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ABSTRACT

This article systematically reviews the latest developments in electroencephalogram
(EEG)-based speech imagery brain-computer interface (SI-BCI). It explores the brain
connectivity of SI-BCI and reveals its key role in neural encoding and decoding. It
analyzes the research progress on vowel-vowel and vowel-consonant combinations,
as well as Chinese characters, words, and long-words speech imagery paradigms. In
the neural encoding section, the preprocessing and feature extraction techniques for
EEG signals are discussed in detail. The neural decoding section offers an in-depth
analysis of the applications and performance of machine learning and deep learning
algorithms. Finally, the challenges faced by current research are summarized, and
future directions are outlined. The review highlights that future research should focus
on brain region mechanisms, paradigms innovation, and the optimization of
decoding algorithms to promote the practical application of SI-BCI technology.

Subjects Human-Computer Interaction, Algorithms and Analysis of Algorithms, Brain-Computer
Interface, Data Mining and Machine Learning, Neural Networks

Keywords EEG, Speech imagery, Brain computer interface, Connectivity of brain regions, Neural
decoding algorithms, Machine learning, Deep learning, Speech imagery brain-computer interface
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INTRODUCTION

A brain-computer interface (BCI) refers to a technology that establishes a direct
connection between the human brain and external devices. By detecting and decoding
brain activity, human intentions can be transmitted directly to these devices, enabling
communication between the brain and external equipment (Wolpaw, Millan & Ramsey,
2020). Based on the need for external stimulation, BCIs are primarily categorized into
evoked neurocognitive paradigms and spontaneous neurocognitive paradigms. This study
focuses on one type of spontaneous psychological paradigm—speech imagery. Speech
imagery refers to mentally articulating words without actual vocalization or facial
movement (Liu et al, 2022). This phenomenon engages neural mechanisms related to
cognition, memory, learning, and thought processes. The integration of these neural
mechanisms with BCI technology forms a speech imagery-based BCI, which detects neural
signals associated with speech processes through external recording devices and decodes
the brain’s speech intentions (which have been encoded into neural signals). These
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decoded signals can then be used to generate commands for controlling external devices,
thus facilitating interaction with external systems (Lee, Lee ¢ Lee, 2020; Pawar ¢» Dhage,
2022; Qureshi et al., 2017).

In recent years, speech imagery-based brain-computer interface (SI-BCI) has emerged
as a prominent research focus, with numerous researchers conducting extensive studies
from various perspectives. Generally, these studies can be categorized into four main areas:
the neural mechanisms of brain regions during speech imagery, the design of speech
imagery paradigms, speech imagery encoding techniques, and speech imagery decoding
techniques. Among these, the neural mechanisms of brain regions constitute the
physiological foundation for speech imagery. The speech imagery paradigm is an
experimental task designed based on these neural mechanisms, while speech imagery
encoding and decoding refer to technological processes that facilitate the translation of
human intentions into commands within this paradigm.

Currently, research on the neural mechanisms of brain regions primarily focuses on
analyzing the overlap in activation patterns across different brain regions during between
actual speech and speech imagery states using various brain signal acquisition techniques.
Lu et al. (2023) employed functional magnetic resonance imaging (fMRI) to compare the
neural mechanisms of actual speech perception and speech imagery. They found that both
states shared activation in the bilateral superior temporal gyrus (STG) and supplementary
motor area (SMA). However, speech imagery specifically enhanced activity in the left
inferior frontal gyrus (Broca’s area), revealing the neural basis of the motor-simulation-
dependent neural basis of internal language generation. Beyeler et al. (2016) applied
optogenetic labeling combined with electrophysiological recording techniques to dissect
the encoding differences in neuronal populations projecting from the basolateral amygdala
(BLA) to the nucleus accumbens (NAc), central amygdala (CeA), and ventral
hippocampus (VHPC) during the retrieval of positive and negative valence memories. They
discovered that BLA-NAc projections preferentially encode positive valence cues,
BLA-CeA projections favor negative valence cues, and BLA-vHPC projections exhibit
balanced responses to both valences, with more pronounced activation during speech
imagery. These findings offer foundational scientific insights for future research on neural
decoding of speech imagery. Pefia Serrano, Jaimes-Redtegui ¢ Pisarchik (2024) constructed
an event-related coherence-based magnetoencephalography (MEG) hypergraph network
analysis technique to reveal the dynamic patterns of functional connectivity across
different brain regions (frontal, parietal, temporal, and occipital lobes) at various frequency
bands (delta, theta, alpha, beta, and gamma) during different perceptual tasks. Their study
found differences in activation in the left inferior frontal region between spontaneous and
evoked speech imagery, with task-evoked speech imagery significantly enhancing
activation in this region, while spontaneous speech imagery exhibited relatively reduced
activation (Hurlburt et al., 2016). Rekrut, Selim ¢ Kriiger (2022) designed a novel training
method that successfully applied transfer learning to train a silent speech classifier on overt
speech EEG data and subsequently applied it to covert speech data, demonstrating the
feasibility of transfer learning in silent speech BCIs. From these prior studies, it is evident
that while there are connections between speech imagery and actual speech, applying
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conclusions derived from actual speech directly to speech imagery remains a subject of
debate. The activation states of brain regions during the processing of different types of
speech vary, necessitating more detailed regional brain analysis.

Research trends in speech imagery paradigm design have evolved from initial focuses on
vowels and vowel-consonant combinations to more complex units such as words, Chinese
characters, and potentially short sentences. For instance, DaSalla et al. (2009) and Idrees ¢
Farooq (2016a) developed paradigms centered around the vowels /a/ and /u/. Meanwhile,
Wang et al. (2021) and Huang et al. (2022) have conducted extensive, long-term studies on
paradigms involving Chinese characters such as “/r(left)”, “%%(move)”, “% (one)”, “4i
(right)”. Liu et al. (2022) offered a comprehensive review of experimental paradigms,
providing in-depth analyses of various design strategies. However, their discussion of
signal decoding techniques lacked depth and comprehensive analysis.

In the field of speech imagery encoding, research has primarily focused on artifact
removal during signal acquisition and algorithmic enhancements in feature extraction.
Chen ¢ Pan (2020) investigated the application of speech imagery in brain—-computer
interaction, emphasizing innovations in signal acquisition and processing methods.
Schultz et al. (2017) described various physiological signals involved in speech production
and their recording techniques, offering valuable insights into the biological basis of
speech. Cooney, Folli ¢» Coyle (2018) focused on the physiological foundations of speech,
providing a detailed analysis of speech production processes. However, these studies
primarily addressed physiological mechanisms and signal acquisition and encoding, while
lacking systematic reviews of signal decoding methods and experimental paradigms.
Alzahrani, Banjar & Mirza (2024) focused on classifying command-based vocabulary (e.g.,
“up,” “down,” “left,” “right”) for BCIs, examining the effects of feature extraction
techniques—including deep learning, adaptive optimization, and frequency-specific
decomposition—on classification performance. They compared traditional machine
learning techniques with deep learning approaches and discussed the influence of brain
lateralization in imagined speech. Lopez-Bernal et al. (2022) reviewed relevant literature
published since 2009, emphasizing electroencephalogram (EEG) signal preprocessing,
feature extraction, and classification techniques. These two studies offer more
comprehensive comparisons between traditional machine learning methods and deep
learning approaches.

Speech imagery decoding has long been a central focus in the development of SI-BCI
systems. Recent trends in this field emphasize the use of machine learning and deep
learning algorithms to enhance decoding accuracy. Rahman et al. (2024) conducted a
comprehensive comparison of classification algorithms, including support vector
machines (SVM), random forests (RF), and various deep learning techniques. Zhang et al.
(2024) analyzed multiple deep learning frameworks and, in contrast to earlier work,
provided an in-depth examination of the EEG datasets employed in various studies. These
efforts underscore ongoing progress in utilizing advanced computational methods to
improve the precision and reliability of speech imagery decoding in SI-BCI systems.

Despite existing reviews covering the aforementioned four areas, a significant gap
persists—namely, the absence of a comprehensive and systematic analysis of recent
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advancements in BCI paradigm definition and classification, SI-BCI neural encoding, and
neural decoding, all grounded in the neural mechanisms of speech imagery. Panachakel ¢
Ramakrishnan (2021) presented a 2021 review summarizing various methods for decoding
imagined speech from EEG signals developed over the past decade. Their review covered
key aspects such as data acquisition, signal processing, feature extraction, and classification
methods, while also offering preliminary insights into the relationship between speech
imagery and brain regions. However, with the rapid evolution of technology and theory,
their study has become outdated and does not meet the requirements of current research.
In addition, we have assessed the advantages and limitations of various signal acquisition
methods—including EEG, MEG, functional near-infrared spectroscopy (fNIRS), and
fMRI—based on practicality, research volume, cost, and generalizability. We conclude that
EEG is currently the most suitable approach and have accordingly identified EEG signal
acquisition as a key prerequisite for this study (Panachakel ¢» Ramakrishnan, 2021;
Kaongoen et al., 2023).

This review aims to explore recent advancements in EEG-based SI-BCI encoding and
decoding by providing a systematic and comprehensive overview. It focuses on dissecting
SI-BCI paradigms, neural encoding, and neural decoding, with particular attention to
existing challenges, emerging trends, and future prospects (the data collection process is
shown in Fig. 1). First, brain region connectivity is discussed as the physiological
foundation of SI-BCI systems. Next, existing SI-BCI paradigms are analyzed based on the
characteristics of brain region connectivity, followed by a detailed exposition of relevant
neural encoding and decoding methods. Finally, key challenges and potential
developmental directions are summarized. The key research contributions of this review
are outlined as follows.

1. To examine brain region connectivity in SI-BCI, establishing a physiological
foundation for the development of paradigms, neural encoding, and decoding techniques.

2. To clarify the relationship between SI-BCI paradigms and neural encoding/decoding,
and to elaborate on recent advancements across different paradigms.

3. To explain neural encoding in SI-BCI, including EEG preprocessing and feature
extraction techniques.

4. To present a detailed discussion on neural decoding, including available datasets,
participant numbers, applied machine learning and deep learning algorithms, and a
comprehensive model evaluation.

5. To identify challenges in SI-BCI—including those related to signal acquisition quality,
brain region connectivity, and neural encoding—while highlighting future directions such
as word and sentence-level decoding and paradigm integration.

The structure of this review is outlined as follows (Fig. 2). “Introduction” provides an
introduction to the background of the problem, outlines the motivation for the study, and
emphasizes the distinctive features of this article. “Connectivity of Brain Regions In SI-
BCI” details the literature search strategy and specifies the inclusion criteria. “SI-BCI
Paradigm” systematically explores brain region connectivity in SI-BCI (He et al., 2019).
“SI-BCI Neural Encoding” defines SI-BCI paradigms and discusses various types of
paradigm structures. “SI-BCI Neural Decoding” analyzes neural encoding techniques,
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Figure 1 PRISMA flowchart of system review process. Full-size Kal DOI: 10.7717/peerj-cs.2938/fig-1

focusing on EEG signal preprocessing and feature extraction. “Challenges and Prospects

»

offers a comprehensive discussion of neural decoding techniques (Kristensen, Subhi ¢
Puthusserypady, 2020), including datasets, participant numbers, machine learning (ML)
and deep learning (DL) algorithms, and a model performance evaluation table.

“Conclusions” addresses current challenges in the field and explores potential future

research directions.

Survey methodology
This review utilized a method called PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses), which is a protocol for conducting systematic reviews and
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Figure 2 Research Framework. Full-size K&l DOT: 10.7717/peerj-cs.2938/fig-2

analyses (Page et al., 2021). By using PRISMA to identify and locate relevant studies, the
data collection process for this review was significantly streamlined.

The search was completed on March 8, 2025. We conducted queries using the following
keywords on Web of Science, Scopus, IEEE Xplore, PubMed, ScienceDirect, and Google
Scholar to gather relevant literature: (“brain-computer interface” AND (“speech imagery”
OR “covert imagery” OR “inner speech” OR “imagined speech”) AND (“deep learning”
OR “machine learning” OR “DL” OR “ML”) AND (“electroencephalogram” OR “EEG”)).
These keywords were sufficient to retrieve all pertinent studies.

Studies were excluded based on the following criteria:

After retrieving the search results, we excluded duplicate articles across databases and
then applied the following criteria to filter out unsuitable studies from the remaining
articles. Subsequently, we thoroughly read the full texts of the remaining studies.

(1) EEG-only studies: Studies using multimodal datasets were excluded.

(2) Language: Articles not written in English were excluded.

(3) Task type: Neural encoding and decoding tasks not exclusively based on EEG speech
imagery were excluded.

(4) Time frame: Studies published before 2015 were excluded.

Ultimately, 125 highly relevant articles were selected for this literature review analysis.
The distribution of these articles across brain connectivity, paradigms, neural encoding,
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and neural decoding algorithms (machine learning and deep learning) is illustrated in
Fig. 3.

CONNECTIVITY OF BRAIN REGIONS IN SI-BCI

Speech imagery, as a mental activity, involves the coordinated activity of multiple brain
regions. These regions are closely associated with language production and
comprehension, particularly Broca’s area and Wernicke’s area (Jincke, Liem & Merillat,
2021; Ono et al., 2022). Brain region connectivity describes the information exchange and
interactions between these regions, playing a key role in both neural encoding and
decoding processes. In neural encoding, connectivity reflects the transmission and
collaboration of information between brain regions, supporting the encoding and
integration of complex information. In neural decoding, the use of connectivity features
can improve decoding performance and provide deeper insights into brain function
mechanisms. In the context of SI-BCI, brain region connectivity is primarily classified into
functional connectivity and effective connectivity.

Research on brain functional connectivity in speech imagery tasks is continuously
advancing to reveal the collaborative workings of different brain regions during specific
tasks or resting states. Sandhya et al. (2015) observed bilateral interactions between the
frontal and temporal regions of the brain during speech imagery by calculating the
coherence of EEG signals and applying a multivariate autoregressive (MVAR) model.
Notably, high inter-electrode coherence was observed in the left frontal lobe during
language production and in the left temporal lobe during speech imagery, highlighting the
proximity of these regions to Broca’s area and Wernicke’s area. This provides a
multidimensional perspective on understanding brain functional connectivity in speech
imagery, laying the foundation for subsequent research. With continued research,
Chengaiyan ¢ Anandhan (2015), Chengaiyan et al. (2018) further analyzed correlation
parameters of EEG signals and found that a single parameter is insufficient for
comprehensively understanding brain region connectivity. To address this, they calculated
connectivity parameters such as EEG coherence, partially directed coherence, and directed
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transfer function, examining concurrent and directional connectivity patterns across
different brain regions during speech production and speech imagery. Their findings
indicated active engagement of the left frontal lobe during speech production and the left
temporal lobe during silent word imagery, aligning with the roles of Broca’s and
Wernicke’s areas and corroborating the results of Sandhya et al. (2015). Additionally,
phase locking value (PLV) calculations revealed the strongest phase synchronization
between the left frontal and left temporal lobes in the alpha and theta bands, suggesting a
close collaboration between these areas during speech/speech imagery. Bisla ¢ Anand
(2023) conducted a connectivity analysis of speech imagery using the Kara One dataset,
identifying key neurophysiological dynamics in this paradigm. Notably, this was the first
detailed exploration of neural connectivity related to speech imagery, highlighting distinct
connectivity patterns through phase-based metrics and simplifying future data processing
approaches.

To improve the accuracy of speech imagery recognition, Chengaiyan ¢» Anandan (2022)
innovatively combined brain connectivity metrics with machine learning methods,
applying functional and effective connectivity analysis to a vowel recognition task,
achieving over 80% recognition accuracy. This further demonstrates the value of brain
connectivity analysis in understanding the mechanisms of speech cognition. However,
traditional machine learning has limitations in studying brain region connectivity in
speech imagery BCI research. It relies on manually designed feature extraction, which is
time-consuming and susceptible to subjective influence. Traditional models also struggle
to capture complex nonlinear relationships in data, especially when simulating intricate
interactions among brain regions. Additionally, these models have limited capabilities with
large-scale datasets and real-time applications, with weaker generalization. In contrast,
deep learning addresses these limitations. It can automatically learn and extract features
from raw data, reducing the need for manual feature engineering. Deep learning excels at
capturing nonlinear patterns in data, enhancing prediction accuracy and providing strong
generalization capabilities. Park, Yeom ¢» Sim (2021) were the first to introduce deep
learning into the field of brain connectivity, using mutual information as a measure of
brain connectivity and applying convolutional neural networks (CNNs) for user state
recognition tasks based on brain connectivity. By enabling CNNs to automatically learn
connectivity features, they achieved adaptive control in BCI systems, offering a novel
approach to developing adaptive BCI systems.

Effective connectivity is used to analyze the direct impact or causal relationships
between activities in different brain regions, helping researchers understand the direction
and dynamic processes of information flow in the brain (Belaoucha ¢» Papadopoulo, 2020).
Research primarily focuses on the design of brain connectivity estimators. Sandhya et al.
(2015), using brain connectivity estimators, analyzed causal correlations and found that the
frontal and temporal regions of the left hemisphere were more active during specific
speech imagery tasks. This represents significant progress in understanding neural
interactions during thought and expression processes. Panachakel ¢» Ramakrishnan (2021)
used the mean phase coherence (MPC) as an indicator of cortical region phase synchrony
and found that B-band MPC values differed significantly between nasal and bilabial
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consonant imagery. This suggests that different speech imagery types lead to differences in
effective connectivity between cortical regions. Chengaiyan, Retnapandian ¢ Anandan
(2020), Ahn et al. (2022) applied deep learning to analyze effective connectivity in various
brain regions during speech production and speech imagery, introducing an
attention-based dual-modal fusion mechanism, which provides an innovative EEG signal
analysis method for the fields of BCI and cognitive computing.

The aforementioned studies demonstrate that research on the neural mechanisms of
speech imagery tasks focuses on the analysis of functional and effective connectivity
between brain regions. This is primarily achieved through coherence, phase synchrony,
and causal connectivity parameters derived from EEG signals, which reveal patterns of
neural collaboration. In terms of technical methodologies, there is a clear shift from
traditional machine learning approaches to deep learning techniques. These
methodological advancements provide innovative frameworks for BCIs and cognitive
computing, enabling a comprehensive understanding of the neural mechanisms
underlying speech imagery. This progress lays a solid foundation for research on the SI-
BCI paradigm.

SI-BCI PARADIGM

The SI-BCI paradigms refer to the experimental design or task paradigm used in SI-BCI
systems to elicit specific speech imagery-related brain signal patterns. It determines how
users interact with the SI-BCI system and the types of signals generated by the brain. In
SI-BCI systems, the BCI paradigms, neural encoding, and neural decoding are critical
research elements. It is important to note that without BCI paradigms, the corresponding
neural encoding cannot be achieved in an SI-BCI system; without appropriate BCI
paradigms and neural encoding, high-performance neural decoding becomes challenging.
Similarly, without effective neural decoding, the applicability of the previously designed
BCI paradigms cannot be validated (7ai et al., 2024). Specifically, neural encoding refers to
the process by which a user’s different intentions are “written” or encoded into central
nervous system signals under the SI-BCI paradigms. Neural decoding, on the other hand,
is the process of extracting user intentions from neural signals in the SI-BCI system. It
relies on the principles of neural encoding and identifies user intentions by analyzing and
processing features within the neural signals. The SI-BCI paradigms not only influence
neural encoding but also directly impact the performance of neural decoding. Figure 4
illustrates the relationships between brain region connectivity, the SI-BCI paradigms,
neural encoding, and neural decoding in an SI-BCI system.

In an SI-BCI system, SI-BCI paradigms based on the type of imagined material can be
divided into two experimental task paradigms:

1. Vowel or vowel-consonant combination: This is a basic binary classification task,
focusing primarily on simple vowel imagery or combining consonants with vowels, such as
through the consonant-vowel-consonant (CVC) structure in speech tasks. These
experiments help explore the brain’s neural encoding of fundamental speech units.

2. Words, Chinese characters/long words: Compared to vowels, words or longer speech
segments like Chinese characters contain richer information and engage more complex
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neural networks. This paradigm also mainly uses binary classification, but with greater
information complexity, making it suitable for more in-depth research on speech
processing.

Figure 5 provides a detailed illustration of these two types of speech imagery BCI
experimental paradigms and their characteristics, offering multi-level task options and
research directions for the study of speech imagery BCI systems.

Vowel/vowel consonant combination

In speech imagery-based BCI research, vowels are frequently used as core materials due to
their simplicity in articulation, stability in acoustic characteristics, and ease of perception
and measurement. Researchers have extensively explored the potential of EEG signals in
decoding vowel information through diverse methods, progressively advancing BCI
technology. DaSalla et al’s (2009) pioneering work laid a solid foundation for vowel
imagery recognition. By recording EEG signals from healthy subjects imagining the
English vowels /a/ and /u/, they applied common spatial pattern (CSP) to design spatial
filters and used nonlinear SVM for classification, achieving an accuracy rate of 68% to 78%.
This study effectively addressed the challenge of extracting features related to vowel
imagery from EEG signals, providing crucial methodological guidance for subsequent
research. Building on this, Min et al. (2016) employed the Extreme Learning Machine
(ELM) algorithm combined with sparse regression feature selection techniques to classify
single-trial EEG signals from five subjects imagining vowels. They found that ELM and its
variants (ELM-R, ELM-L) outperformed SVM and linear discriminant analysis (LDA) in
the gamma frequency band (30-70 Hz), achieving a maximum accuracy of 99%. This work
offered new insights into optimizing classification algorithms for silent speech BClIs.
Chengaiyan & Anandan (2022) further refined vowel classification in speech imagery using
EEG signal decomposition techniques and advanced machine learning methods such as
multi-class SVM (MSVM) and RF. Their study demonstrated the reliability of brain
connectivity estimators and machine learning techniques in vowel recognition, providing
new empirical support for the development of speech imagery recognition technology.
This series of studies not only progressively improved vowel imagery classification
accuracy but also deepened our understanding of EEG signal processing and vowel
imagery recognition mechanisms.
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As research on vowel imagery has deepened, researchers have increasingly recognized
the need to incorporate consonant processing into BCI systems to more comprehensively
simulate natural speech communication. Given that actual speech communication
involves not only vowels but also consonants, particularly the prevalence of CVC
structured words in the language, researchers have begun exploring how to decode
combinations of consonants and vowels in BCI systems. This direction represents a
significant step forward in the development of speech imagery-based BCI systems.

The work by Sandhya et al. (2018) marks an early exploration in this field. They
investigated relative power changes during multiple speech imagery tasks, with a particular
focus on frequency bands in EEG signals. By analyzing EEG signals from healthy subjects
imagining and articulating CVC words, they found that the theta band exhibited higher
relative power during imagined speech, while the alpha band dominated during actual
speech. This suggests that different speech imagery tasks may activate distinct frequency
bands in the brain. Building on the work of Sandhya et al. (2018), Chengaiyan et al. (2018)
further explored the power and phase synchronization effects in EEG signals. Using the
PLV to measure phase synchrony between brain regions during speech imagery, they
discovered that the frontal and temporal electrodes in the left hemisphere showed the
highest phase locking in the alpha and theta bands. This work highlights the critical role of
functional connectivity between specific brain regions in decoding tasks during speech
imagery. Sandhya et al. (2015) focused on analyzing the neural correlations of brain
regions during the speech imagery of CVC words. Using brain connectivity estimators
such as EEG coherence, partial directed coherence (PDC), and directed transfer function
(DTEF), they found that the frontal and temporal regions of the left hemisphere were more
active during both imagined and actual articulation. This study provides new insights into
the neural interactions in the brain during speech imagery and offers neurological support
for decoding CVC words. Chengaiyan, Retnapandian ¢ Anandan (2020) further advanced
this direction by integrating deep learning techniques, such as recurrent neural networks
(RNN) and deep belief networks (DBN), with brain connectivity estimators to focus on
vowel recognition from EEG signals. In their experiments, DBN demonstrated higher
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classification accuracy compared to RNN, providing strong empirical support for the use
of deep learning techniques in speech imagery decoding.

From the initial CSP and SVM-based classification methods to advanced techniques
involving deep learning networks (such as CNN, RNN, DBN, and capsule networks
(CapsNet)) and brain connectivity analysis, researchers have continuously deepened their
understanding of vowel and vowel-consonant combination information in EEG signals.
The development of these technologies has not only complemented each other
methodologically but has also made significant progress in improving classification
accuracy and the practicality of BCI systems.

Chinese characters/words/long words

In studies using Chinese characters as materials for pronunciation imagery, directional
characters such as “/r(left)”, “4i (right)” have become the primary focus. As research has
progressed, the emphasis has shifted from simple characters to those with tonal and
rhythmic features, and from single speech imagery tasks to those combining auditory and
visual conditions. In research on words and word pairs, although the materials differ, the
mental tasks are similar. Notably, the use of local ear EEG as an alternative to global EEG
has emerged as a novel approach.

Wang et al. (2016) made pioneering contributions in this field by introducing and
applying the novel concept of “speech imagery” to BCI systems. They conducted a study to
explore the impact of silent reading on mental tasks within a BCI system. They integrated
speech imagery (i.e., silently reading Chinese characters) into mental tasks and found that
adding speech imagery significantly improved task accuracy, with the average accuracy
increasing from 76.3% to 82.3%. They also evaluated the time stability of EEG signals using
Cronbach’s alpha, revealing that the tasks incorporating speech imagery exhibited higher
signal stability, providing a more reliable signal source for BCI systems. Furthermore, the
classification of Mandarin tones and word pairs has also received widespread attention. Li
¢» Chen (2020) conducted in-depth studies on Mandarin tone classification, analyzing
factors that affect the classification accuracy of EEG signals. This work laid the foundation
for the application of BCI technology in Mandarin speech synthesis systems and
contributed to the theoretical development of speech-imagery-based BCI systems.
Borirakarawin ¢ Punsawad (2023) explored hybrid BCI systems that combine auditory
stimuli with speech imagery, while Zhang, Li ¢ Chen (2020) further explored tone
classification under audiovisual conditions, and their experimental results showed that the
introduction of audiovisual conditions significantly improved classification accuracy,
demonstrating that multimodal inputs can effectively enhance BCI system performance
and provide new experimental evidence for Mandarin tone-based BCI applications.

In research on words and word pairs, innovative algorithms and techniques have
emerged continuously. Mahapatra ¢ Bhuyan (2022) achieved multi-class imagined speech
(vowels and words) classification based on EEG signals by constructing a deep model that
integrates temporal convolutional networks (TCN) with CNN, combined with discrete
wavelet transform (DWT) preprocessing. They achieved an overall accuracy of 96.49% on
data from 15 participants, providing an efficient decoding solution for non-invasive silent
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brain-computer interfaces. Pan et al. (2023) employed a light gradient boosting machine
(LightGBM) for feature classification in Chinese character speech imagery BCI systems,
and the results showed that LightGBM was more accurate and applicable than traditional
classifiers. Tsukahara et al. (2019) explored EEG frequency components related to speech
imagery and found significant ERS in the left hemisphere’s alpha band under speech
imagery conditions, emphasizing the importance of selecting appropriate electrode
positions for EEG frequency component recognition. Kaongoen, Choi & Jo (2021) were the
first to explore BCI systems based on ear EEG (ear-EEG), providing initial empirical
support for the application of ear-EEG in the BCI field.

These studies not only explored various EEG signal processing and feature extraction
methods but also experimented with multiple classifiers to improve the decoding accuracy
of EEG signals. Furthermore, they considered the complexity of speech imagery, such as
semantics, thythm, and brain activity under different stimulus conditions. These efforts are
particularly significant in optimizing BCI system design, improving signal decoding
accuracy, and achieving effective classification of Mandarin tones and word pairs.

SI-BCI NEURAL ENCODING

SI-BCI neural encoding refers to the process of translating distinct user intentions into
central nervous system signals within the speech imagery paradigm, characterized by
identifiable brain signal features (Xu et al., 2021). EEG technology is employed to detect
brain signals that encode user intentions, which are subsequently decoded by SI-BCI
neural decoding algorithms to identify these intentions. Brain signals acquired through
EEG technology exhibit multiple features in the time domain, frequency domain, and
spatial domain. Therefore, SI-BCI neural encoding can utilize these three types of features
for encoding, such as mean, variance, power spectral density (PSD), wavelet transform
(WT), short-time Fourier transform (STFT), DWT, and CSP. Figure 6 illustrates the
process of SI-BCI neural encoding.

The SI-BCI neural encoding process involves three main steps: EEG signal acquisition,
preprocessing, and feature extraction. Depending on the research context, EEG signal
acquisition may involve electrode caps with configurations ranging from eight channels to
more than 64 channels. Common acquisition devices include Neuroelectrics (NE),
SynAmps 2, TMSi SAGA, and EMOTIV, among others. As the signal acquisition process
predominantly relies on hardware, the quality of the acquired signals can be significantly
influenced by the experimenter’s proficiency. Thus, we present only common electrode cap
configurations and device types to offer essential references for researchers.

Signal preprocessing

EEG signal preprocessing involves filtering out irrelevant or interfering signals from the
raw EEG data acquired by the device and selecting the signal channels most relevant to
speech imagery from specific brain regions. Due to the low signal-to-noise ratio (SNR) of
EEG signals, artifacts often occur during acquisition. Therefore, current research focuses
on using techniques such as filtering, wavelet transforms, adaptive filters, and statistical
methods to remove noise and artifacts, thereby improving signal quality. Jahangiri ¢
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Sepulveda (2017) found that the alpha band (8-13 Hz) and beta band (14-30 Hz) yield
higher classification performance in speech imagery classification tasks. Consequently,
during time-domain and time-frequency analysis, signals are typically filtered within the
8-30 Hz range, with different bandpass filters selected based on specific requirements.
Moattari, Parnianpour ¢» Moradi (2017) proposed using independent component analysis
(ICA) based on higher-order non-Gaussianity for the source separation stage of
preprocessing. Nitta et al. (2023) extracted linguistic representations of Japanese vowels
using principal component analysis (PCA) and structural modeling (SM), and
demonstrated the feasibility of extracting linguistic features from EEG signals by
classifying them with a CNN. Sree, Kavitha ¢» Divya (2023) evaluated various
preprocessing methods for EEG signals based on speech imagery. Through a
comprehensive comparison of different preprocessing techniques, they identified the
optimal approach based on mean squared error (MSE) and peak signal-to-noise ratio
(PSNR).

Feature extraction
The feature extraction stage is the core of SI-BCI neural encoding. This process involves
extracting useful information from the acquired EEG signals, which is then used in
subsequent neural decoding to analyze brain states. Feature extraction algorithms can be
categorized into spatial domain methods, time domain methods, frequency domain
methods, time-frequency domain methods, and nonlinear feature extraction methods.
In the spatial domain, the main research trend has shifted from traditional CSP and
their variants to methods such as Mel-frequency cepstral coefficients (MFCCs). Overall,
new methods in the spatial domain are continuously emerging. Wang et al. (2021)
proposed a feature extraction method combining causal networks and CSP, achieving
higher classification accuracy using a binary quantum particle swarm optimization-based
extreme learning machine. Huang et al. (2022) introduced a novel algorithm called
sub-time window filter bank common spatial pattern (STWFBCSP), aimed at improving
sequence encoding-based active BCIs. By subdividing time windows and applying
multi-frequency filtering, STWFBCSP can extract more refined features, thereby
enhancing classification accuracy. The final average classification accuracy of STWFBCSP

Su and Tian (2025), Peerd Comput. Sci., DOI 10.7717/peerj-cs.2938 14/41


http://dx.doi.org/10.7717/peerj-cs.2938/fig-6
http://dx.doi.org/10.7717/peerj-cs.2938
https://peerj.com/computer-science/

PeerJ Computer Science

reached 84.87%, compared to 70.49% for the traditional CSP algorithm, demonstrating its
superior performance and highlighting the significant potential of time window
subdivision and multi-frequency analysis in improving BCI performance. Alizadeh ¢
Omranpour (2023) proposed a novel multi-class CSP feature extraction method, feeding
the extracted features into an ensemble learning classifier (including logistic regression,
K-nearest neighbors, decision trees, SVM, and Gaussian naive Bayes). After multiple
rounds of cross-validation, the effectiveness of the proposed algorithm was confirmed.
This combined validation approach effectively inspires algorithmic fusion and innovation.
Table 1 illustrates CSP combined with other feature classification algorithms.

Cooney, Folli ¢ Coyle (2018) evaluated the impact of three feature sets—linear,
nonlinear, and MFCCs—on classification performance. The study found that MFCC
features performed best in both decision tree and SVM classifiers, with SVM achieving an
average accuracy of 20.80% on MFCC features, significantly outperforming linear
(15.91%) and nonlinear (14.67%) features. This validates the effectiveness of MFCCs in
capturing acoustic differences in speech. Martin et al. (2016) introduced the dynamic time
warping (DTW) algorithm to address temporal irregularities in speech production,
improving the classification performance of SVM. Notably, this marked the first successful
classification of individual words during speech imagery tasks. Wu ¢ Chen (2020)
proposed a method for extracting temporal envelope features from EEG signals during
feature extraction and directly classified these features using SVM. Although the final
performance was somewhat lacking compared to other methods, this work explored the
relationship between temporal envelope features and speech. Table 2 illustrates other
feature extraction algorithms in the spatial domain.

Time-domain methods generally involve selecting features such as the mean, variance,
kurtosis, and skewness of signals from each channel. Research in this area primarily
focuses on extracting features using wavelet transforms and wavelet decomposition for
signals of different frequencies. Idrees ¢» Farooq (2016a, 2016b) proposed a dual-pronged
strategy: classifying using simple features in the time domain while extracting EEG signal
features from the beta, delta, and theta rhythms using wavelet decomposition. This
approach demonstrated the effectiveness of time-domain and frequency-domain features
in vowel imagery classification, further expanding the potential of EEG signal processing
techniques in speech imagery tasks. Saji et al. (2020) advanced this research by classifying
vowel signals using wavelet transforms and multiple classifiers, extracting features such as
mean, standard deviation, and band power. This study not only confirmed the
effectiveness of EEG signal processing techniques in improving vowel imagery
classification accuracy but also provided new empirical support for speech imagery-based
BCI technology.

Frequency-domain methods have been more deeply explored in areas such as PSD,
DWT, and MFCCs. Cooney, Folli ¢ Coyle (2018) analyzed the EEG signals of imagined
speech from 14 participants in the Kara One dataset, evaluating the impact of three feature
sets—linear, nonlinear, and MFCCs—on classification performance. The study found that
MEFCC features performed best in both decision tree and SVM classifiers, with SVM
achieving an average accuracy of 20.80% on MFCC features, significantly outperforming
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Table 1 CSP combined with other feature classification algorithms.

A M P D S DE E
DaSalla et al. CSP /al, lu/ Private data 3 (2 m and 1 f/age from 26-29) BioSemi 68-78
(2009) SVM ActiveTwo
Agarwal et al. CSP /al, u/, [rest/ DaSalla et al. 3 (2 m and 1 f/age from 26-29) BioSemi 87.56
(2020) SVM (2009) ActiveTwo
Rostami & EMBCSP  /a/, /u:/ Private data 5 (3 m and 2 f/age from 23-33) N/A Average: 89.42
Moradi (2015) SVM
Wang et al. CSp Chinese character “/r- Private data 10 (7 m and 3 f/age from 22-28) SynAmps 2 Average: 82.3
(2016) SVM (Left), %7(One)”
Wang et al. CSP, CCF, Chinese character “% Private data 10 (8 m and 2 f/age from 22-28) SynAmps 2 Average: 74.3
(2019) PLV (Move)”
SVM
Zhang, Li & CSpP /ba/ Private data 14 (6 m and 8 f/age from 19-22) N/A Under combined
Chen (2020) SVM stimuli: 80.1
Wang et al. CSp Chinese character “% Private data 10 (8 m and 2 f/age from 22-28) SynAmps 2 Average: 73.9
(2021) SVM (Move)”
Zhao, Liu & Gao CSP, Chinese initial consonant Private data 8 (6 m and 2 f/ average age 23.67) N/A Highest: 73.04
(2021) DWT
SVM,
ELM
Wang et al. CSP Chinese character “%5 Private data 12 (9 m and 3 f/age from 22 to 26) Neusen W2  Average: 68.94
(2022) SVM (One)”
Note:

A, authors; M, methods; P, pronunciation materials; D, datasets; S, subjects (number); DE, device; E, evaluation indicators (accuracy: %); m, males; f, females; CSP,
common spacial pattern; SVM, support vector machine; EMBCSP, evidential multi-band common spacial pattern; CCF, cross correlation function; PLV, phase locking
value; DWT, discrete wavelet transform; ELM, Extreme Learning Machine; SI, speech imagery; MI, motor imagery.

Table 2 Other feature extraction algorithms in spatial domain.

A M P D S DE E

Wang et al. CN, CSP Chinese Private data 10 (7 m and 3 f/age from 22-28) SynAmps 2 Average:
(2021) BQPSO characters 85.4

ELM “F (one)”

Huang et al. STWEFBCSP Chinese Private data 12 (8 m and 4 f/age from 22-26) N/A Average:

(2022) characters 84.87
“E(right)”

Alizadeh & EM-CSP Words, 1. Kara One (Zhao & Rudzicz, 2015) 12 (8 m and 4 f/age mean 27.4) SynAmps RT Highest:
Omranpour English 2. Private data 98.47
(2023) phonemes

Panachakel & CSP “in, ASU (Nguyen, Karavas & 15 (11 m and 4 f/age from 22-32) BrainProducts Highest:
Ramakrishnan [ gTM cooperate” Artemiadis, 2017) ActiCHamp 85.2
(2022) amplifier

Note:

A, authors; M, methods; P, pronunciation materials; D, datasets; S, subjects (number); DE, device; E, evaluation indicators (accuracy: %); m, males; f, females; CN, causal
network; CSP, common spatial pattern; BQPSO, binary quantum particle swarm optimization; ELM, Extreme Learning Machine; STWFBCSP, sub-time window filter
bank common spatial pattern; EM-CSP, efficient-multiclass CSP; LSTM, long short-term memory; SI, speech imagery; MI, motor imagery.
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linear (15.91%) and nonlinear (14.67%) features. This research demonstrated that
MFCC-based feature extraction can significantly improve the accuracy of imagined speech
decoding, providing important methodological support for the development of SI-BClIs.
Time-frequency domain methods combine information from both the time and frequency
domains, commonly using techniques such as STFT and WT. Pan et al. (2022) investigated
the impact of imagined syllable rhythms on EEG amplitude spectra, offering new insights
for the development of speech imagery-based BCIs. Kamble, Ghare ¢ Kumar (2022)
preprocessed EEG signals through bandpass filtering and downsampling in the time
domain, combined with time-frequency conversion using the smoothed pseudo-Wigner-
Ville distribution (SPWVD). This mapped 1D signals into 2D time-frequency images,
enabling optimized CNNs to automatically extract multi-scale time-frequency features.
This approach achieved efficient speech imagery classification with a maximum accuracy
of 94.82%, validating the advantages of SPWVD in time-frequency resolution and
cross-term suppression. It provided a time-frequency analysis-based method for SI-BCI
systems.

Nonlinear feature extraction methods refer to the use of deep learning to automatically
extract features for subsequent classification tasks. Unlike traditional machine learning,
deep learning-based feature extraction methods are often not separable from feature
classification methods. This is primarily because, in contrast to deep learning, traditional
machine learning requires manual intervention during feature extraction to transform raw
data into meaningful features. The core focus of deep learning research lies in developing
more efficient and convenient algorithms for feature extraction while maximizing final
classification performance. Wang et al. (2022) proposed a parallel CNN model based on a
multi-band brain network, utilizing correlation coefficients and phase-locking values to
describe inter-channel synchrony and correlation. This approach effectively captures EEG
signal synchronization and correlation features, leading to improved classification
accuracy. Ramirez-Quintana et al. (2023) introduced a novel deep capsule neural network,
CapsVI, designed to recognize vowel imagery patterns from EEG signals. Their model
achieved an average accuracy of 93.32%, setting a new benchmark for English vowel
recognition. Retnapandian ¢» Anandan (2023) focused on identifying phonemes
corresponding to vowels from EEG signals. They trained a RNN using multi-trial data and
compared the classification performance between single-trial and multi-trial datasets. By
incorporating refined feature extraction techniques such as wavelet decomposition and
multifractal analysis, their study further enhanced the classification capabilities of the
model, laying the foundation for the development of efficient and precise speech
imagery-based BCI systems. Macias-Macias et al. (2020) developed sCNN and sCapsNet
models based on spectro-temporal receptive fields (STRFs). Notably, sCapsNet
demonstrated superior performance in vowel classification, highlighting the significant
potential of deep learning in vowel imagery classification.

In addition to the commonly used feature extraction algorithms mentioned above,
several novel methods have also been applied to SI-BCI feature extraction. Sikdar et al.
(2018), Sikdar, Roy ¢ Mahadevappa (2018) explored the roles of multifractal and chaotic
parameters in different imagery tasks for International Phonetic Alphabet (IPA) vowel
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recognition, providing new analytical methods for identifying brain regions activated
during different vowel imagery processes. Martin et al. (2016) utilized high-gamma band
(70-150 Hz) temporal features and a SVM model, introducing nonlinear temporal
alignment via an SVM kernel, achieving 88% classification accuracy in a binary
classification framework. Nguyen, Karavas ¢ Artemiadis (2017) proposed a novel
approach based on covariance matrix descriptors, which reside on the Riemannian
manifold, and employed a relevance vector machine (RVM) for classification. This method
was tested on EEG signals from multiple subjects and performed well across various
categories, including imagined vowels, short words, and long words, with classification
accuracy significantly exceeding chance levels in all cases. Kalaganis et al. (2023) leveraged
approximate joint diagonalization (AJD) for covariance estimation, further advancing
research on decoding human speech imagery from EEG signals.

In summary, during SI-BCI neural decoding, optimizing the performance of traditional
algorithms (e.g., CSP, RF) while further exploring deep learning-based approaches (e.g.,
CNN, RNN) has become a key trend in EEG signal preprocessing and feature extraction.
Meanwhile, unconventional algorithms (e.g., covariance matrix-based methods) have also
garnered increasing attention.

SI-BCI NEURAL DECODING

SI-BCI neural decoding refers to the process of identifying a user’s intent by employing
efficient decoding algorithms on neural-encoded brain signals, which are then translated
into syllables, words, Chinese characters, or other linguistic units. These decoded outputs
are subsequently presented through visual or auditory modalities (Saha ¢ Fels, 2019).
Figure 7 illustrates the SI-BCI neural decoding process.

Currently, based on different decoding algorithms, the current SI-BCI decoding
methods can be divided into two categories: machine learning and deep learning. In
machine learning algorithms, the feature extraction and feature classification steps are
separate, so innovative combinations of different types of feature extraction algorithms
and feature classification algorithms have led to numerous high-performance decoding
algorithms. It is worth noting that research using CSP (Cai et al., 2024) (feature extraction)
combined with SVM (Rezvani et al., 2024) (feature classification) as baseline methods has
always been highly praised. Additionally, methods such as wavelet decomposition (Ji et al.,
2024), covariance matrices (Luo et al., 2024), relevance vector machines (Khatti ¢ Grover,
2024), and extreme learning machines (Wei et al., 2024) have also demonstrated unique
performance values. Deep learning algorithms, on the other hand, use one or more neural
network models to complete both feature extraction and feature classification. Among
these, convolutional neural networks (Liang et al., 2023) have achieved excellent
performance in SI-BCI neural decoding. In addition, capsule networks (Aboussaleh et al.,
2024) and gated mechanisms (Li ef al., 2024) have also shown good potential.

However, in the study of SI-BCI decoding methods, the performance of decoding
algorithms depends not only on the characteristics of the algorithms themselves but also
closely on the quality and diversity of the data. Both machine learning and deep learning
approaches require large amounts of high-quality data for model training and validation.
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Therefore, before systematically reviewing neural encoding, understanding the current
usage of existing datasets is of significant importance for further advancing SI-BCI
technology.

Datasets

We have compiled statistics on existing public and private SI-BCI datasets, and Fig. 8
visually presents their usage in percentage. Current research predominantly relies on
private datasets from individual laboratories, with public dataset usage being relatively
limited. This phenomenon is influenced by several factors, including the complexity of
data collection, the need for data quality assurance, and limitations in participant numbers.
Among these, the most frequently used public datasets are the Kara One, DaSalla, and ASU
datasets. Thus, we provide an introduction to these three primary datasets, along with a
recently released high-channel EEG dataset based on Chinese language stimuli.

Kara One (Zhao ¢» Rudzicz, 2015): The Kara One dataset was collected and organized by
the Department of Computer Science at the University of Toronto in collaboration with
the Toronto Rehabilitation Institute. It integrates three modalities (EEG, facial tracking,
and audio) during imagined and vocalized phonemes and single-word prompts, providing
access to the brain’s language and speech production centers. Each participant was seated
in a chair in front of a computer monitor. A Microsoft Kinect (v.1.8; Microsoft Corp.,
Redmond, WA, USA) camera was placed beside the screen to record the participant’s facial
information and speech. Each trial consisted of four consecutive states:

1. A 5-s rest state, during which participants were instructed to relax and clear their
minds.

2. A stimulus state, where a prompt text appeared on the screen, and its associated
auditory utterance was played through computer speakers. This was followed by a 2-s
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period during which participants prepared their articulatory posture to begin vocalizing
the prompt.

3. A 5-s imagined speech state, during which participants imagined speaking the
prompt without actual movement.

4. A speaking state, where participants vocalized the prompt aloud. The Kinect sensor
recorded audio and facial features during this phase.

ASU (Nguyen, Karavas ¢ Artemiadis, 2017): The ASU dataset, provided by Arizona State
University, is widely used for research and development in EEG-based BCI systems,
particularly in identifying and decoding brain activity patterns related to imagined speech.
A key feature of this dataset is that it includes EEG signals from multiple subjects
performing specific imagined speech tasks. Participants were instructed to imagine hearing
words or phrases rather than vocalizing them. The dataset comprises multiple EEG
channels to capture brain activity. The task design incorporates various conditions, such as
imagining different words or phrases, which aids researchers in exploring the patterns of
brain activity during the process of speech imagination.

DaSalla (DaSalla et al., 2009): The DaSalla dataset was compiled and contributed by
DaSalla and their team. This dataset generates speech-related potentials (SRP) in EEG
signals for imagined vowels /a/ and /u/. Compared to other dataset’s imagined speech
paradigms, SRP exhibits better variance. Each trial lasts approximately 1 min. It begins
with a beep at 0 s to prepare the subject for the first step. The trial then proceeds through
three stages:

1. A cross appears on the display for a random duration of either 2 or 3 s to prevent
erroneous event-related potentials (ERPs) in subsequent steps.

2. Vowel imagination is performed in this step. It is represented by an open mouth
outline, a rounded mouth, or a cross, indicating the /a/, /u/, or control state imagination
tasks, respectively. This step lasts for 2 s. In this study, the control state is referred to as /no

Su and Tian (2025), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.2938 20/41


http://dx.doi.org/10.7717/peerj-cs.2938/fig-8
http://dx.doi.org/10.7717/peerj-cs.2938
https://peerj.com/computer-science/

PeerJ Computer Science

vowel/ since it involves no vowel. Each subject performed 150 trials, with 50 trials per task.
The presentation of /a/, /u/, and /no vowel/ imagination tasks were randomized to train
subjects to develop speech imagination tasks solely through endogenous stimuli.

3. A blank image is displayed on the screen for 3 s to indicate a rest period and the end of
the trial, allowing the subject to wait for the next trial.

ChineseEEG (Mou et al., 2024): The ChineseEEG dataset is a high-channel EEG dataset
based on Chinese language stimuli, providing a rich resource for semantic alignment and
neural decoding. It includes high-density EEG data and synchronized eye-tracking data
from 10 participants during approximately 13 h of silent reading of Chinese texts. The data
is derived from the Chinese versions of two well-known novels, The Little Prince and
Dream of the Wolf King. Each participant was exposed to diverse Chinese language
stimuli, which is crucial for studying the long-term neural dynamics of language
processing in the brain. Additionally, the 128-channel high-density EEG data offers
superior spatial resolution, enabling precise localization of brain regions involved in
language processing. With a sampling rate of 1 kHz, the dataset effectively captures the
dynamic changes in neural representations during reading.

Machine learning based SI-BCI neural decoding

Most studies based on machine learning employ CSP for feature extraction and SVM for
feature classification. The principle of SVM is to use mathematical optimization methods
to find a hyperplane that maximizes the separation of two classes of data (Rezvani et al,
2024). The principle of CSP is to find a set of spatial filters that maximize the variance
differences between different categories of EEG signals (Cai ef al., 2024). This is the most
common baseline approach. DaSalla et al. (2009), using the method of CSP combined with
SVM, successfully achieved a classification accuracy rate of 68% to 78% for imagined
pronunciations of the English vowels /a/ and /u/, laying the foundation for this field.
Agarwal et al. (2020) combined CSP, statistical features (standard deviation, root mean
square (RMS), energy), and wavelet transforms and employed a Random Forest classifier
for multi-class classification of imagined vowels /a/, /u/, and the rest state. They achieved a
maximum accuracy of 89% on data from three subjects, demonstrating the effectiveness of
integrating CSP with statistical features in silent speech decoding. Rostami ¢ Moradi
(2015) proposed combining CSP with multiple bandpass filters and evidence theory,
achieving a classification accuracy superior to traditional CSP methods. Table 3 shows the
use of CSP and SVM along with their derived algorithms.

In addition to the aforementioned methods, several other feature classification
approaches have also garnered significant attention. Idrees ¢» Farooq (2016a) designed a
vowel classification method based on wavelet decomposition and statistical features,
achieving significant results with three subjects. Nguyen, Karavas & Artemiadis (2017)
proposed a method based on Riemannian manifold features and RVM, achieving high
accuracy in binary classification, but the accuracy in three-class classification significantly
decreased. To improve the accuracy of three-class classification, they proposed a new
method combining spatial covariance with an adaptive weighting model. Experimental
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Table 3 Adopting CSP, SVM and their derived algorithms.

A M P D S DE E
Cooney, Folli & Coyle MFCCs, /iy/, luw/, /piy/, /tiyl, Kara One (Zhao ¢ 12 (8 m and 4 f/age  SynAmps RT 35
(2018) SVM, /diy/, /m/, In/ Rudzicz, 2015) mean 27.4)
“pat”, “pot”, “knew”,
“onaw”
Martin et al. (2016) TDC Words Private data 5 g.USBamp Average: 57.7
SVM Highest: 88.3
+DTW
Wu & Chen (2020) TE liyl, luwl, [piyl, /Itiyl, Kara One (Zhao & 12 (8 m and 4 f/age  SynAmps RT Normalized
/diy/, /m/, In/ Rudzicz, 2015) mean 27.4) covariance: 0.57
SVM “pat”, “pot”, “knew”,
“gnaw”
Chengaiyan & MSVM  /al/, Iel, /il, lol, In/ Private data 5 (5 m / age from Emotiv Epoc Highest: 80
Anandan (2022) RF 19-21) wireless EEG

Note:

A, authors; M, methods; P, pronunciation materials; D, datasets; S, subjects (number); DE, device; E, evaluation indicators (accuracy: %); m, males; f, females; MFCCs,
Mel-frequency cepstral coefficients; AC, autoregressive coefficient; SVM, support vector machines; TDC, time domain characteristics; DTW, dynamic time warping; TE,
temporal envelope; MSVM, multi-class support vector machine; RF, random forest.

results showed significant improvement, and surprisingly, subjects from the BCI blind
group also achieved good results. Table 4 summarizes other machine learning feature
extraction and classification algorithms.

Deep learning based SI-BCI neural decoding

There are numerous algorithms in deep learning, and within the field of SI-BCI, CNN,
RNN, and capsule neural networks have garnered significant attention. CNNs have shown
significant performance in image processing. They are deep, feedforward artificial neural
networks. CNNs consist of an input layer, several hidden layers, and an output layer, with
trainable weights and biases used to construct the neural framework. Each neuron receives
data and then performs a dot product using a nonlinear function. The hidden layers
include a series of convolutional layers and pooling layers, which multiply or perform dot
product convolutions in other ways. Figure 9 is a typical CNN model generated using our
visualization tool.

Research on CNNs tends to combine them with existing feature extraction methods,
feeding the extracted features into the CNN to capture finer details. Saha ¢ Fels (2019)
proposed a novel hybrid deep neural network architecture for EEG speech imagery
classification tasks. It is noteworthy that this was the first time CNNs were introduced into
the field of speech imagery brain-computer interfaces, leading to groundbreaking
advancements in subsequent research. Macias-Macias et al. (2020) first used CSP to extract
signal features, then employed CNNss for feature classification. This combination
effectively avoided the problem of CNNs losing significant features during the feature
extraction process. Lee ef al. (2021) used a CNN model to predict the word length
corresponding to the input EEG signal and explored the impact of word length on speech
imagery classification performance, concluding that training strategies based on limited
word length could effectively improve overall classification accuracy. Park, Yeom ¢ Sim
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Table 4 Summary of other machine learning feature extraction and feature classification algorithms.

A M P D S DE E

Idrees & Farooq TDC /al, lul, other Private data 3 (2 m and 1 f) BioSemi Combination average:
(2016a) LC ActiveTwo 85-100

Idrees & Farooq WD /al, lu/, “no” Private data 3 (2 mand 1 f) BioSemi Combination average:
(2016b) LC ActiveTwo 81.25-98.75

Moattari, HON- fal, a:/ Rostami & 5 (3 m and 2 f/age from 23-30) N/A 66.67-93.33
Parnianpour ¢ ICA Moradi
Moradi (2017) (2015)

Nguyen, Karavas & CM “lal /il lul” Private data 15 (11 m and 4 f/age from 22-32) BrainProducts Highest: 95 (Binary
Artemiadis “in, out, up” ActiCHamp classification), 70 (Three
(2017) RVM “cooperate, amplifier categories)

independent”

Nguyen, Karavas ¢ SCM Long word: Private data 8 (6 m and 2 f/age from 22-32) BrainProducts =~ Average: 52.5
Artemiadis “concentrate” ActiCHamp
(2019) RVM Short word: amplifier

“split”

Kim, Lee & Lee ERP “Ah”, Specific Private data 2 (2 f/age from 22-27) ActiCap EEG Highest combination: 88.1
(2020) RLDA nouns amplifier

Wang et al. (2020) PSD, Chinese character Private data 12 (8 m and 4 f/age from 20-26) SynAmps 2 Average: 83

SampEn  “F%(move)”
ELM
Pan et al. (2023)  WPD Chinese character Wang et al. 8 (6 m and 2 f/age from 22-27) SynAmps 2 Average: 90
LightGBM I (Left), & (2021)
(One)”

Note:
A, authors; M, methods; P, pronunciation materials; D, datasets; S, subjects (number); DE, device; E, the evaluation indicators (accuracy: %); m, males; f, females; TDC,
time domain characteristics; LC, linear classifier; WD, wavelet decomposition; HON-ICA, higher orders of Non-Gaussianity independent component analysis; CM,
covariance matrix; SCM, spatial covariance matrix; RVM, relevance vector machines; ERP, event-related potential; RLDA, regularized linear discriminant analysis; PSD,
power spectral density; SampEn, sample entropy; ELM, Extreme Learning Machine; WPD, wavelet packet decomposition; LightGBM, light gradient boosting machine.

(2021) used CNNss to classify brain spatial features formed by EEG channels and predict
user states. However, this method was not compared with others, making it impossible to
assess its relative performance. Ahn et al. (2022) modified the convolutional layers of
CNNss by replacing single convolution kernels with multi-scale kernels, allowing for the
extraction of features from different frequency bands and showing high and stable
classification performance across different datasets. Kwon et al. (2023) proposed an
improved deep learning model by incorporating multi-layer perceptrons (MLP) into
ShallowConvNet and EEGNet to enhance cross-paradigm subject identification
capabilities in BCI systems. Table 5 presents some applications of CNNs in SI-BCI neural
decoding.

RNNS are used to process variable-length sequential data, such as time-series data and
sound. They consist of a series of connected feedforward neural networks. The system uses
temporal correlations to represent input history and predict outputs within the network.
Figure 10 shows a typical recurrent neural network structure. Research on this type of
network primarily focuses on the classification and prediction of continuously varying
signals over time. Chengaiyan, Retnapandian ¢ Anandan (2020) first used brain
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Figure 9 Typical convolutional neural network model. Full-size K&l DOTI: 10.7717/peerj-cs.2938/fig-9

connectivity estimators and RNNs to identify vowels, achieving a classification accuracy of
72%, which demonstrated the effectiveness of this method. Retnapandian ¢ Anandan
(2023) proposed a method based on EEG subband signal features and the RNN model.
They decomposed the EEG signal into five subband frequency bands and extracted energy
coefficients (RMS, mean absolute value (MAV), integrated EEG (IEEG), simple square
integral (SSI), variance of EEG (VAR), average amplitude change (AAC)) and relative
power from each subband as features, using the RNN for multi-class vowel classification.
After multiple rounds of experiments, the classification accuracy approached 90%.
However, the training of the RNN uses the backpropagation through time (BPTT)
algorithm. Due to difficulties with gradient explosion and vanishing, backpropagating
gradients over long time intervals is challenging (Gomez et al., 2017; Vorontsov et al.,
2017). Long short-term memory (LSTM) and gated recurrent units (GRU) have become
popular alternatives to RNNs. Jeong ef al. (2022) used GRUs to decode spatio-temporal
frequency features at the sentence level. Hernandez-Galvan, Ramirez-Alonso ¢
Ramirez-Quintana (2023) employed 1D convolution layers and two layers of bidirectional
GRUs to extract time-frequency features from EEG signals, using prototypical networks
for classification. The average accuracy across two public datasets was above 91%. Table 6
presents the applications of RNNs and their variants.

CapsNets aim to address the challenges faced by CNNs in handling spatial hierarchies
and pose variations in images. Its core advantage lies in its ability to capture the
hierarchical structure and pose variations of objects within images, providing a more
refined and robust feature representation than CNNs. Figure 11 shows a simple capsule
network model (Aboussaleh et al., 2024). Macias-Macias et al. (2023) proposed a capsule
network-based classification model, CapsK-SI, which achieved recognition of bilabial
sounds, nasal sounds, consonant-vowel combinations, and the /iy/ and /uw/ vowels. It also
generated relevant brain activity maps, offering clues for further understanding the neural
mechanisms of speech imagination. Ramirez-Quintana et al. (2023) proposed a deep
capsule network model called CapsVI, which achieved an average accuracy of 93.32% in
paired classification. Table 7 presents applications of CapsNets and its variants.

Research on other deep learning methods has also demonstrated their effectiveness in
decoding SI-BCI systems. Saji et al. (2020) and Watanabe et al. (2020) respectively
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Table 5 Application of convolutional neural networks in SI-BCI neural decoding.

A M P D S DE E

Saha ¢ Fels HDNN “lal, fil, lul” Nguyen, Karavas & 15 (11 mand 4  BrainProducts 71.1-90.7
(2019) “in, out, up” Artemiadis (2017) f/age from Acti(_iHamp

B 22-32) amplifier
cooperate,
independent”

Saha, Fels ¢ CNN+LSTM Vowels, words Kara One (Zhao ¢ Rudzicz, 12 (8 m and 4 SynAmps RT Highest:
Abdul-Mageed 2015) f/age mean 85.23
(2019) 27.4)

Macias-Macias ~ CSP /al,lu/ DaSalla et al. (2009) 3(2mandlf/ BioSemi ActiveTwo sCapsNet
et al. (2020) age from 26— 71.9

sCNN/sCapsNet 29) sCNN 67.63

Lee et al. (2021)  LFSICF “hello, help me, thank BCI Competition V3 (BCI 15 (age from N/A Average:

you” Competition Committee, 26-29) 59.47
“stop, yes” 2022)

Park, Yeom & MI+CNN “hello” Private data 10 (5 m and 5 Compumedics 64- Average:

Sim (2021) f/age from channel EEG and 88.25 +
20-30) STIM2 2.34
Wang ¢ Wang ~ MBBNPCNN Chinese characters “/=. Wang et al. (2021) 10 (7 m and 3 SynAmps 2 Average:
(2022) (Left), & (One)” f/age from 83.72
22-28)
Ahn et al. (2022) MSCT “go, stop, in, cooperate” 1. Private data 1.40 (40 m /age  BrainAmp Private
from 22-28) dataset 62
2. ASU (Nguyen, Karavas ¢ 2.15(11 m and 4 BrainProducts ASU 72
Artemiadis, 2017) f/age from 22-  ActiCHamp
32) amplifier
Cui et al. (2023) TDSC, STFT, “lal, lul, lil, /" Li, Pun & Chen (2021) 11(7mand 4 f/  64-channel electrode Highest:
DWT, CSP “b_/, I£.1, it 111, age from 20— cap 68.7
Deep ConvNet ;.. 30)

Jeong et al. CNN “I, partner, move, have, Private data 11 (6 m and 5 f/ BrainVision recorder Percent

(2022) GRU drink, box, cup age from 20— Valid
phone” 34) Correct: 81
Kwon et al. ShallowConvNet Word Private data 52 mand3f/ BrainProducts’ 34-50
(2023) EEGNet age from 23— actiCham
MLP 26)
Nitta et al. (2023) LPA Japanese syllables Private data 1 (1 f/age 23) g.HIAMP Average:
PCA 72.6
CNN

Note:

A, authors; M, model; P, pronunciation materials; D, datasets; S, subjects (number); DE, device; E, evaluation indicators (accuracy: %); m, males; f, females; HDNN, hybrid
deep neural network; CNN, convolutional neural network; LSTM, long short-term memory; LFSICF, length first speech imagination classification framework; MI, mutual
information; MBBNPCNN, parallel convolutional neural network based on multi-band brain networks; MSCT, multiscale convolutional transformer; TDSC, time
domain statistical characteristics; STFT, short-time Fourier transform; DWT, discrete wavelet transform; GRU, gated recurrent unit; MLP, multi-layer perceptron; LPA,
linear predictive analysis; PCA, principal component analysis.

employed DWT and speech amplitude envelope rhythm extraction to extract EEG
features, using different classifiers for speech imagination classification, demonstrating the
application potential of deep learning models in different linguistic contexts. Islam e
Shuvo (2019) proposed a deep learning-based improvement method for beta-band
selection, combining DenseNet and Gramian Angular Field to address the issue of EEG
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Figure 10 Typical recurrent neural network model. Full-size K&] DOT: 10.7717/peerj-cs.2938/fig-10

Input layer Hidden layer Output layer

Table 6 Application of recurrent neural networks in SI-BCI neural decoding.

A M P D S DE E
Chengaiyan, Retnapandian ¢ BCE, RNN, CVC words Private data 6 (3 m and 3 f/age Placing Ag/AgCl 80
Anandan (2020) DBN mean 20) electrodes
Hernandez-Galvan, Proto-Speech ~ Vowels, short words, 1. Kara One (Zhao ¢ 1.3 (2 m and 1 f/age from SynAmps RT Kara One: 99.89-
Ramirez-Alonso & long words Rudzicz, 2015) 26-29) 99.92 (Binary
Ramirez-Quintana (2023) classification)
2. ASU (Nguyen, 2.15(11 m and 4 f/age BrainProducts 91.51(Multi
Karavas e from 22-32) ActiCHamp classification)
Artemiadis, 2017) amplifier ASU: 93.70 (Multi
classification)
Jeong et al. (2022) CNN, GRU “I, partner, move, Private data 11 (6 m and 5 f/age from BrainVision Percent valid correct:
have, drink, box, 20-34) Recorder 81
cup phone”
Retnapandian & Anandan RNN /al, lel, lil, lol, lu/ Private data 5(5m) Wireless Emotiv 84.5-88.9
(2023) EPOC+ Neuro-
technology
Note:

A, authors; M, model; P, pronunciation materials; D, datasets; S, subjects (number); DE, device; E, evaluation indicators (accuracy: %); m, males; f, females; BCE, brain
connectivity estimators; DBN, deep belief networks; CVC, consonant-vowel-consonant; RNN, recurrent neural network; CNN, convolutional neural network; GRU,
gated recurrent unit.

Dynamic Routing Algorithm

P A——

———» Output

Input

CC layer

Convolutional layer PC layer

Figure 11 Typical capsule neural network model. Full-size &) DOTI: 10.7717/peerj-cs.2938/fig-11
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Table 7 Application of capsule neural network in SI-BCI neural decoding.

A M P D S DE E
Macias-Macias et al. CapsK-SI  Phonemes, Kara One (Zhao & Rudzicz, 12 (8 m and 4 f/age mean 27.4) SynAmps RT 89.70-94.33
(2023) words 2015)
Ramirez-Quintana et al. CSP, /al, lu/, /Ino/  DaSalla et al. (2009) 3 (2 m and 1 f/age from 26-29) BioSemi Average:
(2023) CapsVI ActiveTwo 93.32
Highest:
94.68
Note:

A, authors; M, model; P, pronunciation materials; D, datasets; S, subjects (number); DE, device; E, evaluation indicators (accuracy: %); m, males; f, females; CSP, common
spatial pattern.

signal classification accuracy, significantly improving classification accuracy. Panachakel
¢ Ganesan (2021) sed a transfer learning model based on ResNet50 to classify the ASU
imagined speech EEG dataset, showcasing the effectiveness of transfer learning in EEG
signal classification. Table 8 presents the applications of some other deep learning
algorithms.

Algorithm comparison and evaluation

The compilation and analysis of existing SI-BCI neural decoding algorithms are
summarized in Fig. 12. The following trends emerge from a quantitative analysis: Machine
learning methods predominantly utilize SVM, which demonstrate stable performance and
high classification accuracy, making them the baseline method in this field and accounting
for the majority of applications. Among deep learning algorithms, CNN’s and their variants
have demonstrated exceptional performance.

Model performance evaluation involves various metrics, such as accuracy, precision,
recall, F1-score, confusion matrix, receiver operating characteristic (ROC) curves, and area
under the curve (AUC). Each metric emphasizes different aspects of model performance,
making the selection of appropriate evaluation criteria critical. In the field of SI-BCI,
average accuracy is the primary performance metric for evaluating SI-BCI algorithms.
Additionally, metrics such as recall, precision, and F1-score are often included to offer a
more comprehensive assessment of model performance. Thus, accuracy is chosen as the
main evaluation metric in this study to facilitate clear comparison of the relative
performance of various models. For both binary and multi-class classification tasks,
accuracy is defined as the proportion of correctly classified samples to the total number of
samples. However, in multi-class classification, accuracy calculations must account for
multiple categories, which makes comparisons between binary and multi-class tasks more
nuanced. Table 9 presents the highest accuracy achieved by different models and methods.

CHALLENGES AND PROSPECTS

A comprehensive literature review reveals that EEG-based encoding and decoding
research for SI-BCI has made significant advancements in recent decades. Ongoing studies
on brain region physiology, paradigm design, and decoding algorithm innovations are
expected to gradually overcome challenges, such as unnatural SI-BCI brain-machine
interactions. However, several unresolved issues remain and require further exploration.
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Table 8 Application of other deep learning algorithms in SI-BCI neural decoding.

A M P D S DE E
Islam ¢ Shuvo (2019) DenseNet, GAF Syllables Kara One (Zhao ¢ Rudzicz, 12 (8 m and 4 f/age SynAmps RT DenseNet:
2015) mean 27.4) 90.68
Words GASF: 90.54
Saji et al. (2020) DWT, LDA/SVM/ /al, lu/ Public dataset (ATR 3 (8 mand 4 f/age from N/A 72-80
KNN brainliner, 2015) 26-29)
Watanabe et al. (2020) EEGOSESM Japanese syllables [ba], Private data 18 (12 m and 6 f/age  BrainAmp 54.7 (Perceived
[ba:] mean 23.8) speech)
38.5
(Imagining
speech)
Panachakel & Ganesan 3DCE, RTL Long words ASU (Nguyen, Karavas ¢ 15 (11 m and 4 f/age  BrainProducts H193.4
(2021) Short words Artemiadis, 2017) from 22-32) ActiCHamp H2 93.1
amplifier
Vowels H3 79.7
Short long H4 95.5
Words
Panachakel & MPC, Shallow Syllables Kara One (Zhao & Rudzicz, 12 (8 m and 4 f/age SynAmps RT Average: 75
Ramakrishnan neural network 2015) mean 27.4)
(2021)
Naebi ¢ Feng (2023)  LSIM M A Private data 3 (age from 30-40) SynAmps 55-98
NCS
LBGC
DFD
Pan et al. (2024) WST, KPCA, /ka:m/,/kwest/, /piorio/ Private data 7 (age from 22-46) Emotiv EPOC Flex 78.73
XGBoost , /apas/,/spei/
Wu et al. (2024) PSD, LDA 1B, 1gi/ 1. Bhadra, Giraud & 1. 15 (10 m and 5 f/age ANT Neuro system 62.2
Marchesotti (2025) from 19-29)
2. Private data 2.20 (7 m and 13 f/age
from 20-30)
Note:

A, authors; M, model; P, pronunciation materials; D, datasets; S, subjects (number); DE, device; E, evaluation indicators (accuracy: %); m, males; f, females; GAF, Gramian
Angular Field; DWT, discrete wavelet transformation; EEGOSESM, EEG oscillation and speech envelope synchronization model; 3DCE, 3D compression encoding; RTL,
ResNet50 transfer learning; MPC, mean phase coherence; LSIM, lip-sync imagery model; NCS, new combinations of signals; LBGC, linear bond graph classifier; DFD,
deep formula detection; WST, wavelet scattering transform; KPCA, kernel principal component analysis; XGBoost, Extreme Gradient Boosting; PSD, power spectral
density; LDA, linear discriminant analysis; H1, highest long words average accuracy; H2, highest short words average accuracy; H3, highest vowels average accuracy; H4,
highest short long words average accuracy.
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Figure 12 Comparison of the number of machine learning algorithms and deep learning algorithms.
Full-size K&l DOT: 10.7717/peerj-cs.2938/fig-12
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Table 9 The optimal accuracy among various models.

Binary classification

B M E

CSP EMBCSP 89.42

SVM

CSP STWEFBCSP 84.87

ELM

MEFCCs SVM 88.3

SVM DTW

CSP WD 81.25-98.75

RVM LC

CNN MBBNPCNN 83.72

RNN Proto-Speech Kara One 99.89-99.92

CNN CapsNet-VI 93.32

CNN H1 934

CSP 3DCE H2 93.1

SVM RTL H3 79.7
H4 95.5

Multi classification

B M E

Csp CSP, CCF, 79.33-88.26

SVM SVM

CSP CM 70

SVM RVM

CNN LFSICF 59.47

RNN Proto-Speech Kara One 91.51

ASU 93.70

Note:

EMBCSP, evidential multi-band common spatial pattern; STWFBCSP, sub-time window filter bank common spatial
pattern; DTW, dynamic time warping; WD, wavelet decomposition; LC, linear classifier; MBBNPCNN, parallel
convolutional neural network based on multi-band brain networks; 3DCE, 3D compression encoding; RTL, ResNet50
transfer learning; CCF, cross-correlation function; B, baseline (model); M, methods (model); E, Evaluation indicators
(accuracy: %); H1, highest long words average accuracy; H2, highest short words average accuracy; H3, highest vowels
average accuracy; H4, highest short long words average accuracy; LFSICF, length first speech imagination classification
framework; CM, covariance matrix; CNN, convolutional neural network; SVM, support vector machine; CSP, common
spatial pattern, ELM, Extreme Learning Machine; MFCCs, Mel-frequency cepstral coefficients; RVM, relevance vector
machine; RNN, recurrent neural network.

To guide future research on SI-BCI systems, we summarize the current challenges and
propose potential research directions.

Difficulty in acquiring high-quality signals and the principles of brain
region connectivity in speech processing

Challenges: Our analysis of Tables 1-8 indicates that most studies use EEG acquisition
devices with 32 or more channels. However, signal quality is often influenced by
participant characteristics, including age, gender, and handedness. Furthermore,
prolonged experimental sessions may lead to participant fatigue, impacting attention and
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reaction speed, which increases EEG variability and noise artifacts (e.g., ocular and
electromyographic artifacts), ultimately reducing signal quality (Zhang, Li & Chen, 2020;
Borirakarawin ¢ Punsawad, 2023; Kim, Lee ¢ Lee, 2020; Lee et al., 2021). Additionally, the
experimental environment plays a crucial role. Prolonged recording sessions increase the
risk of environmental interference during signal acquisition. For instance, Jafferson et al.
(2021) reported an 18% error rate in classification results due to electrical interference
during data collection. In “SI-BCISI-BCI Paradigm”, we reviewed recent advancements in
brain connectivity studies. Broca’s and Wernicke’s areas are known to be essential in
speech processing—Broca’s area is responsible for speech production and articulation,
whereas Wernicke’s area facilitates speech comprehension. However, many existing
studies collect EEG signals from the entire brain without focusing on electrode placement
in these critical speech-related regions (Wang et al., 2021; Sikdar, Roy ¢ Mahadevappa,
2018; Zhao, Liu & Gao, 2021; Pan et al., 2024; Wang et al., 2020).

Future Directions: To advance the understanding of speech-related brain mechanisms,
the following research directions are proposed: Interdisciplinary research-Strengthen
collaboration with fields such as anatomy and neuroscience to conduct more precise
structural and functional analyses of speech-related brain regions, particularly Broca’s and
Wernicke’s areas. This will enable deeper investigation into the neural signal transmission
and cortical activation mechanisms underlying speech intention, potentially uncovering
functional micro-units within these key linguistic centers (Zhang, Guo & Chen, 2023).
Optimization of EEG acquisition equipment-Design and refine more efficient and
sensitive EEG acquisition devices capable of capturing a broader range of neural activity
frequencies. Enhancing the precision of EEG recordings will improve the detection of
subtle neural activities involved in speech generation. These research directions hold
promise for revealing the high-level cognitive functions underlying speech generation and
comprehension and advancing the development of high-sensitivity EEG systems for
applications in neurolinguistics.

Innovation in SI-BCI paradigms: limited focus on words and sentences
Challenges: As summarized in “SI-BCI Neural Encoding” and Tables 1-8, vowel imagery
has been extensively studied (Chengaiyan ¢» Anandan, 2022; DaSalla et al., 2009; Cooney,
Folli & Coyle, 2018; Wu & Chen, 2020; Agarwal et al., 2020), whereas research on short
words, long words, and phrases—such as English words and Chinese characters—is
relatively scarce (Alizadeh & Omranpour, 2023; Kamble, Ghare & Kumar, 2022; Sereshkeh
et al., 2017; Panachakel & Ramakrishnan, 2022). This limitation may stem from the design
of existing paradigms, as a single paradigm may not be sufficient to fully address complex
speech imagery tasks.

Future Directions: To innovate SI-BCI paradigms, future research should focus

on designing paradigms that incorporate word-, character-, phrase-, and

sentence-level speech intention tasks. Additionally, integrating multimodal signals (e.g.,
electromyography (EMG), eye movement signals) and multimodal paradigms (e.g., motor
imagery and external stimuli) could improve the naturalness and usability of speech
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intention paradigms for real-world applications. Wang et al. (2019, 2022) proposed a
hybrid BCI concept by designing a three-class task system that combines motor imagery
and speech imagery, leading to improved classification accuracy. This suggests that
multimodal data fusion can significantly enhance the efficiency and precision of BCI
systems. Tong et al. (2023) further explored multimodal speech imagery applications by
integrating silent reading and handwriting imagery, which elicited stronger EEG features
compared to traditional motor imagery paradigms, thereby improving classification
accuracy. Naebi ¢» Feng (2023) proposed a novel communication imagery model as an
alternative to speech-dependent mental tasks. They introduced a lip imagery model,
achieving classification results ranging from 55% to 98%, with the highest performance
achieved through a novel signal combination approach. Notably, Silva et al. (2024)
leveraged BCI and natural language processing (NLP) technologies to enable a patient to
communicate in Spanish and English. This groundbreaking study may provide new
insights into the development of bilingual BCls.

Excessive signal preprocessing and lack of multimodal data fusion in
SI-BCI neural encoding

Challenges: Some studies have applied Autoencoder layers to handle incomplete and noisy
EEG signals (Zhang et al., 2018; Ali, Mumtaz ¢ Magsood, 2023), while others have
employed noise-assisted multivariate empirical mode decomposition (NA-MEMD) for
signal processing (Park ¢ Lee, 2023). However, these methods significantly increase
preprocessing time, hindering real-time applications. He et al. (2023) highlighted that
relying solely on EEG signals for unimodal data processing limits the model’s ability to
capture the complexity of brain activity.

Future Directions: Beyond EEG, other physiological signals—such as fNIRS,
electrooculography (EOG), and EMG—should be integrated into SI-BCI neural encoding
for imagined speech decoding. Although most research focuses on single-modal signals,
multimodal classification has emerged as a promising direction (Wang et al., 2023). Guo &
Chen (2022) developed an NIRS-based 4-class speech imagery BCI, achieving >70% mean
subject-specific accuracy in binary-class settings (all pairwise comparisons between two
vowels) across 0-2.5 s and 0-10 s time windows. Vorreuther et al. (2023) and Rezazadeh
Sereshkeh et al. (2019) proposed a multi-class hybrid fNIRS-EEG BCI for imagined speech,
demonstrating significantly higher accuracy than unimodal approaches. These findings
highlight the complementary nature of diverse neural signals in enhancing BCI
performance. Future studies should adopt mobile, wearable sensors to collect multimodal
physiological data (facial expressions, EEG, efc.) and fuse them within a unified framework
to improve online real-time feature extraction and imagined speech recognition accuracy.

Limited SI-BCI datasets and overreliance on binary classification tasks
Challenges: In Tables 1-8 and “Difficulty in Acquiring High-Quality Signals and the
Principles of Brain Region Connectivity in Speech Processing”, we analyzed available
datasets, revealing that most studies rely on private datasets with fewer than ten
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participants. This poses a significant challenge for neural decoding, as the lack of large
datasets prevents deep learning models from leveraging large-scale data analysis, thus
affecting model performance. Additionally, most studies still focus on binary classification
tasks, limiting their applicability to real-world BCI applications. Furthermore, the absence
of diverse evaluation metrics hinders comprehensive performance assessment.

Future Directions: In SI-BCI neural decoding, it is crucial to continue advancing deep
learning algorithms, particularly CNN-based models, to enhance the capability of handling
complex, nonlinear transformations. Expanding research from binary classification to
multiclass classification is essential. For example, Hernandez-Galvan, Ramirez-Alonso ¢
Ramirez-Quintana (2023) achieved high accuracy across multiple classes using two public
datasets, demonstrating the feasibility of multiclass SI-BCI tasks. Current public datasets
are predominantly vowel-based, such as Kara One and AUS. Therefore, developing
high-quality word- and sentence-level public datasets is a critical direction for future
SI-BCI advancements. A recent contribution in this area is ChineseEEG, a high-density
EEG dataset compiled by Mou et al. (2024), containing approximately 13 h of Chinese text
reading EEG recordings from 10 participants. This dataset fills a significant gap in Chinese
language EEG datasets and represents a major step toward improving linguistic diversity in
SI-BCI research.

CONCLUSIONS

In recent years, with the rapid advancement of brain-computer interface (BCI) technology,
research on speech imagery decoding based on electroencephalography (EEG) has
garnered significant attention. This article systematically reviews the latest progress in
EEG-based speech imagery BCI decoding, focusing on key research findings and
challenges in brain region connectivity, SI-BCI experimental paradigms, encoding
techniques, and decoding algorithms. Through an analysis of existing studies, we suggest
that future research should further emphasize brain region mechanisms, paradigm
innovation, encoding principles, and decoding algorithms to advance the practical
application of speech imagery BCI. With ongoing technological advancements,
personalized and miniaturized speech intention BCI systems are expected to emerge. In
the medical field, speech imagery BCI can assist aphasia patients in restoring
communication abilities and improving their quality of life. In non-medical domains,
speech imagery BCI can be applied to human-computer interaction and smart home
systems, providing a more natural and efficient interaction modality. We hope this article
will inspire further innovation and development in BCI paradigms and neural
encoding-decoding research.
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