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ABSTRACT
Humans need food to sustain their lives. Therefore, agriculture is one of the most
important issues in nations. Agriculture also plays a major role in the economic
development of countries by increasing economic income. Early diagnosis of plant
diseases is crucial for agricultural productivity and continuity. Early disease detection
directly impacts the quality and quantity of crops. For this reason, many studies have
been carried out on plant leaf disease classification. In this study, a simple and
effective leaf disease classification method was developed. Disease classification was
performed using seven state-of-the-art pretrained convolutional neural network
architectures: VGG16, ResNet50, SqueezeNet, Xception, ShuffleNet, DenseNet121
and MobileNetV2. A simplified SqueezeNet model, GAPNet, was subsequently
proposed for grape, apple and potato leaf disease classification. GAPNet was
designed to be a lightweight and fast model with 337.872 parameters. To address the
data imbalance between classes, oversampling was carried out using the synthetic
minority oversampling technique. The proposed model achieves accuracy rates of
99.72%, 99.53%, and 99.83% for grape, apple and potato leaf disease classification,
respectively. A success rate of 99.64% was achieved in multiplant leaf disease
classification when the grape, apple and potato datasets were combined. Compared
with the state-of-the-art methods, the lightweight GAPNet model produces
promising results for various plant species.

Subjects Algorithms and Analysis of Algorithms, Computer Vision, Data Mining and Machine
Learning, Optimization Theory and Computation, Neural Networks
Keywords Leaf disease classification, Deep learning, Convolutional neural networks, Lightweight
CNN models

INTRODUCTION
The rapid increase in the world population has led to a high demand for water and food
resources. Owing to the scarcity and unequal distribution of these resources,
approximately 720 million people faced hunger worldwide in 2020 (Canton, 2021). For this
reason, it is essential to focus on food production processes to ensure healthy human life.
Plant diseases can cause significant damage to crops, posing challenges to food shortages,
sustainability, and food security (Tiwari, 2021). Early diagnosis of plant diseases ensures
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the quality and continuity of agricultural productivity. Therefore, examining the stages of
plant growth and development is crucial for detecting agricultural diseases and preventing
crop losses. Additionally, the economic and social development of countries relies on
agriculture (Shewale, 2023). Fast and accurate plant disease detection not only guarantees
product quality and quantity but also increases economic income (Yu, Xie & Huang, 2023).
Consequently, it is necessary to investigate plant leaf diseases and take early precautions to
increase agricultural productivity.

Bacteria, fungi and viruses are the causes of plant diseases (Özcan & Dönmez, 2021).
When these viruses infect a plant, they spread the disease to the plant’s leaves and crops
(Babalola, Kpai & Toygar, 2023). With the rapid development of technology, artificial
intelligence and its subfields, machine learning and deep learning methods have gained
attention in many research areas. Recently, many deep learning-based (convolutional
neural network (CNN) and Vision Transformer (ViT)) studies have been carried out for
the early detection of plant leaf diseases. Compared with CNN models, ViT models have
satisfactory performance in image classification tasks, but they are relatively more complex
and have high computational demands (Rachman et al., 2024). However, in real-world
applications, it is not efficient to use models that require considerable memory and
processing power. Therefore, there is a need to design models that will provide successful
results in environments with few resources. The main objective of this study is to design a
lightweight architecture that maintains high accuracy while significantly reducing
computational demands. For this reason, a CNN-based model that is suitable for
deployment on resource-constrained devices was developed.

The aim of this study is to design a CNN model suitable for deployment on
resource-constrained devices used in agricultural environments. Additionally, this study
aimed to develop a lightweight CNN model that performs well not only for one plant
species but also for various plant species. The proposed GAPNet model uses an
architectural approach based on the SqueezeNet model. It also performs disease
classification on multiple plant species (grape, apple, and potato). Our study also provides
a comprehensive comparative analysis against seven state-of-the-art CNN architectures. In
this study, the leaf disease classification performances of seven pretrained CNN models,
VGG16, ResNet50, SqueezeNet, Xception, ShuffleNet, DenseNet121, and MobilNetV2,
were examined. Inspired by the SqueezeNet architecture, a lightweight CNN model,
GAPNet, was proposed for grape, apple and potato leaf disease classification. To address
the data imbalance problem between classes, the synthetic minority oversampling
technique (SMOTE) (Elreedy & Atiya, 2019) method was used. SMOTE balances the
dataset by generating synthetic examples for underrepresented classes, thus ensuring equal
representation of classes and increasing the reliability of classification results (Zaw &Mon,
2024).

Motivation for the study
Plant diseases can cause significant damage to crops, posing challenges to food shortages,
sustainability, and food security (Tiwari, 2021). Therefore, examining the stages of plant
growth and development is crucial for detecting agricultural diseases, taking precautions in
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time, and preventing crop losses. Early detection of leaf diseases also helps decrease the use
of chemical pesticides and thus decreases environmental and health risks. Since leaf
diseases have different characteristics depending on the plant species, these diseases need
to be recognized and classified correctly. Fast and accurate plant disease detection
guarantees product quality and quantity. For this reason, plant leaf diseases should be
investigated, and early precautions should be taken to increase agricultural productivity.

Motivation for the choice of methods used
Recently, deep learning methods-CNNs, ViTs, etc.-have achieved high accuracy rates in
the field of computer vision. These methods achieve superior performance to traditional
machine learning methods by automatically learning image features. ViT models have
satisfactory performance in image classification tasks, but they are relatively more complex
than CNN models and have high computational demands (Rachman et al., 2024). For this
reason, a CNN-based model that is suitable for deployment on resource-constrained
devices was developed in this study. In this study, a lightweight and fast CNN model,
GAPNet, is proposed for the early detection and classification of plant leaf diseases.

Contributions

. Leaf disease classification was carried out for three different plant species (grape, apple
and potato).

. Oversampling with the SMOTE method was applied to address the data imbalance
problem.

. The leaf disease classification performance of seven state-of-the-art CNNs (VGG16,
ResNet50, SqueezeNet, Xception, ShuffleNet, DenseNet121, and MobileNetV2) for three
different plant species was evaluated.

. A fast and lightweight CNNmodel, GAPNet, was proposed for single and multiplant leaf
disease classification.

Structure of the manuscript
The article is organized as follows. The plant leaf disease classification studies in the
literature are summarized in the next section. The dataset, the pretrained CNN models,
and the proposed method are explained in section three. The fourth section presents
experimental studies and the results. The final section provides a discussion and
conclusions.

Literature review
This section describes the literature on leaf disease classification. Over the years, this
research topic has become more interesting, and many methods have been proposed in the
literature for disease classification from plant leaves. Nagaraju, Swetha & Stalin (2020)
proposed a fine-tuned VGG-16 network for the early detection and classification of apple
and grape leaf diseases. Their method achieved 97.87% accuracy on a dataset consisting of
grape and apple leaf diseases. Çetiner (2021) used pretrained DenseNet121, DenseNet201,
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InceptionResNetV2, InceptionV3, and ResNet50V2 models for feature extraction and a
CNN-based classification model for apple leaf disease detection and achieved the highest
accuracy (99.00%) with ResNet50V2. Reddy & Neeraja (2022) proposed a system that
combines DenseNet and 1D CNN models to detect plant leaf diseases. This system was
used to classify diseases in apple, grape, potato, and strawberry leaf images and provide
treatment recommendations. Nagi & Tripathy (2022) proposed a lightweight CNN model
to classify grape leaf diseases. Their model outperformed the pretrained AlexNet,
MobileNet, and VGG16 models, with 98.40% accuracy.

Pradhan (2022) used DenseNet201, DenseNet169, InceptionV3, InceptionResNetV2,
MobileNet, MobileNetV2, ResNet50, VGG16, VGG19, and Xception models for apple leaf
disease classification. DenseNet201 outperformed the other models with 98.75% accuracy.
Babalola, Kpai & Toygar (2023) used AlexNet for apple leaf disease classification and
achieved 99.56% accuracy. Sood & Singh (2024) achieved 99.88% accuracy with their CNN
architecture for the early diagnosis of grape leaf diseases. Sofuoğlu & Bırant (2024)
proposed a new CNN model for plant leaf disease classification. Their model achieved
98.28% accuracy on potato leaf images. Upadhyay & Gupta (2024) achieved an accuracy
rate of 98.94% with the ResNeXt model for the early diagnosis of fungal diseases on apple
leaves.

Garma et al. (2022) compared different state-of-the-art mobile CNN architectures for
classifying maize leaf diseases and insect pests. The DiCENet, EfficientNet, GhostNet,
MixNet, MobileNetV3, SPNASNet, FBNet, MNASNet, ShuffleNetV2 and SqueezeNext
networks were selected because of their small size and lower computational complexity.
The GhostNet model showed the highest performance, with an average accuracy of 97.78%
in detecting plant leaf diseases. Banjar et al. (2025) proposed E‑AppleNet, an advanced
version of EfficientNetV2 that includes attention mechanisms for the classification of apple
leaf diseases. With this model, they achieved 99% accuracy on the PlantVillage dataset.

Doutoum & Tugrul (2025) conducted a systematic analysis by investigating deep
learning methods on datasets created for apple leaf disease detection and classification.
They reported that deep learning techniques are more effective than traditional machine
learning methods in leaf disease detection and classification. They also suggested using the
apple dataset obtained from PlantVillage instead of datasets obtained from unstable
environments. Bonkra, Pathak & Kaur (2025) developed a hybrid model that combines
convolutional autoencoders (CAEs) and CNNs for apple leaf disease detection. They
evaluated the performance of ResNet50, EfficientNetB3, and their hybrid model for apple
leaf disease classification. They achieved 96% accuracy with the proposed hybrid
CAE-CNN model. Another approach for classifying potato leaf diseases was presented by
Sarfarazi, Zefrehi & Toygar (2024). They used the fusion method of multiple color spaces
to improve feature extraction and the weighted majority voting strategy to combine
predictions from AlexNet, ResNet50, andMobileNet in the classification phase. As a result,
the proposed approach achieved 98.61% accuracy on the PlantVillage dataset and 97.78%
accuracy on the potato leaf dataset. Kunduracioglu & Pacal (2024) used a combination of
14 CNN and 17 image transform models for disease classification from grape leaves. The
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four models achieved 100% accuracy on the PlantVillage and Grapevine datasets,
highlighting the performance of the Swinv2-Base model.

Özaras, Yilmaz & Gedіklі (2024) proposed the AppleSENet model for apple leaf disease
classification. The squeeze and excitation (SE) blocks were used to generate channel
attention weights, thus increasing the performance by highlighting the features that are
effective in solving the problem. Compared with the SqueezeNet, ShuffleNet, and
MobileNetV2 networks, AppleSENet achieved high classification performance (99.21%).
While our previous work (Özaras, Yilmaz & Gedіklі, 2024) focused solely on apple leaf
disease classification via the SE Network approach, this study presents several important
improvements: disease classification for multiple plant species (grape, apple, and potato), a
new architectural approach based on a simplified SqueezeNet model, and a comprehensive
comparative analysis against seven state-of-the-art CNN architectures.

MATERIALS AND METHODS
In this study, pretrained CNN networks VGG16, ResNet50, SqueezeNet, Xception,
ShuffleNet, DenseNet121, and MobileNetV2 were used to classify diseases from apple,
grape and potato leaf images. The SMOTE method was applied to address the data
imbalance problem in the datasets. Inspired by the SqueezeNet model, the lightweight
GAPNet network was proposed for leaf disease classification. The datasets, the pretrained
CNN models, and the proposed model are explained in detail in the following subsections.

DATASET
PlantVillage (Mohanty, 2016) is a standard benchmark dataset used in plant disease
classification research. It contains high-quality, labeled images with over 50,000 images
spanning multiple plant species and disease categories, providing sufficient data for robust
model training and validation. This publicly available dataset contains images of 14
different plant species (apple, blueberry, cherry, corn, grape, orange, peach, bell pepper,
potato, raspberry, soybean, pumpkin, strawberry, and tomato). The dataset covers 38
disease classes (17 fungal diseases, four bacterial diseases, two mold diseases, two
virus-related diseases, one worm-related disease, and 12 healthy diseases), providing
diversity within a standardized framework. In this study, grape, apple and potato leaf
images from the PlantVillage dataset were used for disease classification. Grapes are an
important source of income in terms of agricultural production. Apples are among the
most consumed fruits worldwide. They are grown as important agricultural products in
many countries. They can grow in different climates. Potatoes, staple foods around the
world, can grow in different climates and soil conditions. They are a fundamental part of
many people’s diets.

The grape dataset consists of 4,062 leaf images of four classes: healthy, leaf blight, tinder
disease (esca), and black rot. The Apple leaf dataset consists of four classes, healthy, black
rot, apple rust, and apple scab, including 3,172 leaf images. The potato leaf dataset consists
of 2,152 leaf images in three classes: late blight, early blight, and healthy. Figure 1 shows
healthy and diseased leaf images from the grape, apple, and potato datasets. For the grape
dataset, the distribution encompasses 1,180 images representing black rot, 1,383 esca
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images, 1,076 images displaying leaf blight, and 423 images of healthy samples. The apple
dataset contains 630 images of apple scab, 621 images of black rot, 276 images of cedar
apple rust, and 1,645 images of healthy samples. The potato dataset comprises 1,000
images of early blight, 1,000 images of late blight, and 152 images of healthy samples. This
distributional imbalance can cause the models to underfit classes with fewer samples and
overfit them to the features of the majority class. For this reason, oversampling was
performed with the SMOTE method to solve the data imbalance problem.

METHOD
In this study, datasets from three plant species (grape, apple, potato) were utilized for the
early detection of plant diseases. A flow diagram of the proposed plant disease
classification method is given in Fig. 2. In the preprocessing step, the images were resized
to 224 × 224 and normalized. In the data partitioning phase, the images are randomly
divided into 80% training and 20% validation sets. This specific ratio was selected

Figure 1 Healthy and diseased (A) grape (B) apple (C) potato leaf images. PlantVillage Dataset
(Mohanty, 2016). Full-size DOI: 10.7717/peerj-cs.2941/fig-1
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according to a comprehensive review of applications in the literature. The SMOTEmethod
was applied to balance the distribution of data between classes. The pretrained CNN
models- VGG16, ResNet50, SqueezeNet, Xception, ShuffleNet, DenseNet121, and
MobileNetV2- were subsequently implemented for leaf disease classification. Finally,
inspired by the success of the lightweight model SqueezeNet, a more lightweight model,
GAPNet, was proposed for the classification of leaf diseases.

Synthetic minority oversampling technique (SMOTE)
In training CNN models, it is very common to use data augmentation methods (GAN-
based methods, ImageDataGenerator, or oversampling) for datasets. GAN-based solutions
require significant amounts of data, are difficult to tune, and may suffer from model
collapse (Dablain, Krawczyk & Chawla, 2023). ImageDataGenerator-based data
augmentation does not have a positive effect on performance in all the cases. The effect of
data augmentation varies depending on the size and characteristics of the dataset used
(Firnando et al., 2024). On the other hand, data imbalance between classes may lead to a
decrease in the performance of classification models. This imbalance causes the model to
underfit the class with fewer samples and to overfit the features of the majority class.

In this study, a data preprocessing algorithm called SMOTE (Elreedy & Atiya, 2019) is
used to balance the data distribution in the image dataset (Pamungkas, Ramadani & Njoto,
2024; Özdemir, Polat & Alhudhaif, 2021). SMOTE analyzes the nearest neighbors of
instances belonging to the minority class to create new synthetic data on the basis of the
relationships between these instances. The SMOTE method is commonly used because of
its simplicity and high success rate in applications (Elreedy & Atiya, 2019). This method
not only increases the number of instances belonging to the minority class but also adds

Figure 2 Flow diagram of the proposed method for plant leaf disease classification. Leaf images are
taken from PlantVillage Dataset (Mohanty, 2016). Full-size DOI: 10.7717/peerj-cs.2941/fig-2
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random variations to allow variability between instances (Özden, 2023). The synthetic data
generation using the SMOTE method is given in Eq. (1). In the equation, Xi

0 represents the
newly synthesized instance, while Xj is selected from the k nearest neighbors of Xi. λ is a
random number in the range of [0–1] (Elreedy & Atiya, 2019).

Xi
0 ¼ Xi þ k Xj � Xi

� �
(1)

The SMOTE method balances classes by generating synthetic images based on the class
with the most images. The original and SMOTE-generated leaf image examples for the
grape, apple and potato datasets are shown in Fig. 3.

Convolutional neural networks
CNNs are variants of multilayer perceptrons that are designed to emulate the behavior of
the visual cortex. These methods can achieve successful results in image classification tasks
because of their multilayered structures. CNNs generally consist of convolution layers,
pooling layers, and fully connected layers. In the convolution layers, several filtering
operations are performed to extract features from the input image. The process of
extracting distinct features is performed by sliding the filter over the image. The pooling
layers perform pooling operations to reduce the dimensionality of the data. In the fully
connected layer, matrix-formatted data are flattened into a vector to perform the learning
process.

In this study, pretrained CNN models, VGG16, ResNet50, SqueezeNet, Xception,
ShuffleNet, DenseNet121, and MobileNetV2, were utilized. Later, a lightweight and fast
CNN model, GAPNet, was proposed for grape, apple and potato leaf disease classification.

VGG16
VGG16 was proposed by Simonyan & Zisserman (2014) from the University of Oxford in
2014. This network was trained on the ImageNet database. The VGG16 network consists
of 13 convolution layers and three fully connected layers. The model includes five
convolutional blocks. While the first and second blocks consist of two convolution layers,
the last three blocks consist of three convolution layers. In each block, the pooling
operation is applied after the convolution layers. Then, classification is performed through
the fully connected layers.

ResNet50
The ResNet architecture aims to address the vanishing gradient problem during the
training process of CNNs, which leads to a decrease in the accuracy of the models (Mukti,
2019). To solve this problem, residual connections are used. Residual connections are a
type of skip-connection that learns residual functions with reference to the layer inputs
instead of learning unreferenced functions (He et al., 2016). The use of residual
connections allows for learning with deeper networks.

ResNet50 is a residual network architecture consisting of 50 layers, including
convolutional layers, identity blocks, convolutional blocks, and fully connected layers. The
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convolutional layers extract features from the input image. These features are processed
and transformed using identity and convolutional blocks. Finally, the fully connected
layers are utilized for classification.

SqueezeNet
SqueezeNet is an 18-layer network architecture with a small number of parameters. The
model was created with three design strategies: filter reduction by replacing the 3 × 3 filter
with a 1 × 1 filter, reducing the input channels, and subsampling at the end of the network
to reduce the size (Hidayatuloh, 2018). SqueezeNet uses the fire module, which combines
1 × 1 and 3 × 3 filters to reduce the number of parameters (Iandola, 2016). SqueezeNet
starts with a convolution layer, followed by eight fire modules, and ends with a final
convolution layer.

Xception
The Xception model is constructed with 36 convolutional layers. The convolutional layers
are separated from each other by residual connections (Chollet, 2017). The model
demonstrates deeply separable convolution features, which independently perform point-
to-point convolution in each channel of the input data (Chen, 2021). In the Xception
architecture, data pass through an entry flow, followed by a middle flow, and finally an exit
flow.

Figure 3 Original and SMOTE-generated leaf image samples. PlantVillage Dataset (Mohanty, 2016).
Full-size DOI: 10.7717/peerj-cs.2941/fig-3
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ShuffleNet
ShuffleNet was proposed by MEGVII researchers in 2017. It was designed to create a
low-cost lightweight model. In ShuffleNet, the channel mixing method, which allows
feature maps belonging to different channel groups to exchange information without
increasing the computational load, is used (Chen, 2022).

The ShuffleNetV2 architecture provides a lower cost and higher accuracy. This
approach can achieve effective results by reducing the number of model parameters and
calculations. The concept of group convolution, which divides the network, input, and
output channels into more than one group and performs convolution operations within
each group, was used (Zhou, 2024). This block consists of a combination of pointwise
group convolution, a channel shuffling operation, and depthwise convolution. The channel
shuffling operation enables information exchange across groups, enhancing the
representation capacity of the network (Ma, 2018).

DeneseNet121
The DenseNet architecture uses a block structure where layers are densely connected in a
feedforward manner, and it employs bottleneck layers to reduce the number of parameters.
There are different DenseNet architectures, such as DenseNet121, DenseNet160, and
DenseNet201. In this work, the DenseNet121 model (Huang et al., 2017) was used because
it has fewer parameters than the other models. This model consists of 121 layers, including
120 convolutional layers and one fully connected layer. The DenseNet121 architecture
consists of four dense blocks and three transition layers.

MobileNetV2
MobileNetV2 was proposed by Google researchers in 2018. The MobileNet architecture is
based on depthwise separable convolution. The MobileNetV2 model was developed by
adding inverted residuals with linear bottleneck modules to the MobileNetV1 model
(Indraswari, 2022). This model is constructed from convolutional, inverted residual
bottleneck, and pointwise convolution layers.

The details of the model architecture designed for plant disease classification using these
seven pretrained networks are given in Table 1. Initially, 2D convolution is applied to the
input image. Then, feature extraction is performed using a pretrained model. Finally, the
classification phase consists of dropout and dense layers, as shown in Table 1.

Proposed model–GAPNet
The SqueezeNet model demonstrates high accuracy despite having fewer parameters and
complexity among state-of-the-art networks. The significantly smaller memory
requirements of SqueezeNet make it more suitable for deployment with limited computing
resources. Furthermore, the design of SqueezeNet allows easier modification and
integration of fire components than more complex architectures. It allows for
improvements without extensive architectural redesign. Among the seven trained models,
SqueezeNet showed comparable performance despite the small number of parameters. For
these reasons, SqueezeNet was used as the basis for the proposed GAPNet model.
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In this study, a lightweight and fast CNN model, GAPNet, was proposed for disease
classification from leaf images. This network was developed as a simplified version of the
SqueezeNet model. Figure 4 shows the proposed GAPNet architecture. In the proposed
model, convolution and max pooling were applied to the input images. It is followed by
two fire modules, one max pooling module, two fire modules, one max pooling module,
and two fire modules, as shown in Fig. 4. There are eight Fire modules in the original
SqueezeNet network. In GAPNet, six of the eight Fire modules were preserved, and the
others were removed. Therefore, the number of parameters is reduced from 724,560 to
only 337,872. The fire modules are followed by the max pooling and dropout layers. After
the last convolution layer, global average pooling and classification were applied.

The number of Fire modules in the proposed architecture was determined
experimentally. In this process, the fire modules were removed one by one, and the
contribution of each module to the overall system was evaluated. Therefore, the eight fire
modules in the original SqueezeNet model were reduced to seven, six, five, four, three, and
two, and the effect of each fire module on model performance was examined. The results
showed that six fire modules gave optimum results in terms of the success rate and number
of parameters.

In this model, fire modules enable the design of a lightweight network. In the fire
module, some of the 3 × 3 convolutions are replaced with 1 × 1 convolutions to reduce the
number of parameters. This module consists of squeeze layers (1 × 1 convolutions) and
expand layers (1 × 1 and 3 × 3 convolutions). The proposed lightweight CNN model can
achieve comparable results to those of other high-performing CNN models.

The number of parameters and the sizes of the CNN models used in the study are given
in Table 2. As shown in the table, SqueezeNet has a very low number of parameters
compared with the other pretrained networks. This shows that this network is applicable in
systems with limited resources. On the other hand, the proposed GAPNet has 58.88%
fewer parameters than the original model. GAPNet has the smallest storage requirement of
1.29 MB, which is much lighter than those of the other models. SqueezeNet has the second
smallest size of 2.76 MB, whereas ResNet50 and Xception have the largest storage

Table 1 Details of the plant leaf disease classification model.

Model architecture

Input_layer (224 × 224 × 3)

Conv2D (Convolution Layer)

Pretrained models
(VGG16, ResNet50, SqueezeNet, Xception, ShuffleNet, DenseNet121, MobilNetV2)

Flatten (Flatten Layer)

Dropout

Dense layer (Activation = ‘Relu’)

Batch normalization

Dropout

Output layer (Dense (Activation = ‘Softmax’))
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requirements of 188.00 and 177.59 MB, respectively. However, the proposed GAPNet was
found to be very successful in classifying grape, apple, and potato leaf diseases.

Experimental results
In this study, disease classification was performed on grape, apple and potato leaf images
with pretrained VGG16, ResNet50, SqueezeNet, Xception, ShuffleNet, DenseNet121,
MobileNetV2 and the proposed GAPNet networks. The data imbalance problem was

Figure 4 GAPNet architecture. Full-size DOI: 10.7717/peerj-cs.2941/fig-4

Table 2 Number of parameters and size of models.

Model Input size Number of parameters Model size

VGG16 224 × 224 14.815.128 80.64 MB

ResNet50 224 × 224 49.280.216 188.00 MB

SqueezeNet 224 × 224 724.560 2.76 MB

Xception 224 × 224 46.553.984 177.59 MB

ShuffleNet 224 × 224 4.022.840 15.35 MB

DenseNet121 224 × 224 7.306.136 27.87 MB

MobileNetV2 224 × 224 18.316.696 69.87 MB

Proposed model 224 × 224 337.872 1.29 MB
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addressed using the SMOTE method. The images are then randomly divided into 80%
training and 20% validation sets.

In this study, experiments were conducted in the Google Colab environment with an
A100 GPU. The hyperparameters used for training the CNN models are given in Table 3.
Accuracy, precision, F1-score, and recall metrics were used to evaluate the performance of
the models. The confusion matrix given in Fig. 5 is used to calculate these metrics. In the
figure TP is the number of positive samples identified as positive by the classifier and TN is
the number of negative samples identified as negative by the classifier. The number of
examples whose true label is negative but predicted as positive by the classifier is expressed
as FP, and the number of examples whose true label is positive but predicted as negative by
the classifier is expressed as FN. The mathematical expressions for accuracy, F1-score,
precision, and recall are given in Eqs. (2)–(5).

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

(2)

Precision ¼ TP
TP þ FP

(3)

Recall ¼ TP
TP þ FN

(4)

F1-score ¼ 2 � Precision � Recallð Þ
Precisionþ Recallð Þ : (5)

The classification performances of the VGG16, ResNet50, SqueezeNet, Xception,
ShuffleNet, DenseNet121, and MobileNetV2 networks on the grape, apple and potato leaf
disease datasets are shown in Table 4. For grape leaf diseases, MobileNetV2 and
DenseNet121 have higher classification accuracies than the other models. The highest
classification performance for grape leaf disease images is achieved with an accuracy of
100% and an F1-score of 100% with these models. SqueezeNet, which has significantly
fewer parameters than the other models, provides promising results, with an accuracy of
99.55% and an F1-score of 99.55% on the grape dataset.

For the Apple dataset, VGG16, ResNet50, MobileNetV2, and DenseNet121 achieved
higher accuracies than the other models. For apple leaf images, the highest disease
classification performance is achieved with an accuracy of 100% and an F1-score of 100%
when the VGG16, ResNet50, MobileNetV2, and DenseNet121 networks are used. The
results in Table 4 show that SqueezeNet also provides comparable results, with an accuracy
of 99.31% and an F1-score of 99.31%.

The classification results of the networks on the Potato dataset indicate that VGG16,
ResNet50, DenseNet121, and Xception have higher accuracies than the other models. The
highest disease classification performance for potato leaf images was achieved with an
accuracy of 100% and an F1-score of 100% via the VGG16, ResNet50, DenseNet121, and
Xception models. Similarly, the lightweight SqueezeNet model achieved significant disease
classification performance, with an accuracy of 99.86% and an F1-score of 99.83%.

After the single-plant leaf disease classification task was evaluated, samples from three
species were combined, and multiplant leaf disease classification was performed via
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pretrained models. The results in Table 4 show that the DenseNet121 and Xception
networks are more successful in 11-class classification.

Table 4 presents a comprehensive comparison of performance metrics (accuracy,
precision, recall, and F1-score) for various CNN architectures across grape, apple, potato,
and combined datasets under both original and SMOTE-balanced class distributions. The
experimental results demonstrate that addressing class imbalance through oversampling
yielded consistent performance improvements across all the evaluation metrics. Notably,
while improvements in accuracy are observed, the precision, recall, and F1-score metrics
exhibited more substantial gains after the implementation of the SMOTE method. These
results clearly indicate that addressing class imbalance contributes to model performance
in leaf disease classification tasks. The results of the experiments show that the lightweight
SqueezeNet model yields comparable results in both single and multiplant leaf disease
classification.

In this study, the number of Fire modules in the proposed GAPNet model was
determined experimentally. The original SqueezeNet model consists of eight fire
modules. In this study, the number of fire modules was reduced, the plant leaf disease
classification performance was evaluated, and the results are given in Table 5. All the
models were trained for 150 epochs, and oversampling was applied to the training samples.
A total of six Fire modules gave optimum results in terms of success and number of

Table 3 Parameters for training models.

Parameter name Value

Input size 224 × 224 × 3

Batch size 64

Epoch number 100

Optimizer Adam

Learning rate 0.0001

Loss function Categorical cross entropy

Dropout rate 0.5

Figure 5 Confusion matrix. Full-size DOI: 10.7717/peerj-cs.2941/fig-5
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parameters. Therefore, in this study, the GAPNet model was designed to consist of six Fire
modules.

The performance results of the proposed GAPNet model for the grape, apple, potato
and grape + apple + potato datasets are given in Table 6. Compared with state-of-the-art
CNN models, GAPNet, a lighter model, has provided promising single and multiplant leaf
disease classification results. The proposed model showed the highest performance, with
an accuracy of 99.72% and an F1-score of 99.73% for the 4-class grape dataset. GAPNet
achieved accuracies of 99.53% and 99.83% for apple and potato leaf disease classification,
respectively. For the 11-class dataset, 99.64% classification accuracy was achieved.

Table 4 Classification performances of pre-trained CNN models on single and multi plant leaf disease.

VGG16 SqueezeNet ResNet 50 MobileNet V2 DenseNet 121 Xception ShuffleNet SMOTE

Grape Accuracy 99.9 99.55 99.9 100 100 99.45 99 +

100 99.75 99.87 100 100 98.4 98.76 –

F1-score 99.91 99.55 99.91 100 100 99.47 99.02 +

99.7 99.04 99.9 99.21 99.9 98.31 98.89 –

Precision 99.91 99.55 99.91 100 100 99.47 99.02 +

99.73 99.05 99.89 99.18 99.89 98.28 98.75 –

Recall 99.91 99.56 99.91 100 100 99.47 99.03 +

99.68 99.06 99.9 99.72 99.9 98.34 99.04 –

Apple Accuracy 100 99.31 100 100 100 99.84 98.63 +

100 98.74 100 98.43 100 99.84 97.48 –

F1-score 100 99.31 100 100 100 99.84 98.63 +

99.86 97.53 100 96.22 99.45 99.86 96.85 –

Precision 100 99.31 100 100 100 99.84 98.63 +

99.92 97.01 100 96.38 99.69 99.92 96.96 –

Recall 100 99.31 100 100 100 99.84 98.63 +

99.81 98.10 100 96.30 99.22 99.81 96.76 –

Potato Accuracy 100 99.86 100 99.00 100 100 98.66 +

100 99.77 99.77 99.76 100 99.77 98.61 –

F1-score 100 99.83 100 99.01 100 100 98.69 +

100 97.48 99.14 99.83 100 99.33 96.89 –

Precision 100 99.83 100 99.02 100 100 98.71 +

100 97.53 99.66 99.83 100 98.85 95.61 –

Recall 100 99.84 100 99.03 100 100 98.66 +

100 97.48 98.64 99.83 100 99.83 98.34 –

Grape
+
Apple
+ Potato

Accuracy 99.97 99.28 99.97 99.97 100 100 99.80 +

99.78 98.8 99.94 99.84 100 99.94 99.46 –

F1-score 99.97 99.28 99.97 99.97 100 100 99.80 +

99.40 97.84 99.96 99.73 100 99.83 99.39 –

Precision 99.97 99.29 99.97 99.97 100 100 99.80 +

99.82 97.71 99.96 99.62 100 99.97 99.55 –

Recall 99.97 99.27 99.97 99.97 100 100 99.80 +

99.04 98.01 99.96 99.84 100 99.69 99.24 –
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The confusion matrices for the validation sets of the grape, apple, potato and grape +
apple + potato datasets obtained using the GAPNet model are shown in Fig. 6.
Additionally, the classification performance of SqueezeNet and the proposed model for all
classes is given in detail in Table 7. The ‘esca’ class in the grape dataset, the ‘apple rust’ class
in the apple dataset, and the ‘early blight’ and ‘late blight’ classes in the potato dataset are
classified with 100% accuracy using SqueezeNet. In addition, the model has lower
performance in the ‘eaf blight’ and ‘apple scap’ classes when compared with other classes.
For the GAPNet model, the ‘healthy’, ‘esca’ and ‘black rot’ classes in the grape dataset, the
‘black rot’ and ‘apple rust’ classes in the apple dataset, and the ‘late blight’ and ‘healthy’
classes in the potato dataset are classified with 100% accuracy.

The accuracy and loss graphics of the training and validation sets with the proposed
GAPNet model on the grape, apple, potato and grape + apple + potato datasets are shown
in Fig. 7. The experimental results indicate that the GAPNet model performs successfully
on all the datasets. There was no overfitting, and fluctuations in the accuracy and loss
values decreased after 50 epochs.

The performance comparison of SqueezeNet and the proposed GAPNet models on the
grape, apple, potato and grape + apple + potato datasets is shown in Fig. 8. The proposed
lightweight GAPNet model, with 337.872 parameters, achieves classification performance
comparable with that of the SqueezeNet model. SqueezeNet has a very low number of
parameters compared with the other pretrained networks (Table 2). This shows that this
network is applicable in systems with limited resources. On the other hand, the proposed
GAPNet has 58.88% fewer parameters than the original model. However, this lightweight

Table 5 Classification accuracies according to the number of fire modules.

Number of fire modules Number of parameters Dataset

Grape Apple Potato G + A + P

2 26.160 95.84 97.59 98.83 96.57

3 72.016 98.28 98.36 99.00 98.06

4 121.456 99.55 98.86 99.50 99.14

5 226.848 99.54 98.91 99.83 99.25

6 337.872 99.72 99.53 99.83 99.64

7 530.967 99.81 99.53 99.83 99.69

8 724.560 99.63 99.84 100 99.61

Table 6 Proposed model performance results on all datasets.

Plant Model Accuracy F1-score Precision Recall

Grape Proposed model 99.72 99.73 99.73 99.73

Apple Proposed model 99.53 99.54 99.54 99.53

Potato Proposed model 99.83 99.83 99.83 99.84

Grape + Apple + Potato Proposed model 99.64 99.64 99.64 99.64
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network was found to be very successful in single and multiplant leaf disease classification
for grape, apple and potato plants, as shown in Fig. 8.

Table 8 shows the computational efficiency measurements for GAPNet compared with
the seven baseline models. To ensure fair comparison, the tests were run on the same
hardware. GAPNet demonstrates high computational efficiency with the fastest training
time of 6 s and 26 ms per epoch, which is 14% faster than that of SqueezeNet (7 s, 30 ms)
and 45% faster than that of ShuffleNet (11 s, 47 ms). GAPNet is also significantly more
efficient than the other models. Furthermore, GAPNet achieves the most efficient
inference speed, with a test time of 0.00083 ms per sample. This is 40% faster than
SqueezeNet (0.00138 ms), 50% faster than VGG16 (0.00166 ms), 67% faster than
ShuffleNet (0.00249 ms), 70% faster than both ResNet50 and Xception (0.00277 ms), 63%
faster than MobileNetV2 (0.00222 ms), and 88% faster than DenseNet121 (0.00693 ms).

Figure 6 Confusion matrices obtained with GAPNet on apple, potato, and grape datasets (validation).
Full-size DOI: 10.7717/peerj-cs.2941/fig-6
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These significant performance improvements make GAPNet particularly suitable for
deployment in resource-constrained agricultural settings and real-time processing where
computational efficiency is crucial.

A comparison of the classification accuracy of the proposed GAPNet model with the
literature is shown in Table 9. Compared with the methods in the literature, the proposed
GAPNet model is quite successful in classifying potato leaf diseases. Additionally, it
showed comparable performance to those of previous studies in classifying grape and
apple leaf diseases. As shown in the comparison table, studies in the literature generally
develop models for single plant leaf disease classification. The number of studies
conducted for multiplant leaf disease classification is quite low. From this perspective, the
proposed model successfully classifies leaf diseases for single and multiplant species.

The performance of the proposed GAPNet model is also evaluated on the New Plant
Diseases (Bhattarai, 2019) and Plant Pathology 2020 (Kaeser-Chen, 2020) datasets. New
Plant Diseases is a publicly available dataset created by applying data augmentation to the
original PlantVillage dataset. Plant Pathology (Kaeser-Chen, 2020) consists of apple leaf
disease images obtained under real-world conditions with complex backgrounds. The
images are captured under various angles, illuminations, surfaces, and noise conditions.
The dataset contains four classes: apple scab, cedar apple rust, multidisease, and healthy.

The proposed GAPNet model showed superior performance, with 99.77% validation
accuracy on the New Plant Disease dataset (on grape + apple + potato leaf images). These
results prove that the model shows high success in images obtained under controlled
environments such as ideal lighting conditions and homogeneous backgrounds.

In addition, a predictable drop in model performance was observed on the Plant
Pathology dataset. A validation accuracy of 92.78% was achieved for the 3-class
configuration, and 87.95% was achieved for the 4-class configuration on these complex

Table 7 SqueezeNet and GAPNet performance evaluation on apple, potato and grape datasets
(validation).

Plant Class name Accuracy (%)

SqueezeNet GAPNet

Grape Healthy 99.66 100

Leaf blight 98.94 98.93

Esca 100 100

Black rot 99.61 100

Apple Apple scab 98.51 99.41

Black rot 99.67 100

Apple rust 100 100

Healthy 99.08 98.41

Potato Early blight 100 99.53

Healthy 99.49 100

Late blight 100 100
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Figure 7 Accuracy and loss graphs of GAPNet on apple, potato, and grape datasets.
Full-size DOI: 10.7717/peerj-cs.2941/fig-7
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images. These results reflect the difficulties of image classification in real-world conditions.
However, compared with similar studies in the literature, the proposed method produces
competitive results. The GAPNet model achieved a validation accuracy of 92.78%,
significantly improving the performance of 87.31% achieved by Fenu & Malloci (2021) on
the Plant Pathology dataset (three classes). Owing to its low number of parameters, the
GAPNet model performed well, with 87.95% validation accuracy on the 4-class Plant
Pathology dataset, which is very close to the 88.70% accuracy reported in the study of
Sapna et al. (2023). These results show that GAPNet is competitive with methods in
real-world plant disease classification with complex background literature.

Figure 8 Performance comparison of SqueezeNet and GAPNet.
Full-size DOI: 10.7717/peerj-cs.2941/fig-8

Table 8 Training and validation times of the model.

Model Duration of training
(per epoch)

Duration of validation
(per sample)

G + A + P MobilNetV2 13 s 58 ms 0.00222 ms

DenseNet121 27 s 119 ms 0.00693 ms

ResNet50 21 s 94 ms 0.00277 ms

VGG16 27 s 117 ms 0.00166 ms

Xception 27 s 118 ms 0.00277 ms

SqueezeNet 7 s 30 ms 0.00138 ms

ShuffleNet 11 s 47 ms 0.00249 ms

GAPNet 6 s 26 ms 0.00083 ms
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CONCLUSION
In this study, GAPNet, a lightweight and effective CNN model for the classification of leaf
diseases, is proposed. GAPNet was developed as a smaller version of the SqueezeNet
architecture. In the study, seven different pretrained CNN models, VGG16, ResNet50,
SqueezeNet, Xception, ShuffleNet, DenseNet121, andMobileNetV2, which are widely used
for the classification of leaf diseases, were evaluated. After this comparative analysis, the
GAPNet model, a simplified SqueezeNet architecture specifically designed for the
classification of leaf diseases, is proposed. GAPNet is designed to have only 337.872
parameters and has a lightweight and fast structure that is both computationally efficient
and can operate with low resource requirements. This allows the model to be used on
mobile devices and systems with limited hardware resources.

In this study, datasets consisting of leaf images collected from three different plant
species (grape, apple, and potato) were used. Data oversampling was performed using the
SMOTE method to eliminate the imbalance problem between the classes in the datasets.
The experimental results revealed that the proposed GAPNet model can classify grape,
apple, and potato leaf diseases with high accuracy. When existing studies in the literature
are examined, models are generally developed by focusing on a single plant species. Studies
that can classify leaf diseases of more than one plant species simultaneously are quite
limited. In this context, the proposed GAPNet model has attracted attention because of its
successful multiplant leaf disease classification performance and its lightweight structure.
Consequently, the model has the potential to be used effectively in practical agricultural
applications.

Although our study provides successful results for single and multiplant leaf disease
classification, there are several limitations. The proposed model was trained on a dataset
consisting of leaf images obtained in a laboratory environment. Consistent imaging
conditions in PlantVillage allow us to focus on algorithmic improvements. The proposed

Table 9 Literature comparison of GAPNet model.

Method Dataset Grape Apple Potato G + A + P

Nagaraju, Swetha & Stalin (2020) Data collected from google 97.87% 97.87% – –

Çetiner (2021) Researchers’ data – 99.00% – –

Reddy & Neeraja (2022) Plant village 96.75% 96.89% 97.20% –

Nagi & Tripathy (2022) Plant village 98.40% – – –

Pradhan (2022) Plant village – 98.75% – –

Babalola, Kpai & Toygar (2023) Plant village – 99.56% – –

Sood & Singh (2024) Plant village 99.88% – – –

Sofuoğlu & Bırant (2024) Plant village – – 98.28% –

Upadhyay & Gupta (2024) Plant village – 98.94% – –

Sarfarazi, Zefrehi & Toygar (2024) Plant village – – 98.61% –

Potato leaf dataset 97.78%

Banjar et al. (2025) Plant village – 99.00% – –

Proposed method Plant village 99.72% 99.53% 99.83% 99.64%
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model is designed to detect diseases in three specific plant species. The model needs to be
further developed to accurately and reliably detect leaf diseases in other plant species.
However, when experiments were performed on leaf images taken in the wild, the model
performance decreased. To overcome this limitation and use the model more effectively in
real-world problems, a larger and more diverse dataset needs to be included in the
experiments. Although our current model shows strong performance in disease detection
for three plant species, we need to address its limited scope by implementing
improvements that will enable successful leaf disease detection in a variety of plants.

Future work will aim to address these limitations. We aim to develop the proposed
model to be compatible not only with three plant species but also with various plant species
and complex backgrounds to evaluate its generalizability. We also aim to incorporate
ensemble techniques to increase the generalizability of the model to different datasets.
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