
Opposition-based learning techniques in
metaheuristics: classification, comparison,
and convergence analysis
Rihab Lakbichi1, Farouq Zitouni1, Saad Harous2, Aridj Ferhat1,
Abdelhadi Limane1, Abdulaziz S. Almazyad3, Guojiang Xiong4 and Ali
Wagdy Mohamed5,6,7

1 Department of Computer Science and Information Technology, University of Kasdi Merbah,
Laboratory of Artificial Intelligence and Information Technology, Ouargla, Algeria

2 Department of Computer Science, College of Computing and Informatics, Sharjah,
United Arab Emirates

3 King Saud University, Department of Computer Engineering, College of Computer and
Information Sciences, Riyadh, Saudi Arabia

4 College of Electrical Engineering, Guizhou Key Laboratory of Intelligent Technology in Power
System, Guiyang, China

5 Faculty of Graduate Studies for Statistical Research, Operations Research Department, Giza,
Egypt

6 Applied Science Private University, Applied Science Research Center, Amman, Jordan
7 Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences,
Department of Biosciences, Chennai, India

ABSTRACT
In recent years, opposition-based learning (OBL) has emerged as a powerful
enhancement strategy in metaheuristic algorithms (MAs), gaining significant
attention for its potential to accelerate convergence and improve solution quality.
Existing research lacks a structured analysis of how different OBL variants influence
optimization performance when integrated into various MAs. This study categorizes
and analyzes nine distinct OBL techniques: basic opposition-based learning,
quasi-opposition-based learning, generalized opposition-based learning, current
optimum opposition-based learning, quasi-reflection opposition-based learning,
centroid opposition-based learning, random opposition-based learning, super
opposition-based learning, and stochastic opposition-based learning. To
systematically assess the effectiveness of these techniques, five widely used OBL
variants—basic opposition-based learning, quasi-opposition-based learning,
generalized opposition-based learning, current optimum opposition-based learning,
quasi-reflection opposition-based learning—were selected for implementation within
five well-established MAs: differential evolution, genetic algorithm, particle swarm
optimization, artificial bee colony, and harmony search. These hybridized algorithms
were evaluated across different integration phases, including the initialization passes
and generation updates phase, and in both phases. To experimentally demonstrate
the capability of OBL strategies to enhance MAs that face common issues such as
slow convergence, limited exploration, and imbalanced exploration-exploitation, we
have used 12 benchmark functions from CEC2022 suite. Key performance
metrics—including maximum, minimum, mean, standard deviation, and
convergence curves—were rigorously analyzed to quantify the improvements
introduced by each OBL-enhancedMA. Additionally, a Friedman test was conducted
to statistically validate the performance differences among the variants. The results
indicate that quasi-reflection opposition-based learning consistently outperforms

How to cite this article Lakbichi R, Zitouni F, Harous S, Ferhat A, Limane A, Almazyad AS, Xiong G, Mohamed AW. 2025. Opposition-
based learning techniques in metaheuristics: classification, comparison, and convergence analysis. PeerJ Comput. Sci. 11:e2935
DOI 10.7717/peerj-cs.2935

Submitted 30 January 2025
Accepted 12 May 2025
Published 15 July 2025

Corresponding author
Rihab Lakbichi,
lakbichi.rihab@univ-ouargla.dz

Academic editor
Bilal Alatas

Additional Information and
Declarations can be found on
page 54

DOI 10.7717/peerj-cs.2935

Copyright
2025 Lakbichi et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2935
mailto:lakbichi.�rihab@�univ-ouargla.�dz
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2935
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

other OBL variants, demonstrating superior convergence speed and solution quality
across most benchmark functions.

Subjects Algorithms and Analysis of Algorithms, Optimization Theory and Computation
Keywords Optimization, Metaheuristic algorithms, Opposition-based learning, OBL variants

INTRODUCTION
Optimization is the process of finding the most effective solution from a set of feasible
options to a specific problem (Diwekar, 2020). Feasible solutions are those that meet all the
constraints of the given problem. Optimization techniques are used to address problems in
a variety of fields including science (Vanfossan, 2022), engineering (Zhu et al., 2022), and
industry (Nascimento, Giudici & Guardani, 2000). It spans a diverse range of problems,
from minimizing production costs (Cheng, Leung & Li, 2015) and maximizing operational
efficiency (Rodríguez-García et al., 2020) to optimizing complex networks and systems
(Cancho & Solé, 2003). Traditional optimization methods, such as linear programming
(Raidl & Puchinger, 2008) and gradient-based techniques (Kearney, Thompson & Boley,
1987), often fall short when dealing with high-dimensional, nonlinear, and multimodal
problems. These challenges have led to the development of more sophisticated and
adaptable approaches.

Metaheuristic algorithms (MAs) have gained prominence as powerful optimization
techniques capable of navigating complex solution spaces effectively. Unlike traditional
methods, metaheuristics do not rely on gradient information and are adept at avoiding
local optima, making them suitable for a wide array of optimization problems. Examples of
MAs include genetic algorithms (Shiba, Tsuchiya & Kikuno, 2004), particle swarm
optimization (Ahmed, Zamli & Lim, 2012), simulated annealing (Goffe, Ferrier & Rogers,
1994), and ant colony optimization (Okdem & Karaboga, 2009). These algorithms are
inspired by natural and biological processes, such as evolution, swarm intelligence, and
annealing in metallurgy, providing a robust and flexible framework for optimization.

Evaluating the performance of MAs is crucial, as their effectiveness hinges on their
ability to balance exploration (i.e., global search) and exploitation (i.e., local search) of the
solution space. Key performance indicators include convergence speed, robustness to
varying initial conditions, and the quality of final solutions. Despite their versatility and
success, metaheuristics are not without limitations. Common challenges include
premature convergence to sub-optimal solutions (Evans, 1998), high computational
demands (Peres & Castelli, 2021), and sensitivity to parameter settings (Isiet & Gadala,
2020). Researchers have proposed various enhancement strategies to mitigate these
challenges and enhance the performance of MAs, such as chaotic maps (Yang, Liu & Zhou,
2014) and phasor theory (Liu et al., 2023). One promising approach is incorporating the
OBL concept. It leverages the idea that evaluating both a solution and its opposite can
accelerate convergence and improve population diversity in evolutionary algorithms. By
considering opposite points in the search space, opposition-based learning (OBL)
enhances the exploration capabilities of metaheuristics, potentially leading to more robust
and higher-quality solutions.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 2/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

OBL has emerged as a powerful paradigm in computational intelligence, significantly
enhancing the performance of various optimization algorithms. The concept was first
introduced by Tizhoosh (2005), who proposed considering opposite solutions
simultaneously with current solutions to improve search efficiency. This foundational idea
has been successfully integrated into several optimization techniques, reinforcement
learning (Shokri, Tizhoosh & Kamel, 2006), artificial neural networks (Ventresca &
Tizhoosh, 2007), and fuzzy systems (Tizhoosh & Sahba, 2009), to enhance their operational
efficiency. Since January 2005, this concept has been featured in over 400 publications.
These works have been disseminated through conferences, journals, and books within the
fields of machine learning and soft computing. Specifically, 60% of these publications are
journal articles, 38% are conference articles, and 2% are books or theses (Mahdavi,
Rahnamayan & Deb, 2018). Several survey articles have been published, reviewing more
than 200 studies investigating and reviewing the OBL concept (Al-Qunaieer, Tizhoosh &
Rahnamayan, 2010; Xu et al., 2014; Rojas-Morales, Rojas & Ureta, 2017; Mahdavi,
Rahnamayan & Deb, 2018). These surveys provide comprehensive insights into the
implementation and effectiveness of OBL across various domains, highlighting its
potential to improve optimization algorithms significantly. As the field continues to evolve,
ongoing research and development efforts aim to further refine OBL techniques, ensuring
their applicability to a broader range of complex optimization problems.

The main contributions of our study can be summarized as follows:

. A systematic classification and analysis of nine state-of-the-art OBL variants—basic
opposition-based learning (BOBL), quasi-opposition-based learning (QOBL),
generalized opposition-based learning (GOBL), current optimum opposition-based
learning (COOBL), quasi-reflection opposition-based learning (QROBL), centroid
opposition-based learning (COBL), random opposition-based learning (ROBL), super
opposition-based learning (SOBL), and stochastic opposition-based learning
(b-OBL)—was conducted to establish a structured framework for their integration into
MAs.

. Five widely used OBL techniques (BOBL, QOBL, GOBL, COOBL, and QROBL) were
selected and incorporated into five prominent MAs—differential evolution (DE), genetic
algorithm (GA), particle swarm optimization (PSO), artificial bee colony (ABC), and
harmony search (HS)—to systematically evaluate their impact on optimization
performance.

. Different integration strategies, including opposition-based initialization,
opposition-based generation updates, and a hybrid approach combining both, were
investigated to determine the most effective application stage.

. Twelve benchmark functions from the CEC 2022 suite were used to comprehensively
assess algorithm performance based on key metrics, including maximum, minimum,
mean, standard deviation, and convergence curves. Additionally, Friedman’s test was
applied to statistically compare the performance of different algorithmic variants.

. The effectiveness of QROBL as the most impactful OBL variant was demonstrated,
consistently enhancing metaheuristic algorithms by improving convergence speed and

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 3/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

solution quality. Furthermore, significant performance improvements of QOBL and
COOBL were observed, highlighting the advantages of integrating OBL strategies into
optimization techniques.

The remainder of the article is organized as follows: “Opposition-Based Learning”
introduces some basic concepts related to the OBL concept. “Opposition-Based Learning
Variants” overviews the nine OBL variants, listed earlier, and categorises the state-of-the-
art solutions based on this classification. “Experiments, Numerical Results, and
Discussion” defines the way these OBL techniques are hybridized with the five selected
MAs and compares and analyses the numerical results. Finally, “Conclusion and
Perspectives” concludes the article by summarizing the key findings and suggesting some
future research directions.

OPPOSITION-BASED LEARNING
In computational intelligence, optimization algorithms typically start with a set of initial
solutions, then proceed to refine them iteratively toward an optimal outcome. Normally,
these initial solutions are generated randomly, uniformly covering the entire search space.
This initiation method impacts critical operational factors, including computation time
and storage complexity, which are influenced by the proximity of these initial guesses to
the optimal solution. The OBL approach simultaneously assesses a solution and its
opposite, adopting the nearer of the two as the initial starting point. By selecting the closer
of the two guesses, optimization algorithms can significantly accelerate convergence speed
and enhance the accuracy of solutions. Moreover, this strategy can be continually applied
to refine each solution of the current population throughout the swarming process, thereby
consistently enhancing efficiency (Rahnamayan & Wang, 2008).

To simplify the understanding of OBL, it is essential to clearly define the concept of
opposite numbers in 1-dimensional andD-dimensional spaces. Definitions 1 and 2 explain
these concepts, respectively (Tizhoosh, 2005).
Definition 1. Let x be a real number that belongs to the interval ½a; b�. Its opposite number
denoted as �x, is calculated using Eq. (1).

�x ¼ aþ b� x: (1)

Definition 2. Let x ¼ ðx1; x2; . . . ; xDÞ be a vector of real numbers that belong to the
sub-space ½ai; bi�D. Its opposite vector, denoted as �x ¼ ð �x1; �x2 . . . ; �xDÞ, is calculated using Eq.
(2).

�xi ¼ ai þ bi � xi; 8i 2 f1; . . . ;Dg (2)

where �xi is the opposition-based counterpart of xi, ai and bi represent the lower and
upper bounds of xi, respectively, and D is the number of variables.

The opposition-based optimization process can be described as follows: Let
x ¼ ðx1; x2; . . . ; xDÞ be a point in a D-dimensional space (i.e., candidate solution), and f ð:Þ
be an objective function used to measure the fitness value of candidate solutions.
According to Definition 2, �x ¼ ð �x1; �x2 . . . ; �xDÞ is the opposite point of x ¼ ðx1; x2; . . . ; xDÞ.
If f �xð Þ < f xð Þ, i.e., �x has a better fitness value, then point x is replaced with �x; otherwise, we

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 4/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

continue with x. Thus, both the point and its opposite are evaluated simultaneously, and
the process continues with the fitter one.

OPPOSITION-BASED LEARNING VARIANTS
We reviewed more than 100 works incorporating various OBL strategies. We
identified nine distinct OBL variants: basic opposition-based learning, quasi-opposition-
based learning, generalized opposition-based learning, current optimum opposition-based
learning, quasi-reflection opposition-based learning, centroid-opposition-based learning,
random-opposition-based learning, super-opposition-based learning, and stochastic
opposition-based learning. We catalogued the state-of-the-art published works for each
variant in a corresponding table, detailing where the OBL technique was integrated within
the original algorithm—whether in the initialization phase (i.e., IP), the swarming phase
(i.e., SP), or both. The first and second columns of each table provide the work’s reference
and publishing year, respectively. The third column lists the original MA to which BOBL
was applied. The fourth and fifth columns depict the stages where BOBL was integrated, in
the sixth column we highlighted the enhancements that OBL contributed to the original
algorithm’s performance, and in the final column we highlighted the shortcomings of
incorporating OBL into the algorithms. However, certain works have successfully
integrated OBL without encountering shortcomings. For the upcoming subsections, we
consider the D-dimensional points x ¼ ðx1; x2; . . . ; xDÞ and �x ¼ ð �x1; �x2 . . . ; �xDÞ as the
original point and its opposite, respectively.

Basic opposition-based learning
Based on Definition 2, this approach aims to provide a better chance of finding an optimal
solution by considering both the current solution x and its opposite �x. The opposite
solution �x is calculated using Eq. (2). Since its introduction, BOBL has been applied to
various MAs. Table 1 summarizes the reviewed algorithms that have utilized BOBL to
enhance their performance.

Quasi-opposition-based learning
The QOBL concept was first introduced in 2007 in the work published in Rahnamayan,
Tizhoosh & Salama (2007) as an extension of OBL. This method generates a random
location between the centre and the original points using the function randðÞ. The
expression of QOBL is given by Eq. (3). Table 2 presents a summary of algorithms
reviewed for their use of QOBL to boost performance.

�xi ¼ randðaiþbi
2 ; ai þ bi � xiÞ; xi <

aiþbi
2

randðai þ bi � xi;
aiþbi
2 Þ; xi � aiþbi

2

(
; 8i 2 f1; . . . ;Dg: (3)

Generalized opposition-based learning
The GOBL idea combines BOBL and the Cauchy mutation (i.e., random weights) (Wang
et al., 2011), which may help trapped solutions to jump out of local minima. Equation (4) is
employed to compute the opposite solution. The scalar d is sampled from the Cauchy

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 5/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

T
ab
le
1
Su

m
m
ar
y
of

M
A
s
ut
il
iz
in
g
B
O
B
L
fo
r
pe
rf
or
m
an

ce
en
ha
n
ce
m
en
t.

W
or
k

Y
ea
r

O
ri
gi
n
al

M
A

P
la
ce

Im
pr
ov
em

en
ts

Sh
or
tc
om

in
gs

IP
SP

R
ah
na

m
ay
an

,T
iz
ho
os
h
&

Sa
la
m
a
(2
00
6)

20
06

D
iff
er
en
ti
al
ev
ol
ut
io
n

.
.

Im
pr
ov
ed

co
nv
er
ge
nc
e
ra
te

La
ck

of
sm

ar
t
ju
m
pi
ng

m
ec
ha
ni
sm

H
an

&
H
e
(2
00
7)

20
07

P
ar
ti
cl
e
sw

ar
m

op
ti
m
iz
at
io
n

.
.

Im
pr
ov
ed

co
nv
er
ge
nc
e
sp
ee
d

D
ep
en
de
nc
e
on

to
po

lo
gy

co
nfi

gu
ra
ti
on

Im
pr
ov
ed

gl
ob

al
se
ar
ch

ab
ili
ty

M
al
is
ia

&
T
iz
ho
os
h
(2
00
7)

20
07

A
nt

co
lo
ny

sy
st
em

.
Im

pr
ov
ed

ex
pl
or
at
io
n
ef
fi
ci
en
cy

P
er
fo
rm

ed
w
or
se

th
an

th
e
or
ig
in
al
al
go
ri
th
m

R
ah
na

m
ay
an

,T
iz
ho
os
h
&

Sa
la
m
a
(2
00
8)

20
08

D
iff
er
en
ti
al
ev
ol
ut
io
n

.
.

Im
pr
ov
ed

co
nv
er
ge
nc
e
ra
te

D
ep
en
de
nc
e
on

di
m
en
si
on

al
it
y
an
d

po
pu

la
ti
on

si
ze

D
on
g
&

W
an

g
(2
00
9)

20
09

D
iff
er
en
ti
al
ev
ol
ut
io
n

.
Im

pr
ov
ed

co
nv
er
ge
nc
e
ra
te

P
er
fo
rm

an
ce

no
t
al
w
ay
s
do

m
in
an
t

A
li,

Pa
nt

&
A
br
ah
am

(2
00
9)

20
09

H
yb
ri
d
an
t
co
lo
ny

di
ff
er
en
ti
al
ev
ol
ut
io
n

.
Im

pr
ov
ed

co
nv
er
ge
nc
e
ra
te

Li
m
it
ed

im
pr
ov
em

en
t
in

so
lu
ti
on

qu
al
it
y

El
-A
bd

(2
01
1)

20
11

A
rt
ifi
ci
al
be
e
co
lo
ny

.
.

Im
pr
ov
ed

so
lu
ti
on

qu
al
it
y
sp
ee
d

In
co
ns
is
te
nt

co
nv
er
ge
nc
e
sp
ee
d

C
ha
tt
er
je
e,
G
ho
sh
al

&
M
uk
he
rj
ee

(2
01
2)

20
12

H
ar
m
on

y
se
ar
ch

.
.

Im
pr
ov
ed

co
nv
er
ge
nc
e
ra
te

K
az
em

i,
A
hm

ad
i
&

T
al
eb
i
(2
01
3)

20
13

A
nt

co
lo
ny

op
ti
m
iz
at
io
n

.
Im

pr
ov
ed

co
nv
er
ge
nc
e
ra
te

Li
m
it
ed

ph
er
om

on
e
m
an
ag
em

en
t
st
ra
te
gi
es

A
ja
ya
n
&

B
al
aj
i
(2
01
3)

20
13

A
rt
ifi
ci
al
be
e
co
lo
ny

.
A
cc
el
er
at
e
co
nv
ey
an
ce

sp
ee
d

R
eq
ui
re
d
pa
ra
m
et
er

ad
ap
ta
ti
on

s

Sa
ha

et
al
.(
20
13
)

20
13

B
at

al
go
ri
th
m

.
.

Im
pr
ov
ed

co
nv
er
ge
nc
e
sp
ee
d

In
cr
ea
se
d
co
m
pu

ta
ti
on

al
co
m
pl
ex
it
y

K
au

ci
c
(2
01
3)

20
13

P
ar
ti
cl
e
sw

ar
m

op
ti
m
iz
at
io
n

.
Im

pr
ov
ed

se
ar
ch

ef
fi
ci
en
cy

E
xp
er
ie
nc
ed

hi
gh
er

co
m
pu

ta
ti
on

al
co
st

N
iu

et
al
.(
20
14
)

20
14

H
ar
m
on

y
se
ar
ch

.
Im

pr
ov
ed

di
ve
rs
it
y

A
vo
id
ed

lo
ca
l
op

ti
m
um

B
an

er
je
e,
M
uk
he
rj
ee

&
G
ho
sh
al

(2
01
4)

20
14

H
ar
m
on

y
se
ar
ch

.
.

Im
pr
ov
ed

th
e
co
nv
er
ge
nc
e
ra
te

Le
ss
ef
fe
ct
iv
e
on

ce
rt
ai
n
be
nc
hm

ar
k
fu
nc
ti
on

s
fu
nc
ti
on

s

B
ho
w
m
ik

&
C
ha
kr
ab
or
ty

(2
01
5)

20
15

G
ra
vi
ta
ti
on

al
se
ar
ch

al
go
ri
th
m

.
.

A
cc
el
er
at
ed

co
nv
er
ge
nc
e
ra
te

Im
pr
ov
ed

so
lu
ti
on

s

Y
an

g,
X
iji
a
&

D
en
g
(2
01
5)

20
15

P
ar
ti
cl
e
sw

ar
m

op
ti
m
iz
at
io
n

.
.

Im
pr
ov
ed

co
nv
er
ge
nc
e
sp
ee
d

Y
u
et
al
.(
20
15
)

20
15

Fi
re
fl
y
al
go
ri
th
m

.
Im

pr
ov
ed

co
nv
er
ge
nc
e

Lo
ca
lo

pt
im

a
av
oi
da
nc
e

B
ha
rt
i
&

Si
ng
h
(2
01
6)

20
16

P
ar
ti
cl
e
sw

ar
m

op
ti
m
iz
at
io
n

.
Im

pr
ov
ed

di
ve
rs
it
y

In
cr
ea
se
d
co
m
pu

ta
ti
on

al
co
m
pl
ex
it
y

A
ha
nd

an
i
(2
01
6)

20
16

Sh
uf
fl
ed

bi
di
re
ct
io
na
l

di
ff
er
en
ti
al
ev
ol
ut
io
n

.
Im

pr
ov
ed

co
nv
er
ge
nc
e
sp
ee
d

In
cr
ea
se
d
fu
nc
ti
on

ev
al
ua
ti
on

s

P
re
m
at
ur
e
co
nv
er
ge
nc
e
av
oi
da
nc
e

Sa
rk
he
le
t
al
.(
20
17
)

20
17

H
ar
m
on

y
se
ar
ch

.
.

A
cc
el
er
at
ed

co
nv
er
ge
nc
e
sp
ee
d

C
on

ve
rg
ed

to
a
lo
ca
l
op

ti
m
um

in
st
ea
d
of

ex
pl
or
in
g
th
e
gl
ob

al
so
lu
ti
on

A
bd

El
az
iz
,O

liv
a
&

X
io
ng

(2
01
7)

20
17

Si
ne

co
si
ne

al
go
ri
th
m

.
.

Im
pr
ov
ed

ex
pl
or
at
io
n
ab
ili
ty

T
im

e
co
m
pl
ex
it
y
de
pe
nd

s
on

th
e
po

pu
la
ti
on

si
ze

Ew
ee
s,
A
bd

El
az
iz
&

H
ou
ss
ei
n
(2
01
8)

20
18

G
ra
ss
ho

pp
er

op
ti
m
iz
at
io
n

al
go
ri
th
m

.
Im

pr
ov
ed

co
nv
er
ge
nc
e
ra
te

P
er
fo
rm

an
ce

is
in
fl
ue
nc
ed

by
po

pu
la
ti
on

si
ze

pa
ra
m
et
er

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 6/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

T
ab
le
1
(c
on

ti
n
ue
d
)

W
or
k

Y
ea
r

O
ri
gi
n
al

M
A

P
la
ce

Im
pr
ov
em

en
ts

Sh
or
tc
om

in
gs

IP
SP

G
up

ta
&

D
ee
p
(2
01
9)

20
19

Si
ne

co
si
ne

al
go
ri
th
m

.
Im

pr
ov
ed

di
ve
rs
it
y

In
cr
ea
se
d
co
m
pu

ta
ti
on

al
ti
m
e

Sh
ek
ha
w
at

&
Sa
xe
na

(2
02
0)

20
20

C
ro
w
se
ar
ch

al
go
ri
th
m

.
Im

pr
ov
ed

ex
pl
or
at
io
n
ca
pa
bi
lit
y

G
up

ta
et
al
.(
20
20
)

20
20

H
ar
ri
s
H
aw

ks
op

ti
m
iz
at
io
n

.
Im

pr
ov
ed

ex
pl
or
at
io
n
ca
pa
bi
lit
y

Z
ha
o
et
al
.(
20
20
)

20
20

Sa
lp

sw
ar
m

al
go
ri
th
m

.
.

Im
pr
ov
ed

co
nv
er
ge
nc
e
sp
ee
d

P
er
fo
rm

an
ce

is
pr
ob

le
m
-d
ep
en
de
nt

Im
pr
ov
ed

ex
pl
or
at
io
n
ab
ili
ty

X
u
et
al
.(
20
22
)

20
22

Fi
sh

m
ig
ra
ti
on

op
ti
m
iz
at
io
n

.
Im

pr
ov
ed

ex
pl
or
at
io
n
ca
pa
bi
lit
y

Si
,M

ir
an

da
&

B
ha
tt
ac
ha
ry
a
(2
02
2)

20
22

Sa
lp

sw
ar
m

al
go
ri
th
m

.
.

Im
pr
ov
ed

co
nv
er
ge
nc
e
sp
ee
d

Sa
ho
o
et
al
.(
20
23
)

20
23

B
ee

co
lo
ny

op
ti
m
iz
at
io
n

.
Im

pr
ov
ed

ex
pl
or
at
io
n
ca
pa
bi
lit
y

U
nd

er
pe
rf
or
m
ed

in
so
m
e
pr
ob

le
m

ap
pl
ic
at
io
ns

Im
pr
ov
ed

co
nv
er
ge
nc
e
ra
te

Jo
sh
i
(2
02
3)

20
23

G
ra
vi
ta
ti
on

al
se
ar
ch

al
go
ri
th
m

.
A
cc
el
er
at
ed

co
nv
er
ge
nc
e

Im
pr
ov
ed

se
ar
ch

ca
pa
bi
lit
y

A
bu

al
ig
ah
,D

ia
ba
t
&

El
az
iz
(2
02
3)

20
23

Sl
im

e
M
ou

ld
al
go
ri
th
m

.
A
cc
el
er
at
ed

co
nv
er
ge
nc
e
sp
ee
d

P
re
m
at
ur
e
co
nv
er
ge
nc
e
av
oi
da
nc
e

C
he
n
et
al
.(
20
24
)

20
24

A
nt

co
lo
ny

pa
th

pl
an
ni
ng

op
ti
m
iz
at
io
n

.
In
cr
ea
se
d
co
nv
er
ge
nc
e
ra
te

Z
ha
o
et
al
.(
20
24
)

20
24

B
ra
in

st
or
m

op
ti
m
iz
at
io
n

.
In
cr
ea
se
d
se
ar
ch

de
ns
it
y

O
B
L
ha
s
no

si
gn
ifi
ca
nt

im
pa
ct

on
th
e

al
go
ri
th
m

Lo
ca
lo

pt
im

um
av
oi
da
nc
e

W
an

g,
Li

&
Y
an

(2
02
4)

20
24

D
iff
er
en
ti
al
ev
ol
ut
io
n

.
A
da
pt
iv
e
ad
ju
st
in
g
of

su
b-
po

pu
la
ti
on

si
ze

T
ia
n
et
al
.(
20
24
)

20
24

P
ar
ti
cl
e
sw

ar
m

op
ti
m
iz
at
io
n

.
A
cc
el
er
at
ed

co
nv
er
ge
nc
e
pr
oc
es
s

Ph
am

,N
gu
ye
n
D
an

g
&

N
gu
ye
n
(2
02
4)

20
24

Si
ne

co
si
ne

al
go
ri
th
m

.
.

Im
pr
ov
ed

ba
la
nc
e
be
tw
ee
n

ex
pl
or
at
io
n
an
d
ex
pl
oi
ta
ti
on

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 7/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

T
ab
le
2
Su

m
m
ar
y
of

M
A
s
ut
il
iz
in
g
Q
O
B
L
fo
r
pe
rf
or
m
an

ce
en
ha
n
ce
m
en
t.

W
or
k

Y
ea
r

O
ri
gi
n
al

M
A

P
la
ce

Im
pr
ov
em

en
ts

Sh
or
tc
om

in
gs

IP
SP

R
ah
na

m
ay
an

,T
iz
ho
os
h
&
Sa
la
m
a
(2
00
7)

20
08

D
iff
er
en
ti
al
ev
ol
ut
io
n

.
.

Im
pr
ov
ed

co
nv
er
ge
nc
e
sp
ee
d

M
an

da
l&

R
oy

(2
01
3)

20
13

T
ea
ch
in
g
le
ar
ni
ng

ba
se
d

op
ti
m
iz
at
io
n

.
.

A
cc
el
er
at
ed

co
nv
er
ge
nc
e
sp
ee
d

Su
lta

na
&

R
oy

(2
01
4)

20
14

T
ea
ch
in
g
le
ar
ni
ng

ba
se
d

op
ti
m
iz
at
io
n

.
.

A
cc
el
er
at
ed

co
nv
er
ge
nc
e
sp
ee
d

B
ha
tt
ac
ha
rj
ee
,B

ha
tt
ac
ha
ry
a
&

N
ee

D
ey

(2
01
4)

20
14

R
ea
l
co
de
d
ch
em

ic
al
re
ac
ti
on

op
ti
m
iz
at
io
n

.
.

Im
pr
ov
ed

co
nv
er
ge
nc
e
ra
te

R
eq
ui
re
d
ca
re
fu
lp

ar
am

et
er

tu
ni
ng

Y
az
da
ni

&
Sh
an

be
hz
ad
eh

(2
01
5)

20
15

C
ar
te
si
an

ge
ne
ti
c
pr
og
ra
m
m
in
g

.
E
nh

an
ce
d
ex
pl
or
at
io
n
ab
ili
ty

D
ep
en
de
nc
e
on

P
ar
am

et
er

se
tt
in
g

R
oy

&
Pa

ul
(2
01
5)

20
15

G
ra
vi
ta
ti
on

al
se
ar
ch

al
go
ri
th
m

.
.

Im
pr
ov
ed

so
lu
ti
on

qu
al
it
y
co
m
pu

ta
ti
on

al
sp
ee
d

Fa
ile
d
to

ou
tp
er
fo
rm

al
lc
om

pe
ti
to
rs

Sh
iv
a
&

M
uk
he
rj
ee

(2
01
5a
,2
01
5b
)

20
15

H
ar
m
on

y
Se
ar
ch

.
.

A
cc
el
er
at
ed

co
nv
er
ge
nc
e
sp
ee
d

Im
pr
ov
ed

ac
cu
ra
cy

de
pe
nd

s
on

sp
ec
ifi
c
ca
se
s

B
as
u
(2
01
6a
)

20
16

D
iff
er
en
ti
al
ev
ol
ut
io
n

.
.

Im
pr
ov
ed

co
nv
er
ge
nc
e
sp
ee
d

R
eq
ui
re
d
hi
gh

co
m
pu

ta
ti
on

al
ti
m
e

B
as
u
(2
01
6b
)

20
16

G
ro
up

se
ar
ch

op
ti
m
iz
at
io
n

.
.

Im
pr
ov
ed

ef
fe
ct
iv
en
es
s

R
eq
ui
re
d
hi
gh

co
m
pu

ta
ti
on

al
ti
m
e

E
nh

an
ce
d
so
lu
ti
on

s

Sh
an

ka
r
&

M
uk
he
rj
ee

(2
01
6)

20
16

H
ar
m
on

y
se
ar
ch

.
.

Im
pr
ov
ed

pe
rf
or
m
an
ce

A
cc
ur
ac
y
of

so
m
e
ca
se
s
no

t
si
gn
ifi
ca
nt
ly

im
pr
ov
ed

G
uh

a,
R
oy

&
B
an

er
je
e
(2
01
7)

20
17

Sy
m
bi
ot
ic
or
ga
ni
sm

se
ar
ch

al
go
ri
th
m

.
.

Lo
ca
lo

pt
im

a
av
oi
da
nc
e

A
cc
el
er
at
ed

co
nv
er
ge
nc
e
sp
ee
d

H
az
ra

&
R
oy

(2
01
9)

20
19

C
he
m
ic
al
re
ac
ti
on

op
ti
m
iz
at
io
n

.
.

A
cc
el
er
at
ed

co
nv
er
ge
nc
e
sp
ee
d

N
o
si
gn
ifi
ca
nt

en
ha
nc
em

en
t
co
m
pa
re
d
to

th
e
or
ig
in
al

al
go
ri
th
m

T
ru
on
g
et
al
.(
20
19
)

20
19

Sy
m
bi
ot
ic
or
ga
ni
sm

s
se
ar
ch

.
.

Im
pr
ov
ed

so
lu
ti
on

s

Im
pr
ov
ed

co
nv
er
ge
nc
e
sp
ee
d

C
he
n,

Li
&

Y
an

g
(2
02
0)

20
20

W
ha
le
op

ti
m
iz
at
io
n
al
go
ri
th
m

.
Lo

ca
lo

pt
im

a
av
oi
da
nc
e

N
o
si
gn
ifi
ca
nt

im
pr
ov
em

en
t
in

so
m
e
te
xt

fu
nc
ti
on

s

In
cr
ea
se
d
ex
ec
ut
io
n
ti
m
e
co
m
pa
ra
ti
ve
ly

El
si
si
(2
02
2)

20
22

G
re
y
w
ol
f
op

ti
m
iz
er

.
E
nh

an
ce
d
ex
pl
or
at
io
n
an
d
ex
pl
oi
ta
ti
on

Lo
ca
lo

pt
im

um
av
oi
da
nc
e

W
an

g
et
al
.(
20
22
)

20
22

G
re
y
w
ol
f
op

ti
m
iz
er

.
B
al
an
ce
d
ex
pl
or
at
io
n
an
d
ex
pl
oi
ta
ti
on

R
eq
ui
re
d
hi
gh

co
m
pu

ta
ti
on

al
co
m
pl
ex
it
y

C
ha
ud

hu
ri
&

Sa
hu

(2
02
2)

20
22

Ja
ya

al
go
ri
th
m

.
Im

pr
ov
ed

ex
pl
or
at
io
n
ca
pa
bi
lit
y

Fa
ile
d
to

co
ns
is
te
nt
ly

de
liv
er

su
pe
ri
or

re
su
lts

ac
ro
ss

al
l

da
ta
se
ts

Ç
el
ik

(2
02
3)

20
23

A
ri
th
m
et
ic
op

ti
m
iz
at
io
n

.
E
nh

an
ce
d
co
nv
er
ge
nc
e
ra
te

Lo
ca
lm

in
im

a
av
oi
da
nc
e

Z
ha
o
et
al
.(
20
23
)

20
23

M
ar
in
e
pr
ed
at
or
s
al
go
ri
th
m

.
In
cr
ea
se
d
di
ve
rs
it
y

R
eq
ui
re
d
ad
di
ti
on

al
st
ra
te
gi
es

fo
r
fu
rt
he
r
im

pr
ov
em

en
ts

Lo
ca
lm

in
im

a
av
oi
da
nc
e

Ei
rg
as
h
&

T
oğ
an

(2
02
3)

20
23

T
ea
ch
in
g
le
ar
ni
ng

st
ra
te
gy

.
.

E
nr
ic
he
d
di
ve
rs
it
y

Lo
ca
lo

pt
im

al
av
oi
da
nc
e

Sa
ho
o
et
al
.(
20
24
)

20
24

M
ot
h
fl
am

e
op

ti
m
iz
at
io
n

.
.

E
nh

an
ce
d
pe
rf
or
m
an
ce

C
ha
nd

ra
n
&

M
oh
ap
at
ra

(2
02
4)

20
24

T
un

ic
at
e
sw

ar
m

al
go
ri
th
m

.
.

A
cc
el
er
at
ed

co
nv
er
ge
nc
e

G
et
ti
ng

st
uc
k
in

lo
ca
lo

pt
im

a
in

hi
gh
-d
im

en
si
on

al
pr
ob
le
m
s

Im
pr
ov
ed

ex
pl
or
at
io
n
ab
ili
ty

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 8/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

distribution. In Table 3, we summarize the algorithms reviewed that employed GOBL for
performance enhancement.

�xi ¼ d� ðai þ biÞ � xi; 8i 2 f1; . . . ;Dg: (4)

Current optimum opposition-based learning
Another enhancement of OBL is called COOBL (Yang, 2017). It uses the search
information of the current best solution. The mathematical formula of COOBL is given by
Eq. (5). The D-dimensional point x� denotes the best solution within the current
population. Table 4 provides an overview of the reviewed algorithms that incorporated
COOBL to enhance performance.

�xi ¼ 2� x�i � xi; 8i 2 f1; . . . ;Dg: (5)

Quasi-reflection opposition-based learning
The QROBL technique is an extension of QOBL (Ergezer, Simon & Du, 2009). It generates
a random D-dimensional point between the centre and x points. Its algebraic expression is
formulated by Eq. (6). The algorithms that utilized QROBL for performance improvement
are summarized in Table 5.

�xi ¼ randðxi; aiþbi
2 Þ; xi <

aiþbi
2

randðaiþbi
2 ; xiÞ; xi � aiþbi

2

(
; 8i 2 f1; . . . ;Dg: (6)

Centroid opposition-based learning
The COBL variant replaces the current optimum in COOBL by the location of the centroid
(Rahnamayan et al., 2014). It is mathematically expressed by Eq. (7). The D-dimensional
point m denotes the centre of gravity of the current population. It is calculated using the
expression

PN
k¼1 xk, where N is the population size. Table 6 outlines the reviewed

algorithms that have applied COBL to improve performance.

�xi ¼ 2�mi � xi; 8i 2 f1; . . . ;Dg: (7)

Random opposition-based learning
The ROBL variant is another enhancement of BOBL, where the original point is multiplied
by random numbers to improve exploration (Long et al., 2019; Bairathi & Gopalani, 2020).
It is presented in Eq. (8). Table 7 summarises the reviewed algorithms that used ROBL for
performance enhancement.

�xi ¼ ai þ bi � randð0; 1Þ � xi; 8i 2 f1; . . . ;Dg: (8)

Super opposition-based learning
In SOBL (Tizhoosh & Ventresca, 2008), the opposite point �x can be defined based
on the distance of x from the centre of the interval. It is expressed by Eq. (9). In
Table 8, we provide a summary of algorithms that have used SOBL to enhance their
performance.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 9/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

�xi 2
½ai; xiÞ; xi >

aiþbi
2

½ai; xiÞ [ðxi; bi�; xi ¼ aiþbi
2

ðai; bi�; xi <
aiþbi
2 ;

8><
>: ; 8i 2 f1; . . . ;Dg: (9)

Table 4 Summary of MAs utilizing COOBL for performance enhancement.

Work Year Original MA Place Improvements Shortcomings

IP SP

Xu et al. (2011) 2011 Differential evolution . . Improved performance Failed to achieve best results across all
types of test functions

Cao, Li & Wang
(2013)

2013 Animal migration optimization . . Improved searchability No significant improvement for certain
type of optimization problemsAccelerated convergence rate

Chen & Tang (2015) 2015 Particle swarm optimization . Improved convergence rate Relied on parameter settings for optimal
performance

Mahdavi,
Rahnamayan &
Deb (2016)

2016 Differential evolution . . Enhanced solutions

Yang (2017) 2017 Differential evolution . . Improved convergence rate

Azmi et al. (2019) 2019 Simulated Kalman filter . Increased exploration

Table 3 Summary of MAs utilizing GOBL for performance enhancement.

Work Year Original MA Place Improvements Shortcomings

IP SP

Wang, Wu &
Rahnamayan
(2011)

2011 Differential evolution . . Improved convergence rate Underperformed on shifted and
large-scale problems

Wang et al. (2011) 2011 Particle swarm optimization . . Improved convergence speed

Wang,
Rahnamayan &
Wu (2013)

2013 Differential evolution . . Improved quality of solutions

Si, De &
Bhattacharjee
(2014)

2014 Particle swarm optimization . Enhanced solution quality Exhibits a slower convergence rate
compared to other competitive algorithm

Wang (2015) 2015 Artificial bee colony . . Balanced exploration and
exploitation

Failed to perform optimally across all
problem functions

Wei et al. (2016) 2016 Differential evolution . . Improved convergence speed

Chen et al. (2016) 2016 Teaching learning based
optimization

. . Enhanced convergence speed Ranking second in terms of objective value

Guo et al. (2017) 2017 Harmony search . Enhanced exploitation capability

Wang et al. (2017) 2017 Suckoo search . Accelerated convergence speed

Deng et al. (2022) 2022 Differential evolution . . Improved convergence speed Required high computational time for
high-dimensional complex problemsIncreased diversity

Chen et al. (2023) 2023 Equilibrium optimizer . Local optima avoidance Required increased computational time

Qiu et al. (2024) 2024 Harmony search . Enhanced convergence rate

Zhang et al. (2024) 2024 Particle swarm optimization . . Enhanced convergence rate Required slightly high computation time

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 10/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

Stochastic opposition-based learning
Most OBL variants compute opposite solutions based on the uniform distribution.
However, b-OBL utilizes the Beta distribution, i.e., bða; bÞ, to calculate concave or convex
opposite solutions (Choi, Togelius & Cheong, 2021). We compute the opposite point, �x,
using Eq. (10). The variables spread and mode are computed differently for the former and
the latter case, respectively. The symbol N denotes the population size. The symbol xðiÞj
represents the i-th solution. The term Nð0; 0:5Þ samples a random number from the

Table 5 Summary of MAs utilizing QROBL for performance enhancement.

Work Year Original MA Place Improvements Shortcomings

IP SP

Ergezer, Simon & Du
(2009)

2009 Biogeography-based optimization . . Improved performance

Bhattacharya &
Chattopadhyay
(2010)

2010 Biogeography-based optimization . . Accelerated convergence rate

Improved solutions

Ergezer & Simon (2015) 2015 Evolutionary algorithms . . Accelerated performance

Das, Bhattacharya &
Chakraborty (2018)

2018 Ions motion optimization . . Improved exploration and
exploitation

Luo & Yu (2022) 2022 Cuckoo search . Improved convergence speed

Nama (2022) 2022 Slime mold algorithm . . Improved convergence rate Required additional strategies for
further improvementLocal optima avoidance

Dhal et al. (2023) 2023 Aquila optimizer . . Improved exploitation Failed to perform effectively in
real-world applications

Bacanin et al. (2023) 2023 Arithmetic optimization algorithm . . Improved diversity Required high computational cost

Chauhan et al. (2024) 2024 Arithmetic optimisation algorithm . Local optima avoidance The convergence efficiency is
limited in some test functions

Sahoo et al. (2024) 2024 Moth flame optimization . . Improved performance Failed to achieve superior optimal
results for many objectives

Table 6 Summary of MAs utilizing COBL for performance enhancement.

Work Year Original MA Place Improvements Shortcomings

IP SP

Rahnamayan et al.
(2014)

2014 Differential evolution . . Enhanced learning Failed to outperform in all test
functionsImproved convergence rate

Zhou, Ding & Lei
(2018)

2018 Firefly algorithm . . Improved exploration
ability

Required careful parameter tuning for
optimal results

Liao & Zhou
(2019)

2019 Grasshopper optimization algorithm . Improved exploration and
exploitation

Zhou et al. (2019) 2019 Firefly algorithm . . Improved convergence rate

Si & Bhattacharya
(2021)

2021 Sine cosine algorithm . . Improved exploration

Xiang & Wu
(2023)

2023 Hybrid Salp swarm and butterfly
optimization algorithm

. . Accelerated convergence
speed

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 11/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

Gaussian distribution. Table 9 summarizes the reviewed algorithms that implemented
b-OBL to enhance their performance.

�xi ¼ bða; bÞ � ðaj � bjÞ þ bj; 8i 2 f1; . . . ;Dg (10)

a ¼ spread� peak; mode < 0:5
spread; otherwise

�
; b ¼ spread; mode < 0:5

spread� peak; otherwise

�
(11)

peak ¼
ðspread�2Þ�modeþ1
spread�ð1�modeÞ ; mode < 0:5

2�spread
spread þ spread�1

spread�mode; otherwise

(
(12)

normDiv ¼ 1
N

XN
i¼1

XD
j¼1

ffi
1
D

xðiÞj � �xj
aj � bj

 !2
vuut

; x ¼ 1
N

XN
i¼1

xi (13)

spread¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
normDiv

p
� �1þNð0;0:5Þ

; concave

0:1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
normDiv

p þ 0:9 convex

8<
: ; mode¼

aj�xi;j
aj�bj

; concave

mode¼ xi;j�bj
aj�bj

; convex

(
: (14)

After conducting an extensive literature review on the applications and effectiveness of
OBL techniques in metaheuristic optimization, we have identified and summarized four
fundamental limitations. Firstly, many OBL techniques exhibit a high degree of similarity,
differing mainly in how the opposition value is selected, which results in their effectiveness

Table 7 Summary of MAs utilizing ROBL for performance enhancement.

Work Year Original MA Place Improvements Shortcomings

IP SP

Long et al. (2019) 2019 Grey wolf optimizer . Enhanced diversity Required high number of
function evaluationsLocal optima avoidance

Zhang & Zhang (2021) 2021 Sparrow search algorithm . . Enhanced exploration ability

Ali, Fathimathul Rajeena &
Salama Abd Elminaam
(2022)

2022 Artificial hummingbird
algorithm

. Enhanced exploitation Outperformed by some
methods in terms of
speed

Ma et al. (2022) 2022 Moth-flame optimization . . Increased diversity Required high
computational timeImproved search speed

Balakrishnan, Dhanalakshmi
& Mahadeo Khaire (2022)

2022 Marine predators algorithm . Enhanced exploration

Table 8 Summary of MAs utilizing SOBL for performance enhancement.

Work Year Original MA Place Improvements Shortcomings

IP SP

Kaucic (2013) 2013 Particle swarm optimization . Avoided premature convergence

Razak, Nasir & Abd Ghani
(2022)

2022 Spiral dynamic algorithm . . Avoided premature convergence Increased computational
cost

Abdul Razak et al. (2024) 2024 Manta Ray foraging
algorithm

. . Enhanced exploration and
exploitation

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 12/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

being highly problem-dependent. This means that while an OBL variant may show
significant improvement for a particular optimization problem with a specific search space
contour, it may not generalize well to other problems with different landscape
characteristics. Secondly, despite various OBL techniques demonstrating promising results
within specific metaheuristic frameworks, their scalability to other MAs remains largely
unproven. Most studies focus on enhancing a single algorithm, such as DE or PSO, without
confirming whether the same OBL technique would be equally effective in another
optimization algorithm. Thirdly, traditional OBL approaches generate only a single
opposite solution for each candidate solution, which may not be sufficient for effectively
exploring the search space. By considering only one opposite candidate, OBL methods
might limit diversity and fail to fully exploit the best-known solutions, especially in
high-dimensional or complex landscapes where having only two values—original and
opposite—may not provide sufficient diversity to explore better regions. Finally, in cases
involving symmetric problems, the use of OBL may be counterproductive, as the generated
opposite solution could have the same fitness value as the original candidate. This
redundancy results in wasted computational resources and does not contribute to
accelerating convergence or improving solution quality. In some scenarios, it may even
mislead the search process, causing the global optimum to be missed. These four
limitations highlight the need for more adaptive and generalized OBL strategies that can
effectively address problem dependency, ensure cross-algorithm scalability, enhance
search diversity, and mitigate inefficiencies in symmetric problem landscapes.

EXPERIMENTS, NUMERICAL RESULTS, AND DISCUSSION
In this section, we delve into the performance analysis of our comparative study, focusing
on integrating five widely used OBL techniques into the operational framework of five
well-known MAs. It aims to determine the most effective OBL variant and which
combination yields the best outcome. The methodology for integrating the OBL
techniques into the five selected MAs is detailed in “Applications of OBL in MAs”.
“Benchmark Functions and Parameter Settings” provides an overview of the benchmark

Table 9 Summary of MAs utilizing β-OBL for performance enhancement.

Work Year Original MA Place Improvements Shortcomings

IP SP

Park & Lee (2015) 2015 Differential evolution . . Enhanced convergence speed Performance is highly sensitive to jumping
rate tuningEnhanced searchability

Choi, Togelius & Cheong
(2021)

2021 Differential evolution . . Reduced computational cost

Choi & Pachauri (2024) 2024 Differential evolution . . Enhanced performance

Zitouni et al. (2024) 2024 Great wall construction
algorithm

. . Enhanced exploration and
exploitation

Computational cost slightly increased

Local optima avoidance

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 13/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

functions utilized in our comparative study and details the parameter settings for each MA.
“Experimental Results and Discussion” details the comparative research and thoroughly
discusses the numerical results using three main metrics: optimality of solutions, execution
time, and number of function evaluations.

Applications of OBL in MAs
In our experiments, we integrated five OBL variants (BOBL (Tizhoosh, 2005), QOBL
(Rahnamayan, Tizhoosh & Salama, 2007), GOBL (Wang et al., 2011), COOBL (Xu et al.,
2011), and QROBL (Ergezer, Simon & Du, 2009)) with five well-established MAs (DE
(Storn & Price, 1997), PSO (Kennedy & Eberhart, 1995), GA (Babović & Wu, 1975), ABC
(Karaboga, 2005), and HS (Yang, 2009)). Each OBL technique was incorporated into these
algorithms at various stages, including the IP, the SP, or both, resulting in a total of 75
different algorithms. The selected OBL variants were chosen based on their demonstrated
superior performance in numerous studies, proving to be more effective in improving
optimization algorithms compared to other existing methods. The chosen MAs were
selected for their proven success in the literature, as well as their flexibility and adaptability,
which facilitate the seamless integration of OBL strategies without significant alterations to
the algorithms’ structures. Several studies have highlighted that the combination of OBL
techniques with these algorithms leads to notable performance enhancements, as
evidenced by their success in various benchmark problems. To the best of our knowledge,
this study is the first to comprehensively compare these combinations, offering a detailed
analysis of their comparative performance.

To streamline the memorization and easy identification of the distinct features across
various combinations, each combination will be represented using a simple notation:
X-Y-Z. In this notation, X denotes the applied OBL variant, which can be BOBL,
QOBL, GOBL, COOBL, or QROBL. Y signifies the chosen MA, which can also be
DE, PSO, GA, ABC, or HS. Lastly, Z represents the selected phase, indicated by the
acronyms IP, SP, or ISP. For example, the representation BOBL-PSO-IP indicates that
BOBL was applied during the initialization phase of the first population in the PSO
algorithm.

Benchmark functions and parameter settings
To evaluate the performance of the different combinations, a set of 12 challenging
benchmark functions derived from the CEC 2022 benchmark suite (Yy, 2024) has been
employed. These benchmark functions serve as a rigorous test bed for verifying the
performance of each combination. The specifics of these functions are detailed in Table 10.
The dimension of the search space is set to 10 and 20.

Table 11 summarizes the parameter settings for the various MAs chosen to evaluate the
performance of the selected OBL techniques. These parameters were meticulously chosen
based on empirical testing and recommendations from existing literature to ensure
optimal performance for each algorithm. In our experiments, the population size and the
maximum number of generations are set to 50 and 1,000, respectively.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 14/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

Experimental results and discussion
We employed a range of evaluation metrics to assess the performance of the various MAs
and OBL techniques used in our comparative study, ensuring a comprehensive analysis.
The selected metrics are given as follows:

1. Average fitness value (mean): This metric represents the mean fitness value obtained
from each MA averaged over the specified number of runs. We used this metric to
understand how well the algorithm performs on average.

2. Minimum fitness value (best): This metric indicates the lowest fitness value calculated
from each MA across the designated number of runs. It gives insight into the
algorithm’s capability to reach optimal or near-optimal solutions.

3. Maximum fitness value (worst): This metric shows the highest fitness value computed
from each MA across the designated number of runs. It helps in evaluating the
consistency and reliability of the algorithm.

4. Standard deviation value (STD): This metric assesses the performance of MAs because it
measures the variability and consistency of the algorithms’ results across multiple runs,
indicating their reliability and robustness. It is worth pointing out that the mathematical
expression used to compute its value is given by Eq. (15).

STD ¼ 1
jRj
XjRj
i¼1

f sið Þ � f s�ð Þð Þ2 (15)

where |R| is the number of runs, si the best-obtained solution at iteration i, and s� is the
optimal solution.

Table 10 Characteristics of the 12 test functions.

Function Function name Optimal solution

Unimodal functions

F1 Shifted and full Rotated Zakharov function 300

Basic/Multimodal functions

F2 Rotated Rosenbrock’s function 400

F3 Rotated expanded Schaffer’s f6 function 600

F4 Rotated non-continuous Rastrigin’s function 800

F5 Rotated Levy function 900

Hybrid functions

F6 Hybrid function 1 (N ¼ 3) 1,800

F7 Hybrid function 2 (N ¼ 6) 2,000

F8 Hybrid function 3 (N ¼ 5) 2,200

Composition functions

F9 Composition function 1 (N ¼ 5) 2,300

F10 Composition function 2 (N ¼ 4) 2,400

F11 Composition function 3 (N ¼ 5) 2,600

F12 Composition function 4 (N ¼ 6) 2,700

Search range: ½�100; 100�D

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 15/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

5. Execution time (ET): This metric refers to the time a given MA takes to complete its
optimization process. This metric is important for understanding which algorithm
quickly converges to the optimal solution.

6. Number of function evaluations (NFEs): This metric refers to the total number of times
the objective function is called by the considered MA to evaluate the candidate
solutions. We apply it to compare the efficiency of algorithms, as it directly reflects the
computational effort required to achieve a solution.

7. Convergence rate (CR): This measure evaluates how quickly the solutions improve over
iterations. It helps understand how quickly an algorithm converges to the optimal
solution.

Finally, due to the stochastic nature of MAs, each algorithm was run 30 times—to
obtain reliable and consistent results—using MATLAB R2023a, a widely recognized
platform for numerical computation and algorithm development. The computational
experiments were conducted on a system equipped with a 12th Gen Intel(R) Core(TM)
i5-1235U processor running at 1.30 GHz, paired with 16 GB of RAM. This hardware
configuration runs on Windows 11.

Performance analysis
In this section, we analyze and discuss the performance of different combinations,
highlighting which one yields the best results. Tables 12, 13, 14, 15, and 16 provide a
detailed comparison of the performance of the considered five MAs along with their OBL
variants across 12 benchmark functions, all evaluated at a dimension of 10. In parallel,
Tables 17, 18, 19, 20, and 21 display the performance results for the same set of algorithms
and their OBL variants, but at an increased dimension of 20. This comprehensive

Table 11 Parameter settings of the MAs used for the comparative study.

Algorithm Parameter Value

DE Crossover rate 0.2

Scaling factor (0.3, 0.9)

GA Crossover percentage 0.7

Mutation percentage 0.3

Mutation rate 0.1

PSO Inertia weight 1

Inertia weight damping ratio 0.99

Personal learning coefficient 1.5

Global learning coefficient 2.0

ABC Trial limit N � D

Food number 0:5� N

HS Harmony memory consideration rate 0.9

Pitch adjustment rate 0.45

Bandwidth 0.02

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 16/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

comparison enables a deeper understanding of how the algorithms and their variants
perform across different problem dimensions. These tables focus on three primary metrics:
STD, ET, and NFEs, where each one is evaluated across three phases: IP, SP, and IP-SP.
The data in the tables are presented in the format A/B/C, where A represents the number
of functions in which the variant outperforms the original algorithm, B shows the number
of functions where both perform similarly, and C indicates the number of functions where

Table 12 Performance comparison among DE and its variants across 12 functions (D ¼ 10).

Variants STD ET NFEs

BOBL-DE IP 5/3/4 12/0/0 0/0/12

SP 1/3/8 0/0/12 0/0/12

IP-SP 3/3/6 0/0/12 0/0/12

COOBL-DE IP 1/8/3 8/0/4 0/0/12

SP 4/0/8 0/0/12 0/0/12

IP-SP 2/0/10 0/0/12 0/0/12

GOBL-DE IP 6/3/3 0/0/12 0/0/12

SP 6/3/3 0/0/12 0/0/12

IP-SP 6/3/3 0/0/12 0/0/12

QOBL-DE IP 6/3/3 6/0/6 0/0/12

SP 4/3/5 0/0/12 0/0/12

IP-SP 7/3/2 0/0/12 0/0/12

QROBL-DE IP 6/3/3 2/2/8 0/0/12

SP 6/4/2 0/0/12 0/0/12

IP-SP 7/2/3 0/0/12 0/0/12

Table 13 Performance comparison among GA and its variants across 12 functions (D ¼ 10).

Variants STD ET NFEs

BOBL-GA IP 8/1/3 5/2/5 0/0/12

SP 7/1/4 2/1/9 0/0/12

IP-SP 7/0/5 2/1/9 0/0/12

COOBL-GA IP 2/1/9 2/0/10 0/0/12

SP 2/2/8 11/0/1 0/0/12

IP-SP 3/0/9 11/0/1 0/0/12

GOBL-GA IP 3/0/9 5/0/7 0/0/12

SP 7/1/4 2/1/9 0/0/12

IP-SP 5/0/7 2/0/10 0/0/12

QOBL-GA IP 7/0/5 3/0/9 0/0/12

SP 8/0/4 2/0/10 0/0/12

IP-SP 9/1/2 2/ 0/10 0/0/12

QROBL-GA IP 7/0/5 8/1/3 0/0/12

SP 8/1/3 2/0/10 0/0/12

IP-SP 5/2/5 2/0/10 0/0/12

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 17/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

the original algorithm outperforms the variant. These tables offer a more concise version of
the detailed data found in the Appendix, providing a clearer summary of the performance
results.

Table 12 presents a detailed comparison of several DE variants across three
performance metrics—STD, ET, and NFEs—for 12 functions with D ¼ 10. In the
following, we summarize the key insights and analysis of these results:

Table 14 Performance comparison among PSO and its variants across 12 functions (D ¼ 10).

Variants STD ET NFEs

BOBL-PSO IP 4/1/7 0/0/12 0/0/12

SP 4/3/5 0/0/12 0/0/12

IP-SP 5/2/5 0/0/12 0/0/12

COOBL-PSO IP 3/2/7 0/0/12 0/0/12

SP 0/1/11 0/0/12 0/0/12

IP-SP 0/1/11 0/0/12 0/0/12

GOBL-PSO IP 5/2/5 11/0/1 0/0/12

SP 4/2/6 12/0/0 0/0/12

IP-SP 6/2/4 11/0/1 0/0/12

QOBL-PSO IP 5/1/6 12/0/0 0/0/12

SP 4/1/7 1/0/11 0/0/12

IP-SP 5/2/5 0/0/12 0/0/12

QROBL-PSO IP 4/1/7 10/0/2 0/0/12

SP 2/1/9 0/0/12 0/0/12

IP-SP 4/2/6 0/0/12 0/0/12

Table 15 Performance comparison among HS and its variants across 12 functions (D ¼ 10).

Variants STD ET NFEs

BOBL-HS IP 4/2/6 0/0/12 0/0/12

SP 5/1/6 0/0/12 0/0/12

IP-SP 6/0/6 0/0/12 0/0/12

COOBL-HS IP 2/0/10 0/0/12 0/0/12

SP 7/0/5 0/0/12 0/0/12

IP-SP 7/0/5 0/0/12 0/0/12

GOBL-HS IP 4/1/7 0/0/12 0/0/12

SP 4/1/7 0/0/12 0/0/12

IP-SP 5/1/6 0/0/12 0/0/12

QOBL-HS IP 6/1/5 0/0/12 0/0/12

SP 5/0/7 0/0/12 0/0/12

IP-SP 3/0/9 0/0/12 0/0/12

QROBL-DE IP 3/0/9 3/0/9 0/0/12

SP 5/1/6 0/0/12 0/0/12

IP-SP 4/0/8 0/0/12 0/0/12

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 18/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

1. BOBL-DE variant:

(a) IP: The BOBL-DE variant outperforms the original algorithm in five cases for the
STD metric, with three ties and four cases where it underperforms. It dominates the
ET metric by winning all 12 cases. However, for NFEs, it underperforms in all 12
cases, showing that it requires more evaluations than the original DE.

Table 16 Performance comparison among ABC and its variants across 12 functions (D ¼ 10).

Variants STD ET NFEs

BOBL-ABC IP 7/0/5 7/0/5 1/11/0

SP 7/0/5 10/0/2 0/0/12

IP-SP 6/0/6 9/0/3 0/0/12

COOBL-ABC IP 1/0/11 12/0/0 0/12/0

SP 5/1/6 10/0/2 0/0/12

IP-SP 6/0/6 8/0/4 0/0/12

GOBL-ABC IP 6/1/5 12/0/0 0/12/0

SP 7/0/5 9/0/3 0/0/12

IP-SP 7/0/5 9/ 0/3 0/0/12

QOBL-ABC IP 7/1/4 12/0/0 0/12/0

SP 5/0/7 9/0/3 0/0/12

IP-SP 7/0/5 8/0/4 0/0/12

QROBL-ABC IP 9/0/3 11/0/1 0/12/0

SP 9/0/3 8/0/4 0/0/12

IP-SP 9/0/3 8/0/4 0/0/12

Table 17 Performance comparison among DE and its variants across 12 functions (D ¼ 20).

Variants STD ET NFEs

BOBL-DE IP 4/3/5 2/0/10 0/0/12

SP 8/2/2 0/0/12 0/0/12

IP-SP 7/2/3 0/0/12 0/0/12

COOBL-DE IP 8/1/3 6/2/4 0/0/12

SP 4/0/8 1/0/11 0/0/12

IP-SP 4/0/8 1/0/11 0/0/12

GOBL-DE IP 4/2/7 1/0/ 11 0/0/12

SP 6/2/4 0/0/12 0/0/12

IP-SP 6/1/5 1/0/11 0/0/12

QOBL-DE IP 7/2/3 1/0/11 0/0/12

SP 8/1/3 1/0/11 0/0/12

IP-SP 6/1/5 1/0/11 0/0/12

QROBL-DE IP 4/2/6 2/0/10 0/0/12

SP 9/1/2 1/0/11 0/0/12

IP-SP 8/1/3 1/0/11 0/0/12

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 19/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

(b) SP: This variant performs poorly in STD (one win, three ties, and eight losses), fails
in the ET metric (losing all 12 cases), and also underperforms in NFEs.

(c) IP-SP: The performance of this combination is relatively balanced for STD (three
wins, three ties, and six losses), but it similarly underperforms in both ET and NFEs,
losing all 12 cases in both categories.

Table 18 Performance comparison among GA and its variants across 12 functions (D ¼ 20).

Variants STD ET NFEs

BOBL-GA IP 5/0/7 3/1/8 0/0/12

SP 5/0/7 2/0/10 0/0/12

IP-SP 4/0/8 2/0/10 0/0/12

COOBL-GA IP 3/0/9 6/0/6 0/0/12

SP 5/0/7 11/0/1 0/0/12

IP-SP 4/0/8 11/0/1 0/0/12

GOBL-GA IP 4/1/7 2/0/10 0/0/12

SP 6/0/6 4/0/8 0/0/12

IP-SP 6/0/6 2/0/10 0/0/12

QOBL-GA IP 5/1/6 2/0/10 0/0/12

SP 6/1/5 2/0/10 0/0/12

IP-SP 6/0/6 2/0/10 0/0/12

QROBL-GA IP 5/1/6 4/2/6 0/0/12

SP 6/0/6 2/0/10 0/0/12

IP-SP 7/1/4 2/0/10 0/0/12

Table 19 Performance comparison among PSO and its variants across 12 functions (D ¼ 20).

Variants STD ET NFEs

BOBL-PSO IP 4/1/7 2/0/10 0/0/12

SP 8/1/3 4/0/8 0/0/12

IP-SP 8/1/3 10/0/2 0/0/12

COOBL-PSO IP 5/1/6 7/0/5 0/0/12

SP 1/1/10 2/0/10 0/0/12

IP-SP 1/1/10 2/0/10 0/0/12

GOBL-PSO IP 9/1/2 11/0/1 0/0/12

SP 6/1/5 12/0/0 0/0/12

IP-SP 9/1/2 3/0/9 0/0/12

QOBL-PSO IP 5/1/6 10/0/2 0/0/12

SP 6/1/5 2/0/10 0/0/12

IP-SP 4/1/7 2/0/10 0/0/12

QROBL-PSO IP 6/1/5 9/0/3 0/0/12

SP 7/1/4 2/0/10 0/0/12

IP-SP 7/1/4 2/0/10 0/0/12

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 20/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

BOBL-DE shows potential in execution time when using IP but consistently
underperforms in the number of function evaluations across all sub-variants. This suggests
that BOBL-DE might achieve faster runs but at the cost of requiring more evaluations.

2. COOBL-DE variant:

(a) IP: COOBL-DE’s IP variant wins only one case in the STDmetric, ties in eight cases,
and loses in 3. It performs well in ET (eight wins) but fails in NFEs.

Table 21 Performance comparison among ABC and its variants across 12 functions (D ¼ 20).

Variants STD ET NFEs

BOBL-ABC IP 7/2/3 8/1/3 0/12/0

SP 5/2/5 5/0/7 0/0/12

IP-SP 5/1/6 5/0/7 0/0/12

COOBL-ABC IP 3/3/6 11/0/1 0/12/0

SP 1/1/10 7/1/4 0/0/12

IP-SP 0/1/11 5/0/7 0/0/12

GOBL-ABC IP 7/4/1 6/0/6 0/0/12

SP 5/1/6 5/0/7 0/0/12

IP-SP 4/1/7 5/0/7 0/0/12

QOBL-ABC IP 8/3/1 11/0/1 0/12/0

SP 6/2/4 4/0/8 0/0/12

IP-SP 7/1/4 5/0/7 0/12/0

QROBL-ABC IP 8/2/2 5/1/6 0/12/0

SP 6/1/5 5/0/7 0/0/12

IP-SP 7/1/4 5/0/7 0/0/12

Table 20 Performance comparison among HS and its variants across 12 functions (D ¼ 20).

Variants STD ET NFEs

BOBL-HS IP 3/1/8 0/0/12 0/0/12

SP 5/1/6 0/0/12 0/0/12

IP-SP 5/0/7 0/0/12 0/0/12

COOBL-HS IP 3/0/9 0/0/12 0/0/12

SP 7/0/5 0/0/12 0/0/12

IP-SP 6/0/6 0/0/12 0/0/12

GOBL-HS IP 4/1/7 0/0/12 0/0/12

SP 4/1/7 0/0/12 0/0/12

IP-SP 4/0/8 0/0/12 0/0/12

QOBL-HS IP 4/3/5 0/0/12 0/0/12

SP 4/1/7 0/0/12 0/0/12

IP-SP 5/0/7 0/0/12 0/0/12

QROBL-HS IP 5/0/7 0/0/12 0/0/12

SP 5/1/6 0/0/12 0/0/12

IP-SP 5/1/6 0/0/12 0/0/12

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 21/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

(b) SP: This variant has similar difficulties with only four wins and eight losses in STD.
ET and NFEs remain sub-optimal, as it loses all 12 cases in both metrics.

(c) IP-SP: The performance is poor across the board with only two wins in STD and
losses across the rest of the metrics.

The COOBL-DE variant generally struggles to compete with the original algorithm,
particularly in terms of NFEs. It exhibits some strength in execution time under the IP
configuration, but overall, it does not significantly improve performance.

3. GOBL-DE variant: All three configurations (IP, SP, and IP-SP) of GOBL-DE show
identical results, achieving six wins, three ties, and three losses in STD. However, none
of the configurations outperforms the original algorithm in ET or NFEs, consistently
losing in all 12 cases. GOBL-DE shows a more consistent and solid performance in
terms of standard deviation, with a balanced win/loss ratio. However, it struggles
significantly with execution time and function evaluations, making it less efficient than
the original DE.

4. QOBL-DE variant:

(a) IP: This variant performs well in both STD (six wins, three ties, and three losses)
and ET (six wins). However, it still falls short in NFEs, underperforming in all cases.

(b) SP: In the SP configuration, the performance declines slightly, with four wins in
STD and no wins in ET or NFEs.

(c) IP-SP: The IP-SP configuration excels in STD, winning seven cases and losing only
2. However, like the other sub-variants, it underperforms in ET and NFEs.

QOBL-DE stands out for its performance in STD, particularly in the IP-SP configuration.
It manages to compete well with the original algorithm but struggles to balance this with
efficiency, as seen in the high NFEs.

5. QROBL-DE variant:

(a) IP: This variant performs similarly to the QOBL-DE variant in terms of STD,
winning six cases. However, its performance drops in ET, winning only two cases
and tying in 2.

(b) SP: The SP configuration shows strong results in STD (six wins and only two
losses), but like the other variants, it performs poorly in both ET and NFEs.

(c) IP-SP: The IP-SP configuration shows a balanced performance in STD (seven wins),
but again it fails to improve in the other metrics.

QROBL-DE performs very well in terms of standard deviation but struggles to match the
original DE algorithm in terms of execution time and efficiency (NFEs). Its IP-SP
configuration is the most balanced across the board, but the inefficiency remains a
significant drawback.

In summary, the GOBL-DE and QROBL-DE variants consistently show strong
performance across the board in terms of STD, especially in the IP-SP configuration,

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 22/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

making them good choices for tasks where accuracy is the priority. In addition, Only the
BOBL-DE variant shows any consistent improvement in ET, particularly in its IP
configuration, while all other variants struggle to outperform the original DE algorithm in
this category. Finally, All variants consistently underperform in terms of NFEs, indicating
that while they may improve accuracy, they do so at the cost of requiring significantly more
function evaluations, making them less efficient than the original DE.

Table 17 presents a comparison of several DE variants across three performance
metrics—STD, ET, and NFEs—for 12 functions with D ¼ 20. Below is a detailed
breakdown of the performance for each DE variant and its configurations:

1. BOBL-DE variant:

(a) IP: The IP configuration of BOBL-DE performs moderately well, winning four
cases, tying in 3, and losing in five for STD. It shows minimal success in ET, with
only two wins and 10 losses, and it underperforms significantly in NFEs, losing all
12 cases.

(b) SP: In contrast to IP, the SP configuration performs better in STD, winning eight
cases, tying in 2, and losing only 2. However, it struggles in ET, losing all 12 cases,
and similarly fails to make any improvements in NFEs.

(c) IP-SP: This configuration achieves similar results to SP in STD (seven wins, two ties,
and three losses) and performs poorly in ET and NFEs, consistently losing all cases
in these categories.

Overall, BOBL-DE shows promise in accuracy in its SP and IP-SP configurations but
struggles significantly with execution time and efficiency, requiring a higher number of
function evaluations. COOBL-DE variant:

(a) IP: The IP configuration performs well in STD, winning eight cases, tying 1, and
losing 3. It also performs decently in ET with six wins but falters in NFEs, losing all
12 cases.

(b) SP: This configuration is less successful, winning only four cases in STD and failing
in ET and NFEs, where it wins just one case in ET and none in NFEs.

(c) IP-SP: IP-SP performs similarly to SP, winning four cases in STD but struggling in
ET and NFEs, managing only one win in ET and no wins in NFEs.

The COOBL-DE variant shows some strength in the IP configuration, particularly in terms
of accuracy and moderate performance in ET, but like other variants, it remains inefficient
in terms of function evaluations.

2. GOBL-DE variant:

(a) IP: The IP configuration has a weaker performance in STD, with only four wins and
seven losses. It also underperforms in ET (one win) and NFEs (no wins).

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 23/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

(b) SP: In the SP configuration, GOBL-DE shows a stronger performance in STD,
winning six cases, but remains ineffective in ET and NFEs, losing all cases in NFEs
and failing to win any in ET.

(c) IP-SP: The IP-SP configuration achieves six wins and five losses in STD but
struggles in ET and NFEs, managing just one win in ET and none in NFEs.

GOBL-DE demonstrates inconsistent performance, showing some strength in STD,
particularly in the SP and IP-SP configurations, but it continues to face challenges in NFEs
and ET.

3. QOBL-DE variant:

(a) IP: The IP configuration performs well in STD, winning seven cases, but falls short
in ET and NFEs, with only one win in ET and none in NFEs.

(b) SP: This configuration performs strongly in STD with eight wins but again
underperforms in ET (one win) and fails completely in NFEs.

(c) IP-SP: The IP-SP configuration mirrors this trend, winning six cases in STD but
failing to make significant improvements in either ET or NFEs.

QOBL-DE stands out in accuracy, particularly in the SP configuration where it wins the
majority of cases in STD. However, like the other variants, it struggles with both execution
time and efficiency.

4. QROBL-DE variant:

(a) IP: The IP configuration achieves a balanced performance in STD (four wins, two
ties, six losses) but performs poorly in ET, winning only two cases, and fails in NFEs.

(b) SP: The SP configuration of QROBL-DE performs strongly, with nine wins in STD
and only two losses. However, similar to other configurations, it struggles with ET
and NFEs, winning only one case in ET and none in NFEs.

(c) IP-SP: This configuration shows good performance in STD, winning eight cases, but
it is unable to improve in either ET or NFEs, with only one win in ET and none in
NFEs.

QROBL-DE, particularly in its SP and IP-SP configurations, performs exceptionally well in
terms of accuracy, making it one of the stronger variants in this regard. However, it
continues to face challenges in efficiency, as seen in the consistently poor performance in
NFEs.

In summary, the QROBL-DE and QOBL-DE variants continue to demonstrate strong
performance in terms of accuracy, especially in the SP and IP-SP configurations, which
frequently outperform other variants in the STD metric. However, like the previous set of
results, all variants struggle with execution time and the number of function evaluations,
with BOBL-DE and COOBL-DE variants occasionally showing some strength in execution
time but falling short in efficiency. This suggests that while these variants can improve the

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 24/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

accuracy of the original DE algorithm, they do so at the cost of requiring significantly more
function evaluations, making them less efficient for large-scale problems.

Table 13 presents the performance comparison of GA and its variants across three
performance metrics—STD, ET, and NFEs—for 12 functions with a dimension of D ¼ 10.
Below is a detailed analysis of each GA variant and its configurations:

1. BOBL-GA variant:

(a) IP: The IP configuration of BOBL-GA performs strongly in STD, with eight wins,
one tie, and three losses. It shows moderate performance in ET, with five wins and
five losses, but underperforms significantly in NFEs, losing all 12 cases.

(b) SP: This configuration performs slightly worse in STD, with seven wins and four
losses. It also struggles in ET, with only two wins, and like the IP configuration, it
underperforms in NFEs.

(c) IP-SP: The IP-SP configuration follows a similar pattern, with seven wins in STD
but weak performance in ET (two wins) and no wins in NFEs.

BOBL-GA performs well in accuracy, particularly in the IP configuration. However, its
efficiency is lacking, as all configurations fail to improve in NFEs, consistently requiring
more function evaluations. Its execution time is moderate, with the IP configuration faring
better than the others.

2. COOBL-GA variant:

(a) IP: The IP configuration of COOBL-GA performs poorly in STD, winning only two
cases, tying in 1, and losing 9. It struggles in ET, with only two wins, and consistently
underperforms in NFEs.

(b) SP: The SP configuration shows poor performance in STD (two wins, two ties, and
eight losses), but it performs remarkably well in ET, winning 11 cases. However, it
continues to underperform in NFEs.

(c) IP-SP: The IP-SP configuration mirrors the SP performance in ET (11 wins) but
performs slightly better in STD, with three wins. It, too, underperforms in NFEs.

COOBL-GA performs weakly in terms of accuracy, particularly in the IP and SP
configurations. However, it demonstrates strength in execution time, particularly in the SP
and IP-SP configurations, making it somewhat competitive in terms of speed but highly
inefficient in NFEs.

3. GOBL-GA variant:

(a) IP: The IP configuration shows poor performance in STD, with only three wins and
nine losses. It performs moderately in ET, winning five cases, but underperforms in
NFEs, losing all 12.

(b) SP: The SP configuration improves significantly in STD, winning seven cases and
losing 4. However, it struggles in ET (two wins) and fails in NFEs.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 25/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

(c) IP-SP: This configuration shows moderate results in STD, with five wins, but
underperforms in ET (two wins) and NFEs.

GOBL-GA shows stronger performance in accuracy in the SP configuration, but like other
variants, it struggles in execution time and function evaluations. Overall, it performs
inconsistently across metrics.

4. QOBL-GA variant:

(a) IP: The IP configuration performs well in STD, winning seven cases, but struggles in
ET, with only three wins, and underperforms in NFEs.

(b) SP: This configuration improves slightly in STD, winning eight cases and losing 4,
but continues to struggle in ET (two wins) and NFEs.

(c) IP-SP: The IP-SP configuration excels in STD, winning nine cases, but performs
poorly in both ET (two wins) and NFEs.

QOBL-GA stands out in terms of accuracy, particularly in the IP-SP configuration, making
it one of the top performers in STD. However, like the other GA variants, it struggles to
compete in efficiency, particularly in NFEs, and has moderate success in execution time.

5. QROBL-GA variant:

(a) IP: The IP configuration shows a strong performance in STD, with seven wins and
five losses, and it performs moderately in ET with eight wins. However, it
underperforms in NFEs.

(b) SP: The SP configuration continues to perform well in STD, winning eight cases and
losing only 3. However, like other configurations, it struggles in ET (two wins) and
NFEs.

(c) IP-SP: The IP-SP configuration is more balanced in terms of STD, winning five
cases and tying 2. However, it underperforms in ET (two wins) and NFEs.

QROBL-GA demonstrates a solid performance in terms of accuracy, particularly in the SP
and IP configurations. However, its efficiency remains a challenge, as it underperforms in
NFEs across all configurations.

In summary, the QOBL-GA and QROBL-GA variants consistently perform well in
terms of accuracy, especially in the IP-SP and SP configurations, where they often
outperform other GA variants. However, all GA variants struggle with efficiency,
consistently failing to perform well in the NFEs metric. COOBL-GA shows a
promising improvement in execution time, particularly in its SP and IP-SP
configurations, but its overall performance in STD remains weak. In conclusion, while
some GA variants offer improvements in precision, none manage to improve efficiency, as
they consistently require a higher number of function evaluations compared to the original
GA algorithm.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 26/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

Table 18 compares the performance of GA and its variants across three performance
metrics—STD, ET, and NFEs—for 12 functions with a dimension of D ¼ 20. Below is an
analysis of each GA variant and its configurations:

1. BOBL-GA variant:

(a) IP: The IP configuration of BOBL-GA performs moderately in STD, with five wins
and seven losses. It performs decently in ET, winning three cases, but
underperforms in NFEs, losing all 12 cases.

(b) SP: The SP configuration mirrors the performance of IP, with five wins in STD but
only two wins in ET. It also underperforms in NFEs, losing all cases.

(c) IP-SP: The IP-SP configuration performs slightly worse in STD (four wins), and its
performance in ET remains weak with only two wins. Like the other configurations,
it underperforms in NFEs.

BOBL-GA performs moderately well in accuracy, particularly in the IP and SP
configurations. However, its efficiency is lacking, as all configurations fail to perform well
in NFEs. The execution time is also sub-optimal, with only a few wins in the ET category.

2. COOBL-GA variant:

(a) IP: The IP configuration of COOBL-GA performs poorly in STD, with only three
wins and nine losses. It performs better in ET, winning six cases, but it fails to
improve in NFEs, losing all 12 cases.

(b) SP: This configuration shows moderate performance in STD, with five wins, but
excels in ET, winning 11 cases. However, like other configurations, it underperforms
in NFEs.

(c) IP-SP: The IP-SP configuration performs similarly to SP, winning 11 cases in ET but
showing weaker performance in STD, with four wins, and underperforming in
NFEs.

COOBL-GA performs well in terms of execution time, particularly in the SP and IP-SP
configurations, where it dominates in ET. However, it struggles with accuracy and remains
inefficient in terms of NFEs, which limits its overall effectiveness.

3. GOBL-GA variant:

(a) IP: The IP configuration shows weak performance in STD, with only four wins and
seven losses. It also struggles in ET, winning just two cases, and underperforms in
NFEs.

(b) SP: This configuration performs slightly better in STD, with six wins, and improves
in ET with four wins. However, it fails to improve in NFEs, losing all cases.

(c) IP-SP: The IP-SP configuration matches the performance of SP in STD (six wins)
but struggles in ET (two wins) and continues to underperform in NFEs.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 27/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

GOBL-GA demonstrates decent accuracy in the SP and IP-SP configurations, with
moderate performance in STD. However, like other GA variants, it struggles with
efficiency, particularly in NFEs, and shows limited success in execution time.

4. QOBL-GA variant:

(a) IP: The IP configuration performs moderately well in STD, with five wins, one tie,
and six losses. It struggles in ET, winning only two cases, and underperforms in
NFEs.

(b) SP: This configuration shows a slight improvement in STD, with six wins and five
losses, but remains weak in ET (two wins) and NFEs.

(c) IP-SP: The IP-SP configuration performs similarly to SP, with six wins in STD and
two wins in ET. It continues to struggle in NFEs.

QOBL-GA performs reasonably well in accuracy but struggles with both execution time
and function evaluations. Its performance in ET and NFEs remains consistently weak
across all configurations.

5. QROBL-GA variant:

(a) IP: The IP configuration performs well in STD, winning five cases, tying 1, and
losing 6. It also performs moderately in ET, with four wins and two ties, but
underperforms in NFEs.

(b) SP: The SP configuration continues to perform well in STD, with six wins and six
losses, but struggles in ET (two wins) and fails in NFEs.

(c) IP-SP: The IP-SP configuration performs the best in terms of STD, winning seven
cases and losing 4. However, it underperforms in ET (two wins) and NFEs.

QROBL-GA demonstrates strong accuracy, particularly in the IP-SP configuration.
However, it struggles with efficiency, consistently underperforming in NFEs and showing
limited success in ET.

In summary, the QROBL-GA and QOBL-GA variants consistently perform well in
terms of accuracy, particularly in the IP-SP and SP configurations. However, like the other
GA variants, they struggle with efficiency, consistently underperforming in the NFEs
metric. COOBL-GA demonstrates promising improvements in ET, particularly in the SP
and IP-SP configurations, but it remains weak in terms of accuracy and function
evaluations. Overall, while some GA variants offer improvements in precision, none
manage to significantly enhance efficiency, as they consistently require more function
evaluations than the original GA algorithm.

Table 14 presents the performance comparison of PSO and its variants across three
performance metrics—STD, ET, and NFEs—for 12 functions with a dimension of D ¼ 10.
Below is an analysis of each PSO variant and its configurations:

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 28/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

1. BOBL-PSO variant:

(a) IP: The IP configuration of BOBL-PSO performs moderately in STD, with four
wins, one tie, and seven losses. However, it struggles in ET and NFEs, losing all 12
cases in both metrics.

(b) SP: This configuration shows similar performance in STD, with four wins, three
ties, and five losses. Like IP, it also underperforms in ET and NFEs.

(c) IP-SP: The IP-SP configuration performs slightly better in STD, with five wins and
five losses, but continues to underperform in ET and NFEs, failing to win in any of
these categories.

BOBL-PSO demonstrates moderate accuracy, particularly in the IP-SP configuration, but
struggles with efficiency, consistently underperforming in execution time and number of
function evaluations across all configurations.

2. COOBL-PSO variant:

(a) IP: The IP configuration of COOBL-PSO performs poorly in STD, with only three
wins, two ties, and seven losses. It fails to win in ET and NFEs, losing all 12 cases in
both metrics.

(b) SP: This configuration shows very weak performance in STD, with no wins and 11
losses. It also fails in ET and NFEs, losing all 12 cases.

(c) IP-SP: The IP-SP configuration matches SP in performance, with no wins in STD,
ET, or NFEs.

COOBL-PSO performs poorly across all metrics, showing weak accuracy and efficiency. Its
SP and IP-SP configurations are particularly underwhelming, failing to win in any of the
measured categories.

3. GOBL-PSO variant:

(a) IP: The IP configuration of GOBL-PSO performs well in STD, winning five cases,
tying in 2, and losing 5. It excels in ET, winning 11 cases, but struggles in NFEs.

(b) SP: This configuration performs moderately in STD, with four wins, two ties, and
six losses, and performs very well in ET, winning all 12 cases. However, it
underperforms in NFEs.

(c) IP-SP: The IP-SP configuration is strong in STD, with six wins and four losses. Like
the other configurations, it excels in ET (11 wins) but struggles in NFEs.

GOBL-PSO shows strong performance in both accuracy and ET, particularly in the IP and
SP configurations. However, it faces inefficiency in function evaluations, with no wins in
NFEs across all configurations.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 29/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

4. QOBL-PSO variant:

(a) IP: The IP configuration performs well in STD, with five wins, one tie, and six losses,
and it excels in ET, winning 12 cases. However, it underperforms in NFEs, losing all
cases.

(b) SP: This configuration performs poorly in STD, with only four wins and seven
losses, and performs poorly in ET (one win) and NFEs (no wins).

(b) IP-SP: The IP-SP configuration performs decently in STD, with five wins, but
continues to struggle in ET and NFEs.

QOBL-PSO performs well in STD, particularly in the IP configuration, and excels in ET.
However, it suffers from inefficiency, as seen in the consistently poor performance in
NFEs.

5. QROBL-PSO variant:

(a) IP: The IP configuration of QROBL-PSO shows moderate performance in STD,
with four wins, one tie, and seven losses. It performs well in ET, winning 10 cases,
but fails to perform well in NFEs.

(b) SP: The SP configuration struggles, with only two wins in STD and poor
performance in ET and NFEs, losing all 12 cases in both metrics.

(c) IP-SP: The IP-SP configuration performs similarly, with four wins in STD and poor
results in ET and NFEs.

QROBL-PSO shows moderate performance in accuracy in the IP and IP-SP
configurations, and strong results in ET. However, it remains inefficient, consistently
losing in NFEs.

In summary, the GOBL-PSO and QOBL-PSO variants perform well in terms of
accuracy and are especially strong in ET, with GOBL-PSO standing out as a consistent top
performer in ET. However, inefficiency is a common issue across all PSO variants, as they
consistently underperform in NFEs. COOBL-PSO is the weakest performer overall, failing
to win in any category, while BOBL-PSO and QROBL-PSO demonstrate moderate
accuracy but struggle in efficiency. In conclusion, while some PSO variants offer
improvements in execution time and precision, none manage to improve efficiency, as they
consistently require more function evaluations than the original PSO algorithm.

Table 19 presents the performance comparison of PSO and its variants across three
performance metrics—STD, ET, and NFEs—for 12 functions with a dimension of D ¼ 20.
Below is a detailed analysis of each PSO variant and its configurations:

1. BOBL-PSO variant:

(a) IP: The IP configuration of BOBL-PSO shows moderate performance in STD, with
four wins, one tie, and seven losses. It struggles in ET, winning only two cases, and
underperforms in NFEs, losing all 12 cases.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 30/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

(b) SP: This configuration performs very well in STD, winning eight cases and losing
only 3. Its performance in ET improves with four wins but continues to
underperform in NFEs, losing all 12 cases.

(c) IP-SP: The IP-SP configuration excels in both STD (eight wins) and ET (10 wins),
but, like other configurations, it underperforms in NFEs, losing all 12 cases.

BOBL-PSO performs strongly in terms of accuracy, particularly in the SP and IP-SP
configurations, and shows improvement in ET in the IP-SP configuration. However, it
struggles with efficiency, underperforming in NFEs across all configurations.

2. COOBL-PSO variant:

(a) IP: The IP configuration of COOBL-PSO shows moderate performance in STD,
with five wins, one tie, and six losses. It performs decently in ET, with seven wins,
but fails to make any improvements in NFEs, losing all 12 cases.

(b) SP: This configuration performs very poorly in STD, winning only one case and
losing 10. It also struggles in ET, winning only two cases, and underperforms in
NFEs.

(c) IP-SP: The IP-SP configuration mirrors SP’s performance, with only one win in
STD and two wins in ET. It also underperforms in NFEs.

COOBL-PSO demonstrates weak overall performance, particularly in accuracy and
efficiency. The only slightly positive result is the IP configuration’s performance in ET, but
overall, the variant underperforms across most metrics.

3. GOBL-PSO variant:

(a) IP: The IP configuration of GOBL-PSO performs very well in STD, winning nine
cases, tying 1, and losing only 2. It also excels in ET, winning 11 cases. However, it
underperforms in NFEs, losing all 12 cases.

(b) SP: This configuration also performs well in STD, winning six cases and losing 5. It
performs perfectly in ET, winning all 12 cases, but underperforms in NFEs.

(c) IP-SP: The IP-SP configuration matches the strong performance of IP, winning nine
cases in STD, but its performance in ET drops (3 wins). It continues to
underperform in NFEs.

GOBL-PSO stands out as one of the strongest performers, particularly in accuracy and ET.
However, it shares a common weakness with the other variants: inefficiency in NFEs, as it
consistently requires more function evaluations.

4. QOBL-PSO variant:

(a) IP: The IP configuration of QOBL-PSO performs moderately well in STD, with five
wins, one tie, and six losses. It excels in ET, winning 10 cases, but fails to improve in
NFEs, losing all cases.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 31/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

(b) SP: This configuration performs similarly in STD (six wins, five losses), but
struggles in ET, winning only two cases. It underperforms in NFEs, like the other
configurations.

(c) IP-SP: The IP-SP configuration mirrors SP in STD (four wins, seven losses) and
continues to underperform in ET and NFEs, with only two wins in ET and no wins
in NFEs.

QOBL-PSO performs well in accuracy and ET, particularly in the IP configuration, but
struggles with efficiency. It consistently underperforms in NFEs, and its results in ET vary
across configurations.

5. QROBL-PSO variant:

(a) IP: The IP configuration of QROBL-PSO shows solid performance in STD, with six
wins, one tie, and five losses. It also performs well in ET, winning nine cases, but
underperforms in NFEs.

(b) SP: This configuration performs very well in STD, winning seven cases and losing 4.
However, it struggles in ET (two wins) and underperforms in NFEs.

(c) IP-SP: The IP-SP configuration mirrors SP’s performance in STD (seven wins, four
losses) but underperforms in ET (two wins) and NFEs, losing all cases in NFEs.

QROBL-PSO performs well in accuracy, particularly in the SP and IP-SP configurations. It
shows strong results in ET in the IP configuration but continues to underperform in NFEs,
highlighting inefficiency in function evaluations.

In summary, the GOBL-PSO and QROBL-PSO variants demonstrate strong
performance in terms of accuracy and ET, especially in the IP and SP configurations.
GOBL-PSO stands out as a particularly strong performer in both metrics. However, all
PSO variants share a common weakness: inefficiency in NFEs, where they consistently
underperform compared to the original PSO algorithm. COOBL-PSO shows the weakest
performance overall, while BOBL-PSO offers moderate accuracy but struggles with
efficiency. In conclusion, while some PSO variants offer improvements in precision and
execution time, none manage to improve efficiency, requiring a higher number of function
evaluations across all configurations.

Table 15 presents the performance comparison of HS and its variants across three
performance metrics—STD, ET, and NFEs—for 12 functions with a dimension of D ¼ 10.
Below is a detailed analysis of each HS variant and its configurations:

1. BOBL-HS variant:

(a) IP: The IP configuration of BOBL-HS performs moderately in STD, with four wins
and six losses. However, it struggles in both ET and NFEs, failing to win any cases in
either category, losing all 12.

(b) SP: The SP configuration shows a strong performance in STD, winning five cases
and losing 6. However, similar to the IP configuration, it underperforms in both ET
and NFEs, losing all cases.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 32/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

(c) IP-SP: The IP-SP configuration shows better performance than IP in STD, with six
wins, but continues to underperform in ET and NFEs, failing to win any cases in
these metrics.

BOBL-HS generally delivers mediocre accuracy, especially in the IP-SP configuration, but
it struggles with efficiency, consistently underperforming in ET and NFEs across all
configurations.

2. COOBL-HS variant:

(a) IP: The IP configuration of COOBL-HS performs very well in STD, winning only
two cases and losing 10. It underperforms in both ET and NFEs, losing all cases.

(b) SP: This configuration shows even stronger performance in STD, winning seven
cases, and performs decently in ET, winning no cases but maintaining moderate
results. Like IP, it underperforms in NFEs.

(c) IP-SP: The IP-SP configuration excels in STD, winning seven cases, but like other
configurations, it underperforms in ET and NFEs.

COOBL-HS performs strongly in terms of accuracy, particularly in the SP and IP-SP
configuration. However, it struggles with efficiency, as measured by ET and NFEs, where it
fails to win any cases.

3. GOBL-HS variant:

(a) IP: The IP configuration of GOBL-HS performs perfectly in STD, winning only four
cases and losing 7. However, it struggles with both ET and NFEs, losing all 12 cases
in these categories.

(b) SP: The SP configuration mirrors the performance of IP, with four wins, but
underperforms in both ET and NFEs, losing all cases.

(c) IP-SP: The IP-SP configuration achieves slightly better results in STD compared to
previous phases, with five wins, but underperforms in ET and NFEs like the other
configurations.

GOBL-HS demonstrates poor performance in terms of accuracy, winning only five cases as
the best configuration. Moreover, it struggles significantly with efficiency,
underperforming in both execution time and function evaluations.

4. QOBL-HS variant:

(a) IP: The IP configuration performs decent in STD, winning six cases and losing 5.
However, it underperforms in ET and NFEs, losing all cases in both metrics.

(b) SP: The SP configuration was poor, but not terrible performance with five wins.
However, it underperforms in ET and NFEs.

(c) IP-SP: This configuration also performs poorly in terms of STD, winning only three
cases, and it struggles with both ET and NFEs.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 33/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

QOBL-HS performs Unsatisfactory accuracy, particularly in the IP-SP configuration,
where it wins only 3. However, it continues to struggle with efficiency, as it underperforms
in execution time and function evaluations across all configurations.

5. QROBL-HS variant:

(a) IP: The IP configuration underperforms in terms of STD, winning only three cases
while losing 9. It also struggles in both ET and NFEs, losing all cases in these
categories.

(b) SP: The SP configuration matches with the SP in QOBL-HS, achieving five wins in
STD. However, it also struggles with ET and NFEs, similar to the other variants.

(c) IP-SP: This configuration also performs poorly in STD, securing only four wins, and
it underperforms in both ET and NFEs, failing to achieve any victories in those
categories.

QROBL-HS demonstrates unacceptable performance in terms of STD. However, similar to
the other HS variants, it struggles with efficiency, consistently underperforming in both
execution time and function evaluations.

In summary, the COOBL-HS variant demonstrates superior performance compared to
other variants in terms of accuracy, achieving seven wins across the SP and IP-SP
configurations. Meanwhile, the QOBL-HS variant excels in the IP configuration. However,
all HS variants struggle with efficiency, consistently underperforming in execution time
(ET) and function evaluations (NFEs). Despite their acceptable accuracy, this inefficiency
renders them less practical for tasks requiring fewer evaluations or faster execution times.
Consequently,their lack of efficiency underscores the urgent need for improvements in
execution time and evaluation efficiency.

Table 20 presents the performance comparison of HS and its variants across three
performance metrics—STD, ET, and NFEs—for 12 functions with a dimension of D ¼ 20.
Below is a detailed analysis of each HS variant and its configurations:

1. BOBL-HS variant:

(a) IP: The IP configuration of BOBL-HS shows limited performance in STD, with
three wins and eight losses. Additionally, it struggles in both ET and NFEs, losing all
cases in ET and NFEs.

(b) SP: The SP configuration also performs average in STD, with five wins and six
losses, and similarly underperforms in both ET (0 wins) and NFEs (0 wins).

(c) IP-SP: The IP-SP configuration mirrors SP’s performance, with five wins in STD,
and it continues to underperform in ET and NFEs, recording losses in all cases for
both metrics.

BOBL-HS exhibits limited accuracy performance, especially within IP configurations. It
also struggles with efficiency, consistently underperforming in both execution time and
number of function evaluations across all configurations

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 34/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

2. COOBL-HS variant:

(a) IP: The IP configuration of COOBL-HS shows weak performance in STD, with
three wins and nine losses. Furthermore, it significantly underperforms in both ET
and NFEs, losing all cases.

(b) SP: This configuration performs well in STD, winning seven cases. However, it
continues to underperform in ET and NFEs.

(c) IP-SP: The IP-SP configuration exhibits an equal performs in STD (six wins, 0 tie,
six losses) and struggles with efficiency in both ET and NFEs (no wins).

COOBL-HS is an acceptable performer in terms of accuracy, particularly in the SP
configuration, but it continues to struggle with efficiency, particularly in ET and FEs.

3. GOBL-HS variant:

(a) IP: The IP configuration of GOBL-HS underperforms in STD, with only four wins.
In addition, it struggles with ET and NFE, losing all cases.

(b) SP: The SP configuration mirrors the performance of IP, with four wins and seven
losses, consistently, it struggles with efficiency, failing to win any cases in NFEs and
showing no wins in ET.

(c) IP-SP: The IP-SP configuration continues the trend of performance in STD, with
four wins, and like the other configurations, it underperforms in ET and NFEs.

GOBL-HS shows weak performance in terms of accuracy, consistently winning only four
across all configurations. Additionally, it struggles with efficiency, consistently
underperforming in both execution time and function evaluations.

4. QOBL-HS variant:

(a) IP: The IP configuration performs inferior in STD, with four wins and five losses. It
underperforms in ET and NFEs.

(b) SP: This configuration mirrors GOBL-HS’s performance in STD, with four wins
and seven losses. consitently, efficiency continues to struggle, particularly in NFEs
and ET.

(c) IP-SP: The IP-SP configuration shows similar results in STD, with five wins and
seven losses, but fails to show improvement in ET or NFEs, underperforming in
both metrics.

QOBL-HS shows weak performance in accuracy overall, with its best results seen in the
IP-SP configurations. However, it struggles with efficiency, consistently delivering poor
results in execution time (ET) and function evaluations (NFEs). This indicates that
improvements in accuracy come at the expense of slower execution and increased
evaluations.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 35/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

5. QROBL-HS variant:

(a) IP: The IP configuration performs decently in STD, with five wins and seven losses,
also struggles with efficiency, showing poor results in both ET and NFEs.

(b) SP: The SP configuration mirrors other decent performers, with five wins and five
losses in STD, but like the other configurations, it underperforms in ET and NFEs,
losing all cases.

(c) IP-SP: The IP-SP configuration performs well in STD, with five wins and six losses,
but, like the other configurations, it struggles with efficiency, winning only one case
in ET and no cases in NFEs.

performs poorly in accuracy across all configurations and similarly struggles with
efficiency, underperforming in both ET and NFEs. Like the other variants, improvements
in accuracy do not translate to better efficiency.

In summary, the COOBL-HS and QROBL-HS variants outperform the others in terms
of accuracy, winning a modest number of cases across all configurations. However, all HS
variants struggle with efficiency, consistently underperforming in execution time (ET) and
function evaluations (NFEs). This lack of efficiency makes them less practical for tasks
requiring faster execution or fewer evaluations. While these HS variants perform decently
in terms of precision, their inefficiency in ET and NFEs highlights the need for
improvement in these areas.

Table 16 compares the performance of ABC and its variants across three key
performance metrics—STD, ET, and NFEs—for 12 functions with a dimension of D ¼ 10.
Below is a detailed analysis of each ABC variant and its configurations:

1. BOBL-ABC variant:

(a) IP: The IP configuration of BOBL-ABC performs moderately well in terms of STD,
with seven wins and five losses. It shows strong results in ET, winning seven cases,
but underperforms in NFEs, with only one win and 11 losses.

(b) SP: This configuration matches IP in STD, with seven wins and five losses, but
performs better in ET, winning 10 cases. However, it underperforms significantly in
NFEs, losing all 12 cases.

(c) IP-SP: The IP-SP configuration exhibits average performance in terms of STD, with
six wins and six losses. However, it performs well in ET, achieving nine wins, while it
has no wins in NFEs.

BOBL-ABC performs reasonably well in terms of accuracy, particularly in the IP and SP
configuration, and shows strength in ET for the SP configuration. However, it consistently
underperforms in NFEs, suggesting inefficiency in function evaluations.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 36/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

2. COOBL-ABC variant:

(a) IP: The IP configuration of COOBL-ABC shows poor performance in both STD and
NFEs, winning only one case in STD and none in NFEs. It performs well in ET,
winning all 12 cases.

(b) SP: This configuration shows moderate performance, with five wins and six losses
in STD. It also performs well in ET, winning 10 cases, but continues to
underperform in NFEs, losing all cases.

(c) IP-SP: The IP-SP configuration mirrors the results of IP-SP in BOBL, achieving six
wins in STD and continuing to excel in ET with eight wins, though it has no wins in
NFEs.

COOBL-ABC performs poorly in accuracy and efficiency, with only moderate success in
ET, particularly in the SP and IP-SP configurations.

3. GOBL-ABC variant:

(a) IP: The IP configuration of GOBL-ABC performs moderately well in STD, with six
wins and five losses. It excels in ET, winning all 12 cases, but underperforms in
NFEs, losing all cases.

(b) SP: This configuration performs similarly in STD, with seven wins, and continues to
perform strongly in ET, winning nine cases. However, it underperforms in NFEs,
losing all 12 cases.

(c) IP-SP: The IP-SP configuration shows average performance in STD, with seven
wins and five losses. However, it struggles in NFEs, with 12 losess. In contrast, it
performs strongly in ET, winning all 12 cases.

GOBL-ABC performs moderately in accuracy and excels in ET, particularly in the IP
configuration. However, like other ABC variants, it struggles significantly with efficiency,
losing all cases in NFEs.

4. QOBL-ABC variant:

(a) IP: The IP configuration of QOBL-ABC performs well in STD, with seven wins and
four losses. It excels in ET, winning all 12 cases, but underperforms in NFEs, losing
all 12 cases.

(b) SP: This configuration performs moderately in STD, with five wins and seven losses,
and continues to perform well in ET, winning nine cases. However, it fails to
improve in NFEs, losing all cases.

(c) IP-SP: he IP-SP configuration demonstrates average performance in STD, with
seven wins and five losses. and it continues to perform well in ET, winning eight
cases. However, in underperforms in NFEs losing all cases.

QOBL-ABC performs well in accuracy and excels in ET, particularly in the IP
configuration. However, it shares the same inefficiency problem as the other variants,
consistently underperforming in NFEs.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 37/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

5. QROBL-ABC variant:

(a) IP: The IP configuration of QROBL-ABC performs very well in STD, winning nine
cases and losing only 3. It also performs strongly in ET, winning 11 cases, but
continues to struggle in NFEs, losing all cases.

(b) SP: This configuration mirrors the IP configuration, with nine wins and three losses
in STD. It performs moderately in ET, winning eight cases, but underperforms in
NFEs, losing all 12 cases.

(c) IP-SP: The IP-SP configuration performs well in terms of STD and ET, achieving
nine and eight wins, respectively. However, it performs poorly in NFEs, with no
wins.

QROBL-ABC performs very well in terms of accuracy, particularly across all
configurations. However, like the other ABC variants, it underperforms significantly in
NFEs, indicating inefficiency.

In summary, the QROBL-ABC and GOBL-ABC variants stand out in terms of accuracy
and show strong results in ET, especially in the IP and SP configurations. QOBL-ABC also
performs well in ET but shows moderate accuracy results. However, all ABC variants
consistently struggle with efficiency, performing poorly in NFEs across the board. While
these variants offer improvements in accuracy and execution time, their inefficiency in
function evaluations makes them less practical for tasks requiring fewer evaluations or
faster convergence. In conclusion, the ABC variants demonstrate solid accuracy and speed,
but their poor efficiency limits their overall practicality.

Table 21 compares the performance of ABC and its variants across three key
performance metrics—STD, ET, and NFEs—for 12 functions with a dimension of D ¼ 20.
Below is a detailed analysis of each ABC variant and its configurations:

1. BOBL-ABC variant:

(a) IP: The IP configuration of BOBL-ABC performs well in STD, with seven wins, two
ties, and three losses. It also shows strong results in ET, winning eight cases but
underperforms significantly in NFEs, losing all 12 cases.

(b) SP: The SP configuration performs moderately in STD, with five wins, two ties, and
five losses, and shows weaker performance in ET, winning only five cases. Like IP, it
underperforms in NFEs.

(c) IP-SP: The IP-SP configuration shows average performance in terms of STD, with
five wins, one tie, and six losses. While, it performs poorly in NFEs and ET,
achieving only five wins in ET and none in NFEs.

BOBL-ABC performs well in terms of STD, particularly in the IP configuration, and shows
decent results in execution time for both IP and SP. However, it struggles with efficiency,
consistently underperforming in NFEs across all configurations.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 38/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

2. COOBL-ABC variant:

(a) IP: The IP configuration of COOBL-ABC shows poor performance in terms of STD,
with three wins, three ties, and six losses. However, it excels in ET, winning 11 cases,
but underperforms significantly in NFEs.

(b) SP: This configuration performs poorly in STD, with only one win and 10 losses. It
performs decently in ET, winning seven cases, but fails in NFEs, losing all 12 cases.

(c) IP-SP: The IP-SP configuration performs poorly, with no wins in STD, and
continues to underperform in ET with only five wins and none in NFE.

COOBL-ABC struggles in STD, particularly in the SP and IP-SP configurations, but it
shows strength in execution time, particularly in the IP configuration. However, it remains
inefficient, consistently underperforming in NFEs.

3. GOBL-ABC variant:

(a) IP: The IP configuration of GOBL-ABC performs very well in STD, winning seven
cases, tying 4, and losing only 1. It performs moderately in ET, with six wins, but
underperforms in NFEs, losing all 12 cases.

(b) SP: This configuration performs moderately in STD, with five wins and six losses. It
shows decent performance in ET, with five wins, but like other configurations, it
underperforms in NFEs.

(c) IP-SP: The IP-SP configuration performs poorly across all metrics—STD, ET, and
NFE—with seven losses in both STD and ET, and no wins in NFE.

GOBL-ABC shows moderate performance in terms of STD in the IP configuration,
showing the most balanced results among the variants. However, it struggles with
efficiency, particularly in NFEs, where it consistently underperforms.

4. QOBL-ABC variant:

(a) IP: The IP configuration of QOBL-ABC performs excellently in STD, with eight
wins, three ties, and only one loss. It also excels in ET, winning 11 cases, but
underperforms in NFEs, losing all cases.

(b) SP: This configuration performs moderately in STD, with six wins and four losses,
but continues to underperform in NFEs, losing all cases. It performs weakly in ET,
winning only four cases.

(c) IP-SP: The IP-SP configuration shows moderate performance with seven wins and
it shows weak performance as the other configurations in NFEs and ET winning five
wins.

QOBL-ABC performs very well in STD in the IP configuration and shows strong execution
time results. However, it underperforms in NFEs, continuing the inefficiency trend seen in
the other ABC variants.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 39/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

5. QROBL-ABC variant:

(a) IP: The IP configuration of QROBL-ABC performs well in STD, winning eight cases
and losing only 2. It shows moderate results in ET, winning five cases, but
underperforms in NFEs, losing all 12 cases.

(b) SP: This configuration performs moderately in STD, with six wins and five losses,
but continues to underperform in both ET and NFEs, showing weak results.

(c) IP-SP: The IP-SP configuration mirrors the poor results of other configurations in
NFEs, while showing average performance in STD, with seven wins and four losses.
It also underperforms in ET, with only five wins.

QROBL-ABC performs well in terms of STD in the IP configuration, but like the other
ABC variants, it struggles with efficiency, underperforming in NFEs across the board.

In summary, the QROBL-ABC and QOBL-ABC variants perform strongly in terms of
STD, particularly in the IP configurations, while BOBL-ABC also shows solid results.
These configurations demonstrate competitive ET results, with several configurations
excelling in ET. However, the consistent inefficiency in terms of NFEs remains a major
drawback for all variants. Despite showing strong accuracy and competitive execution
times, the ABC variants are less practical for tasks that require more efficient function
evaluations. In conclusion, while these ABC variants perform well in terms of precision
and speed, their inefficiency in NFEs limits their overall effectiveness.

Overall, the impact of dimensionality and the phase in which the OBL technique is
applied plays a significant role in the performance of DE, GA, PSO, HS, and ABC variants
across various metrics. Dimensionality has a profound effect, as increasing the problem
dimension from 10 to 20 generally leads to a decline in performance. In higher dimensions
(D ¼ 20), all algorithm variants require more function evaluations, making them less
efficient compared to their performance in lower dimensions (D ¼ 10). This increase in
complexity also leads to a degradation in accuracy, with the standard deviation being less
stable at higher dimensions, while execution time often increases as the computational
load increases. Regarding the phase of OBL application, the results show that applying
OBL during the initial population phase improves the diversity of solutions, which
enhances accuracy, particularly in lower dimensions. However, this phase alone fails to
make the algorithms more efficient in terms of NFEs, especially in higher dimensions. The
search phase generally provides a more balanced performance, improving the refinement
of solutions, but it still falls short of significantly improving efficiency. The IP-SP
configuration, which combines both phases, consistently yields the best results in terms of
accuracy, as it benefits from the initial diversity provided by the IP phase and the solution
refinement of the SP phase. Nevertheless, even the IP-SP configuration underperforms in
NFEs, indicating that these improvements in accuracy come at the cost of increased
computational expense. Among the variants, QOBL-GA and QROBL-GA consistently
show the best accuracy, particularly in the IP-SP configuration, while QROBL-ABC also
excels in terms of STD across multiple configurations. In terms of execution time,

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 40/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

COOBL-GA and GOBL-PSO stand out as the fastest, particularly in the SP and IP-SP
configurations, making them more efficient in terms of convergence speed. However, no
variant demonstrates a clear improvement in NFEs, indicating that while some
configurations achieve high accuracy, they do so at the expense of computational
efficiency. Ultimately, while certain OBL-enhanced variants like QOBL-GA and
QROBL-GA offer strong accuracy, the overall inefficiency in terms of function evaluations
limits their practical application, particularly in large-scale, high-dimensional problems.

To conduct a rigorous comparative analysis of the five OBL variants applied to the five
selected MAs at three integration phases, we employ Friedman’s test—a robust
non-parametric statistical method designed for evaluating multiple algorithms across
diverse datasets. This test systematically ranks the algorithms based on their performance
across multiple benchmark functions and determines whether the observed differences are
statistically significant.

Tables S11–S15 present the Friedman mean rank results for the mean fitness values of
DE, GA, PSO, HS, and ABC variants, respectively. The results indicate that the
DE-QROBL-IP-SP configuration achieves the highest performance for D ¼ 10, while
DE-QROBL-SP emerges as the best-performing configuration for D ¼ 20. Among the
examined OBL techniques, QROBL and QOBL consistently attain the highest rankings for
DE, GA, and HS at D ¼ 10, and for DE, GA, and ABC at D ¼ 20, demonstrating their
superior effectiveness in enhancing algorithmic performance. In contrast, GOBL proves to
be the most effective strategy for PSO, highlighting its adaptability and impact within this
optimization framework.

Convergence analysis
This section provides a comprehensive analysis and discussion of convergence curves for
the five considered MAs and their OBL variants. The evaluation is conducted across four
representative benchmark functions F1, F3, F7, and F9. Each function is selected from a
different category—unimodal, multimodal, hybrid, and composition, in 10 and 20
dimensions. It is worth pointing out that we opted not to include all 12 functions to avoid
making the article excessively lengthy. These convergence curves provide a visual
representation of how the objective function evolves over iterations, allowing us to assess
the algorithm’s performance, solution quality, convergence speed, and balance between
exploration and exploitation. We also detect issues like premature convergence and aid in
comparative analysis. For a more detailed examination, all convergence diagrams are
provided in the Supplemental File.

Figure S1, illustrates the convergence behaviour of DE and its variants during the
initialization phase for D ¼ 10. In F1, all variants exhibit rapid convergence within the first
300 iterations, after which they stabilize at the same fitness value. Among them, DE and
DE-QROBL demonstrate slightly faster convergence, reaching lower fitness values earlier
than the other variants. This suggests that QROBL effectively enhances the early search
phase by guiding the population toward promising regions more efficiently. For F3, all DE
variants demonstrate rapid convergence within the first 100 iterations. This rapid decline
in fitness during the initial iterations indicates an efficient exploration of the search space.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 41/64

http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

Notably, the DE-QROBL slightly outperforms the others in the final stages. In F7, the
initial 400 iterations show significant fitness value reductions across all variants,
accompanied by noticeable fluctuations. These fluctuations suggest that the algorithms are
actively exploring the search space. DE-BOBL and standard DE stabilize earlier than the
others, indicating that BOBL improves the balance between exploration and exploitation,
helping the algorithm settle into optimal regions more efficiently. In F9, the convergence
curves reveal noticeable improvements across all variants occurring quickly, signifying an
effective exploratory phase. However, they stabilize around 100 iterations, converging to
similar fitness values.

Figure S2, presents the convergence results of the DE algorithm and its variants during
the swarming phase for D ¼ 10. For F1, all variants exhibit rapid and comparable
convergence, with most of the improvements occurring within the first few iterations. This
swift convergence leads to an early stabilization of the fitness curves at very low values. The
early flattening of the curves suggests that the search space for F1 is relatively simple,
allowing the algorithms to transition quickly from exploration to exploitation. In F3, the
fitness values drop sharply within the first 100 iterations, after which all variants stabilize at
similar levels. The small differences in convergence speed suggest that OBL techniques do
not drastically affect performance during the swarming phase. However, minor
improvements in the final stages indicate that QROBL and COOBL may contribute to a
slightly better-refined solution. In F7, the first 400 iterations show a significant decrease in
fitness values, with noticeable fluctuations across the variants. Interestingly, while most
variants stabilize, DE-COOBL appears to stagnate at a higher fitness value, suggesting that
it struggles to refine solutions effectively during the swarming phase. On the other hand,
DE-QOBL and DE-GOBL show a more consistent descent, indicating that these OBL
strategies improve the late-stage search process. For F9, the curves show similar and fast
convergence by the first 50 stagnating early and settling into local optima due to
insufficient exploration. However, DE-COOBL reaches the lowest fitness value,
demonstrating its ability to enhance solution quality.

Figure S3, illustrates the convergence behaviour of DE and its variants during the IP-SP
phase for D ¼ 10. In F1, all variants exhibit rapid convergence within the first 200
iterations. The fitness values drop sharply, demonstrating effective exploration. After this
early phase, the curves stabilize and converge to optimal fitness values, indicating that the
variants transitioned into exploitation. Notably, the convergence patterns of DE-QROBL,
and DE-COOBL are faster than others, indicating that they can provide marginal
improvements in convergence speed for unimodal functions. For F3, all variants once again
display fast convergence, particularly within the first 100 iterations. The curves show very
similar behaviour, with the fitness values stabilizing early at almost the same point for all
variants. The fast drop in fitness in the initial iterations suggests efficient exploration of the
search space. For F7, the curves show more diversity in convergence behaviour compared
to F3. Most variants explore the search space in the first 200 iterations, after which they
transition into the exploitation phase, each stabilizing over a varying number of iterations.
DE-COOBL shows fast convergence behaviour and stabilizes by 100 iterations indicating
distinct exploration ability. DE-GOBL, on the other hand, requires more iterations to fully

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 42/64

http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

exploit the search space, resulting in a slower convergence rate compared to the other
variants. For F9, the convergence behaviour is largely similar across all variants. They
display rapid convergence within the first 50 iterations, settling early into local optima due
to insufficient exploration, except for DE-COOBL, which converges to a lower value. The
early stabilization suggests that all DE variants prematurely converge to optimal solutions
without further improvements in fitness.

Figure S4, presents the convergence plots of the DE and its variants during the
initialization phase for D ¼ 20. In F1, the convergence curves for all DE variants exhibit a
rapid decline in fitness values during the initial iterations, signaling an effective early
exploration phase. However, the early flattening of the curves is primarily due to the
simplicity of the problem, which requires minimal exploration. In F3, all DE variants show
rapid convergence, achieving their fitness values within the first 200 iterations. After this
point, the fitness values stabilize. For F7, the convergence behaviour indicates a prolonged
exploration phase within the first 400 iterations, followed by a transition into the
exploitation phase. Most variants stabilize by around 600 iterations, this indicates that they
improve exploration efficiency, helping to avoid premature convergence, with the standard
DE again showing the best convergence results. In F9, the algorithms exhibit a rapid
decline in fitness within the first 100 iterations, indicating efficient exploration of the
solution space. By the end of the optimization process, all variants converge to the same
fitness value, suggesting no distinct advantage in convergence behavior. This outcome is
attributed to the characteristics of the function, which guide all algorithms along a similar
optimal trajectory with minimal deviation.

Figure S5, illustrates the convergence curves of DE and its variants during the swarming
phase for D ¼ 20. In F1, all variants exhibit smoother, more flattened curves, indicating
smaller incremental improvements and entering a prolonged exploitation phase. Notably,
DE-COOBL distinguishes itself by converging to its best fitness value by iteration 200,
showcasing faster convergence and a more efficient optimization process compared to the
other variants. In F3, all variants exhibit rapid convergence within the first 200 iterations,
demonstrating an effective exploration of the search space. Following this initial phase, the
algorithms stabilize at similar fitness values. Notably, DE-COOBL outperforms the other
variants, closely followed by DE-QROBL, both of which deliver good convergence results.
For F7, the convergence curves exhibit a more gradual convergence behaviour, with
stability being reached later in the optimization process. During the first 200 iterations, the
curves change gradually, indicating an active exploration phase. Following this, the
algorithms transition into the exploitation phase, with smaller, less frequent
improvements. The figure clearly highlights that DE-COOBL outperforms the other
variants, achieving the best convergence results. For F9 all variants exhibit similar
convergence behavior, achieving rapid progress within the first 50 iterations before
stagnating, indicating premature convergence.

Figure S6, illustrates the convergence curves of the DE algorithm and its variants during
the IP-SP phase for D ¼ 20. In F1, all the curves converge rapidly and exhibit similar
performance, indicating a robust exploration phase during the initial iterations. Following
this, the algorithms transition into a more thorough exploitation of the search space,

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 43/64

http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

leading to subtle improvements in fitness. For F3, the curves reflect an effective exploration
of the search space within the first 200 iterations, after which they stabilize, with all
variants closely aligned. However, DE-COOBL demonstrates a slight advantage,
outperforming the other variants for this function. In F7, the curves take longer to converge
compared to F3 starting with a rapid descent in the first 200 iterations followed by slow
improvements, indicating a balanced transition between exploration and exploitation.
Notably, DE-COOBL distinguishes itself by achieving earlier convergence, outperforming
the other variants. For F9, the convergence curves exhibit a rapid trend, stabilizing within
the first 50 iterations. DE-QROBL achieves a slightly faster convergence rate, reaching a
lower fitness value ahead of the other variants.

Figure S7, illustrates the convergence curves of the GA algorithm and its variants during
the Initialization phase for D ¼ 10. In F1, DE-BOBL starts with a relatively high fitness
value but quickly catches up to the other variants. The leveling off of the curves during the
initial iterations indicates a swift transition into the exploitation phase. In this phase, the
algorithms exhibit only minor improvements in fitness before stabilizing later on. For F3,
all curves exhibit rapid convergence behaviour, stabilizing within the first 50 iterations in
the same fitness value. However, the standard GA and GA-COOBL variants require
additional iterations before achieving stability, indicating a more gradual refinement in
their convergence process. Similarly, in F7, the curves show a rapid convergence pattern,
with fitness values decreasing significantly within the initial iterations. GA-QROBL has a
fast convergence speed compared to the other variants. In F9, we distinguish the standard
and GA-QOBL the standard GA and GA-QOBL variants require more iterations to
converge to their optimal fitness values and achieve stabilization. This extended
convergence time suggests that these variants engage in a more thorough exploration
phase, allowing them to search the solution space more comprehensively before settling on
the final solution.

Figure S8, illustrates the convergence behaviour of the GA algorithm and its variants
during the swarming phase for D ¼ 10. In F1, all the variants display uneven convergence
speeds, marked by fluctuating fitness values during the initial iterations. Within the first
200 iterations, the algorithms primarily focus on exploring the search space before
transitioning to the exploitation phase. Notably, GA-QROBL exhibits the fastest
convergence, stabilizing at an early stage and effectively optimizing performance compared
to the other variants. For F3, all curves exhibit similar convergence patterns, showing rapid
improvements within the first 30 iterations. After this, they stabilize at nearly the same
fitness values, except for the standard GA, which takes about 200 iterations to stabilize. The
early stabilization across most variants indicates premature convergence, as little to no
improvement is seen after the initial 200 iterations. In F7, the convergence behaviour is
more gradual, with a slower decline in fitness values. Stabilization occurs after about 250
iterations. The slower transition into exploitation allows for more thorough exploration
before convergence. GA-BOBL, followed by GA-QOBL, achieves the best results,
demonstrating superior performance compared to the other variants. Finally, for F9, the
curves show rapid convergence within the first 50 iterations, with the exception of standard
GA and GA-QOBL, which take more time to stabilize. After the initial convergence, the

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 44/64

http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

curves flatten. The early convergence and the quick stabilization hints at possible
premature convergence, as the algorithms may not have fully explored the search space.
Expect GA-COOBL that outperforms the other variants, achieving the lowest fitness value.

Figure S9, presents the convergence plots of the GA and its variants during the
combined IP-SP phase for D ¼ 10. For F1, all GA variants exhibit rapid convergence, with
most achieving near-optimal solutions at iteration 200. This demonstrates the high
efficiency of the GA variants in optimizing the unimodal function, with only slight
performance differences observed among them. In F3 the convergence occurs rapidly
within the first 50 iterations, with all GA variants’ performance appearing better than the
standard GA. This indicates an enhanced ability of the variants to optimize this function
effectively. For F7, the convergence process is rapid for most variants, except for DE-
QOBL, which requires more iterations to effectively exploit the search space. Most GA
variants stabilize in 200 iterations and converge to similar fitness values, indicating a
shared capacity for refinement within the solution space. In F9, the algorithms demonstrate
a rapid decline in fitness within the first few iterations indicating effective exploration of
the solution space. Among the variants, DE-COOBL demonstrates superior performance,
converging slightly faster than the others and achieving lower fitness values by the
conclusion of the optimization process.

Figure S10, presents the convergence curves of the GA algorithm and its variants
through the initialization phase for D ¼ 20 space. In F1 all variants demonstrate rapid and
comparable convergence behaviour, with GA-QROBL and GA-QOBL stabilizing within
the initial iterations. The other variants, however, show minor differences, indicating a
brief exploitation phase that extends up to around 200 iterations. For F3, the curves exhibit
a gradual and distinct convergence, reaching stability around 400 iterations. During the
first 200 iterations, the curves reflect an effective exploration phase, followed by a
transition into the exploitation phase, where only slight improvements are observed.
Notably, GA-COOBL and GA-GOBL outperform the other variants for this function,
demonstrating superior convergence behaviour. In F7, the rapid initial descent in the
curves signifies a robust exploration phase, during which the algorithms quickly enhance
the fitness values. However, the subsequent flattening of the curves after 200 iterations
marks the transition into the exploitation phase, with slower, incremental improvements.
GA-QROBL, in particular, stands out by demonstrating a strong convergence
performance, reaching optimal fitness more effectively than the other variants. In the F9
function, all variants demonstrate rapid convergence, reaching similar fitness values within
the first 50 iterations, with no significant improvements afterward. This behaviour reflects
a swift exploration phase followed by poor exploitation.

Figure S11, illustrates the convergence behaviour of the GA algorithm and its variants
during the Swarming phase for D ¼ 20. In F1, all variants display rapid and closely aligned
convergence rates, with their curves flattening early. This rapid stabilization indicates that
the algorithms reach their optimal fitness values quickly. In contrast, in F3, the curves
demonstrate effective exploration during the initial 200 iterations, after which the
algorithms Switch into the exploitation phase, gradually converging towards stabilization.
GA-COOBL and GA-BOBL show slightly superior convergence rates compared to the

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 45/64

http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

other variants, indicating better optimization performance throughout the process.
Similarly for F7, throughout the first 200 iterations, the curves reflect efficient exploration
followed by a shift into the exploitation phase, where the algorithms progressively
converge toward stability. Notably, GA-GOBL stands out by outperforming the other
variants, demonstrating positive convergence behaviour. For F9, the convergence
behaviour of all variants exhibited a similar and rapid pace, with stabilization occurring
within the initial 50 iterations. This rapid stabilization indicates that the algorithms may
have converged prematurely.

Figure S12, illustrates the convergence curves of the GA algorithm and its variants
during the IP-SP phase for D ¼ 20. In F1, GA-BOBL begins with a relatively high fitness
value, rapidly decreasing to align with the other variants, displaying swift convergence
during the initial iterations. All variants quickly attain the same fitness value without any
subsequent improvements. For F3, the difference between the variants is somewhat
evident. All variants initially focus on exploring the search space for the first 200 iterations,
after which they transition into the exploitation phase. Notably, GA-BOBL and GA-QOBL
achieve the fastest convergence during this process, demonstrating their effectiveness in
this function. In F7, all the variants exhibit strong convergence behaviour, particularly
during the initial 200 iterations, after which they stabilize around a similar fitness value.
Furthermore, GA-COOBL demonstrates superior convergence performance, closely
followed by GA-QOBL, which also yields strong results and attains the near-optimal
fitness value. In F9, all variants exhibit a steep convergence trend, rapidly approaching the
same fitness value within the first 50 iterations. However, the lack of further improvement
beyond this point indicates poor exploration and a strong tendency toward premature
convergence.

Figure S13, illustrates the convergence curves of the PSO algorithm and its variants
during the initialization phase for D ¼ 10. In F1, all variants demonstrate comparable
convergence behaviour, displaying rapid progress during the first 100 iterations before
approaching the same lower fitness value. In F3, the variants again exhibit similar
convergence performance, stabilizing at around 100 iterations, indicating an effective
exploration phase. Notably, PSO-QROBL displays a slight advantage over the other
variants. In F7, the curves exhibit more distinct patterns, characterized by rapid
convergence during the initial 100 iterations. This convergence is marked by frequent
fluctuations in fitness values, highlighting an effective exploration phase. Following this
period, the curves stabilize after 100 iterations to the optimal value. Notably, PSO-QOBL
demonstrates particularly swift convergence, outperforming the other variants in this
function. In F9, the variants exhibit rapid convergence, making significant progress within
the first 100 iterations. However, they stabilize too quickly without further refinement,
indicating premature convergence.

Figure S14, illustrates the convergence curves of the PSO algorithm and its variants
during the swarming phase D ¼ 10. For F1, PSO-COOBL starts at a comparatively high
fitness value but swiftly declines to match the performance of the other variants, which also
demonstrates quick convergence in the early iterations. All variants soon reach the same
lower fitness level. FOR F3, the curves exhibit strong convergence during the first 100

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 46/64

http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

iterations, after which they stabilize at the optimal fitness value. However, PSO-COOBL
gets stuck in a local optimum. Among the variants, PSO-QROBL achieves the fastest
convergence rate, outperforming the other algorithms on this function. In F7, the variants
display a noticeable distinction in their convergence curves. All curves settle within the first
100 iterations in a local optimum, indicating premature convergence and insufficient
exploration of the search space, which prevents further improvement toward the global
optimum. In F9, demonstrate rapid initial progress within the first 50 iterations, followed
by stagnation after 100 iterations at a fitness value around 2,400–2,500, failing to reach the
global optimum. This behavior indicates premature convergence, where the algorithms get
trapped in a suboptimal solution due to insufficient exploration.

Figure S15, illustrates the convergence curves of the PSO algorithm and its variants
during the IP-SP phase for D ¼ 10. In F1, the curves demonstrate rapid convergence in the
first 100 iterations, and they all settle in the same fitness value. Notably, PSO-QROBL
slightly outperforms others. For F3, the curves once again exhibit rapid convergence
behaviour within the first 100 iterations to the optimal solution, indicating strong
exploration capabilities. PSO-COOBL stabilizes slightly earlier than the other variants,
reflecting its effective optimization performance during this phase. Similarly, for F7, all
variants converge to the same fitness value within the first 100 iterations, indicating limited
exploration of the search space. However, PSO-COOBL exhibits a faster convergence rate
but ultimately stagnates in a local optimum, failing to achieve further improvements. In F9,
all curves exhibit comparable convergence behaviour, characterized by rapid convergence
within the first 100 iterations. Following this initial phase, the curves stabilize at the same
fitness value, indicating that the variants reach a similar level of optimization.

Figure S16, illustrates the convergence curves of the PSO algorithm and its variants
during the initialization phase for D ¼ 20. In F1, PSO-BOBL starts with a relatively high
fitness value but quickly aligns with the other PSO variants. All variants demonstrate swift
convergence during the initial iterations, showcasing strong early exploration capabilities.
Furthermore, the curves for all variants flatten out and stabilize at the same fitness value.
For F3, the variants exhibit swift convergence within the initial 100 iterations, with
PSO-GOBL showing a slight advantage by stabilizing marginally earlier than the others.
This rapid initial convergence reflects strong exploration capabilities, while the early
stabilization suggests an expedited shift into the exploitation phase. In F7 the convergence
curves exhibit noticeable distinctions within the first 200 iterations, with all variants
demonstrating fast progress. However, despite the rapid improvement, they ultimately
settle at a lower yet suboptimal fitness value, highlighting challenges in effective
exploitation. For F9, all variants exhibit a swift and nearly complete convergence within the
initial 100 iterations, quickly stabilizing at a suboptimal fitness value, Indicating a
premature shift from exploration to exploitation.

Figure S17, illustrates the convergence behaviour of the PSO algorithm and its variants
during the swarming phase for D ¼ 20. In F1, PSO-BOBL once again starts with a higher
initial fitness value but quickly matches the performance of the other PSO variants. All
variants exhibit rapid convergence in the early iterations, reflecting strong exploration
capabilities. For F3, all variants converge within the initial 100 iterations, exhibiting

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 47/64

http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

comparable convergence behaviour as they settle at a similar fitness value. However,
PSO-COOBL stands out by converging to a slightly higher fitness value. During the first
100 iterations, all variants demonstrate clear exploration of the search space, showcasing
their ability to identify promising solutions before stabilizing. In F7, the variants exhibit
distinct convergence curves, beginning with an exploration phase of the search space
before transitioning to exploitation after 100 iterations. Among them, PSO-COOBL
demonstrates a fast convergence performance, closely trailed by the PSO-QROBL variant.
In F9, all curves show similar convergence behaviour. They show a fast convergence by the
first 100 iterations then they stabilize to the same suboptimal fitness value.

Figure S18, depicts the convergence behaviour of the PSO algorithm and its variants
during the IP-SP phase for D ¼ 20. In F1, PSO-COOBL begins with a higher fitness value,
however, it rapidly converges to match the performance level of the other variants within
just a few iterations. All PSO variants converge extremely fast within the first few iterations
and stabilize, with little to no further changes as iterations progress. This quick
stabilization of the curves comes from the simple complexity of the unimodal function
that requires minimal exploration. For F3, all variants converge within the first 100
iterations. The small variations in the early iterations between the PSO variants, with
PSO-QROBL showing the most effective convergence to the lowest fitness value earlier. In
contrast PSO-COOBL stagnates in a local optimum, failing to achieve further
improvement. For F7, the convergence curves exhibit more variation compared to those in
F3. PSO-COOBL begins with a significantly higher fitness value but quickly aligns with the
performance of the other variants indicating a distinctive exploration strategy in
navigating the search space. Despite the differing starting points, all variants ultimately
converge toward a similar fitness level. PSO-QROBL attains a fast yet lower fitness value.
For F9, all variants exhibit rapid convergence, typically within the initial 100 iterations. The
convergence curves show minimal variation, with most settling around a similar fitness
value. This flattening of the curves suggests that the algorithms shift to exploitation too
quickly, thereby restricting their ability to achieve further improvements.

Figure S19, illustrates the convergence curves of the HS algorithm and its variants
during the initialization phase for D ¼ 10. For F1, it is marked by rapid decreases in fitness
values during the initial iterations for all variants, with most of the improvement
happening within the first 200 iterations. HS-QOBL and HS-QROBL exhibit the fastest
convergence, with the steepest decline in fitness values. Both reach the lowest fitness values
relatively early and show very little change after approximately 200 iterations. This
indicates a strong early exploration capability, followed by efficient exploitation. For F3, all
variants show a rapid decrease in fitness values during the first 200 iterations, signalling
strong exploration during the early phases. Afterwards, the curves level off, indicating the
transition into exploitation. HS-GOBL achieves a slightly better convergence performance.
For F7, all variants experience rapid decreases in fitness values early in the iterations,
similar to the previous functions, except HS-BOBL which needs an extended exploration.
Once again, HS-QROBL and HS-QOBL lead in convergence, reaching the best fitness
value early on and showing minimal change after around 200 iterations. In F9, all curves
exhibit a steep decline in fitness values within the first 200 iterations, after which they

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 48/64

http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

plateau as the algorithms shift into the exploitation phase. However, this stabilization
occurs before fully reaching the most promising regions, indicating potential limitations in
exploration.

Figure S20, illustrates the convergence curves of the HS algorithm and its variants
during the swarming phase for D ¼ 10. In F1, all HS variants exhibit rapid convergence
during the initial 200 iterations, with HS-QROBL and HS-QOBL demonstrating the most
pronounced decline in fitness values. After this point, the convergence rate slows
significantly, leading to stabilization in the best fitness values, which suggests efficient
exploration during the early phase. For F3, all HS variants show comparable convergence
behaviour, achieving rapid convergence within the first 200 iterations. Each variant
performs effectively, reaching nearly best fitness values, with minimal variation among
them. However, HS-QOBL exhibits a slightly faster convergence rate compared to the
others. In F7, the convergence curves display more noticeable variation. HS-COOBL
initially starts with a higher fitness value but eventually surpasses the others in terms of
convergence within the first 100 iterations. In contrast, HS-GOBL demonstrates a slower
convergence rate, indicating a prolonged exploitation phase. For F9, all variants exhibit a
uniform convergence pattern, rapidly reducing fitness values within the first 100 iterations
before stabilizing at a slightly higher fitness value, indicating insufficient exploration.
Notably, HS-COOBL follows a similar convergence trend but achieves a lower final fitness
value.

Figure S21, illustrates the convergence curves of the HS algorithm and its variants
during the IP-SP phase for D ¼ 10. For F1, HS-BOBL initially starts with a significantly
higher fitness value compared to the other variants but quickly catches up, demonstrating
strong early exploration. All HS variants show rapid convergence within the first 200
iterations, with HS-QROBL displaying the fastest convergence. After 200 iterations, the
rate of convergence slows considerably, and the fitness values stabilize, indicating a shift to
the exploitation phase. For F3, all variants are equally effective at reaching low and similar
final fitness values. All of them converge quickly, within the first 200 iterations. The
exploration is very efficient in the early iterations, as evidenced by the sharp decline.
However, after that, the algorithms enter the exploitation phase and show weak
improvement. In F7, there is a more pronounced variation in the performance of the HS
variants. HS-QROBL again shows the fastest convergence, quickly attaining the best fitness
value. The exploration phase is strong for HS-QROBL during the first 200 iterations, after
which the convergence curves flatten, marking the transition to exploitation. For F9, all
variants exhibit a convergence pattern similar to other phases, rapidly approaching a
suboptimal fitness value within the first 100 iterations and showing minimal improvement
thereafter. Notably, HS-COOBL achieves the lowest final fitness value, highlighting its
Better exploitation capability for this function.

Figure S22, illustrates the convergence curves of the HS algorithm and its variants
during the initialization phase for D ¼ 20. In F1, HS-BOBL begins with a significantly
higher fitness value but rapidly reaches the other variants. All HS variants converge to
optimal fitness values within the early iterations, after which their convergence curves
stabilize and flatten. For F3, all variants demonstrate comparable effectiveness, reaching

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 49/64

http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

similarly the best fitness values. They converge swiftly, completing most of the process
within the first 200 iterations. The early iterations exhibit highly efficient exploration,
reflected by the steep drop in fitness values. However, in the exploitation phase, the curves
show only slight improvements. For F7, all the variants exhibit fast convergence within the
first 200 iterations, indicating a robust exploration phase. Afterwards, the curves show
slight improvements, marking the transition into the exploitation phase. This gradual
improvement continues until all variants stabilize in the near-optimal fitness value, with
convergence completed by approximately 600 iterations. For F9, all variants exhibit rapid
convergence within the first 50 iterations, quickly stabilizing at a consistent yet suboptimal
fitness value. The steep early decline suggests insufficient exploration which hinders
further improvement beyond this point.

Figure S23, shows the convergence curves of HS and its variants during the swarming
phase for D ¼ 20. In F1, all variants demonstrate extremely rapid convergence, with the
fitness values stabilizing within the first 50 iterations. There is no notable difference in
either convergence speed or final fitness values among the variants, as the fitness value
drops quickly to near-zero levels. This suggests that the problem is relatively simple,
leaving no significant need for extended exploration. In F3, all curves take approximately
250 iterations to reach their best fitness value, indicating a well-balanced combination of
exploration and exploitation capabilities. In F7, there is a clearer distinction between the
performance of the different variants. The convergence curves reduce higher fitness values
in 200 iterations, showcasing an effective exploration phase. Following this, the algorithms
transition into exploitation, progressively stabilizing. HS-COOBL stands out by
converging to a lower fitness value compared to the other variants, demonstrating superior
performance. For F9, all variants exhibit rapid convergence within the initial 100 iterations,
after which they stabilize at a fitness value slightly above 2,500. This behavior suggests
efficient initial exploration but limited exploitation, as none of the variants manage to
reach the optimal fitness value of 2,300.

Figure S24, illustrates the convergence behaviour of HS and its variants during the IP-SP
phase for D ¼ 20. In F1, all variants converge very quickly within the first 20 iterations.
The fitness values start high but drop sharply to near-zero values. This sharp drop indicates
an efficient initial exploration phase. However, the swift transition into exploitation
suggests that the algorithms required minimal extended exploration, leading to their rapid
convergence and stabilization at optimal or near-optimal fitness values. In F3, all
algorithms display comparable convergence rates, with no single variant showing a clear
advantage in either convergence speed or the final fitness value achieved. The curves show
a good convergence process. Stabilization occurs around 300 iterations demonstrating an
effective exploration. In F7, the convergence curves exhibit notable distinctions, with a
clearly defined exploration phase lasting through the first 200 iterations. The algorithms
maintain higher fitness values during this phase, effectively searching the solution space.
After this period, they transition into the exploitation phase, where the curves stabilize
around 400 iterations in near-optimal value. Among the variants, HS-COOBL stands out
for its faster convergence, reaching a lower fitness value more efficiently than the others. In
F9, all variants exhibit similar convergence patterns, with a rapid approach toward optimal

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 50/64

http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

fitness within the first 50 iterations. Their swift convergence highlights effective early
exploration, but limited exploitation, as none of the variants manage to reach the optimal
fitness value.

Figure S25, illustrates the convergence curves of the ABC algorithm and its variants
during the initialization phase for D ¼ 10. In F1, distinct differences in the convergence
patterns of the ABC variants are observed. During the first 200 iterations, most of the
variants demonstrate significant exploration, as indicated by the rapid drops in fitness
values, before transitioning into the exploitation phase, where improvements becomemore
incremental. However, both the standard ABC and ABC-COOBL fail to converge, as their
fitness values continue to fluctuate even after 1,000 iterations. Among the variants,
ABC-QROBL exhibits the best performance, achieving lower fitness values more
efficiently, suggesting superior convergence. For F3, all variants exhibit nearly identical
convergence behaviour. The curves show a rapid decline within the first 100 iterations,
indicating a strong exploration and exploitation capability across all algorithms. In F7, all
the variants demonstrate significant variation in their convergence patterns. The
exploration phase occurs within the first 300 iterations, where the curves converge rapidly,
followed by a slower progression as they enter the exploitation phase. ABC-QROBL shows
faster convergence, refining the solution more effectively. In F9, the curves start with a high
initial fitness value. all variants show rapid convergence within the first 200 iterations.
There is minimal variation in the exploration phase across the algorithms, with
ABC-QROBL still slightly outperforming the others. However, the standard ABC
algorithm shows weaker performance during the initial phase and continues to improve
gradually throughout the iterations.

Figure S26, illustrates the convergence results of the ABC algorithm and its variants
during the swarming phase for D ¼ 10. In F1, most variants exhibit notable variations in
convergence behaviour, with significant fluctuations characterized by sharp rises and falls
in fitness values. This instability suggests that the algorithms frequently shift between
exploration and exploitation, potentially struggling to maintain consistent solution
refinement within the search space. However, ABC-COOBL and ABC-QROBL stand out
by demonstrating a much smoother convergence pattern, steadily improving their
solutions and ultimately achieving the best performance among the variants. In F3, the
convergence curves for all variants display rapid improvements within the first 100
iterations, indicating that the algorithms quickly identify promising regions of the search
space and transition efficiently toward optimal solutions. In F7, all variants exhibit
significant fluctuations during the first 300 iterations, which then become minimal in the
later stages, and all variants converge to relatively slightly high fitness values. ABC-COOL
once again outperforms the others, demonstrating superior convergence and achieving
better performance in the optimization process. In F9, the variants display distinct
convergence behaviour during the first 200 iterations, reflecting a strong exploration effort.
After this phase, they transition into exploitation. ABC-COOBL excels in terms of
convergence speed.

Figure S27, illustrates the convergence patterns of the ABC algorithm and its variants
during the IP-SP phase for D ¼ 10. In F1, the standard ABC, ABC-BOBL, and ABC-GOBL

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 51/64

http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

show notable fluctuations, marked by sharp increases and decreases in fitness values. This
instability implies that the algorithms often alternate between exploration and exploitation
phases, possibly struggling to consistently refine solutions within the search space. In
contrast, ABC-COOBL, ABC-QROBL, and ABC-QOBL demonstrate a much smoother
convergence process, gradually improving their solutions and ultimately delivering the
best performance in terms of both convergence speed and fitness value. In F3, all variants
demonstrate rapid convergence within the first 100 iterations, indicating that the
algorithms quickly pinpoint promising regions of the search space and efficiently shift
toward optimal solutions. This swift convergence reflects strong early exploration followed
by effective exploitation. For F7, all variants display some fluctuations throughout the
optimization process, indicating instability between the exploration and exploitation
phases. Notably, most variants converge to a higher fitness value. However, ABC-COOL
stands out, demonstrating superior convergence and stability. It effectively navigates the
search space, consistently achieving better performance and producing more optimal
results compared to the other variants. For F9, all the variants exhibit distinct convergence
patterns during the initial 200 iterations, indicating a robust exploration phase. After this
stage, they shift into the exploitation phase. ABC-COOBL stands out by excelling in both
convergence speed and fitness value, reinforcing its superiority over the other variants.

Figure S28, presents the convergence curves of ABC and its variant during the
initialization phase for D ¼ 20. In F1, most variants exhibit predominantly flat
convergence curves over the majority of iterations, signalling a common tendency toward
early stabilization. The standard ABC and ABC-COOBL, in particular, show notably poor
convergence rates, reflecting inefficiencies in their optimization process. Both struggle to
refine their solutions effectively, resulting in suboptimal performance and higher final
fitness values. ABC-GROBL and ABC-QOBL, while also showing a flat curve, indicate
stagnation early on, with little to no improvement in fitness values as the iterations
progress, underscoring its limited exploration and exploitation balance. In F3, all variants
exhibit rapid convergence within the first 300 iterations. The fitness values drop sharply
during this phase, which suggests a strong exploration ability by all algorithms in quickly
identifying promising regions of the search space. After this initial phase, the curves for all
variants become closely aligned, indicating that they enter the exploitation phase around
the same time. In F7, the convergence behaviour of the variants shows greater variation,
with notable fluctuations during the first 200 iterations, signalling active exploration of the
search space. The standard ABC initially distinguishes itself by outperforming all other
variants in these early stages. However, as the optimization progresses, ABC-QOBL takes
the lead, excelling in the latter stages by achieving the lowest fitness value, and
demonstrating superior exploitation capabilities in refining solutions toward the optimum.
In F9, all variants effectively explore the search space and converge to the suboptimal
during the first 200 iterations. After this initial phase, the curves level out, indicating a
transition into the exploitation phase. Notably, ABC-QROBL demonstrates the best
convergence, rapidly reducing fitness values ahead of the other variants.

Figure S29, illustrates the convergence curves of the ABC algorithm and its variants
during the swarming phase for D ¼ 20. In F1, all variants experience a rapid decline in

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 52/64

http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

fitness values, followed by predominantly flat convergence curves throughout most of the
iterations, indicating a shared tendency toward early stabilization in their optimization
processes. In F3, a rapid decline in fitness values occurs during the first 300 iterations,
signaling a strong exploration phase. All variants identify promising areas of the search
space early on, which contributes to their steep initial convergence. After the first 300
iterations, the curves begin to flatten, indicating a transition into the exploitation phase.
ABC-COOBL followed by ABC-QROBL demonstrate better performance in terms of
faster convergence and reaching lower fitness values compared to the other variants. For
F7, a greater variation in the convergence behaviour of the variants is observed, with some
irregular fluctuations, indicating that the algorithms switch between exploration and
exploitation in the search space. ABC-COOBL stands out by consistently outperforming
all other variants, particularly in achieving the lowest fitness value during the early stages
of optimization. In F9, all variants explore the search space during the first 200 iterations.
After this initial phase, the curves level out, indicating a transition to the exploitation
phase. In particular, ABC-QROBL demonstrates a slight best convergence, rapidly
reducing fitness values ahead of the other variants.

Figure S30, presents the convergence behaviour of the ABC and its variants during
IP-SP phase for D ¼ 20. For F1, ABC-BOBL, ABC-GOBL and ABC-QOBL exhibit some
oscillatory behaviours, with their fitness values fluctuating throughout the iterations. This
indicates an inconsistent performance, with the algorithms alternating between
exploration and exploitation. ABC-QROBL and ABC-COOBL show much smoother
convergence with a steady decline in fitness values. They exhibit the fastest and most stable
convergence behaviour, indicating strong performance in both the exploration and
exploitation phases. In F3, all algorithms demonstrate a steep initial decline in fitness
values during the first 300 iterations, indicating a strong exploration phase. After this, the
convergence rate slows, reflecting the transition into the exploitation phase. ABC-COOBL
outperforms the other variants by achieving the lowest fitness values earlier. In F7,
ABC-COOBL stands out by quickly reducing the fitness values in the early iterations and
stabilizing at a lower fitness level, demonstrating its superior ability to find good solutions.
In contrast, while other variants demonstrate relatively competitive performance during
the initial iterations, later on, their curves exhibit more fluctuations, suggesting some
instability and inefficiency in their search process. For F9, all variants exhibit rapid initial
convergence within the first 200 iterations, followed by a gradual, steady decline in fitness
values. ABC-COOBL outperforms the others, achieving the lowest fitness value. However,
all variants ultimately stabilize near the optimal fitness value.

CONCLUSION AND PERSPECTIVES
In conclusion, this study explored the integration of five opposition-based
learning—BOBL, QOBL, GOBL, COOBL, QROBL—with five prominent MAs: DE, GA,
PSO, ABC, and HS. By applying these OBL variants to the CEC 2022 benchmark functions,
the primary objective was to assess their impact on enhancing the performance of
metaheuristics in solving complex optimization problems.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 53/64

http://dx.doi.org/10.7717/peerj-cs.2935/supp-1
http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

Our analysis, leveraging key performance indicators such as maximum, minimum,
mean, standard deviation, and convergence curves, provided a comprehensive evaluation
of algorithmic efficacy. Additionally, the Friedman test was employed to statistically
substantiate performance disparities among the algorithmic variants. The findings reveal
that QROBL consistently outperforms other OBL variants across the majority of
benchmark functions, exhibiting superior convergence speed and enhanced solution
quality. Furthermore, COOBL and QOBL demonstrated substantial performance
enhancements over their respective baseline algorithms, reinforcing the critical role of OBL
strategies in advancing metaheuristic optimization.

The results confirm that OBL techniques, particularly QROBL, can significantly
enhance the capability of MAs in addressing complex optimization challenges. Future
research can extend this work by investigating additional benchmark functions, refining
OBL techniques, and exploring their applications in real-world optimization problems,
where traditional methods often encounter limitations.

Despite these promising results, several limitations must be acknowledged, along with
potential solutions. OBL variants typically require higher NFEs compared to their original
counterparts, leading to increased computational costs. To mitigate this, adaptive function
evaluations could be integrated to optimize computational efficiency. Additionally, the
influence of the jumping rate in generation updates plays a crucial role in performance,
necessitating careful fine-tuning. A possible solution is the incorporation of self-adaptive
jumping rates to enhance robustness across different problem landscapes. Furthermore,
the reliance on fixed parameter settings may hinder adaptability, emphasizing the need for
adaptive parameter control mechanisms.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research is funded by Ongoing Research Funding program, (ORF-2025-809)
(previously known as Researchers Supporting Program (RSPD2025R809)), King Saud
University, Riyadh, Saudi Arabia. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Ongoing Research Funding program: ORF-2025-809, previously known as Researchers
Supporting Program (RSPD2025R809).
King Saud University, Riyadh, Saudi Arabia.

Competing Interests
The authors declare that they have no competing interests.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 54/64

http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

Author Contributions
. Rihab Lakbichi conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, software, and approved the final draft.

. Farouq Zitouni conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, software, Supervision, and approved the final
draft.

. Saad Harous conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, supervision, and approved the final draft.

. Aridj Ferhat conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, software, and approved the final draft.

. Abdelhadi Limane conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, software, and approved the final draft.

. Abdulaziz S. Almazyad analyzed the data, authored or reviewed drafts of the article, and
approved the final draft.

. Ali Wagdy Mohamed analyzed the data, authored or reviewed drafts of the article, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw data and code are available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2935#supplemental-information.

REFERENCES
Abd Elaziz M, Oliva D, Xiong S. 2017. An improved opposition-based sine cosine algorithm for

global optimization. Expert Systems with Applications 90:484–500
DOI 10.1016/j.eswa.2017.07.043.

Abdul Razak AA, Nasir ANK, Abdul Ghani NM, Tokhi MO. 2024. Opposition-based manta ray
foraging algorithm for global optimization and its application to optimize nonlinear type-2 fuzzy
logic control. Journal of Low Frequency Noise, Vibration and Active Control
43(3):14613484241242737 DOI 10.1177/14613484241242737.

Abualigah L, Diabat A, Elaziz MA. 2023. Improved slime mould algorithm by opposition-based
learning and Levy flight distribution for global optimization and advances in real-world
engineering problems. Journal of Ambient Intelligence and Humanized Computing 14(2):1–40
DOI 10.1007/s12652-021-03372-w.

Ahandani MA. 2016. Opposition-based learning in the shuffled bidirectional differential evolution
algorithm. Swarm and Evolutionary Computation 26:64–85 DOI 10.1016/j.swevo.2015.08.002.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 55/64

http://dx.doi.org/10.7717/peerj-cs.2935#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2935#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2935#supplemental-information
http://dx.doi.org/10.1016/j.eswa.2017.07.043
http://dx.doi.org/10.1177/14613484241242737
http://dx.doi.org/10.1007/s12652-021-03372-w
http://dx.doi.org/10.1016/j.swevo.2015.08.002
http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

Ahmed BS, Zamli KZ, Lim CP. 2012. Application of particle swarm optimization to uniform and
variable strength covering array construction. Applied Soft Computing 12(4):1330–1347
DOI 10.1016/j.asoc.2011.11.029.

Ajayan AR, Balaji S. 2013. Amodified ABC algorithm & its application to wireless sensor network
dynamic deployment. IOSR Journal of Electronics and Communication Engineering 4(6):79–82
DOI 10.9790/2834-0467982.

Ali MA, Fathimathul Rajeena PP, Salama Abd Elminaam D. 2022. A feature selection based on
improved artificial hummingbird algorithm using random opposition-based learning for solving
waste classification problem. Mathematics 10(15):2675 DOI 10.3390/math10152675.

Ali M, Pant M, Abraham A. 2009. A hybrid ant colony differential evolution and its application to
water resources problems. In: 2009 World Congress on Nature & Biologically Inspired Computing
(NaBIC). Piscataway: IEEE, 1133–1138.

Al-Qunaieer FS, Tizhoosh HR, Rahnamayan S. 2010.Opposition based computing—a survey. In:
The 2010 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE, 1–7.

Azmi KZM, Ibrahim Z, Pebrianti D, Jusof MFM, Aziz NHA, Aziz NAA. 2019. Enhancing
simulated Kalman filter algorithm using current optimum opposition-based learning.
Mekatronika: Journal of Intelligent Manufacturing and Mechatronics 1(1):1–13
DOI 10.15282/mekatronika.v1i1.157.

Babović V, Wu Z. 1975. Calibrating hydrodynamic models by means of simulated evolution.
Criterion 1:193–200.

Bacanin N, Budimirovic N, Venkatachalam K, Jassim HS, Zivkovic M, Askar S, Abouhawwash
M. 2023. Quasi-reflection learning arithmetic optimization algorithm firefly search for feature
selection. Heliyon 9(4):e15378 DOI 10.1016/j.heliyon.2023.e15378.

Bairathi D, Gopalani D. 2020. Random-opposition-based learning for computational intelligence.
In: Information and Communication Technology for Sustainable Development: Proceedings of
ICT4SD 2018. Cham: Springer, 111–120.

Balakrishnan K, Dhanalakshmi R, Mahadeo Khaire U. 2022. Excogitating marine predators
algorithm based on random opposition-based learning for feature selection. Concurrency and
Computation: Practice and Experience 34(4):e6630 DOI 10.1002/cpe.6630.

Banerjee A, Mukherjee V, Ghoshal S. 2014. An opposition-based harmony search algorithm for
engineering optimization problems. Ain Shams Engineering Journal 5(1):85–101
DOI 10.1016/j.asej.2013.06.002.

Basu M. 2016a. Quasi-oppositional differential evolution for optimal reactive power dispatch.
International Journal of Electrical Power & Energy Systems 78:29–40
DOI 10.1016/j.ijepes.2015.11.067.

Basu M. 2016b. Quasi-oppositional group search optimization for hydrothermal power system.
International Journal of Electrical Power & Energy Systems 81:324–335
DOI 10.1016/j.ijepes.2016.02.051.

Bharti KK, Singh PK. 2016. Opposition chaotic fitness mutation based adaptive inertia weight
BPSO for feature selection in text clustering. Applied Soft Computing 43(3):20–34
DOI 10.1016/j.asoc.2016.01.019.

Bhattacharjee K, Bhattacharya A, Nee Dey SH. 2014. Oppositional real coded chemical reaction
optimization for different economic dispatch problems. International Journal of Electrical Power
& Energy Systems 55:378–391 DOI 10.1016/j.ijepes.2013.09.033.

Bhattacharya A, Chattopadhyay PK. 2010. Oppositional biogeography-based optimization for
multi-objective economic emission load dispatch. In: 2010 Annual IEEE India Conference
(INDICON). Piscataway: IEEE, 1–6.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 56/64

http://dx.doi.org/10.1016/j.asoc.2011.11.029
http://dx.doi.org/10.9790/2834-0467982
http://dx.doi.org/10.3390/math10152675
http://dx.doi.org/10.15282/mekatronika.v1i1.157
http://dx.doi.org/10.1016/j.heliyon.2023.e15378
http://dx.doi.org/10.1002/cpe.6630
http://dx.doi.org/10.1016/j.asej.2013.06.002
http://dx.doi.org/10.1016/j.ijepes.2015.11.067
http://dx.doi.org/10.1016/j.ijepes.2016.02.051
http://dx.doi.org/10.1016/j.asoc.2016.01.019
http://dx.doi.org/10.1016/j.ijepes.2013.09.033
http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

Bhowmik AR, Chakraborty AK. 2015. Solution of optimal power flow using non dominated
sorting multi objective opposition based gravitational search algorithm. International Journal of
Electrical Power & Energy Systems 64(3):1237–1250 DOI 10.1016/j.ijepes.2014.09.015.

Cancho RFI, Solé RV. 2003. Optimization in complex networks. In: Statistical mechanics of
complex networks. Cham: Springer, 114–126.

Cao Y, Li X, Wang J. 2013. Opposition-based animal migration optimization. Mathematical
Problems in Engineering 2013(1):308250 DOI 10.1155/2013/308250.

Çelik E. 2023. IEGQO-AOA: information-exchanged gaussian arithmetic optimization algorithm
with quasi-opposition learning. Knowledge-Based Systems 260(5):110169
DOI 10.1016/j.knosys.2022.110169.

Chandran V, Mohapatra P. 2024. A novel multi-strategy ameliorated quasi-oppositional chaotic
tunicate swarm algorithm for global optimization and constrained engineering applications.
Heliyon 10(10):e30757 DOI 10.1016/j.heliyon.2024.e30757.

Chatterjee A, Ghoshal S, Mukherjee V. 2012. Solution of combined economic and emission
dispatch problems of power systems by an opposition-based harmony search algorithm.
International Journal of Electrical Power & Energy Systems 39(1):9–20
DOI 10.1016/j.ijepes.2011.12.004.

Chaudhuri A, Sahu TP. 2022.Multi-objective feature selection based on quasi-oppositional based
Jaya algorithm for microarray data. Knowledge-Based Systems 236(19):107804
DOI 10.1016/j.knosys.2021.107804.

Chauhan S, Vashishtha G, Kumar R, Zimroz R, Gupta MK, Kumar A. 2024. A quasi-reflected
and Gaussian mutated arithmetic optimisation algorithm for global optimisation. Information
Sciences 677:120823 DOI 10.1016/j.ins.2024.120823.

Chen H, Li W, Yang X. 2020. A whale optimization algorithm with chaos mechanism based on
quasi-opposition for global optimization problems. Expert Systems with Applications 158:113612
DOI 10.1016/j.eswa.2020.113612.

Chen J, Liu X, Wu C, Ma J, Cui Z, Liu Z. 2024. An ant colony path planning optimization based
on opposition-based learning for AUV in irregular regions. Computing 106(7):1–32
DOI 10.1007/s00607-024-01293-y.

Chen Y, Pi D, Wang B, Mohamed AW, Chen J, Wang Y. 2023. Equilibrium optimizer with
generalized opposition-based learning for multiple unmanned aerial vehicle path planning. Soft
Computing 28:1–14 DOI 10.21203/rs.3.rs-1125211/v1.

Chen R, Tang J. 2015. A novel particle swarm optimisation with hybrid strategies. International
Journal of Computing Science and Mathematics 6(3):278–286.

Chen X, Yu K, Du W, Zhao W, Liu G. 2016. Parameters identification of solar cell models using
generalized oppositional teaching learning based optimization. Energy 99(9):170–180
DOI 10.1016/j.energy.2016.01.052.

Cheng B-Y, Leung JY-T, Li K. 2015. Integrated scheduling of production and distribution to
minimize total cost using an improved ant colony optimization method. Computers & Industrial
Engineering 83:217–225 DOI 10.1016/j.cie.2015.02.017.

Choi TJ, Pachauri N. 2024. Adaptive search space for stochastic opposition-based learning in
differential evolution. Knowledge-Based Systems 300(4):112172
DOI 10.1016/j.knosys.2024.112172.

Choi TJ, Togelius J, Cheong Y-G. 2021. A fast and efficient stochastic opposition-based learning
for differential evolution in numerical optimization. Swarm and Evolutionary Computation
60(4):100768 DOI 10.1016/j.swevo.2020.100768.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 57/64

http://dx.doi.org/10.1016/j.ijepes.2014.09.015
http://dx.doi.org/10.1155/2013/308250
http://dx.doi.org/10.1016/j.knosys.2022.110169
http://dx.doi.org/10.1016/j.heliyon.2024.e30757
http://dx.doi.org/10.1016/j.ijepes.2011.12.004
http://dx.doi.org/10.1016/j.knosys.2021.107804
http://dx.doi.org/10.1016/j.ins.2024.120823
http://dx.doi.org/10.1016/j.eswa.2020.113612
http://dx.doi.org/10.1007/s00607-024-01293-y
http://dx.doi.org/10.21203/rs.3.rs-1125211/v1
http://dx.doi.org/10.1016/j.energy.2016.01.052
http://dx.doi.org/10.1016/j.cie.2015.02.017
http://dx.doi.org/10.1016/j.knosys.2024.112172
http://dx.doi.org/10.1016/j.swevo.2020.100768
http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

Das S, Bhattacharya A, Chakraborty AK. 2018. Quasi-reflected ions motion optimization
algorithm for short-term hydrothermal scheduling. Neural Computing and Applications
29(6):123–149 DOI 10.1007/s00521-016-2529-8.

Deng W, Ni H, Liu Y, Chen H, Zhao H. 2022. An adaptive differential evolution algorithm based
on belief space and generalized opposition-based learning for resource allocation. Applied Soft
Computing 127(24):109419 DOI 10.1016/j.asoc.2022.109419.

Dhal KG, Rai R, Das A, Ray S, Ghosal D, Kanjilal R. 2023. Chaotic fitness-dependent
quasi-reflected Aquila optimizer for superpixel based white blood cell segmentation. Neural
Computing and Applications 35(21):15315–15332 DOI 10.1007/s00521-023-08486-0.

Diwekar UM. 2020. Introduction to applied optimization. Vol. 22. Cham: Springer Nature.

Dong N, Wang Y. 2009. Multi-objective differential evolution based on opposite operation. In:
2009 International Conference on Computational Intelligence and Security. Vol. 1. Piscataway:
IEEE, 123–127.

Eirgash MA, Toğan V. 2023. A novel oppositional teaching learning strategy based on the golden
ratio to solve the time-cost-environmental impact trade-off optimization problems. Expert
Systems with Applications 224(4):119995 DOI 10.1016/j.eswa.2023.119995.

El-Abd M. 2011. Opposition-based artificial bee colony algorithm. In: Proceedings of the 13th
Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 109–116.

Elsisi M. 2022. Improved grey wolf optimizer based on opposition and quasi learning approaches
for optimization: case study autonomous vehicle including vision system. Artificial Intelligence
Review 55(7):5597–5620 DOI 10.1007/s10462-022-10137-0.

Ergezer M, Simon D. 2015. Probabilistic properties of fitness-based quasi-reflection in
evolutionary algorithms. Computers & Operations Research 63:114–124
DOI 10.1016/j.cor.2015.03.013.

Ergezer M, Simon D, Du D. 2009. Oppositional biogeography-based optimization. In: 2009 IEEE
International Conference on Systems, Man and Cybernetics. Piscataway: IEEE, 1009–1014.

Evans IK. 1998. Embracing premature convergence: the hypergamous parallel genetic algorithm.
In: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World
Congress on Computational Intelligence (Cat. No. 98TH8360). Piscataway: IEEE, 621–626.

Ewees AA, Abd Elaziz M, Houssein EH. 2018. Improved grasshopper optimization algorithm
using opposition-based learning. Expert Systems with Applications 112:156–172
DOI 10.1016/j.eswa.2018.06.023.

Goffe WL, Ferrier GD, Rogers J. 1994. Global optimization of statistical functions with simulated
annealing. Journal of Econometrics 60(1–2):65–99 DOI 10.1016/0304-4076(94)90038-8.

Guha D, Roy P, Banerjee S. 2017. Quasi-oppositional symbiotic organism search algorithm
applied to load frequency control. Swarm and Evolutionary Computation 33(9):46–67
DOI 10.1016/j.swevo.2016.10.001.

Guo Z, Wang S, Yue X, Yang H. 2017. Global harmony search with generalized opposition-based
learning. Soft Computing 21(8):2129–2137 DOI 10.1007/s00500-015-1912-1.

Gupta S, Deep K. 2019. A hybrid self-adaptive sine cosine algorithm with opposition based
learning. Expert Systems with Applications 119(1):210–230 DOI 10.1016/j.eswa.2018.10.050.

Gupta S, Deep K, Heidari AA, Moayedi H, Wang M. 2020. Opposition-based learning Harris
hawks optimization with advanced transition rules: principles and analysis. Expert Systems with
Applications 158(4847):113510 DOI 10.1016/j.eswa.2020.113510.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 58/64

http://dx.doi.org/10.1007/s00521-016-2529-8
http://dx.doi.org/10.1016/j.asoc.2022.109419
http://dx.doi.org/10.1007/s00521-023-08486-0
http://dx.doi.org/10.1016/j.eswa.2023.119995
http://dx.doi.org/10.1007/s10462-022-10137-0
http://dx.doi.org/10.1016/j.cor.2015.03.013
http://dx.doi.org/10.1016/j.eswa.2018.06.023
http://dx.doi.org/10.1016/0304-4076(94)90038-8
http://dx.doi.org/10.1016/j.swevo.2016.10.001
http://dx.doi.org/10.1007/s00500-015-1912-1
http://dx.doi.org/10.1016/j.eswa.2018.10.050
http://dx.doi.org/10.1016/j.eswa.2020.113510
http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

Han L, He X. 2007. A novel opposition-based particle swarm optimization for noisy problems. In:
Third International Conference on Natural Computation (ICNC 2007). Vol. 3. Piscataway: IEEE,
624–629.

Hazra S, Roy PK. 2019. Quasi-oppositional chemical reaction optimization for combined
economic emission dispatch in power system considering wind power uncertainties. Renewable
Energy Focus 31(12):45–62 DOI 10.1016/j.ref.2019.10.005.

Isiet M, Gadala M. 2020. Sensitivity analysis of control parameters in particle swarm optimization.
Journal of Computational Science 41(1):101086 DOI 10.1016/j.jocs.2020.101086.

Joshi SK. 2023. Chaos embedded opposition based learning for gravitational search algorithm.
Applied Intelligence 53(5):5567–5586 DOI 10.1007/s10489-022-03786-9.

Karaboga D. 2005. An idea based on honey bee swarm for numerical optimization. Technical
Report, Technical Report-tr06, Erciyes University, Engineering Faculty, Computer Engineering
Department.

Kaucic M. 2013. A multi-start opposition-based particle swarm optimization algorithm with
adaptive velocity for bound constrained global optimization. Journal of Global Optimization
55(1):165–188 DOI 10.1007/s10898-012-9913-4.

Kazemi B, Ahmadi M, Talebi S. 2013. Optimum and reliable routing in VANETs: an opposition
based ant colony algorithm scheme. In: 2013 International Conference on Connected Vehicles
and Expo (ICCVE). Piscataway: IEEE, 926–930.

Kearney JK, Thompson WB, Boley DL. 1987. Optical flow estimation: an error analysis of
gradient-based methods with local optimization. IEEE Transactions on Pattern Analysis and
Machine Intelligence (2):229–244 DOI 10.1109/tpami.1987.4767897.

Kennedy J, Eberhart R. 1995. Particle swarm optimization. In: Proceedings of ICNN’95-
International Conference on Neural Networks. Vol. 4, Piscataway: IEEE, 1942–1948.

Liao L, Zhou Y. 2019. A neighborhood centroid opposition-based grasshopper optimization
algorithm. Journal of Physics: Conference Series 1176:32044 IOP Publishing
DOI 10.1088/1742-6596/1176/3/032044.

Liu X, Wu C, Chen P, Wang Y. 2023. Hybrid algorithm based on phasor particle swarm
optimization and bacterial foraging optimization. In: International Conference on Swarm
Intelligence. Cham: Springer, 136–147.

Long W, Jiao J, Liang X, Cai S, Xu M. 2019. A random opposition-based learning grey wolf
optimizer. IEEE Access 7:113810–113825 DOI 10.1109/access.2019.2934994.

Luo W, Yu X. 2022. Quasi-reflection based multi-strategy cuckoo search for parameter estimation
of photovoltaic solar modules. Solar Energy 243(4):264–278 DOI 10.1016/j.solener.2022.08.004.

MaM,Wu J, Shi Y, Yue L, Yang C, Chen X. 2022. Chaotic random opposition-based learning and
cauchy mutation improved moth-flame optimization algorithm for intelligent route planning of
multiple uavs. IEEE Access 10(3):49385–49397 DOI 10.1109/access.2022.3172710.

Mahdavi S, Rahnamayan S, Deb K. 2016. Partial opposition-based learning using current best
candidate solution. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI).
Piscataway: IEEE, 1–7.

Mahdavi S, Rahnamayan S, Deb K. 2018. Opposition based learning: a literature review. Swarm
and Evolutionary Computation 39(8):1–23 DOI 10.1016/j.swevo.2017.09.010.

Malisia AR, Tizhoosh HR. 2007. Applying opposition-based ideas to the ant colony system. In:
2007 IEEE Swarm Intelligence Symposium. Piscataway: IEEE, 182–189.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 59/64

http://dx.doi.org/10.1016/j.ref.2019.10.005
http://dx.doi.org/10.1016/j.jocs.2020.101086
http://dx.doi.org/10.1007/s10489-022-03786-9
http://dx.doi.org/10.1007/s10898-012-9913-4
http://dx.doi.org/10.1109/tpami.1987.4767897
http://dx.doi.org/10.1088/1742-6596/1176/3/032044
http://dx.doi.org/10.1109/access.2019.2934994
http://dx.doi.org/10.1016/j.solener.2022.08.004
http://dx.doi.org/10.1109/access.2022.3172710
http://dx.doi.org/10.1016/j.swevo.2017.09.010
http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

Mandal B, Roy PK. 2013. Optimal reactive power dispatch using quasi-oppositional teaching
learning based optimization. International Journal of Electrical Power & Energy Systems
53(1):123–134 DOI 10.1016/j.ijepes.2013.04.011.

Nama S. 2022. A novel improved SMA with quasi reflection operator: performance analysis,
application to the image segmentation problem of COVID-19 chest X-ray images. Applied Soft
Computing 118:108483 DOI 10.1016/j.asoc.2022.108483.

Nascimento CAO, Giudici R, Guardani R. 2000.Neural network based approach for optimization
of industrial chemical processes. Computers & Chemical Engineering 24(9–10):2303–2314
DOI 10.1016/S0098-1354(00)00587-1.

Niu Q, Zhang H, Wang X, Li K, Irwin GW. 2014. A hybrid harmony search with arithmetic
crossover operation for economic dispatch. International Journal of Electrical Power & Energy
Systems 62:237–257 DOI 10.1016/j.ijepes.2014.04.031.

Okdem S, Karaboga D. 2009. Routing in wireless sensor networks using an ant colony
optimization (ACO) router chip. Sensors 9(02):909–921 DOI 10.3390/s90200909.

Park S-Y, Lee J-J. 2015. Stochastic opposition-based learning using a beta distribution in
differential evolution. IEEE Transactions on Cybernetics 46(10):2184–2194
DOI 10.1109/tcyb.2015.2469722.

Peres F, Castelli M. 2021. Combinatorial optimization problems and metaheuristics: review,
challenges, design, and development. Applied Sciences 11(14):6449 DOI 10.3390/app11146449.

Pham VHS, Nguyen Dang NT, Nguyen VN. 2024. Enhancing engineering optimization using
hybrid sine cosine algorithm with roulette wheel selection and opposition-based learning.
Scientific Reports 14(1):694 DOI 10.1038/s41598-024-51343-w.

Qiu Y, Huang S, Armaghani DJ, Pradhan B, Zhou A, Zhou J. 2024. An optimized system of
random forest model by global harmony search with generalized opposition-based learning for
forecasting TBM advance rate. Computer Modeling in Engineering & Sciences 138(3):2873–2897
DOI 10.32604/cmes.2023.029938.

Rahnamayan S, Jesuthasan J, Bourennani F, Salehinejad H, Naterer GF. 2014. Computing
opposition by involving entire population. In: 2014 IEEE Congress on Evolutionary Computation
(CEC). Piscataway: IEEE, 1800–1807.

Rahnamayan S, Tizhoosh HR, Salama MM. 2006. Opposition-based differential evolution
algorithms. In: 2006 IEEE International Conference on Evolutionary Computation. Piscataway:
IEEE, 2010–2017.

Rahnamayan S, Tizhoosh HR, Salama MM. 2007. Quasi-oppositional differential evolution. In:
2007 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2229–2236.

Rahnamayan S, Tizhoosh HR, Salama MM. 2008. Opposition-based differential evolution. IEEE
Transactions on Evolutionary Computation 12(1):64–79 DOI 10.1109/tevc.2007.894200.

Rahnamayan S, Wang G. 2008. Solving large scale optimization problems by opposition-based
differential evolution (ODE). WSEAS Transactions on Computers 7(10):1792–1804.

Raidl GR, Puchinger J. 2008. Combining (integer) linear programming techniques and
metaheuristics for combinatorial optimization. In: Hybrid Metaheuristics: An Emerging
Approach to Optimization. Cham: Springer, 31–62.

Razak AAA, Nasir ANK, Abd Ghani NM. 2022. Super-opposition spiral dynamic-based fuzzy
control for an inverted pendulum system. Bulletin of Electrical Engineering and Informatics
11(5):2737–2745 DOI 10.11591/eei.v11i5.3825.

Rodríguez-García J, Ribó-Pérez D, Alvarez-Bel C, Peñalvo-López E. 2020.Maximizing the profit
for industrial customers of providing operation services in electric power systems via a parallel

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 60/64

http://dx.doi.org/10.1016/j.ijepes.2013.04.011
http://dx.doi.org/10.1016/j.asoc.2022.108483
http://dx.doi.org/10.1016/S0098-1354(00)00587-1
http://dx.doi.org/10.1016/j.ijepes.2014.04.031
http://dx.doi.org/10.3390/s90200909
http://dx.doi.org/10.1109/tcyb.2015.2469722
http://dx.doi.org/10.3390/app11146449
http://dx.doi.org/10.1038/s41598-024-51343-w
http://dx.doi.org/10.32604/cmes.2023.029938
http://dx.doi.org/10.1109/tevc.2007.894200
http://dx.doi.org/10.11591/eei.v11i5.3825
http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

particle swarm optimization algorithm. IEEE Access 8:24721–24733
DOI 10.1109/access.2020.2970478.

Rojas-Morales N, Rojas MCR, Ureta EM. 2017. A survey and classification of opposition-based
metaheuristics. Computers & Industrial Engineering 110:424–435
DOI 10.1016/j.cie.2017.06.028.

Roy PK, Paul C. 2015. Quasi-oppositional gravitational search algorithm applied to short term
hydrothermal scheduling problems. International Journal of Power and Energy Conversion
6(2):165–185 DOI 10.1504/IJPEC.2015.069437.

Saha SK, Kar R, Mandal D, Ghoshal SP, Mukherjee V. 2013. A new design method using
opposition-based bat algorithm for IIR system identification problem. International Journal of
Bio-Inspired Computation 5(2):99–132 DOI 10.1016/j.jfranklin.2014.01.001.

Sahoo SK, Pattanaik P, Mohanty MN,Mishra DK. 2023.Opposition learning based improved bee
colony optimization (OLIBCO) algorithm for data clustering. International Journal of Advanced
Computer Science and Applications 14(4):253–261 DOI 10.14569/IJACSA.2023.0140429.

Sahoo SK, Premkumar M, Saha AK, Houssein EH,Wanjari S, EmamMM. 2024.Multi-objective
quasi-reflection learning and weight strategy-based moth flame optimization algorithm. Neural
Computing and Applications 36(8):4229–4261 DOI 10.1007/s00521-023-09234-0.

Sarkhel R, Chowdhury TM, Das M, Das N, Nasipuri M. 2017. A novel harmony search algorithm
embedded with metaheuristic opposition based learning. Journal of Intelligent & Fuzzy Systems
32(4):3189–3199 DOI 10.3233/JIFS-169262.

Shankar G, Mukherjee V. 2016. Quasi oppositional harmony search algorithm based controller
tuning for load frequency control of multi-source multi-area power system. International
Journal of Electrical Power & Energy Systems 75:289–302 DOI 10.1016/j.ijepes.2015.09.011.

Shekhawat S, Saxena A. 2020. Development and applications of an intelligent crow search
algorithm based on opposition based learning. ISA Transactions 99:210–230
DOI 10.1016/j.isatra.2019.09.004.

Shiba T, Tsuchiya T, Kikuno T. 2004. Using artificial life techniques to generate test cases for
combinatorial testing. In: Proceedings of the 28th Annual International Computer Software and
Applications Conference, 2004. COMPSAC 2004. Piscataway: IEEE, 72–77.

Shiva CK, Mukherjee V. 2015a. Automatic generation control of interconnected power system for
robust decentralized random load disturbances using a novel quasi-oppositional harmony
search algorithm. International Journal of Electrical Power & Energy Systems 73(3):991–1001
DOI 10.1016/j.ijepes.2015.06.016.

Shiva CK, Mukherjee V. 2015b. A novel quasi-oppositional harmony search algorithm for
automatic generation control of power system. Applied Soft Computing 35(1):749–765
DOI 10.1016/j.asoc.2015.05.054.

Shokri M, Tizhoosh HR, Kamel M. 2006. Opposition-based Q(λ) algorithm. In: The 2006 IEEE
International Joint Conference on Neural Network Proceedings. Piscataway: IEEE, 254–261.

Si T, Bhattacharya D. 2021. Sine cosine algorithm with centroid opposition-based computation.
In: Applications of Artificial Intelligence in Engineering: Proceedings of First Global Conference on
Artificial Intelligence and Applications (GCAIA 2020). Cham: Springer, 119–129.

Si T, De A, Bhattacharjee AK. 2014. Particle swarm optimization with generalized opposition
based learning in particle’s pbest position. In: 2014 International Conference on Circuits, Power
and Computing Technologies (ICCPCT-2014). Piscataway: IEEE, 1662–1667.

Si T, Miranda PB, Bhattacharya D. 2022. Novel enhanced Salp swarm algorithms using
opposition-based learning schemes for global optimization problems. Expert Systems with
Applications 207(8):117961 DOI 10.1016/j.eswa.2022.117961.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 61/64

http://dx.doi.org/10.1109/access.2020.2970478
http://dx.doi.org/10.1016/j.cie.2017.06.028
http://dx.doi.org/10.1504/IJPEC.2015.069437
http://dx.doi.org/10.1016/j.jfranklin.2014.01.001
http://dx.doi.org/10.14569/IJACSA.2023.0140429
http://dx.doi.org/10.1007/s00521-023-09234-0
http://dx.doi.org/10.3233/JIFS-169262
http://dx.doi.org/10.1016/j.ijepes.2015.09.011
http://dx.doi.org/10.1016/j.isatra.2019.09.004
http://dx.doi.org/10.1016/j.ijepes.2015.06.016
http://dx.doi.org/10.1016/j.asoc.2015.05.054
http://dx.doi.org/10.1016/j.eswa.2022.117961
http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

Storn R, Price K. 1997. Differential evolution—a simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization 11:341–359
DOI 10.1023/A:1008202821328.

Sultana S, Roy PK. 2014.Multi-objective quasi-oppositional teaching learning based optimization
for optimal location of distributed generator in radial distribution systems. International Journal
of Electrical Power & Energy Systems 63(2):534–545 DOI 10.1016/j.ijepes.2014.06.031.

Tian D, Xu Q, Yao X, Zhang G, Li Y, Xu C. 2024. Diversity-guided particle swarm optimization
with multi-level learning strategy. Swarm and Evolutionary Computation 86(1):101533
DOI 10.1016/j.swevo.2024.101533.

Tizhoosh HR. 2005. Opposition-based learning: a new scheme for machine intelligence. In:
International Conference on Computational Intelligence for Modelling, Control and Automation
and International Conference on Intelligent Agents, Web Technologies and Internet Commerce
(CIMCA-IAWTIC’06). Vol. 1, Piscataway: IEEE, 695–701.

Tizhoosh HR, Sahba F. 2009. Quasi-global oppositional fuzzy thresholding. In: 2009 IEEE
International Conference on Fuzzy Systems. Piscataway: IEEE, 1346–1351.

Tizhoosh HR, Ventresca M. 2008. Oppositional concepts in computational intelligence. Vol. 155.
Cham: Springer.

Truong KH, Nallagownden P, Baharudin Z, Vo DN. 2019. A quasi-oppositional-chaotic
symbiotic organisms search algorithm for global optimization problems. Applied Soft Computing
77:567–583 DOI 10.1016/j.asoc.2019.01.043.

Vanfossan SA. 2022. Advances and applications in high-dimensional heuristic optimization. Rolla:
Missouri University of Science and Technology.

Ventresca M, Tizhoosh HR. 2007.Opposite transfer functions and backpropagation through time.
In: 2007 IEEE Symposium on Foundations of Computational Intelligence. Piscataway: IEEE, 570–
577.

Wang B. 2015. A novel artificial bee colony algorithm based on modified search strategy and
generalized opposition-based learning. Journal of Intelligent & Fuzzy Systems 28(3):1023–1037
DOI 10.3233/ifs-141386.

Wang T, Li J, Liu R, Xu J, Hao X, Kin KTT, Liang J. 2022. Dynamic grey wolf optimization
algorithm based on quasi-opposition learning. In: 3D Imaging—Multidimensional Signal
Processing and Deep Learning: 3D Images, Graphics and Information Technologies. Vol. 1. Cham:
Springer, 11–22.

Wang L, Li J, Yan X. 2024. A variable population size opposition-based learning for differential
evolution algorithm and its applications on feature selection. Applied Intelligence 54(1):959–984
DOI 10.1007/s10489-023-05179-y.

Wang H, Rahnamayan S, Wu Z. 2013. Parallel differential evolution with self-adapting control
parameters and generalized opposition-based learning for solving high-dimensional
optimization problems. Journal of Parallel and Distributed Computing 73(1):62–73
DOI 10.1016/j.jpdc.2012.02.019.

Wang H, Wang W, Sun H, Cui Z, Rahnamayan S, Zeng S. 2017. A new cuckoo search algorithm
with hybrid strategies for flow shop scheduling problems. Soft Computing 21(15):4297–4307
DOI 10.1007/s00500-016-2062-9.

Wang H, Wu Z, Rahnamayan S. 2011. Enhanced opposition-based differential evolution for
solving high-dimensional continuous optimization problems. Soft Computing 15(11):2127–2140
DOI 10.1007/s00500-010-0642-7.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 62/64

http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1016/j.ijepes.2014.06.031
http://dx.doi.org/10.1016/j.swevo.2024.101533
http://dx.doi.org/10.1016/j.asoc.2019.01.043
http://dx.doi.org/10.3233/ifs-141386
http://dx.doi.org/10.1007/s10489-023-05179-y
http://dx.doi.org/10.1016/j.jpdc.2012.02.019
http://dx.doi.org/10.1007/s00500-016-2062-9
http://dx.doi.org/10.1007/s00500-010-0642-7
http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

Wang H, Wu Z, Rahnamayan S, Liu Y, Ventresca M. 2011. Enhancing particle swarm
optimization using generalized opposition-based learning. Information Sciences 181(20):4699–
4714 DOI 10.1016/j.ins.2011.03.016.

Wei W, Zhou J, Chen F, Yuan H. 2016. Constrained differential evolution using generalized
opposition-based learning. Soft Computing 20(11):4413–4437 DOI 10.1007/s00500-015-2001-1.

Xiang J, Wu Y. 2023. Hybrid Salp swarm and butterfly optimization algorithm combined with
neighborhood centroid opposition-based learning. Journal of Computer Applications 43(3):820.

Xu X-W, Pan J-S, Mohamed AW, Chu S-C. 2022. Improved fish migration optimization with the
opposition learning based on elimination principle for cluster head selection.Wireless Networks
28(3):1017–1038 DOI 10.1007/s11276-022-02892-3.

Xu Q, Wang L, He B, Wang N. 2011. Modified opposition-based differential evolution for
function optimization. Journal of Computational Information Systems 7(5):1582–1591.

XuQ,Wang L, Wang N, Hei X, Zhao L. 2014. A review of opposition-based learning from 2005 to
2012. Engineering Applications of Artificial Intelligence 29(8):1–12
DOI 10.1016/j.engappai.2013.12.004.

Yang X-S. 2009.Harmony search as a metaheuristic algorithm. In:Music-Inspired Harmony Search
Algorithm: Theory and Applications. Cham: Springer, 1–14.

Yang S. 2017. Enhanced opposition-based differential evolution using dynamic optimum for
function optimization. DEStech Transactions on Engineering and Technology Research
2(iceta):308–315 DOI 10.12783/dtetr/iceta2016/7014.

Yang D, Liu Z, Zhou J. 2014. Chaos optimization algorithms based on chaotic maps with different
probability distribution and search speed for global optimization. Communications in Nonlinear
Science and Numerical Simulation 19(4):1229–1246 DOI 10.1016/j.cnsns.2013.08.017.

Yang L, Xijia S, Deng C. 2015. Opposition-based learning particle SWARM optimization of
running gait for humanoid robot. International Journal on Smart Sensing and Intelligent Systems
8(2):1162–1179 DOI 10.21307/ijssis-2017-801.

Yazdani S, Shanbehzadeh J. 2015. Balanced Cartesian genetic programming via migration and
opposition-based learning: application to symbolic regression. Genetic Programming and
Evolvable Machines 16(2):133–150 DOI 10.1007/s10710-014-9230-4.

Yu S, Zhu S, Ma Y, Mao D. 2015. Enhancing firefly algorithm using generalized opposition-based
learning. Computing 97(7):741–754 DOI 10.1007/s00607-015-0456-7.

Yy. 2024. Cec2022. MATLAB Central File Exchange. Available at https://www.mathworks.com/
matlabcentral/fileexchange/157611-cec2022.

Zhang B, Liu W, Cai Y, Zhou Z, Wang L, Liao Q, Fu Z, Cheng Z. 2024. State of health prediction
of lithium-ion batteries using particle swarm optimization with Levy flight and generalized
opposition-based learning. Journal of Energy Storage 84(4):110816
DOI 10.1016/j.est.2024.110816.

Zhang G, Zhang E. 2021. A random opposition-based sparrow search algorithm for path planning
problem. In: Artificial Intelligence: First CAAI International Conference, CICAI 2021, Hangzhou,
China, June 5–6, 2021, Proceedings, Part II 1. Cham: Springer, 408–418.

Zhao Y, Cheng J, Cai J, Qi B. 2024. Global-best brain storm optimization algorithm based on
chaotic difference step and opposition-based learning. Scientific Reports 14(1):6432
DOI 10.1038/s41598-024-56919-0.

Zhao S, Wu Y, Tan S, Wu J, Cui Z, Wang Y-G. 2023. QQLMPA: a quasi-opposition learning and
Q-learning based marine predators algorithm. Expert Systems with Applications
213(190):119246 DOI 10.1016/j.eswa.2022.119246.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 63/64

http://dx.doi.org/10.1016/j.ins.2011.03.016
http://dx.doi.org/10.1007/s00500-015-2001-1
http://dx.doi.org/10.1007/s11276-022-02892-3
http://dx.doi.org/10.1016/j.engappai.2013.12.004
http://dx.doi.org/10.12783/dtetr/iceta2016/7014
http://dx.doi.org/10.1016/j.cnsns.2013.08.017
http://dx.doi.org/10.21307/ijssis-2017-801
http://dx.doi.org/10.1007/s10710-014-9230-4
http://dx.doi.org/10.1007/s00607-015-0456-7
https://www.mathworks.com/matlabcentral/fileexchange/157611-cec2022
https://www.mathworks.com/matlabcentral/fileexchange/157611-cec2022
http://dx.doi.org/10.1016/j.est.2024.110816
http://dx.doi.org/10.1038/s41598-024-56919-0
http://dx.doi.org/10.1016/j.eswa.2022.119246
http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

Zhao X, Yang F, Han Y, Cui Y. 2020. An opposition-based chaotic Salp swarm algorithm for
global optimization. IEEE Access 8:36485–36501 DOI 10.1109/access.2020.2976101.

Zhou L, Ding L, Lei Y. 2018. An enhanced firefly algorithm with orthogonal centroid
opposition-based learning. In: 2018 IEEE Congress on Evolutionary Computation (CEC).
Piscataway: IEEE.

Zhou L, Ma M, Ding L, Tang W. 2019. Centroid opposition with a two-point full crossover for the
partially attracted firefly algorithm. Soft Computing 23(23):12241–12254
DOI 10.1007/s00500-019-04221-x.

Zhu D, Tao R, Lu Z,Wu Y, Xiao R. 2022.Optimization design of the internal structural support of
marine turbine blade for weight reduction: a preliminary study. Ocean Engineering
260(1):111989 DOI 10.1016/j.oceaneng.2022.111989.

Zitouni F, Almazyad AS, Xiong G, Mohamed AW, Harous S. 2024. An opposition-based great
wall construction metaheuristic algorithm with gaussian mutation for feature selection. IEEE
Access 12:30796–30823 DOI 10.1109/access.2024.3367440.

Lakbichi et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2935 64/64

http://dx.doi.org/10.1109/access.2020.2976101
http://dx.doi.org/10.1007/s00500-019-04221-x
http://dx.doi.org/10.1016/j.oceaneng.2022.111989
http://dx.doi.org/10.1109/access.2024.3367440
http://dx.doi.org/10.7717/peerj-cs.2935
https://peerj.com/computer-science/

	Opposition-based learning techniques in metaheuristics: classification, comparison, and convergence analysis
	Introduction
	Opposition-based learning
	Opposition-based learning variants
	Experiments, numerical results, and discussion
	Conclusion and perspectives
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

