3: Identify the type of parameter using regular expressions:
4: if parameter matches an integer pattern then
5: Normalize the integer
6: Append the normalized value to feature_vector

7: esle if parameter matches a floating-point pattern then
8: Normalize the floating-point number
9: Append the normalized value to feature_vector

10: else if parameter matches an IP address pattern then
11: Decimal form of the IP address
12: Boolean value indicating if it is a private IP
13: General string encoding
14: Append all encoded parts to feature_vector

15: else if parameter matches a file path pattern then
16: Root directory encoding
17: First-level directory encoding
18: Second-level directory encoding
19: General string encoding
20: Append all encoded parts to feature_vector

21: else if parameter matches a file name pattern then
22: File name encoding
23: File extension encoding
24: General string encoding
25: Append all encoded parts to feature_vector

26: else if parameter matches a URL pattern then
27: Top-level domain encoding
28: Second-level domain encoding
29: Subdomain encoding
30: General string encoding
31: Append all encoded parts to feature_vector

32: else if parameter matches a registry pattern then
33: Registry root key encoding
34: Second-level registry key encoding
35: Third-level registry key encoding
36: General string encoding
37: Append all encoded parts to feature_vector

38: else

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 10/29

http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

parameters of the uniform resource locator (URL) link, the domain name will be divided,
and the top-level domain, second-level domain, and subdomain will be extracted for
encoding. For parameters of a registry, similar to parameters of a file path, they will be
divided into registry root keys, second-level registry keys, and third-level registry keys, and
encoded separately. Details are shown in Algorithm 1. Where the general string encode
method is TF-IDF algorithm, statistics parameter string length, and the proportion of
numeric characters, English characters, and special symbol characters.

The original API call sequence from software samples is a list composed of strings,
where each string represents an API call and its parameters in the form of ‘API_NAME
(Parameter_1, Parameter_2, …, Parameter_N)’. Specifically, when the function
“CopyFileExW(KMwW.exe, C:nclassified.doc.exe)” is passed into the encoder, it is
handled as follows: First, all parameters are added to the parameter pool of the function
named CopyFileExW for further processing. The pool stores the runtime parameters of
CopyFileExW calls from the programs. Then the diverse types of parameters need to be
identified. String matching techniques, specifically regular expressions, were employed to
recognize and extract various types of parameters from the raw string of the API call
sequence. In this example, “KMwW.exe” is recognized as a file, and “C:nclassified.doc.exe”
is also recognized as a file. Subsequently, the encoder encodes these parameters based on
their types. For example, “KMwW.exe” is split into the file name and file extension, i.e.,
“KMwW” and “exe”. Each part is then encoded separately, with TF-IDF encoding applied
to “KMwW.exe”, “KMwW”, and “exe”. Additionally, statistics such as the string length of
“KMwW.exe”, the proportion of numeric characters, the proportion of alphabetic
characters, and the proportion of special characters are also calculated. Finally, the word
embeddings and parameter statistics are combined to form the feature vector for the API
parameters.

Discretization of real-valued parameters

After the Function Parameters Extraction, the API parameters are transformed into feature
vectors. The next step involves using clustering methods to partition the parameter space
based on these feature vectors related to malicious behavior. This process aims to cluster
parameters associated with malicious behavior together and cluster those associated with
benign behavior, achieving a finer-grained distinction for homonymic API calls with
different API parameters.

Moreover, different APIs may have different types and quantities of parameters. For
example, calling LoadLibrary needs to pass the parameter of the file name, while calling
NtDeleteKey requires passing the parameter of the registry key. The API named
LoadLibrary requires only one parameter, which is the dynamic link library (DLL), while

Algorithm 1 (continued)

39: Append General string encoding to feature_vector

40: end if
41: end for

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 11/29

http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

the API named NtSetValueKey needs to pass two parameters: the registry key and the
value to be set. Therefore, all parameters of all APIs cannot simply be clustered together;
instead, the API parameters of each API should be clustered separately.

The K-means algorithm is a widely used unsupervised learning method, primarily
applied to clustering problems. The core idea is to partition the data into multiple
independent clusters, minimizing the distance between data points within each cluster
while maximizing the distance between clusters. It possesses advantages such as low time
complexity and strong scalability (Oti et al., 2021). K-means++ is an improved version of
the K-means algorithm, known for its ability to select better initial centroids, thereby
enhancing the algorithm’s convergence speed and reducing the risk of falling into local
optima. Currently, it has been widely applied in various fields, including document
clustering, customer classification, and anomaly detection, and has shown good
performance. Therefore, considering our objectives and the characteristics of various
clustering algorithms, we adopt the K-means++ algorithm as our clustering method.

In summary, in the Discretization of Real-valued Parameters, the K-means++ algorithm
is used to cluster the safety feature vectors of all parameter lists for each API call. Through
this, parameter lists of one API will be clustered to some clusters. After the
completion of clustering, the original parameters will be replaced with the marking of the
cluster, thus obtaining the parameter-enhanced API call sequence. Additionally, word2vec
(Di Gennaro, Buonanno & Palmieri, 2021) is employed, treating API as words and
software samples as sentences. This approach enables us to learn contextual dependencies
in API call sequences and obtain word embeddings that represent the APIs with
parameters.

Dependency modeling
Previous research has often treated the problem of malware detection based on API call
sequences as a sequence classification problem, typically employing deep learning models
such as recurrent neural networks (RNNs) and LSTMs. Models of this kind (Sherstinsky,
2020; Zargar, 2021) determine each output based on both the current input and previous
information. Therefore, they can handle sequence data, uncover temporal information in
the data, and capture dependencies among sequence data. However, when dealing with
long sequences, these models may encounter issues such as vanishing or exploding
gradients as the network depth increases.

TCN is a deep neural network model based on one-dimensional convolution
(Bai, Kolter & Koltun, 2018). Due to its ability to compute data from all time steps, as well
as its powerful capability to model long-term dependencies with fewer parameters, TCN
has been widely applied in areas such as speech recognition, motion detection, and time
series classification. It is built on two mechanisms: causal convolution and dilated
convolution.

Causal convolution is illustrated in Fig. 3. The value at position t in the output layer
depends only on the values at position t and earlier in the input layer. Unlike traditional
convolutional neural networks, causal convolution cannot see future data; it has a

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 12/29

http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

unidirectional structure. In other words, there must be a cause before there is an effect,
making it a strictly time-constrained model, hence the name causal convolution.

Simple causal convolution still has the problem of traditional CNN, that is, the length of
modeling time is limited by the size of the convolution kernel, and it is difficult to obtain
longer dependencies. The solution to this problem is dilated convolution, as shown in
Fig. 4. Dilated convolution allows for interval sampling of the input during
convolution, and the sampling rate is controlled by the dilated coefficient, i.e., d in the
figure. d ¼ 1 means that every point in the input process is sampled, and d ¼ 2 means
that every two points in the input process are sampled once as input. Generally
speaking, the higher the level, the greater the value of d. Therefore, dilated
convolution makes the size of the effective window increase exponentially with the number

Figure 3 Causal convolution in TCN. Full-size DOI: 10.7717/peerj-cs.2946/fig-3

Figure 4 Dilated convolution in TCN. Full-size DOI: 10.7717/peerj-cs.2946/fig-4

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 13/29

http://dx.doi.org/10.7717/peerj-cs.2946/fig-3
http://dx.doi.org/10.7717/peerj-cs.2946/fig-4
http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

of layers. In this way, the convolution network can use fewer layers to obtain a large range
of receptive fields.

To ensure that the receptive field of the TCN covers the entire history, i.e., the
complete sequence, it is necessary to control the number of layers to achieve a wide
receptive field.

For the given sequence length denoted as l, kernel size denoted as k, dilation base
denoted as b, and number of layers denoted as n, the following inequality Eq. (1) needs to
be satisfied to cover the complete history:

1þ ðk� 1Þ � b
n � 1
b� 1

� l: (1)

Solving for n to obtain the minimum required number of layers as following Eq. (2):

n ¼ logb
ðl � 1Þ � ðb� 1Þ

ðk� 1Þ þ 1

� �� �
: (2)

The two mechanisms of causal convolution and expansion convolution are used to
make the output of each moment in the TCN network only convoluted with the input at
that moment and before. Therefore, the output of TCN maintains a temporal sequence. In
other words, while TCN employs convolutional operations to extract features from the
sequence, these features still possess temporal order. Consequently, TCN can be combined
with neural networks such as RNN, LSTM, and GRU.

RNN is designed to handle sequential data and capture temporal dependencies within
the input sequences. However, RNNs suffer from vanishing and exploding gradient
problems, making it difficult to capture long-range dependencies. LSTM addresses this
issue by introducing gating mechanisms (input gate, forget gate, and output gate) and
memory cells, allowing them to retain important information over longer time horizons.

Figure 5 TCN-GRU model architecture. The TCN-GRU model consists of four parts. (1) Embedding: to embed API call sequence. (2) TCN: to
explore the dependency relationships between APIs. (3) GRU: to extract temporal features of the API call sequence. (4) Linear: to classify where the
API sequence is from. Full-size DOI: 10.7717/peerj-cs.2946/fig-5

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 14/29

http://dx.doi.org/10.7717/peerj-cs.2946/fig-5
http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

GRU, a simplified version of LSTM, contains only an update gate and a reset gate, resulting
in fewer parameters and more efficient computation. GRU typically offers performance
comparable to or even better than LSTM, especially in scenarios where model complexity
and computational resources are limited. Therefore, by combining TCN with GRU, we
construct the deep neural network shown in Fig. 5. The deep neural network is used to
determine whether the input API call sequence is from malware. The model consists of the
TCN layer, the GRU layer, and the Linear layer.

In summary, the model will take the API call sequence as input and determine whether
the API call sequence originates from malware. The specific process is as follows: first,
based on the trained API embedding from the previous step in API Embedding,
construct the embedding layer to transform the input API call sequence into the API
embedding sequence. Then, using the TCN layer, explore the dependency relationships
between API calls, extracting temporal features of the API call sequence. Next, input the
feature vectors output by the TCN layer into the GRU layer, overlaying bidirectional
feature information. This further explores the intrinsic sequential correlations of the API
call sequence in both forward and backward directions, extracting deeper temporal
features. Finally, input the feature vectors extracted from the GRU layer into the fully
connected layer. Through the sigmoid activation function, classify whether the input API
call sequence is from malware.

EXPERIMENT RESULTS
In this section, some details of the experiment and the experimental results are presented
to evaluate our method.

Dataset
An open dataset is used for evaluating our proposed method. The dataset is generated with
a sandbox and is publicly available in GitHub, provided by the third-party (kericwy1337,
2019). They were also used as dataset in the malware detection track called DataCon2019
Big Data Security Analytics Competition. The dataset contains a total of 60,000 software
samples, with 40,000 being malware and an additional 20,000 being benign. It is divided
into two parts, in equal proportions based on label ratios. The malware detection model
will be trained in the first part called the training set, and its performance will be tested in
the second part, called the test set. Details of the dataset are shown in Table 3. The first part
contains a total of 30,000 execution traces of Windows PE files, of which 10,000 are benign
and the others are malicious. The second part also contains a total of 30,000 execution
traces of Windows PE files, of which 20,000 are malware and the others are benign. Yet
they are slightly different in the number of traced APIs, i.e., 99 API in the first part and
101 API in the second part.

During the training, the five-fold cross-validation method is employed, where the
training set is randomly divided into five equally sized subsets. Four subsets are used for
training, and the remaining one is used for validation in each iteration. This process is
repeated five times, and the average results are obtained. Simultaneously, the results on the

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 15/29

http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

training set are referred to as training results, the results on the validation subset as
validation results, and the results on the test set as test results.

Experiment settings
In the proposed model, considering the median and mean of the API sequence lengths in
the dataset, we have constrained the length of the API sequences to 1,000. Simultaneously,
we set the size of the API embeddings to 50 based on the size of the corpus and the cost of
unsupervised training of word2vec. Considering the complexity of the malware detection
task and the length of the API call sequence, we also set the kernel size of the TCNmodel to
three and the output channel of the TCN model to [100, 100, 100, 100, 100, 100, 100, 100,
100]. We set the hidden layer size of the GRU model to 64 to balance task complexity and
training consumption. Finally, we set the dropout rate to 0.5 to avoid overfitting.

To prevent overfitting, we employ regularization techniques such as dropout.
Additionally, we verify the model with a separate validation set and perform
cross-validation to ensure the robustness of our results.

Additionally, the model applies Adam as the optimizer and supervises each input
sequence with the label. To measure the loss of the training stage, the binary cross-entropy
function is used as follows:

BCE ¼ �ðy logðpÞ þ ð1�yÞ logð1�pÞÞ; (3)

where y is binary label and p is the probability of y.
Accuracy, Precision, Recall, and F1-score are used as the evaluation metrics of the

proposed method:

Accuracy ¼ TPj j þ TNj j
TPj j þ TNj j þ FPj j þ FNj j ; (4)

Precision ¼ TPj j
TPj j þ FPj j ; (5)

Recall ¼ TPj j
TPj j þ FNj j ; (6)

F1-score ¼ 2� Precision� Recall
Presionþ Recall

; (7)

where TP represents the number of traces that are correctly predicted as malware, TN
denotes the number of traces that are correctly classified as benign, FN denotes the number
of traces that are malware but are incorrectly predicted as benign, and FP indicates the
number of traces that are benign but are predicted as malware.

Table 3 Detail of dataset.

Dataset Benign Malware Involved API

Training set 10,000 22,341 99

Test set 10,000 22,342 101

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 16/29

http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

Comparison with different model
At first, the proposed method is compared with four machine learning models (naive
Bayes, decision tree, logistic regression, support vector machine) and three deep learning
models (TextCNN, RNN, Attention_BILSTM) in terms of F1-score, Precision, Recall, and
Accuracy. The specific approach includes training and validation on the training set and
testing on the test set. The raw API sequences are input into all these models.

The experimental results, as shown in Tables 4 and 5, demonstrate that our proposed
method outperforms the baseline models in the validation and test sets. For example, in the
test results, our proposed model achieves F1-score, Precision, Recall, and Accuracy of
98.40%, 98.24%, 98.55%, and 98.62%, respectively. This represents an improvement of
8.64%, 6.22%, 10.40%, and 6.99% over the best baseline machine learning model and an
improvement of 2.34%, 2.57%, 2.06%, and 2.01% over the best baseline deep learning
model. The enhancement primarily comes from our proposed method, considering the
significance of API run-time parameters in malware detection. In the model, the causal
convolution and dilated convolution mechanisms of the TCN, maintain the temporal
nature of the features extracted by the TCN. Additionally, GRU is deployed to
comprehensively analyze the correlated features extracted by TCN, learning the deep
temporal dependencies inherent in the data. Therefore, the proposed model achieves better
performance, as validated by the experimental results.

Comparison with state-of-the-art method
In order to evaluate our method, the proposed method is also compared with some
methods presented by other researchers.

Amer & Zelinka (2020) employ the method of Markov chain to detect malware. Firstly,
they employ Word2Vec to extract the contextual relationships between API in sequence
and build the API similarity matrix. In accordance with the matrix, cluster similar APIs
and replace API calls with cluster indexes. Then, the API sequence chain transition matrix
is created by calculating the maximum transition sequence probability. Finally, the benign
and malware probabilities of the tested sequence are calculated by traveling through the
sequence via the transition matrices.

Table 4 Validation results (%) of comparison with machine learning and deep learning model on
malware detection.

Approach F1-score Precision Recall Accuracy

Naive Bayes 65.96 67.69 70.90 67.08

Decision tree 89.47 91.86 87.78 91.51

Logistic regression 85.59 84.72 86.77 87.45

SVM 85.88 84.69 87.82 87.48

TextCNN 96.09 95.58 96.63 96.63

RNN 87.05 87.11 87.00 89.00

Attention_BILSTM 90.22 92.34 88.68 92.03

Proposed method 98.59 98.37 98.82 98.78

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 17/29

http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

Zhang, Qi & Wang (2020) utilize hashing methods to extract heterogeneous features
from API names and run-time parameters. These features are then further concatenated
and fed into a deep learning model that aggregates multiple gated CNN models and a
bidirectional LSTM.

Chen et al. (2022) propose a rule and clustering-based classification approach to
evaluate the sensitivity of parameters to malicious behavior and obtain the
parameter-enhanced API call sequence. Based on this sequence, APIs are embedded
natively and embedded with classification labels, connecting the two to characterize the
API, and the API embedding sequence is fed into a deep neural network to train a classifier
to detect malware.

Maniriho, Mahmood & Chowdhury (2023) propose API-MalDetect, a deep
learning-based framework for automated malware detection. The framework
employs an encoder to process API calls, combined with a hybrid feature extraction
approach that integrates CNN and GRU to extract relevant patterns from sequences of
API calls.

Kishore, Gond & Mohapatra (2024) proposed a method of malware detection based on
machine learning. Several models are used for feature learning and classification. Finally,
their experiment proves that XGBoost accurately detects malicious samples.

Zhou et al. (2024) propose a hybrid model, which combines the HAN and MLP models.
It leverages a dynamic instrumentation tool to hook the target program to collect the API
sequence and argument features. Then, it exploits a Hierarchical Attention Network model
to analyze the API sequence features. Finally, it applies a multi-layer perceptron (MLP)
model to analyze features.

Considering that the samples in the test set are almost entirely different from those in
the training set, with potential new malicious samples in the test set, it can be used to
evaluate the generalization ability of our model. Therefore, 5-fold cross-validation is used
to train the model on the training set and then test the model on the test set. We primarily
considered four metrics, including accuracy, precision, recall, and F1-score.

As shown in Table 6, the performance of the proposed model surpasses other models
in terms of accuracy, precision, recall, and F1-score. Compared to machine learning-based

Table 5 Test results (%) of comparison with machine learning and deep learning model on malware
detection.

Approach F1-score Precision Recall Accuracy

Naive Bayes 66.50 68.12 71.19 67.54

Decision tree 89.76 92.02 88.15 91.63

Logistic regression 86.03 85.21 87.11 87.73

SVM 86.16 85.05 87.97 87.64

TextCNN 96.06 95.67 96.49 96.61

RNN 87.13 87.30 86.98 89.05

Attention_BILSTM 90.45 92.45 88.98 92.16

Proposed method 98.40 98.24 98.55 98.62

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 18/29

http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

approaches proposed by Amer & Zelinka (2020), our deep learning-based model achieves
superior performance in malware detection. For instance, in the test result, our proposed
method achieves 98.40% in F1-score, while the method proposed by Amer & Zelinka
(2020) achieves 71.90%. These results indicate that deep learning models can capture
deeper dependencies in the data, leading to better performance. Furthermore, the results
suggest that combining API calls and associated run-time parameters significantly
improves performance compared to models that do not consider parameters.

Compared to the deep learning models proposed by Zhang & Li (2020), Maniriho,
Mahmood & Chowdhury (2023), Kishore, Gond & Mohapatra (2024), Zhou et al. (2024),
and Chen et al. (2022), our proposed model also demonstrates significant performance
improvement. For instance, in the test results, our model outperforms the models of Zhang
& Li (2020), Maniriho, Mahmood & Chowdhury (2023), Kishore, Gond & Mohapatra
(2024), Zhou et al. (2024), and Chen et al. (2022) by 10.44%, 3.3%, 15.93%, 9.4%, and
5.73%, 5.78%, 5.66%, 4.91%, and 4.22%, 3.35%, 5%, 3.52%, and 1.83%, 1.71%, 1.98%,
1.51%, and 1.86%, 1.98%, 1.63%, 1.28% in terms of F1-score, precision, recall, and
accuracy, respectively. Our proposed model not only takes into account the impact of API
parameters on malware detection but also conducts a more in-depth and detailed
treatment of API parameters. Experimental results validate the effectiveness of these
treatments, leading to superior performance in the experiments compared to others.

DISCUSSION
In this section, the effects of the improvements made in the proposed approach are
discussed through the ablation study first. Then, the impact of varying the number of
clusters on model performance is discussed.

Additionally, the receiver operating characteristic (ROC) curve is plotted to evaluate
these effects. The ROC curve is a graphical representation commonly used in binary
classification to assess the performance of a model across different decision thresholds.
Plotted with the true positive rate (TPR) against the false positive rate (FPR), the ROC
curve illustrates the trade-off between correctly identifying positive instances and
incorrectly classifying negative instances. The area under the ROC curve (AUC) serves as a

Table 6 Comparison with state-of-the-art research on malware detection.

Method Parameter Validation results (%) Test results (%)

F1-score Precision Recall Accuracy F1-score Precision Recall Accuracy

Markov Chain (Amer & Zelinka, 2020) No 85.21 82.76 87.95 85.64 71.90 60.14 89.32 66.31

Multiple Gated CNN and Bi-LSTM
(Zhang & Li, 2020)

Yes 96.04 95.78 96.32 96.85 87.96 94.94 82.62 89.23

CNN and Bi-GRU (Maniriho, Mahmood &
Chowdhury, 2023)

No 92.65 92.58 92.71 93.70 92.67 92.46 92.89 93.71

XGBoost (Kishore, Gond & Mohapatra 2024) Yes 94.07 94.83 93.40 95.07 94.18 94.89 93.55 95.10

HAN (Zhou et al., 2024) no 96.10 96.27 95.95 96.67 96.51 96.45 96.57 97.01

TextCNN and Bi-LSTM (Chen et al., 2022) Yes 96.23 95.75 96.71 97.03 96.54 96.26 96.91 97.33

Our Proposed Method Yes 98.59 98.37 98.82 98.78 98.40 98.24 98.55 98.62

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 19/29

http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

comprehensive metric, quantifying the model’s ability to discriminate between positive
and negative instances. A higher AUC signifies better overall performance, and the curve
provides valuable insights for selecting an appropriate threshold based on the specific
requirements of the task at hand. Among them, the equations for TPR and FPR are as
follows:

TPR ¼ TP
TP þ FN

; (8)

FPR ¼ FP
TN þ FP

; (9)

where true positive (TP), false negative (FN), false positive (FP) and true negative (TN) are
the same as before.

Ablation study
As mentioned above, our proposed method mainly consists of two improvements: first, the
enhancement of API call sequences through encoding and clustering of run-time
parameters; second, the introduction of a new deep neural network combining TCN and
GRU. To assess the benefits of these two improvements, the performance differences
before and after these enhancements will be compared. Furthermore, the TextCNN model
performed the best among the commonly used models in the experiment of the previous
section. So this involves evaluating the TextCNN model with raw API embeddings
(TextCNN with raw API), the TextCNN model with parameter-augmented API
embedding (TextCNN with augmented API), the TCN-GRU model with raw API
embeddings (TCN-GRU with raw API), and the complete model. The experimental results
are presented in Table 7.

Whether on the validation set or the test set, as expected, our proposed method
improved all four metrics. Specifically, as the model progressed from the baseline model
with raw API embeddings to the baseline model with parameter-augmented API
embedding, then to the TCN-GRU model with raw API embeddings, and finally to the
complete model, the F1-score on the test results increased from 90.45% to 96.04% and
96.37%, finally reaching 98.40%. These results demonstrate that, on one hand, our
clustering effectively utilizes run-time parameters, providing a finer partition for API with
different run-time parameters, assisting the deep neural network in learning more complex
dependencies inherent in API call sequences. On the other hand, it proves that our

Table 7 Ablation study on TextCNN with Raw API, TextCNN with augmented API, TCN-GRU with Raw API and complete model.

Performance Validation results (%) Test results (%)

TextCNN
with raw API

TextCNN with
augmented API

TCN-GRU
with raw API

Complete
model

TextCNN
with raw API

TextCNN with
augmented API

TCN-GRU
with raw API

Complete
model

F1-score 90.22 96.49 96.52 98.59 90.45 96.04 96.37 98.40

Precision 92.34 96.21 95.59 98.37 92.45 95.67 95.49 98.24

Recall 88.68 96.79 97.65 98.81 88.98 96.43 97.44 98.55

Accuracy 92.03 96.95 97.00 98.78 92.16 96.58 96.83 98.62

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 20/29

http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

proposed combined TCN and GRU deep neural network model overcomes the issue of
long sequence gradient vanishing present in other deep learning models. It effectively
captures the implicit dependencies in sequence data, providing more efficient modeling of
API call sequences.

Parameter encoding allows the APIs with the same name, which would normally be
treated as identical symbols, into multiple distinct representations. Although different
software samples may call the same APIs, the varying parameters assigned during
execution lead to different behaviors. The method is good at capturing these behavioral
differences caused by parameter variations, resulting in improved detection performance.

By using TCN-GRU to model the dependencies within API sequences, our approach
benefits from the causal and dilated convolutions, which allow it to capture long-range
contextual dependencies. This enhances its ability to resist obfuscation attacks that
introduce the meaningless APIs. Moreover, the method effectively extracts deep features
from API sequence dependencies, enabling it to achieve superior detection results.

Figure 6 illustrates the ROC curves of different models on the test set. As expected, the
AUC values consistently increase as the model progresses from the model progressed from
the baseline model with raw API embeddings to the baseline model with parameter
augmented API embedding, then to the TCN-GRU model with raw API embeddings, and
finally to the complete model, starting from 0.9794, reaching 0.9822 and 0.9891, and
ultimately reaching 0.9985.

In summary, the two proposed improvements in this article effectively enhance the
capability of malware detection. Moreover, for models trained on different datasets, they
exhibit good robustness on the test dataset, demonstrating their generalization ability and
proving their effectiveness in practical applications.

The confusion matrix as Fig. 7 highlights, that the model demonstrates excellent
performance in detecting malware, as evidenced by its high precision and recall. The low
number of false positives and false negatives ensures both reliability and robustness in
malware classification. Our method exhibits strong detection capabilities with high
precision, recall, and accuracy, making it well-suited for malware classification.

Effect of various settings
The performance of the proposed model is mainly influenced by the method of clustering
and the number of clusters in API parameter clustering. In this subsection, the impact of
factors will be examined by configuring the proposed method with different settings.

In our approach, a clustering-based approach is used to achieve the discretization of API
parameters, where we need to aggregate different combinations of parameters of the same
API into different clusters to distinguish between normal and malicious behaviors of the
same API. In this case, the clustering method can be a key factor affecting the effectiveness
of malware detection. Therefore, the experiments test the impact of different clustering
methods on the performance, mainly selected division-based clustering method (K-
means), hierarchy-based clustering method (BIRCH; Zhang, Ramakrishnan & Livny,
1996), and short text clustering method (GSDMM; Yin & Wang, 2014). Table 8 compares
the performance under different clustering methods. In the test results, the K-means

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 21/29

http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

achieves more outstanding results, improving the F1-score compared to the BIRCH and
GSDMM methods by 0.3%, 5.6%. This also validates our initial idea that for the final task
of binary classification, such as malware detection, where the encoder also encodes the
features of the input parameters for clustering into a more continuous form, the data may

Figure 6 ROC of ablation study on test set. Full-size DOI: 10.7717/peerj-cs.2946/fig-6

Figure 7 Confusion matrix of our method on test set. Full-size DOI: 10.7717/peerj-cs.2946/fig-7

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 22/29

http://dx.doi.org/10.7717/peerj-cs.2946/fig-6
http://dx.doi.org/10.7717/peerj-cs.2946/fig-7
http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

be relatively linear. In this case, the data may be relatively linearly divisible, which makes it
easy to cluster into multiple, relatively centralized clusters under K-means.

Obviously, the number of clusters (denoted by K) is a very important setting that
determines the granularity at which API calls with parameters are partitioned, and hence
the granularity of the security semantics. In general, a smaller K will allow more different
parameters to share the same security semantics, while a larger K enables a finer-grained
characterization of the API’s level of security. Table 9, Figs. 8, and 9 compare the
performance for different cluster numbers. For instance, in the test results, the model with
K = 5 achieved the peak F1-score, precision, recall, and accuracy, with a slight decline in
performance for other values of K. Additionally, in the ROC curve, it can be observed that
the model’s AUC reaches the high of 0.9985 when K is 5 and gradually decreases as K
increases. In examining the precision-recall curve (PR Curve), it is evident that the optimal
curve is achieved when K is set to 5. This suggests that a clustering parameter of K = 5
yields the best performance in terms of precision and recall. This can be understood as,
when the number of clustering labels is too small, it is challenging to effectively
differentiate the security semantics of parameters, and when the number is too large, it
may lead to the blurring of security semantics.

Limitation
The main limitation of our current approach lies in its reliance on sandbox software for the
dynamic analysis of software samples. This method requires the sandbox to extract
runtime API sequences and their parameters from the samples. The analysis time required
by the sandbox becomes a bottleneck in the overall malware detection process, especially
when dealing with large volumes of software samples.

Additionally, the method introduces an added layer of complexity by incorporating API
parameter analysis and modeling, which increases computational overhead. A promising
direction for future research could involve embedding the approach directly into sandbox
software. By integrating malware detection within the dynamic analysis phase,
computational complexity will be decreased. The advantage of this integration would be
the ability to identify malware during the dynamic analysis process itself, rather than
requiring a complete analysis of the sample followed by a separate malware detection
pipeline.

Future work
Currently, our approach is applied in the field of malware detection. However, if an
appropriate malware classification dataset were available, there is no doubt that our
method could be extended to malware classification. Different types of malware exploit
distinct techniques. For example, Adware tends to download other security tools,
ransomware encrypts files on the hard drive, and worms propagate across networks to
infect other machines. Our method models API and their parameters, enabling it to
effectively identify these exploitation behaviors. By leveraging the TCN-GRU network, the
corresponding dependency features can be extracted, demonstrating significant potential
for application in this area.

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 23/29

http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

Furthermore, in addressing zero-day attacks, our approach differs from traditional
methods that focus on defending against signature-based malware features. By
analyzing API call sequences made by software, the method is better equipped to detect
previously unseen zero-day attacks. Regardless of which new vulnerability an attacker
exploits, the ultimate goal remains to acquire sensitive system information or encrypt
user files—behaviors that our method can detect. Therefore, zero-day attack detection is
within range.

Table 8 Effect of varying method of clustering.

Method Validation results (%) Test results (%)

F1-score Precision Recall Accuracy F1-score Precision Recall Accuracy

GSDMM 93.37 92.21 95.00 94.09 92.80 91.57 94.61 93.61

BIRCH 98.47 98.03 98.94 98.67 98.25 97.82 98.71 98.49

K-means 98.59 98.37 98.82 98.78 98.40 98.24 98.55 98.62

Figure 8 ROC of varying numbers of clusters on test set. Full-size DOI: 10.7717/peerj-cs.2946/fig-8

Table 9 Effect of varying numbers of clusters.

K Validation results (%) Test results (%)

F1-score Precision Recall Accuracy F1-score Precision Recall Accuracy

3 97.42 96.86 98.02 97.79 97.47 96.95 98.04 97.81

4 96.97 96.14 97.94 97.38 97.04 96.32 97.89 97.43

5 98.59 98.37 98.82 98.78 98.40 98.24 98.55 98.62

6 97.79 97.19 98.47 98.10 97.74 97.20 98.33 98.04

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 24/29

http://dx.doi.org/10.7717/peerj-cs.2946/fig-8
http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

CONCLUSIONS
In this article, we propose a malware detection method based on function parameter
encoding and functional dependency modeling. Specifically, we employ various feature
engineering techniques to extract security features for different types of parameters.
Subsequently, the K-means algorithm is used to discretize various types of function
participants to facilitate word2vec encoding the parameters of the function. Meanwhile, we
design a deep neural network combining TCN and GRU to capture the dependencies
between API calls. Experimental results show that our proposed method performs well in
detecting malware, surpassing other classic methods. Furthermore, ablation studies
demonstrate that our functional parameter encoding and functional relationship modeling
play a crucial role in improving malware detection performance. In future work, we will
seek better methods for encoding function parameters and modeling functional
dependencies.

ACKNOWLEDGEMENTS
This work would like to thank OpenAI for providing ChatGPT, which was used only for
the translation of the sections of this manuscript from the author’s native language to
English.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the National Key Research and Development Program of
China through project 2023YFB3105700. Qing Lan Project in Jiangsu universities, XJTLU
RDF-22-01-565020. Guanggang Geng is supported by the Pearl River Talents Plan. The

Figure 9 PR of varying numbers of clusters on test set. Full-size DOI: 10.7717/peerj-cs.2946/fig-9

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 25/29

http://dx.doi.org/10.7717/peerj-cs.2946/fig-9
http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Key Research and Development Program of China: 2023YFB3105700.
Qing Lan Project in Jiangsu universities: XJTLU RDF-22-01-565020.
Pearl River Talents Plan.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Ronghao Hou conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.

. Dongjie Liu performed the experiments, analyzed the data, performed the computation
work, prepared figures and/or tables, and approved the final draft.

. Xiaobo Jin conceived and designed the experiments, analyzed the data, performed the
computation work, authored or reviewed drafts of the article, and approved the final
draft.

. Jian Weng analyzed the data, prepared figures and/or tables, authored or reviewed drafts
of the article, and approved the final draft.

. Guanggang Geng conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at Zenodo:
- kericwy1337, & brooomisname. (2025). getsword/Datacon2019-Malicious-Code-

DataSet-Stage1: Datacon2019-Malicious-Code-DataSet-Stage1 (v1.2). Zenodo. https://doi.
org/10.5281/zenodo.15285406

- kericwy1337. (2025). getsword/Datacon2019-Malicious-Code-DataSet-Stage2:
Datacon2019-Malicious-Code-DataSet-Stage2 (v1.0). Zenodo. https://doi.org/10.5281/
zenodo.14925179.

The code is available at Zenodo: brooomisname. (2025). getsword/
malware_detection_with_API: malware_detection_with_API (v1.1). Zenodo. https://doi.
org/10.5281/zenodo.14935798.

REFERENCES
Alomari ES, Nuiaa RR, Alyasseri ZAA, Mohammed HJ, Sani NS, Esa MI, Musawi BA. 2023.

Malware detection using deep learning and correlation-based feature selection. Symmetry
15(1):123 DOI 10.3390/sym15010123.

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 26/29

https://doi.org/10.5281/zenodo.15285406
https://doi.org/10.5281/zenodo.15285406
https://doi.org/10.5281/zenodo.14925179
https://doi.org/10.5281/zenodo.14925179
https://doi.org/10.5281/zenodo.14935798
https://doi.org/10.5281/zenodo.14935798
http://dx.doi.org/10.3390/sym15010123
http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

Amer E, Mohamed A, Mohamed SE, Ashaf M, Ehab A, Shereef O, Metwaie H. 2022. Using
machine learning to identify android malware relying on api calling sequences and permissions.
Journal of Computing and Communication 1(1):38–47 DOI 10.21608/jocc.2022.218454.

Amer E, Zelinka I. 2020. A dynamic windows malware detection and prediction method based on
contextual understanding of API call sequence. Computers & Security 92(7):101760
DOI 10.1016/j.cose.2020.101760.

AV TEST. 2023. Malware statistics[eb/ol]. Available at https://www.av-test.org/en/statistics/
malware/.

Bai S, Kolter JZ, Koltun V. 2018. An empirical evaluation of generic convolutional and recurrent
networks for sequence modeling. ArXiv preprint DOI 10.48550/arXiv.1803.01271.

Chaganti R, Ravi V, Pham TD. 2022. Deep learning based cross architecture internet of things
malware detection and classification. Computers & Security 120:102779
DOI 10.1016/j.cose.2022.102779.

Chen X, Hao Z, Li L, Cui L, Zhu Y, Ding Z, Liu Y. 2022. Cruparamer: learning on
parameter-augmented API sequences for malware detection. IEEE Transactions on Information
Forensics and Security 17(1):788–803 DOI 10.1109/tifs.2022.3152360.

Cozzi E, Graziano M, Fratantonio Y, Balzarotti D. 2018. Understanding Linux malware. In: 2018
IEEE Symposium on Security and Privacy (SP). Piscataway: IEEE, 161–175.

Di Gennaro G, Buonanno A, Palmieri FA. 2021. Considerations about learning word2vec. The
Journal of Supercomputing 77(11):1–16 DOI 10.1007/s11227-021-03743-2.

ENISA. 2023. Enisa threat landscape 2023. Available at https://www.enisa.europa.eu/publications/
enisa-threat-landscape-2023.

Feng P, Gai L, Yang L, Wang Q, Li T, Xi N, Ma J. 2024. DawnGNN: documentation augmented
windows malware detection using graph neural network. Computers & Security 140:103788
DOI 10.1016/j.cose.2024.103788.

Hemalatha J, Roseline SA, Geetha S, Kadry S, Damaševičius R. 2021. An efficient densenet-based
deep learning model for malware detection. Entropy 23(3):344 DOI 10.3390/e23030344.

Jamalpur S, Navya YS, Raja P, Tagore G, Rao GRK. 2018. Dynamic malware analysis using
cuckoo sandbox. In: 2018 Second International Conference on Inventive Communication and
Computational Technologies (ICICCT). Piscataway: IEEE, 1056–1060.

kericwy1337. 2019. Malicious-code-dataset. GitHub. Available at https://github.com/kericwy1337.

Kishore P, Gond BP, Mohapatra DP. 2024. Enhancing malware classification with machine
learning: a comparative analysis of API sequence-based techniques. In: 2024 IEEE International
Conference on Smart Power Control and Renewable Energy (ICSPCRE). Piscataway: IEEE, 1–6.

Li C, Cheng Z, Zhu H, Wang L, Lv Q, Wang Y, Li N, Sun D. 2022. DMalNet: dynamic malware
analysis based on API feature engineering and graph learning. Computers & Security 122:102872
DOI 10.1016/j.cose.2022.102872.

Liu Y,Wang Y. 2019.A robust malware detection system using deep learning on API calls. In: 2019
IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference
(ITNEC). Piscataway: IEEE, 1456–1460.

Maniriho P, Mahmood AN, Chowdhury MJM. 2023. API-maldetect: automated malware
detection framework for windows based on api calls and deep learning techniques. Journal of
Network and Computer Applications 218(6):103704 DOI 10.1016/j.jnca.2023.103704.

Microsoft. 2024. Microsoft Windows app development documentation. Available at https://learn.
microsoft.com/en-us/windows/apps/.

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 27/29

http://dx.doi.org/10.21608/jocc.2022.218454
http://dx.doi.org/10.1016/j.cose.2020.101760
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
http://dx.doi.org/10.48550/arXiv.1803.01271
http://dx.doi.org/10.1016/j.cose.2022.102779
http://dx.doi.org/10.1109/tifs.2022.3152360
http://dx.doi.org/10.1007/s11227-021-03743-2
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2023
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2023
http://dx.doi.org/10.1016/j.cose.2024.103788
http://dx.doi.org/10.3390/e23030344
https://github.com/kericwy1337
http://dx.doi.org/10.1016/j.cose.2022.102872
http://dx.doi.org/10.1016/j.jnca.2023.103704
https://learn.microsoft.com/en-us/windows/apps/
https://learn.microsoft.com/en-us/windows/apps/
http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

Ndibanje B, Kim KH, Kang YJ, Kim HH, Kim TY, Lee HJ. 2019. Cross-method-based analysis
and classification of malicious behavior by API calls extraction. Applied Sciences 9(2):239
DOI 10.3390/app9020239.

Ni S. 2019. The harm of computer malware and prevention methods. Public Communication of
Science & Technology 11:125–126 DOI 10.16607/j.cnki.1674-6708.2019.06.060.

Ofoeda J, Boateng R, Effah J. 2019. Application programming interface (API) research: a review of
the past to inform the future. International Journal of Enterprise Information Systems (IJEIS)
15(3):76–95 DOI 10.4018/ijeis.2019070105.

Oti EU, Olusola MO, Eze FC, Enogwe SU. 2021. Comprehensive review of k-means clustering
algorithms. Criterion 12(08):22–23 DOI 10.31695/ijasre.2021.34050.

Qaiser S, Ali R. 2018. Text mining: use of TF-IDF to examine the relevance of words to documents.
International Journal of Computer Applications 181(1):25–29 DOI 10.5120/ijca2018917395.

Qbeitah MA, Aldwairi M. 2018. Dynamic malware analysis of phishing emails. In: 2018 9th
International Conference on Information and Communication Systems (ICICS). Piscataway:
IEEE, 18–24.

Saleh M, Li T, Xu S. 2018. Multi-context features for detecting malicious programs. Journal of
Computer Virology and Hacking Techniques 14(2):181–193 DOI 10.1007/s11416-017-0304-8.

Saxe J, Berlin K. 2017. eXpose: a character-level convolutional neural network with embeddings
for detecting malicious URLs, file paths and registry keys. ArXiv preprint
DOI 10.48550/arXiv.1702.08568.

Sharma P. 2022. Windows malware detection using machine learning and TF-IDF enriched API
calls information. In: 2022 Second International Conference on Computer Science, Engineering
and Applications (ICCSEA). Piscataway: IEEE, 1–6.

Shaukat K, Luo S, Varadharajan V. 2023. A novel deep learning-based approach for malware
detection. Engineering Applications of Artificial Intelligence 122(4):106030
DOI 10.1016/j.engappai.2023.106030.

Sherstinsky A. 2020. Fundamentals of recurrent neural network (RNN) and long short-term
memory (LSTM) network. Physica D: Nonlinear Phenomena 404(8):132306
DOI 10.1016/j.physd.2019.132306.

Singh J, Singh J. 2022. Assessment of supervised machine learning algorithms using dynamic API
calls for malware detection. International Journal of Computers and Applications 44(3):270–277
DOI 10.1080/1206212x.2020.1732641.

Unnithan NA, Harikrishnan N, Akarsh S, Vinayakumar R, Soman K. 2018. Machine learning
based phishing e-mail detection. Security-CEN@ Amrita. Available at https://ceur-ws.org/Vol-
2124/paper_12.pdf.

Yang H, Li S, Wu X, Lu H, Han W. 2019. A novel solutions for malicious code detection and
family clustering based on machine learning. IEEE Access 7:148853–148860
DOI 10.1109/access.2019.2946482.

Yang P, Zhao G, Zeng P. 2019. Phishing website detection based on multidimensional features
driven by deep learning. IEEE Access 7:15196–15209 DOI 10.1109/access.2019.2892066.

Yin J, Wang J. 2014. A dirichlet multinomial mixture model-based approach for short text
clustering. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. New York: ACM, 233–242.

Zargar S. 2021. Introduction to sequence learning models: RNN, LSTM, GRU. Raleigh: Department
of Mechanical and Aerospace Engineering, North Carolina State University.

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 28/29

http://dx.doi.org/10.3390/app9020239
http://dx.doi.org/10.16607/j.cnki.1674-6708.2019.06.060
http://dx.doi.org/10.4018/ijeis.2019070105
http://dx.doi.org/10.31695/ijasre.2021.34050
http://dx.doi.org/10.5120/ijca2018917395
http://dx.doi.org/10.1007/s11416-017-0304-8
http://dx.doi.org/10.48550/arXiv.1702.08568
http://dx.doi.org/10.1016/j.engappai.2023.106030
http://dx.doi.org/10.1016/j.physd.2019.132306
http://dx.doi.org/10.1080/1206212x.2020.1732641
https://ceur-ws.org/Vol-2124/paper_12.pdf
https://ceur-ws.org/Vol-2124/paper_12.pdf
http://dx.doi.org/10.1109/access.2019.2946482
http://dx.doi.org/10.1109/access.2019.2892066
http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

Zhang Y, Li B. 2020. Malicious code detection based on code semantic features. IEEE Access
8:176728–176737 DOI 10.1109/access.2020.3026052.

Zhang Z, Qi P, Wang W. 2020. Dynamic malware analysis with feature engineering and feature
learning. Proceedings of the AAAI Conference on Artificial Intelligence 34:1210–1217
DOI 10.1609/aaai.v34i01.5474.

Zhang T, Ramakrishnan R, Livny M. 1996. Birch: an efficient data clustering method for very
large databases. ACM Sigmod Record 25(2):103–114 DOI 10.1145/233269.233324.

Zhao D, Wang H, Kou L, Li Z, Zhang J. 2023. Dynamic malware detection using
parameter-augmented semantic chain. Electronics 12(24):4992
DOI 10.3390/electronics12244992.

Zheng X. 2018. Introduction to the harm and prevention of computer malware. Taiyuan City,
Shanxi Province, China: Public Communication of Science & Technology, 125–126
DOI 10.15913/j.cnki.kjycx.2018.01.125.

Zhou B, Huang H, Xia J, Tian D. 2024. A novel malware detection method based on API
embedding and API parameters. The Journal of Supercomputing 80(2):2748–2766
DOI 10.1007/s11227-023-05556-x.

Hou et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2946 29/29

http://dx.doi.org/10.1109/access.2020.3026052
http://dx.doi.org/10.1609/aaai.v34i01.5474
http://dx.doi.org/10.1145/233269.233324
http://dx.doi.org/10.3390/electronics12244992
http://dx.doi.org/10.15913/j.cnki.kjycx.2018.01.125
http://dx.doi.org/10.1007/s11227-023-05556-x
http://dx.doi.org/10.7717/peerj-cs.2946
https://peerj.com/computer-science/

	A malware detection method with function parameters encoding and function dependency modeling
	Introduction
	Related work
	Methods
	Experiment results
	Discussion
	Conclusions
	flink7
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

