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ABSTRACT

With the proliferation of social media, cyberbullying has emerged as a pervasive
threat, causing significant psychological harm to individuals and undermining social
cohesion. Its linguistic expressions vary widely across topics, complicating automatic
detection efforts. Most existing methods struggle to generalize across diverse online
contexts due to their reliance on topic-specific features. To address this issue, we
propose the Topic Adversarial Neural Network (TANN), a novel end-to-end
framework for topic-invariant cyberbullying detection. TANN integrates a
multi-level feature extractor with a topic discriminator and a cyberbullying detector.
It leverages adversarial training to disentangle topic-related information while
retaining universal linguistic cues relevant to harmful content. We construct a
multi-topic dataset from major Chinese social media platforms, such as Weibo and
Tieba, to evaluate the generalization performance of TANN in real-world scenarios.
Experimental results demonstrate that TANN outperforms existing methods in
cross-topic detection tasks, significantly improving robustness and accuracy. This
work advances cross-topic cyberbullying detection by introducing a scalable solution
that mitigates topic interference and enables reliable performance across dynamic
online environments.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Natural Language and Speech,
Social Computing, Sentiment Analysis

Keywords Cyberbullying detection, Topic adversarial neural network, Topic-invariant features,
Cross-topic adaptation, Chinese social media

INTRODUCTION

With the rapid development of social media, online platforms have reshaped not only how
people access information and express opinions, but also become fertile ground for the
emergence of harmful online behavior (Oksanen et al., 2022). Cyberbullying is one of the
most prominent and pervasive issues. It refers to the intentional and repeated use of
language in digital spaces to insult, demean, threaten, or humiliate others. Such behavior
can cause serious psychological harm to victims, including anxiety and depression, and in
severe cases, may even lead to self-harm or suicidal tendencies. Beyond individual
consequences, cyberbullying also exacerbates social polarization and undermines public
trust and social cohesion (Anjum ¢ Katarya, 2024). The linguistic patterns of
cyberbullying are highly diverse, ranging from overt insults to more implicit forms such as
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I can understand
playing on your phone while on the subway, but here you are
reading a book, wearing headphones to listen to music, and
even sporting a pair of glasses on your head. Are you trying
to study or not? Or are you just trying to grab attention?

: Are you stupid? How the hell does someone quietly
reading a book affect your pathetic life?

: None of your damn business! Are you that desperate
to get insulted, you shit-eating mutt?

: They're probably flipping through your family tree,
figuring out where to start burying you.

/

Figure 1 Typical examples of cyberbullying comments related to social justice on social media
platforms. These comments, translated from Chinese social media, illustrate topic-specific aggressive
language and cyberbullying behaviors. Full-size Kal DOI: 10.7717/peerj-cs.2942/fig-1

sarcasm, coded language, regional discrimination, and ideological bias. Moreover, its
content often spans sensitive topics, including politics, religion, gender, ethnicity, and
social identity. The linguistic diversity and contextual sensitivity of cyberbullying pose
significant challenges for its automatic detection, especially within natural language
processing frameworks (Jahan & Oussalah, 2023).

The complexity of cyberbullying is further exacerbated by topic variability.
Controversial topics such as politics, religion, gender equality, and social justice often
provoke emotionally charged and polarized discussions, prompting users to express
aggressive opinions and hostility toward opposing views (Akter et al., 2023). For instance,
users may attack individuals merely for reading a socially sensitive book in public or for
being associated with certain ideologies or identities. In such cases, even neutral or
unrelated behaviors may become targets of online aggression triggered by topic sensitivity.
Figure 1 illustrates how cyberbullying content frequently intertwines with specific topics,
further complicating detection by traditional methods. Furthermore, models trained on
topic-specific datasets often fail to generalize across domains, with performance sharply
declining when applied to new or unrelated content. This phenomenon, known as topic
shift, underscores the need for robust models capable of filtering out topic-dependent
features and capturing topic-invariant linguistic cues (Kumar et al., 2024b).

To address the challenge of cyberbullying detection, a variety of computational
approaches have been explored in recent years. Early methods were primarily
lexicon-based or relied on traditional machine learning algorithms (Mohapatra et al., 2021,
Chia et al., 2021), while more recent advances have leveraged deep learning architectures
such as convolutional neural networks (CNN), long short-term memory networks
(LSTM), and Transformer-based models (Obermaier ¢ Schmuck, 2022; Zheng et al., 2024).
Although these models perform well within narrowly defined domains or specific datasets,
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their performance often deteriorates significantly when applied to content from different
topics or platforms. This is largely due to their heavy reliance on topic-specific linguistic
patterns, which limits their generalization ability across diverse online contexts. To
mitigate this issue, techniques such as domain adaptation and adversarial learning have
been introduced to extract domain-invariant features and improve model transferability
(HassanPour Zonoozi & Seydi, 2023). However, most existing methods do not explicitly
address the challenge of topic-level variability, and there remains a lack of dedicated
frameworks that can disentangle topic-specific features from universal indicators of
cyberbullying. In particular, achieving fine-grained semantic understanding while
effectively eliminating topic-induced biases remains a non-trivial challenge.

To address the challenges posed by topic variability in cyberbullying detection, this
study introduces a novel cross-topic detection framework, Topic Adversarial Neural
Network (TANN), which integrates deep feature extraction with adversarial learning to
improve model robustness and generalizability. Unlike conventional models prone to
overfitting on topic-specific cues, TANN is designed to isolate and retain topic-invariant
linguistic features while suppressing topic-dependent noise. The architecture consists of
three core components: a multi-level feature extractor, a topic discriminator, and a
cyberbullying detector. The feature extractor combines the representational power of
bidirectional encoder representations from Transformers (BERT), CNN, and bidirectional
long short-term memory (Bi-LSTM), enabling it to capture rich semantic and syntactic
information at multiple levels of abstraction. The extracted features are then passed
through a topic discriminator trained in an adversarial manner, thereby forcing the shared
encoder to “unlearn” topic-specific signals. This adversarial training process enables the
model to produce topic-independent representations that are more robust to domain shift.
Finally, the cyberbullying detector utilizes these purified representations to classify
harmful content with higher accuracy across diverse topical domains. Through this
architecture, TANN effectively bridges the gap between topic-specific expressiveness and
cross-topic generalizability, offering a scalable solution for real-world cyberbullying
detection.

To evaluate the effectiveness and practical applicability of the proposed TANN
framework, we constructed a real-world dataset sourced from mainstream Chinese social
media platforms, including Weibo and Tieba. These platforms span a wide range of
discussion topics and user communities, offering a rich and diverse linguistic environment
for studying cyberbullying in real-world contexts. The dataset was carefully curated to
include multiple topical domains, enabling a comprehensive assessment of cross-topic
generalization performance. Experimental results on this dataset demonstrate that TANN
significantly mitigates topic interference by learning to focus on universal linguistic
patterns associated with cyberbullying. This not only improves the accuracy of
cyberbullying detection across diverse topics but also underscores the practical value of the
model in real-world deployment scenarios, where content diversity and topic shift are
inevitable challenges.

Xiong et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2942 3/31


http://dx.doi.org/10.7717/peerj-cs.2942
https://peerj.com/computer-science/

PeerJ Computer Science

The main contributions of this article are as follows.

1. We define the novel task of topic-invariant cyberbullying detection, identifying the
generalization gap caused by topic-specific features in existing models.

2. We propose TANN, a unified neural architecture that combines BERT, CNN, and
Bi-LSTM modules with an adversarial topic discriminator to disentangle topic
information and improve classification performance.

3. We construct a real-world multi-topic benchmark dataset using data collected from
major Chinese social media platforms such as Weibo and Tieba, enabling robust
evaluation of cross-topic transfer capabilities.

4. We perform adversarial weight visualization and feature attribution analysis,
demonstrating the ability of TANN to suppress topic-specific biases and capture
universal cyberbullying cues.

The subsequent sections of this article are organized as follows. “Related Work” reviews
related work and highlights the key differences between our proposed approach and
existing methods. “Model” presents a detailed description of the proposed TANN model.
“Experiments” outlines the experimental setup and reports the results along with in-depth
analysis. “Discussion” discusses the implications and insights derived from the findings.
“Conclusions” concludes the article and outlines directions for future research. Finally, the
Funding Statement is provided at the end of the article.

RELATED WORK

Recent research in cyberbullying detection has evolved significantly, encompassing
traditional machine learning, deep learning, and adversarial learning approaches (see
Table 1). Although notable progress has been achieved, substantial challenges persist,
particularly concerning generalizability across diverse topical contexts and the nuanced
identification of cyberbullying expressions. This section critically reviews the strengths and
limitations of these methodologies, clearly positioning our work within this landscape and
highlighting the novelty and scientific contributions of the proposed TANN.

Machine learning

Machine learning (ML) has emerged as a cornerstone in automating cyberbullying
detection, offering scalable solutions across diverse linguistic and contextual landscapes.
Raj et al. (2021) conducted a comparative analysis of hybrid frameworks, evaluating 11
classification methods spanning traditional ML algorithms and shallow neural networks.
Their findings revealed that logistic regression coupled with TF-IDF features delivered
superior performance among conventional methods. In multilingual and code-mixed
environments, ML techniques have been tailored to address linguistic complexity. For
instance, Kumar et al. (2024a) examined Hinglish (Hindi-English) texts and effectively
trained classifiers such as SVM and Random Forests using lexical, syntactic, and sentiment
features to handle the hybridity inherent in code-mixed content. Similarly, Mahmud,
Ptaszynski & Masui (2024) systematically evaluated ML models for low-resource languages
such as Bangla and Chittagonian, emphasizing the necessity of language-specific
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Table 1 This table provides a comprehensive overview of representative datasets and relevant
research for various types of models (machine learning, deep learning, adversarial learning). The
datasets are categorized by their specific characteristics: General refers to general cyberbullying datasets,
Hate refers to hate speech datasets, and Others refers to general text classification datasets. The references
cited under each model category encompass recent key studies conducted in the respective research

fields.
Model Dataset References
Machine learning General Raj et al. (2021), Kumar et al. (2024a)
Mahmud, Ptaszynski & Masui, 2024, Chia et al. (2021)
Hate Mohapatra et al. (2021), Saifullah et al. (2024)
Deep learning General Aliyeva & Yaganoglu (2024), Kumar & Sachdeva (2022)
Anbukkarasi & Varadhaganapathy (2023), Caselli et al. (2020)
Hate Saleh, Alhothali ¢ Moria, 2023, del Valle-Cano et al. (2023)
Aluru et al. (2020), Plaza-del Arco et al. (2021)
Others Lyu et al. (2023), Liu et al. (2023a)
Zou & Wang (2023), Wang et al. (2022)
Adversarial learning General Haidar & Ezzeddine (2024)
Yi & Zubiaga (2022), Sarwar & Murdock (2022)
Hate Bashar et al. (2021), Nourollahi, Baradaran ¢ Amirkhani, 2024
Bose et al. (2022)
Others Li, Jian & Xiong (2024), Xu et al. (2022)

Liu et al. (2023b), Han et al. (2021)

preprocessing to manage morphological and syntactic variations. Collectively, these
studies underscore the importance of adapting ML models to diverse linguistic landscapes.

To further address the challenges posed by limited annotated data, Saifullah et al. (2024)
proposed a semi-supervised framework that combines meta-vectorizers, including TE-IDF
and Word2Vec, with self-training algorithms. Their approach demonstrated how
semi-supervised ML can reduce dependence on costly manual annotations while
maintaining robustness. Despite their successes, ML methods inherently depend on
expert-crafted features, which are often insufficient for capturing complex, evolving
linguistic phenomena characteristic of cyberbullying across diverse topics. Furthermore,
these methods require extensive labeled datasets, limiting their scalability and adaptability
to emerging contexts and shifting topical dynamics. These issues highlight the need for
more flexible, context-aware methods. Deep learning architectures are well-suited to meet
this need because they can automatically learn features and build hierarchical
representations (Jahan & Oussalah, 2023).

Deep learning

Recent advancements in deep learning have significantly enhanced cyberbullying
detection, with the workflow typically divided into two critical stages: feature extraction
and classification. The feature extraction phase focuses on learning hierarchical
representations from raw text, user behavior, or multimodal data to capture semantic,
structural, and contextual features that are discriminative. The classification stage then
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builds end-to-end discriminative models based on these features and incorporates
optimization strategies to address challenges such as data sparsity and linguistic
complexity. This subsection systematically reviews related studies through the lens of
feature representation learning and classification model design.

In feature representation learning, researchers have improved models’ ability to capture
bullying semantics through multi-feature fusion and domain adaptation strategies. For
instance, Aliyeva ¢» Yaganoglu (2024) leveraged a multi-source feature fusion method
that combined Term Frequency-Inverse Document Frequency (TF-IDF) and unigrams
with social metadata to enrich text representation. The rise of Transformer architectures
propelled the development of context-aware feature learning. BERT, proposed by
Devlin et al. (2018), employed masked language modeling to achieve bidirectional context
encoding, while Caselli et al. (2020) further fine-tuned the model on hateful community
data to obtain domain-specific representations. In cross-lingual settings, Aluru et al. (2020)
validated the cross-language feature transfer capabilities of multilingual models (mBERT/
XLM-R), whereas Plaza-del Arco et al. (2021) showed that a language-specific model
(BETO) outperformed others in Spanish-language tasks. In Chinese scenarios, Wang et al.
(2022) addressed homonymy and polysemy issues by integrating glyph and pinyin
features, and Lyu et al. (2023) proposed a bidirectional graph attention network to capture
complex word-character relationships.

In classification decision-making, architectural innovations and learning paradigm
improvements have been proposed to tackle practical challenges. For instance, hybrid
neural network architectures such as the Bi-GAC model integrated gated recurrent unit
(GRU), attention, and capsule networks to enable multi-level decision-making (Kumar &
Sachdeva, 2022). Saleh, Alhothali ¢ Moria (2023) further enhanced detection by
integrating BERT with hate speech-specific word embeddings, allowing the model to better
capture the lexical nuances of hateful content. In low-resource scenarios, Liu et al. (2023a)
adopted a few-shot learning framework to expand supervisory signals via semantic
clustering, while Zou & Wang (2023) employed pseudo-labeling to enlarge the training
dataset for semi-supervised BERT. Multimodal fusion strategies have also been widely
explored. For instance, del Valle-Cano et al. (2023) jointly analyzed textual features and
user behavioral patterns to improve classification accuracy. Furthermore, domain
adaptation methods have proven highly effective in toxicity detection. Paviopoulos et al.
(2020) utilized a context-aware mechanism to dynamically adjust classification thresholds,
and Anbukkarasi & Varadhaganapathy (2023) proposed a specialized classifier for
Tamil-English code-switched text. Collectively, these methods continue to enhance the
robustness and generalization performance of cyberbullying detection systems in complex
real-world scenarios.

Yet deep learning models trained on specific topical domains often exhibit significant
performance degradation when confronted with topic shift. They often overfit to
topic-specific vocabularies and fail to generalize to unrelated topics. The central challenge
remains to develop deep architectures that can capture topic-invariant features while
preserving the fine-grained semantic distinctions essential for accurate cyberbullying
detection.
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Adversarial learning

Adversarial learning has become a pivotal approach for improving the robustness of
cyberbullying detection models against adversarial attacks and domain shifts. Recent
studies have explored diverse methodologies to address these challenges. Liu et al. (2023b)
developed hierarchical neural network and gradient reversal (HNN-GRAT), a Robustly
Optimized BERT Approach (RoBERTa)-based adversarial training framework that
stabilizes text classification models by dynamically fusing original and reversed gradients
through gradient reversal layers. This method demonstrates enhanced resistance to
malicious perturbations, particularly in scenarios involving crafted adversarial examples.
For cross-domain generalization, Yi ¢ Zubiaga (2022) proposed platform-aware
adversarial encoding to eliminate platform-specific noise in social media data, enabling
robust cyberbullying detection across heterogeneous platforms like Twitter and Weibo.
Han et al. (2021) further advanced few-shot adaptation by integrating meta-learning with
adversarial domain adaptation, where episodic task simulations and meta-knowledge
generators jointly learn domain-invariant features for detecting bullying patterns in
low-resource target domains.

Building on these strategies, structural innovations have also been introduced. Li, Jian ¢
Xiong (2024) combined graph attention networks (GAT) with adversarial noise injection,
leveraging triple GAT layers to model character-word relationships while using
TextCNN-generated adversarial samples to improve model generalization. For defensive
lexical processing, Xu et al. (2022) designed WordRevert, a Chinese-specific method that
neutralizes adversarial perturbations through keyword reversal, effectively preserving
semantic coherence under attacks. Data augmentation strategies have also gained traction,
Haidar ¢ Ezzeddine (2024) employed GANSs to synthesize cyberbullying samples,
mitigating class imbalance issues in real-world datasets, while Sarwar ¢» Murdock (2022)
generated domain-adaptive hate speech data via sequence labeling and template-based
augmentation for unsupervised domain adaptation.

Continuing this line of inquiry, domain adaptation remains a critical focus. Bashar et al.
(2021) implemented progressive domain adaptation to transfer hate speech detection
capabilities from general corpora to COVID-19-related anxiety texts, using unsupervised
teature alignment. Nourollahi, Baradaran & Amirkhani (2024) enhanced cross-domain
generalization through mixture-of-experts and adversarial training, achieving consistent
performance improvements across multiple hate speech datasets. Bose et al. (2022)
addressed domain-specific term overfitting by penalizing source-dependent keywords via
domain classifier-guided attribution, forcing models to prioritize cross-domain
discriminative features like derogatory syntactic patterns.

However, current adversarial methods primarily focus on platform adaptation and do
not effectively address topic shift, which is a more subtle yet pervasive issue. Most existing
adversarial frameworks lack mechanisms explicitly designed to mitigate topic-specific
vocabulary bias, which significantly hinders performance across diverse topical scenarios.
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Summary and contributions

Despite recent advancements, the literature on cyberbullying detection reveals clear gaps:
(1) inadequate handling of topic shift due to reliance on topic-specific features, (2) limited
understanding of the nuanced interplay between topic-specific and universal linguistic
patterns, and (3) lack of explicit mechanisms in current adversarial methods to disentangle
topic biases while preserving critical fine-grained semantic information.

To address these critical challenges, we propose a novel approach termed TANN.
TANN introduces the formalization of “topic-invariant cyberbullying detection”, which
represents a significant conceptual innovation aimed at explicitly minimizing topic-
specific biases. Our proposed framework integrates a multi-level feature extractor that
combines BERT, CNN and Bi-LSTM with an adversarially trained topic discriminator,
thereby effectively disentangling topic-specific information and reinforcing universal
linguistic patterns associated with cyberbullying. Extensive experiments on Chinese social
media datasets demonstrate that TANN is significantly more robust and accurate in
cross-topic scenarios than existing methodologies.

In summary, TANN fills critical research gaps by explicitly addressing the pervasive
challenge of topic shift, enhancing generalization across topical contexts, and overcoming
limitations inherent in existing adversarial and deep learning approaches.

MODEL

This section introduces the TANN model, designed to enhance cross-topic cyberbullying
detection. The model consists of three key components: a text feature extractor, a
cyberbullying detector, and a topic discriminator. We first describe the role of each
component, followed by an explanation of how they work together to enable transferable
feature learning. Finally, we discuss the design of the objective functions used in the
adversarial learning process.

Model overview

The TANN model is designed to improve cross-topic cyberbullying detection by learning
transferable, topic-invariant feature representations. As illustrated in Fig. 2, it consists of
three core components. These components operate within an adversarial-cooperative
framework to detect cyberbullying content while ensuring generalization across different
topics.

The feature extractor generates rich feature representations from the input text by
capturing both local and global information. It leverages Transformer blocks to model
contextual relationships, CNN layers to detect local n-gram patterns, and Bi-LSTM layers
to capture sequential dependencies. This multi-level design enables the model to effectively
process various linguistic aspects of the input. The extracted features are then passed to
both the cyberbullying detector and the topic discriminator. The cyberbullying detector
classifies content as harmful or non-harmful, while the topic discriminator promotes
topic-invariant representations through adversarial learning. Through joint training, the
model simultaneously optimizes the cyberbullying detection objective and the topic
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Figure 2 TANN framework architecture, including the feature extractor, topic discriminator, and
cyberbullying detector. The feature extractor leverages BERT, CNN, and Bi-LSTM layers, while the
topic discriminator uses a gradient reversal layer (GRL) to apply adversarial learning, reversing gradients
during backpropagation to remove topic-specific features and enhance generalization.

Full-size K&l DOT: 10.7717/peerj-cs.2942/fig-2

invariance constraint, enabling accurate detection of harmful content across a broad range
of topics.

Feature extractor
The feature extractor processes each input, which includes a numeric label and text, by
applying tokenization, padding, and preprocessing to prepare it for the model.

Each input text sequence is prepended with a special [CLS] token and appended with a
[SEP] token, denoting the start and end of the sequence, respectively. These tokens guide
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the contextual encoding performed by BERT. Formally, given a token sequence

x = {x1,x2,...,%}, the full input to BERT is {[CLS],x1,x2,...,%:, [SEP]}. BERT
encodes this sequence and produces contextual embeddings Hy = {hy, ha, ..., hii2},
where h; € RY and d is the hidden dimension. These embeddings are refined through L
Transformer layers, resulting in the final output H;, = {h{,h3, ..., h%,,}. The hidden state
corresponding to the [CLS] token, KL, is extracted as the sentence-level representation, as
shown in Eq. (1).

Foert = hE. (1)
The remaining BERT outputs H; = {h}, h%,... hl  } corresponding to the input
tokens (excluding special tokens) are used for downstream token-level feature extraction.
These contextual embeddings are simultaneously fed into a CNN module and a Bi-LSTM

to capture local patterns and sequential dependencies, respectively.

To extract local n-gram features, the CNN applies convolutional filters of various
window sizes k. For a sliding window over token embeddings Hj, the convolution
operation is defined in Eq. (2).

Ci=o(Wk- Hz,i:iJrkfl + br). ()

Here, W and by are the convolution weights and biases for window size k, and ¢ is a
ReLU activation function. This operation produces a sequence of features given in Eq. (3).

C=1[C,Cy...,Cikia)- (3)

Max-pooling is applied to each feature map to retain the most salient information. The
resulting pooled vectors are concatenated into a single feature vector Fc € R“™, where c is
the number of distinct window sizes and ny is the number of filters per size. This vector is
then projected through a fully connected layer, as shown in Eq. (4).

Fenn = o(Wy - Fc + by). (4)
In parallel, the Bi-LSTM processes the token-level embeddings H; to model sequential
dependencies. For each token, the forward and backward hidden states are concatenated as

shown in Eq. (5), forming the Bi-LSTM output Fyijsrm = {hll’, htz’, .. ,h?}.

B = [ il (5)
A pooling operation is applied over the Bi-LSTM outputs to obtain a fixed-size vector

representation Fyjsm € R?", where £ is the hidden size of each unidirectional LSTM.
Finally, the sentence-level feature from BERT, the CNN-extracted local features, and the

Bi-LSTM-derived sequential features are concatenated to form a unified representation, as

formulated in Eq. (6).

Fﬁnal - [Fberty Fcnm Fbilstm] = Ef (x; Gf) (6)
The resulting feature vector Fp,, combines global semantics, local patterns, and

temporal dependencies. During training, a dropout layer with a rate of 0.1 is applied to
Fginal to prevent overfitting and improve generalization.

Xiong et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2942 10/31


http://dx.doi.org/10.7717/peerj-cs.2942
https://peerj.com/computer-science/

PeerJ Computer Science

Topic discriminator

The topic discriminator is a neural network with two fully connected layers, each followed
by an activation function. It classifies each comment into one of K predefined topics using
the feature representation Fj,,). We denote the discriminator as D;(Fgyay; 0;), where 6;
represents its parameters. The classification is guided by a cross-entropy loss function,
where Y; is the set of topic labels.

Using the feature representation Fip,, the discriminator computes the predicted
probabilities for each topic k, denoted as D;(Ffinal; 0;),. The topic discriminator is trained
by minimizing the cross-entropy loss function L;(0y, 0;), as shown in Eq. (7), where
1[k = t] is an indicator function that is 1 if k = ¢, and 0 otherwise.

K

Li(07,0;) = =B ne(x,vy) Z 1[k = t]log(D;(Ffina; 0¢);) | - (7)
=1

The topic discriminator’s parameters 0, are optimized by minimizing L, (0, 0;), as
shown in Eq. (8).

ét = argn})inLt(Qf, Ht) (8)

The feature extractor is trained to learn topic-neutral representations through an
adversarial mechanism. Specifically, a gradient reversal layer (GRL) is introduced between
the feature extractor and the topic discriminator.

Formally, the GRL is defined as an operator R, (-) that behaves as an identity function
during forward propagation but reverses the gradient during backpropagation, as shown in

Eq. (9).

Ff?rﬁ]f = Rn (Fﬁnal) = Ffinal- 9)
However, during backpropagation, the GRL reverses the direction of the gradient and
scales it by a factor 7, as formally defined in Eq. (10).

oL, :_n.i n>0 (10)
OFfinal OFGRL”

In practice, this reversal of gradients enforces adversarial learning, compelling
the feature extractor to learn representations Fpy, invariant to topic-specific
information. The parameter # controls the intensity of adversarial training. We
empirically set # = 0.1, which yielded a good balance between representation
generalization and task-specific performance, as further detailed in “Experimental
Results Analysis”.

Thus, the optimization objective for the feature extractor 0y is effectively adversarial. It
aims to maximize the topic discriminator’s loss by minimizing the scaled negative topic
loss as shown in Eq. (11).

éf = argn(lain—n-Lt(Hf,ét). (11)
s
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This adversarial approach ensures the learned representations Fyy, are robust and
generalizable, reducing reliance on topic-specific features and thereby enhancing model
performance across diverse topics (Yao et al., 2022).

Cyberbullying detector

This subsection introduces the cyberbullying detector, which uses fully connected layers
and a softmax function to classify comments as containing cyberbullying content or not.
Building on the feature extractor, the detector takes the integrated feature representation
Fiinal as input. We denote the cyberbullying detector as C,(-; 0,), where 6, represents its
parameters. For each comment x, the detector outputs a probability Py(x), indicating the
likelihood that the comment contains cyberbullying content, as shown in Eq. (12), where
Ef(x; 0r) represents the features extracted by the feature extractor.

Py(x) = Cv(Ef(x; Qf); 0,). (12)
The primary goal of the cyberbullying detector is to accurately classify comments
containing abusive content. We define a set of labels Y,, where y = 1 indicates
cyberbullying content and y = 0 indicates normal content. The cross-entropy loss function
is used for classification, as defined in Eq. (13), to distinguish between the positive class
(cyberbullying content) and the negative class (non-cyberbullying content).

Ly(0f,0,) = =Biey)~xv,) [ 10g Po(x) + (1=y) log(1 — Py (x))] (13)
Optimization of the detector involves minimizing this loss to find the optimal
parameters Of and 0, as shown in Eq. (14).

(éf, 0,) = arggnionLv(Qf, 0,). (14)
'f Vv

A significant challenge in cyberbullying detection is the variability and evolving nature
of abusive language. To generalize across different topics, the detector must capture core
patterns of cyberbullying, independent of specific linguistic context. However, minimizing
the classification loss on the training data may lead to overfitting to topic-specific patterns,
such as certain keywords, which may not generalize well to unseen comments.

To overcome this, adversarial learning is introduced between the feature extractor and
the detector. This setup encourages the feature extractor to learn more generalizable
representations by reducing reliance on topic-specific details, thereby improving the
robustness of the model. The detector learns features that capture universal characteristics
of cyberbullying across diverse topics while minimizing the impact of context-dependent
patterns.

Adversarial-cooperative model integration

This subsection presents an adversarial-cooperative framework for cross-topic
cyberbullying detection, integrating a feature extractor, topic discriminator, and
cyberbullying classifier. These components are trained jointly with adversarial and
cooperative objectives. The feature extractor Ef(x; 0y) minimizes the cyberbullying
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classification loss L,(0y, 0,) in collaboration with the cyberbullying classifier C,(-; 0,),
while simultaneously maximizing the topic classification loss L;(0f, 0;) with the topic
discriminator D;(+; 0;). This dual objective encourages the feature extractor to learn
generalizable, topic-neutral features that enhance cyberbullying detection.

Formally, the cyberbullying classifier predicts the probability of a comment being
bullying-related given the representation Fgya1, as defined in Eq. (15), where W,, b, are the
classifier weights and biases, and 0, = {W,, b, }.

CV(Fﬁnal; QV) = softmax(WVFﬁnal + bv) (15)

The overall adversarial-cooperative objective is defined in Eq. (16), where A € [0, 1] is a
hyperparameter controlling the trade-off between cyberbullying detection and topic
classification. Based on parameter sensitivity analysis in “Experimental Results Analysis”,
we set 4 = 0.9.

Lgna(bf, 0y, 0;) = AL,(0f, 0,) + (1=A)Li(0r, 0,). (16)

The adversarial interaction between the feature extractor Fgy,, and the topic
discriminator D; is implemented via a GRL, which behaves as an identity function during
forward propagation but reverses the gradient direction during backpropagation. While D,
minimizes the topic classification loss L, to identify topic-specific features, the feature
extractor is trained to maximize L;, thereby learning to obscure topic signals.

Parameter optimization is performed in two steps: the parameters of the feature
extractor and cyberbullying classifier are updated jointly, as shown in Eq. (17), while the
topic discriminator is updated independently as shown in Eq. (18).

05,0, = arg lgli()nLﬁnal(efa 0,,0;) (17)
'f Uy
0, = argrréinLt(Gf, 0;). (18)

This training strategy encourages the feature extractor to eliminate topic-dependent
variations such as vocabulary biases in political vs. entertainment contexts, while
preserving discriminative bullying indicators such as aggressive or sarcastic expressions.
As a result, the model avoids overfitting to topic-specific noise, which is essential for
detecting implicit bullying across different domains.

The adversarial objective promotes topic-invariant representations by aligning feature
distributions in latent space across different topics. This alignment ensures that bullying
and non-bullying instances form separable clusters regardless of their topic origin.
Consequently, the cyberbullying classifier C, learns decision boundaries based on universal
bullying traits rather than topic-specific cues. The model suppresses keywords uniquely
associated with certain domains (e.g., entertainment slang), while amplifying cross-topic
bullying signals such as personal insults and coded language. Through end-to-end training,
this framework improves both the accuracy and generalizability of cyberbullying detection
across diverse topic domains.

Xiong et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2942 13/31


http://dx.doi.org/10.7717/peerj-cs.2942
https://peerj.com/computer-science/

PeerJ Computer Science

EXPERIMENTS

Dataset

The dataset for this study was collected from two major Chinese social media platforms,
Weibo (https://www.weibo.com) and Tieba (https://tieba.baidu.com), and comprises
24,520 user comments covering topics such as politics, entertainment, and social issues.
Each comment is annotated with two labels: a theme label, categorizing it into one of
eleven topics (0-10) to capture language variation across themes, and a cyberbullying label,
a binary indicator classifying the comment as non-cyberbullying (0) or cyberbullying (1).

The theme labels were assigned based on specific keywords that categorize each
comment into distinct topical domains. These topics include, but are not limited to, social
issues, entertainment news, and personal viewpoints. The keywords associated with each
topic were carefully selected to capture the core semantic content of the discussions. For
instance, comments related to social issues often contain terms such as “poverty,”
“education,” “healthcare,” and “inequality,” whereas those related to entertainment may
include keywords like “celebrity,” “movie,” or “music.” The keyword sets were constructed
through an iterative process that combined domain expertise with linguistic analysis of the
collected data.

For the cyberbullying annotation, the identification and labeling process followed a clear
and systematic approach to ensure consistency. Instances of cyberbullying were identified
based on common indicators of harmful online behavior, including offensive language,
personal attacks, and harassment. We followed widely accepted definitions and criteria for
cyberbullying, adapting them to the context of social media in China. A set of examples
and guidelines was provided to annotators to help them classify comments as
cyberbullying or non-cyberbullying. These guidelines were designed to ensure that
borderline or ambiguous cases were consistently labeled by all annotators. The detailed
annotation guidelines, including specific categories such as insults, threats, discrimination,
sexual harassment, defamation, and satire, are publicly available along with the code
for TANN.

The annotators involved in the labeling process were native Chinese speakers with
backgrounds in linguistics, social media analysis, and psychology. Their expertise enabled
them to accurately capture linguistic nuances on social media and reliably identify
instances of cyberbullying. A total of five annotators participated in the labeling
process. To assess the reliability of the labels, we calculated inter-annotator agreement
using Fleiss” kappa coefficient, which yielded a value of 0.85, indicating a high level of
consistency among the annotators. Despite the overall high consistency, we acknowledge
that certain instances involving sarcasm, humor, and ambiguous language presented
annotation challenges, which were addressed through regular discussions and refinements
of the guidelines. In addition to the inter-annotator agreement, we employed quality
control measures such as random sampling and having a second group of annotators
re-label a subset of the data. This process helped identify discrepancies or inconsistencies
in labeling and allowed us to correct labeling errors before finalizing the dataset for
training.
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Table 2 Label distribution and data split in the cyberbullying dataset across training, validation, and
test sets. Label 0 indicates non-bullying comments, while label 1 indicates bullying comments.

Label Train Test Dev Total
0 14,955 1,908 1,862 18,725
1 4,661 544 590 5,795
Total 19,616 2,452 2,452 24,520

Before using the dataset for training, several preprocessing steps were applied to ensure
data quality. The raw text was cleaned by removing extraneous elements such as special
characters, hyperlinks, and excessive whitespace. The Chinese text was tokenized using a
standard Chinese word segmentation tool, ensuring each comment was split into
meaningful words or phrases. A list of common Chinese stopwords was applied to remove
words that do not significantly contribute to the meaning of the text. To address potential
class imbalance, under-sampling was applied to the non-cyberbullying class to balance the
distribution between cyberbullying and non-cyberbullying labels.

The dataset was randomly shuffled and split into training, validation, and test sets with a
ratio of 8:1:1, resulting in 19,616 samples for training, 2,452 for validation, and 2,452 for
testing. This split ensures that the model is exposed to a wide variety of samples during
training, thereby enhancing its ability to generalize. The distribution of cyberbullying
labels across the training, validation, and test sets is shown in Table 2. This dataset forms
the basis for training the proposed TANN.

Regarding dataset quality evaluation, in addition to traditional label verification, we also
draw on evaluation methods proposed in existing literature. For instance, Liu et al. (2022)
presented a framework for evaluating dataset quality, focusing on issues such as dataset
representativeness, consistency, completeness, and noise. Their study highlighted errors
encountered during the creation process of NIDS datasets and proposed methods for
reverse-engineering and correcting the labeling logic. We have adopted similar quality
evaluation methods to ensure that the dataset used in this study meets the required
standards. The code for the TANN and the dataset used in this study are publicly available
on GitHub (https://github.com/mugumulwz/Liu).

Experimental setup

The experiments were conducted on a machine equipped with an NVIDIA RTX 4060
GPU, which provided the necessary computational power for training the TANN model.
Training the TANN model required between 3 and 10 min per epoch, with the total
duration varying from 6 min to 1 h depending on the parameter settings. The model was
implemented using the PyTorch framework, with a final batch size of 32. The
computational cost for each experiment remained between 0.1 and 1 GPU hour.

We employed a two-phase hyperparameter tuning strategy. In the initial phase, a grid
search was conducted across learning rates from le—5 to 5e—5, epoch counts from 1 to 9,
and dropout rates from 0.1 to 0.4. In the second phase, the batch size and padding length
were optimized through iterative adjustment and evaluation on the validation set. Table 3
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Table 3 Overview of hyperparameter configurations evaluated for the TANN Model. Bolded values
indicate the selected settings used in the experiments.

Hyperparameters Values

Epochs 1,2,3,4,5,6,7,8,9
Learning rate le-5, 2e-5, 3e->5, 4e—5, 5e-5
Batch size 4, 8, 16, 32

Dropout rate 0.1, 0.2, 0.3, 0.4

Padding length 16, 32, 64

highlights the optimal configuration with bold values: five training epochs, a 2e—5 learning
rate, a batch size of 32, a 0.1 dropout rate, and a padding length of 64. These settings were
applied consistently across all baseline models, the TANN model, and ablation studies,
ensuring fair comparisons. The total training time for each experiment was 15 min. This
optimization process effectively balanced computational efficiency with model
performance, achieving optimal detection results while preventing overfitting.

Baseline models

To evaluate the effectiveness of the proposed model, we compare it against a diverse set of
baseline models spanning traditional, neural, and transformer-based architectures. These
baselines were carefully selected to represent a wide spectrum of text classification
techniques, ranging from lightweight models with shallow structures to state-of-the-art
deep learning approaches. Specifically, the baselines include traditional word embedding
methods (FastText), sequence- and convolution-based neural models (TextRNN,
TextCNN), pre-trained transformer encoders (BERT), and several hybrid architectures
that combine BERT with CNN, RNN, adversarial training, or instruction-tuned language
modeling (BERT-CNN, BERT-RNN, BERT-FGM, FLAN-T5). This comprehensive set of
models provides a robust benchmark for assessing the performance, generalization, and
robustness of our proposed TANN framework in the context of cross-topic cyberbullying
detection. The baseline models, presented in order of increasing architectural complexity,
are as follows.

o FastText: FastText is an open-source library developed by Facebook AI Research that
focuses on efficient learning of word representations and text classification. By
incorporating subword-level information through character n-grams, FastText captures
finer-grained semantic and morphological features and effectively handles out-of-
vocabulary words. The lightweight structure of the model and rapid training process
enable it to scale to large datasets while delivering high-performance results.
Consequently, FastText has become a popular choice for various natural language
processing tasks, including text classification, language modeling, and word similarity
(Umer et al., 2023).

o TextRNN: TextRNN is a neural network architecture designed to handle sequential text
data by leveraging recurrent layers, such as LSTM or GRU, to capture and retain
contextual information across tokens. By processing each token in a text sequence while

Xiong et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2942 16/31


http://dx.doi.org/10.7717/peerj-cs.2942
https://peerj.com/computer-science/

PeerJ Computer Science

taking into account previously encountered tokens, TextRNN can effectively learn
meaningful patterns for a wide range of natural language processing tasks, including text
classification, sentiment analysis, and language modeling. The sequential nature of this
architecture allows it to handle varying sequence lengths and capture long-term
dependencies, making it a robust choice for many text-oriented applications (Liu ef al.,
2023c).

o TextCNN: TextCNN is a convolution-based neural network architecture designed for
text classification and other natural language processing tasks. It applies multiple filters
of different kernel sizes to word embeddings, capturing diverse local features in text
sequences. These features are then aggregated, often through max-pooling, into a
fixed-length representation that is passed to a fully connected layer for classification. Due
to its simplicity, efficiency, and robust performance on tasks such as sentiment analysis,
spam detection, and topic categorization, TextCNN is frequently used as a strong
baseline in NLP research (Jiang et al., 2022).

o BERT: BERT is a transformer-based language model that learns deeply contextual word
representations by capturing both left and right contexts in all layers. Through the use of
masked language modeling and next sentence prediction as pretraining objectives, BERT
can be fine-tuned for various downstream tasks, such as question answering, sentiment
analysis, and named entity recognition. Its bidirectional design provides a richer
understanding of linguistic nuances, enabling it to achieve state-of-the-art performance
on many benchmarks in natural language processing research (Devlin et al., 2018).

e BERT-CNN: BERT-CNN is a hybrid model that combines the contextual embeddings
from BERT with a CNN to enhance text classification and other natural language
processing tasks. By leveraging the ability of BERT to capture deep semantic
relationships between words, the CNN component can effectively learn local,
position-invariant features within the text. This synergy enables the model to handle
long-range dependencies and nuanced linguistic structures, making BERT-CNN highly
effective for tasks such as sentiment analysis, question answering, and entity recognition
(Wan ¢ Li, 2022).

o BERT-RNN: BERT-RNN is a hybrid architecture that integrates the contextual
embeddings of BERT with an RNN, such as an LSTM or GRU. This combination allows
the model to exploit the ability of BERT to capture rich contextual information at the
token level, while the RNN component effectively handles sequential dependencies in
the text. As a result, BERT-RNN excels in tasks like sentiment analysis, text classification,
and sequence tagging, where both contextual understanding and temporal order are
critical (Tan et al., 2022).

o BERT-FGM: BERT-FGM is a variant of the BERT model that leverages adversarial
learning by incorporating the fast gradient method (FGM) into its training process.
Specifically, FGM introduces small, calculated perturbations to the input embeddings
during training, which simulates adversarial attacks. This forces the model to learn more
robust and generalized features, effectively enhancing its resistance to adversarial
examples and improving overall performance on NLP tasks (Naseem, 2024).
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o FLAN-T5 (Large): The FLAN-T5 (Large) model is an advanced large language model
that extends the T5 architecture through instruction-based fine-tuning, enabling it to
achieve robust zero-shot performance across a wide range of tasks. This model uses
modern LLM technology to handle complex tasks such as text classification, often with
little or no additional task-specific training. Its innovative approach of converting every
NLP problem into a text-to-text format not only simplifies the training process but also
significantly enhances its ability to generalize to unseen tasks, making it a powerful tool
in scenarios where labeled data is scarce (Sheikhaei et al., 2024).

Evaluation metrics
Macro-Accuracy and Macro-F1 were selected as the primary evaluation metrics to
comprehensively assess the performance of the model in detecting cyberbullying in social
media comments, particularly considering the class imbalance in the dataset.
Macro-accuracy measures the average proportion of correctly classified samples across
all classes, providing an overall indication of balanced classification performance. It is
defined as shown in Eq. (19), where t denotes the total number of classes, and TP;, FP;, and
FN; represent the true positives, false positives, and false negatives for the i-th class,
respectively.

1< TP
Macro—Accuracy = — . (19)
Y ti:ZITPi—i—FP,-—i—FN,-

Macro-F1 is the harmonic mean of macro-precision and macro-recall, offering a
balanced evaluation metric that equally weighs performance across all classes, regardless of
sample distribution. This metric is particularly useful for imbalanced datasets, as it
evaluates each class independently before averaging. Macro-F1 is calculated as shown in
Eq (20), where macro-precision (Ppacro) and macro-recall (Ryacro) are defined in Egs. (21)

and (22).
2 X Pracro X Rpacr
Macro—F1 = o o (20)
Pmacro + Rmacro

1< TP;
Pmacro - e — (21)

. TP; + FP;

1< TP;

’ (22)

Rmacro == ) 7o——.
Tt £ TP 4 FN;

Macro-F1 is particularly relevant to this task, as it mitigates the influence of class
imbalance by treating each class equally. This is essential for cyberbullying detection,
where the cyberbullying category often has significantly fewer samples than the
non-cyberbullying category, making it critical to ensure that both classes are given equal
importance during evaluation.

Experimental results analysis
Table 4 presents the performance comparison of various models on the cyberbullying
detection task, evaluated in terms of Macro-Accuracy, Macro-Precision, Macro-Recall,
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Table 4 Performance comparison of TANN and baseline models for cyberbullying detection,
including Macro-Accuracy, Macro-Precision, Macro-Recall, and Macro-F1. Bolded values indicate
that TANN achieved the best performance among all models in terms of Macro-Accuracy and Macro-F1.

Model Accuracy Precision Recall F1

TextRNN 0.8442 0.7746 0.7724 0.7735
TextCNN 0.8609 0.8089 0.7667 0.7844
FastText 0.8405 0.7751 0.7359 0.7520
BERT 0.8736 0.8134 0.8340 0.8229
BERT-RNN 0.8707 0.8098 0.8276 0.8181
BERT-CNN 0.8854 0.8482 0.8048 0.8234
FLAN-T5 (Large) 0.8736 0.8230 0.7960 0.8078
BERT-FGM 0.8853 0.8558 0.8116 0.8303
TANN 0.8895 0.8450 0.8278 0.8359

and Macro-F1. Overall, our proposed TANN model outperforms all baseline methods
by achieving the highest Macro-Accuracy of 0.8895 and the highest Macro-F1 score
of 0.8359.

The superior performance of TANN can be attributed to its hybrid architecture, which
combines BERT with CNN and Bi-LSTM layers to capture both local and sequential
features. Moreover, the use of a GRL as part of its adversarial learning strategy effectively
reduces topic-specific biases, thereby enhancing the generalization capability of the model
across diverse cyberbullying contexts.

Among the transformer-based baselines, two notable variants stand out. First, the
BERT-CNN model, by merging the contextual embeddings of BERT with the ability of
CNN to extract local features, achieves a strong Macro-Accuracy of 0.8854 and a
competitive Macro-F1 of 0.8234. Second, BERT-FGM, which integrates adversarial
training via the Fast Gradient Method, further improves robustness. FGM introduces
small, calculated perturbations to the input embeddings during training, encouraging the
model to learn smoother and more stable decision boundaries. Although its
Macro-Accuracy of 0.8853 is comparable to that of BERT-CNN, BERT-FGM obtains a
slightly higher Macro-Precision of 0.8558 and a Macro-F1 of 0.8303, highlighting the
benefits of adversarial regularization in learning generalized features.

Another noteworthy baseline is FLAN-T5 (Large), an advanced large language model
fine-tuned with instruction-based methods. Despite being applied in a zero-shot setting
without additional domain-specific training, FLAN-T5 (Large) achieves a Macro-Accuracy
of 0.8736 and a Macro-F1 score of 0.8078. These results are particularly impressive given
that they rival those of fully supervised transformer-based models, underscoring the
potential of instruction-tuned architectures for complex NLP tasks such as cyberbullying
detection.

Traditional models such as TextRNN, FastText, and TextCNN consistently lag behind
their transformer-based counterparts. Among these, TextCNN demonstrates the strongest
performance, achieving a Macro-Accuracy of 0.8609 and a Macro-F1 score of 0.7844, likely
due to its ability to efficiently capture local n-gram patterns. In contrast, FastText and
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Table 5 Statistical significance test results and confidence interval comparisons between TANN and

baseline models.

Comparison t-statistic p-value TANN 95% CI Baseline 95% CI
vs TextRNN 42.12 1.90 x 10~¢ [0.8883-0.8907] [0.8401-0.8490]
vs TextCNN 60.44 4.49 x 1077 [0.8883-0.8907] [0.8593-0.8625]
vs FastText 53.68 7.21 x 1077 [0.8883-0.8907] [0.8368-0.8442]
vs BERT 24.12 1.75 x 107 [0.8883-0.8907] [0.8706-0.8758]
vs BERT-RNN 17.86 5.78 x 1075 [0.8883-0.8907) [0.8664-0.8751]
vs BERT-CNN 11.66 3.00 x 107* [0.8883-0.8907] [0.8838-0.8861]
vs FLAN-T5 (Large) 38.98 2.59 x 1076 [0.8883-0.8907) [0.8723-0.8748]
vs BERT-FGM 13.10 1.96 x 1074 [0.8883-0.8907] [0.8846-0.8859]

TextRNN obtain Macro-F1 scores of 0.7520 and 0.7735 respectively, reflecting the
limitations of earlier architectures in handling the nuanced and varied expressions
characteristic of cyberbullying content.

In summary, the experimental results clearly indicate that transformer-based models,
especially those enhanced with adversarial strategies such as in TANN and BERT-FGM,
substantially outperform traditional approaches. TANN’s superior performance, driven by
its multi-level feature extraction and effective mitigation of topic-specific dependencies,
validates its suitability for real-world cyberbullying detection in dynamic social media
environments.

Statistical significance tests

To rigorously assess the statistical significance of TANN’s performance improvements, we
conducted paired ¢-tests comparing TANN with eight baseline models: TextRNN,
FastText, TextCNN, FLAN-T5 (Large), BERT-RNN, BERT, BERT-CNN, and BERT-FGM.
As shown in Table 5, all comparisons yielded statistically significant differences at the

o = 0.05 level, with p-values spanning three orders of magnitude, ranging from

4.49 x 1077 for TextCNN to 3.00 x 10~* for BERT-CNN.

Confidence interval analyses further validate the consistent superiority of TANN.
TANN exhibits a remarkably tight 95% confidence interval ranging from 0.8883 to 0.8907,
with a range of only 0.0024, which does not overlap with the interval of any baseline model.
In contrast, the classical models display substantially wider intervals: TextRNN ranges
from 0.8401 to 0.8490 (range 0.0089), FastText from 0.8368 to 0.8442 (range 0.0074), and
TextCNN from 0.8593 to 0.8625 (range 0.0032). Among the transformer-based models,
FLAN-T5 Large ranges from 0.8723 to 0.8748 (range 0.0025), BERT-RNN from 0.8664 to
0.8751 (range 0.0087), and BERT from 0.8706 to 0.8758 (range 0.0052). Even the tighter
intervals of BERT-CNN (0.8838 to 0.8861, range 0.0023) and BERT-FGM (0.8846 to
0.8859, range 0.0013) remain fully disjoint from that of TANN. Notably, BERT-FGM’s
upper bound of 0.8859 is still 0.0024 lower than TANN’s lower bound of 0.8883.

The t-statistics further underscore the magnitude of these differences, ranging from
11.66 for BERT-CNN to 60.44 for TextCNN. Even BERT-FGM, the closest competitor
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Normalized Macro-F1 Scores for Different n
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Figure 3 Macro-F1 scores normalized to [0.6, 0.85] for different values of 5. The x-axis represents 7
values ranging from 0.00 to 0.20, and the y-axis displays normalized Macro-F1 scores scaled to the [0.6,
0.85] range for clearer trend visualization. The optimal value is # = 0.1, which balances topic neutrality
and effective cyberbullying detection. As 7 increases beyond 0.1, performance declines, suggesting that
stronger adversarial signals suppress critical features. When # is too small, such as # = 0.05, the model
overfits to topic-specific patterns. Full-size k] DOT: 10.7717/peerj-cs.2942/fig-3

with a t-statistic of 13.10 and a p-value of 1.96 x 10*, exhibits statistically inferior
performance compared to TANN.

Collectively, these results provide robust evidence that the performance improvements
of TANN are both statistically significant and practically meaningful. The consistent
pattern of non-overlapping confidence intervals across all comparisons confirms the
superiority and enhanced stability of TANN in cyberbullying detection tasks.

Parameter sensitivity analysis

We first evaluated the impact of the hyperparameter #, which controls the strength of the
adversarial signal in the GRL. We tested values of # ranging from 0.0 to 0.2, as shown in
Fig. 3. The results indicate that the model performs optimally when 1 = 0.1, achieving the
best balance between enforcing topic neutrality and preserving key features for effective
cyberbullying detection. As 7 increases beyond 0.1, the performance of the model begins to
decline, suggesting that overly strong adversarial signals can suppress features critical for
accurate detection.

When 7 is too small, as in the case of # = 0.05, the adversarial signal is weak, which
allows the model to fit more topic-specific patterns, reducing its generalization across
different topics. On the other hand, larger values of #, such as n = 0.2, overly penalize
topic-related features, which diminishes the ability of the model to identify harmful
content effectively. Thus, we chose = 0.1 for all subsequent experiments, as it provides
the optimal balance between generalization and robust detection.
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Figure 4 Macro-F1 scores normalized to the [0.6, 0.85] range for different values of A. The y-axis
displays the full 0-1 scale while actual normalized scores occupy the [0.6, 0.85] subrange to accentuate
performance variations. The graph illustrates the effect of varying 4 on the model’s performance, with
optimal balance between cyberbullying detection and topic generalization achieved at 4 = 0.9. Perfor-
mance improves with increasing A until peaking at 0.9, beyond which it stabilizes, indicating diminishing
returns. Full-size Kl DOTI: 10.7717/peerj-cs.2942/fig-4

Next, we examined the effect of the hyperparameter 4, which controls the trade-oft
between cyberbullying detection and topic-neutral feature learning. We varied 4 from 0.5
to 1.0, as shown in Fig. 4. The results show a steady improvement in the Macro-F1 score as
/A increases from 0.5 to 0.9, with the best performance achieved at 4 = 0.9, where the score
reached 0.8359. Beyond this point, increasing 4 to 1.0 leads to a slight decline in
performance, suggesting that placing too much emphasis on detection reduces the ability
of the model to generalize across topics.

The results highlight the importance of selecting an appropriate value for 4. Smaller
values reduce the weight given to the detection task, limiting the ability of the model to
accurately identify harmful content. Larger values overly prioritize detection, weakening
the role of the adversarial mechanism in learning topic-independent features. Based on
these findings, we set 4 = 0.9 for all further experiments, as it offers the best balance
between effective cyberbullying detection and cross-topic generalization.

Figure 5 shows the confusion matrix for the model with the optimal settings of = 0.1
and 4 = 0.9. The matrix indicates that the model correctly classifies 1,791
non-cyberbullying instances (Class 0) and 390 cyberbullying instances (Class 1), with
relatively few misclassifications: 154 false negatives (cyberbullying misclassified as non-
cyberbullying) and 117 false positives (non-cyberbullying misclassified as cyberbullying).
This demonstrates the strong performance of the model, especially its ability to accurately
identify harmful content.

These findings confirm the effectiveness of the adversarial learning strategy in reducing
topic-specific interference while maintaining robust detection capabilities. The optimal
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Figure 5 Confusion matrix for the TANN model with the optimal settings of # = 0.1 and 4 = 0.9.
The matrix presents the classification performance of the model, showing the correct classification of
non-cyberbullying (Class 0) and cyberbullying (Class 1) instances. Misclassifications include 154 false
negatives and 117 false positives, highlighting the strong performance of the model in distinguishing
between harmful and non-harmful content. Full-size K&l DOT: 10.7717/peerj-cs.2942/fig-5
Table 6 Performance comparison of full TANN and its variant without the topic adversarial
mechanism. The table reports precision and F1-scores for non-cyberbullying (Label 0) and cyberbul-
lying (Label 1) detection, demonstrating that incorporating the topic adversarial mechanism enhances
generalization and particularly improves detection for the minority cyberbullying class.
Model Precision (0) F1-score (0) Precision (1) F1-score (1)
TANN (w/o topic) 0.9188 0.9279 0.7628 0.7352
TANN 0.9208 0.9297 0.7692 0.7422

values of 7 = 0.1 and 4 = 0.9 ensure a balanced approach, enabling the model to
generalize effectively across diverse topics while accurately detecting cyberbullying. This
balance is essential for real-world applications, especially on dynamic, multi-topic social
media platforms.

Ablation study

To understand how each module impacts performance, we conducted a series of ablation
studies to evaluate the contribution of each component within the TANN model. We
systematically removed key elements, including the topic adversarial mechanism, BERT
embeddings, CNN layers, and Bi-LSTM layers. These experiments aimed to assess the
impact of each component on the performance of the model.
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Table 7 Performance comparison of the full TANN model and its variants in the ablation study.
Bolded values indicate that the full TANN model achieves the best performance across all variants in
each metric.

Model Accuracy Macro-precision Macro-recall Macro-F1
TANN (w/o BERT) 0.8768 0.8293 0.8013 0.8139
TANN (w/o Bi-LSTM) 0.8711 0.8095 0.8351 0.8210
TANN (w/o CNN) 0.8760 0.8186 0.8277 0.8230
TANN (w/o topic) 0.8866 0.8408 0.8233 0.8316
TANN 0.8895 0.8450 0.8278 0.8359

First, we removed the topic adversarial mechanism to create TANN (w/o topic). As
shown in Table 6, the full TANN model outperformed this variant across all metrics. For
non-cyberbullying detection, precision decreased from 0.9208 to 0.9188 and F1-score from
0.9297 to 0.9279. More significantly for cyberbullying detection, precision dropped from
0.7692 to 0.7628 and F1-score from 0.7422 to 0.7352. These results confirm the
effectiveness of the adversarial mechanism in reducing topic-specific bias and improving
generalization, particularly for the minority cyberbullying class with its diverse
expressions.

Subsequent experiments removed other components as shown in Table 7. Removing
BERT embeddings caused the most severe performance decline with a 2.3% accuracy drop,
emphasizing their crucial role in capturing contextual semantics. Removing CNN layers
reduced macro-precision by 3.2%, demonstrating their importance for local syntactic
pattern extraction. Removing Bi-LSTM layers decreased macro-recall by 1.6%,
highlighting their value in modeling sequential dependencies. The smallest performance
drop occurred when removing the topic adversarial mechanism, with a 0.7% accuracy
decrease, confirming its supplementary but valuable role.

These findings reveal three key insights. First, BERT embeddings form the foundation
for semantic understanding. Second, CNN and Bi-LSTM layers provide complementary
pattern recognition, with CNN focusing on local patterns and Bi-LSTM capturing
sequential dependencies. Third, the adversarial mechanism enhances cross-topic
generalization. The superior performance of the full model, with an accuracy of 0.8895 and
a macro-F1 score of 0.8359, demonstrates the effectiveness of this component integration.
Notably, while each element contributes individually, their combination achieves
synergistic improvements, which is particularly critical for detecting nuanced
cyberbullying patterns in real-world scenarios.

Misclassification case analysis

To gain a deeper understanding of the model’s limitations, this subsection conducts a
qualitative analysis of the misclassification cases in the test set. Based on the types of
misclassification errors, namely misclassifying samples with a true label of one as

zero or misclassifying samples with a true label of zero as one, we summarize the following
two typical error patterns and illustrate the potential shortcomings of the model with
specific cases.
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An analysis of the errors reveals that a primary challenge lies in misclassifications where
the true label is 1 but the model incorrectly predicts 0. These false negatives often arise
from semantic ambiguity and ironic expressions: some texts convey implicit negative
emotions or sarcasm without using overtly negative terms, leading to misclassifications.
For instance, the statement “JIX2/ Nib 5856 ? HEZEE, &0, A&V
AT Y WAL PR ZE — ik AN (“Are these two ever going to be done? Just
hurry up and break up already—no need to announce it, thanks! No one cares whether you
stay together or not.”) may appear superficially neutral. However, the rhetorical questions
imply a distinctly negative or sarcastic tone that the model fails to capture. Another crucial
factor is the inability of the models to accurately detect negativity in domain-specific
controversial events, primarily due to the lack of explicit sentiment words and insufficient
contextual understanding, which leads to misclassification. For instance, the text refers to
controversial behaviors such as the athlete’s “false starts” and “false accusations,” but
because it does not directly employ negative sentiment words like “poor” or “shameful,”
the model fails to capture the negative connotations inherent in the context of the event.

Conversely, there are also instances in which the true label is 0 but is incorrectly
predicted as 1, thereby exemplifying the issue of false positives. Such errors commonly
arise from an overreliance on certain keywords or localized negative indicators, which can
overshadow the broader neutral or positive context. For instance, the sample text “F& 1) #)
M A 7 (“My ‘Sunba’ has returned”) was misclassified as negative, potentially because
the term “Sunba” had become associated with a negative subculture or community context.
However, the text itself is purely neutral, containing no particular emotional stance. A
comparable issue arises in the sentence “K~pyq B4 T, MAFEEEEAIREA R
WAL AR T2 (“What’s wrong with posting on Moments? Just because someone takes a
photo with their mother, do you think they’re showing off?”), which contains a rhetorical
question that could be mistakenly interpreted as negative. Nonetheless, the broader
context merely addresses a neutral discussion of social media behavior. Despite the
presence of rhetorical questions, the overall text provides an objective assessment of social
conduct. However, the model may overemphasize emotionally charged, such as “showing
off”, and consequently misclassify the sentiment as negative.

These findings highlight the limitations of the model in comprehending context,
especially with regard to irony, metaphor, or complex linguistic phenomena, and its
inadequate adaptation to specific domains that require additional background knowledge.
Data imbalance may further exacerbate these errors because samples containing subtle or
implicit negative expressions tend to be underrepresented. Potential solutions include
introducing more nuanced contextual encoding mechanisms such as enhanced attention,
incorporating external knowledge modules for domain adaptation, and employing
adversarial training or data augmentation to achieve more balanced distributions. This
analysis underscores the need for refining fine-grained sentiment classification and
improving domain generalization. Future endeavors may benefit from integrating
multimodal information such as emoticons and event context to bolster robustness in
complex classification scenarios.
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DISCUSSION

This study presented the TANN, a novel framework that integrates multi-level feature
extraction using BERT, CNN, and Bi-LSTM, together with an adversarial learning strategy
to mitigate topic-specific biases in cyberbullying detection. Experimental results
demonstrate that TANN consistently surpasses both traditional and transformer-based
baselines, particularly in terms of Macro-F1 score, which better reflects the effectiveness of
the model under class imbalance conditions.

Ablation studies confirm that each architectural component plays a critical role.
Removing the topic adversarial module resulted in a measurable decline in detection
performance, especially for the minority cyberbullying class, thus affirming the importance
of enforcing topic invariance. Likewise, excluding BERT embeddings caused the most
substantial performance degradation, underscoring their value in capturing contextual
semantics. The CNN and Bi-LSTM layers offered complementary strengths, namely local
pattern recognition and sequential dependency modeling, respectively.

Hyperparameter sensitivity analysis further validated the robustness of the design. A
moderate adversarial strength (7 = 0.1) and a well-balanced trade-off between task
performance and generalization (4 = 0.9) yielded optimal results. Excessively strong
adversarial signals were found to suppress important discriminative features, while weaker
signals failed to eliminate topic bias.

Error analysis revealed that most misclassifications stemmed from nuanced linguistic
constructs, such as sarcasm, irony, or domain-specific expressions. False negatives typically
involved subtle or implicit language, while false positives were often due to overemphasis
on isolated negative keywords. These observations highlight limitations in contextual
comprehension and domain adaptation. Future improvements could incorporate
advanced attention mechanisms, external knowledge sources, or multimodal inputs (e.g.,
emojis, metadata) to better handle such complexity.

Overall, the experimental findings and qualitative analyses confirm that the
adversarial-cooperative training approach in TANN enhances both cross-topic
generalization and model stability. These strengths make TANN a viable and robust
solution for cyberbullying detection in real-world, multi-topic social media environments.

CONCLUSIONS

In conclusion, this article presents TANN, an end-to-end adversarial framework designed
to address the persistent challenge of cross-topic cyberbullying detection in social media.
By integrating transformer-based embeddings with convolutional and recurrent layers in
an adversarial training paradigm, TANN learns topic-invariant representations that
generalize effectively across diverse topical domains.

Comprehensive experiments on a large-scale Chinese social media dataset demonstrate
that TANN significantly outperforms both traditional and state-of-the-art models in terms
of Macro-Accuracy and Macro-F1, highlighting its robustness and adaptability. The
success of the model illustrates the efficacy of adversarial learning in mitigating
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topic-induced bias, which is a critical factor in the generalization of text classification
models across domains.

While TANN achieves strong overall performance, the misclassification analysis reveals
remaining limitations in handling subtle and implicit linguistic cues such as sarcasm or
rhetorical expressions. These limitations point to the need for enhanced contextual
modeling.

To further improve performance and extend applicability, future work will investigate
the integration of multimodal data sources (e.g., emojis, user metadata) and advanced
attention mechanisms. Additionally, extending the dataset to cover multiple
languages and cultural backgrounds will be essential for testing the generalizability of the
proposed method. Ultimately, TANN paves the way for building robust, generalizable
cyberbullying detection systems capable of adapting to the dynamic nature of global online
discourse.
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