Submitted 18 December 2024
Accepted 9 May 2025
Published 2 June 2025

Corresponding authors
Chao Li, lcmeteor@hotmail.com
Jun Sun, sunjun_wx@hotmail.com

Academic editor
Consolato Sergi

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj-cs.2932

() Copyright
2025 Wang et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

VBM-YOLO: an enhanced YOLO model
with reduced information loss for vehicle
body markers detection

Bin Wang, Chao Li, Chao Zhou and Jun Sun

School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, Jiangsu,
China

ABSTRACT

In vehicle safety detection, the accurate identification of body markers on medium
and large vehicles plays a critical role in ensuring safe road travel. To address the
issues of the feature and gradient information loss in previous You Only Look Once
(YOLO) series models, a novel Vehicle Body Markers YOLO (VBM-YOLO) model
has been designed. Firstly, the model integrates the cross-spatial-channel attention
(CSCA) mechanism proposed in this study. The CSCA uses cross-dimensional
information to address interaction issues during the fusion of spatial and channel
dimensions, significantly enhancing the model’s representational capacity. Secondly,
we propose a multi-scale selective feature pyramid network (MSSFPN). By a
progressive fusion approach and multi-scale feature selection learning, MSSFPN
alleviates the issues of feature loss and target layer information confusion caused by
traditional top-down and bottom-up feature pyramids. Finally, an auxiliary gradient
branch (AGB) is proposed. During training, AGB incorporates feature information
from different target layers to help the current layer retain complete gradient
information. Additionally, the AGB branch does not participate in model inference,
thereby reducing additional overhead. Experimental results demonstrate that
VBM-YOLO improves mean average precision (mAP) by 2.3% and 4.3% at
intersection over union (IoU) thresholds of 0.5 and 0.5:0.95, respectively, compared
to YOLOV8s on the vehicle body markers dataset. VBM-YOLO also achieves a better
balance between accuracy and computational resources than other mainstream
models, exhibiting good generalization performance on public datasets like PASCAL
VOC and D-Fire.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision,
Optimization Theory and Computation, Neural Networks

Keywords YOLO, Vehicle body markers detection, Feature fusion, Feature extraction, Gradient
information

INTRODUCTION

The recognizability (Balasubramanian ¢ Bhardwaj, 2018) and protectiveness (Kortag ¢
Goncii, 2021) of vehicles themselves are crucial to traffic safety. Particularly for medium
and large vehicles, their safety while on the road is intimately tied to the presence of their
vehicle body markers. The primary vehicle body markers include rear reflective signs, side
reflective signs, rear signs, rear guards, and side guards. These markers significantly
enhance the visibility and protective capabilities of vehicles under varying visibility
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conditions and road situations. Specifically, in environments characterized by low visibility
at night or due to restricted lines of sight, reflective signs notably enhance the
recognizability of vehicles, effectively reducing the risk of collision. For large transport
vehicles, the conspicuous design of rear signs effectively prompts following vehicles to
maintain a necessary, safe distance, thus preventing rear-end collisions. Furthermore,
guard boards can mitigate collision risks and prevent small vehicles from being entrapped
under the chassis of medium and large vehicles in the event of an accident. Given the
essential role of triangle signs in all vehicles, they are considered an extension of the vehicle
body safety markers. In the case of vehicle malfunction requiring parking, a triangle
warning sign serves as a temporary safety warning facility, safeguarding the vehicle’s and
its occupants’ safety. Consequently, before permitting normal vehicle operation, relevant
authorities should inspect these vehicle body markers to ensure road safety compliance.
This process can be effectively achieved using object detection technology based on
computer vision.

In recent years, there has been rapid development in the field of object detection.
Increasing numbers of researchers are dedicating efforts to applying object detection
algorithms in practical scenarios. For instance, Mittal, Chawla ¢ Tiwari (2023) trained a
hybrid model of Faster R-CNN and YOLO to estimate traffic density. Liu et al. (2023)
introduced the C3Ghost and GhostConv modules into the backbone network of YOLOv5
addresses the issue of prolonged computation time and suboptimal detection rates often
encountered by robots. Ye et al. (2022) designed a network using the LFM module for
real-time obstacle detection in railway traffic scenes. Wang et al. (2022) proposed the
LDS-YOLO model for the rapid identification of dead trees in forests, incorporating the
SPP module with SoftPool and stacking depth-wise separable convolutions within the
network.

While YOLO-series detectors have achieved remarkable progress in general object
detection, we identified three critical limitations when applying existing YOLO-based
frameworks to vehicle body markers detection: First, crucial targets like reflective signs and
rear signs frequently exhibit small-scale characteristics, where conventional YOLO
architectures suffered from progressive detail loss during successive downsampling
operations. Second, high-density spatial distributions and inter-class similarities among
vehicle markers led to feature confusion and missed detections in current
implementations. Third, illumination variations in practical scenarios significantly
degraded detection robustness, particularly under extreme lighting conditions. To address
these challenges, we design the model architecture at the information level and propose the
Vehicle Body Markers YOLO (VBM-YOLO) model based on YOLOvVS8s. The following
summarizes the main contributions of this study:

1) A novel cross-spatial-channel attention (CSCA) mechanism is proposed. This
mechanism leverages cross-dimensional information to establish a global
interdependence between previously unrelated spatial and channel dimensions. This
significantly enriches the model’s feature information and enhances its detection
performance.
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2) We propose a multi-scale selective feature pyramid network (MSSFPN). MSSFPN uses
a progressive fusion approach that allows features from non-adjacent levels to be
directly integrated, mitigating the loss of feature information during transmission. Each
target layer in MSSFPN learns the importance of information from other target layers to
selectively extract critical information beneficial to the current target layer, thereby
avoiding interference from irrelevant information.

3) We propose the auxiliary gradient branch (AGB) to mitigate the issue of substantial
information loss about the target during the transmission of initial gradients from a
deep network. The AGB ensures that each target layer receives comprehensive gradient
information during backpropagation. Additionally, AGB only supervises during
training and does not participate in inference, thus reducing extra overhead.

4) The experimental results indicate that, compared to YOLOV8s, the VBM-YOLO model
achieves improvements of 2.3% and 4.3% in mAP@0.5 and mAP@50:95, respectively,
on the vehicle body markers dataset. Furthermore, the performance on two publicly
available datasets demonstrates its superior generalization.

The remainder of this article is organized as follows. The “Related Work” reviews
relevant studies. The proposed VBM-YOLO is detailed in the “Proposed Methodology”
section. “Experiments and Analysis” presents and discusses the experimental results.
Finally, some conclusions and future ideas are provided in the “Conclusion” section.

RELATED WORK

Object detection model

Object detection models are primarily categorized: two-stage detectors and one-stage
detectors. Classic two-stage detectors include R-CNN (Girshick et al., 2014), Fast R-CNN
(Girshick, 2015), Faster R-CNN (Ren et al., 2015), while representative one-stage models
include SSD (Liu et al., 2016), FCOS (Tian et al., 2020), and YOLO series (Redmon et al.,
2016; Redmon & Farhadi, 2017, 2018; Bochkovskiy, Wang ¢ Liao, 2020; Ultralytics, 2022;
Li et al., 2023; Wang, Bochkovskiy ¢ Liao, 2023).

Two-stage object detection models improve the accuracy and robustness of detection by
first generating candidate boxes and then classifying and adjusting these candidates.
R-CNN (Girshick et al., 2014), one of the earliest two-stage models, introduced
convolutional neural networks (CNNs) to the object detection field. He et al. (2017) further
enhanced this model by adding a branch for predicting object masks, leading to the
development of Mask R-CNN. Cai ¢ Vasconcelos (2018) proposed Cascade R-CNN, which
achieves higher accuracy by cascading multiple detectors. Despite the methods above
attaining high accuracy and superior performance, particularly for large objects and
complex scenes, the processing of two independent network stages results in slower speeds.

In contrast, one-stage models directly predict object detection results from input data
without undergoing multi-stage processing, thus achieving greater efficiency. OverFeat
(Sermanet et al., 2013) was one of the earliest CNN-based one-stage models. Currently,
RT-DETR (Zhao et al., 2023) is regarded as one of the most generalized and accurate
one-stage object detection models in the DETR series. However, its extensive parameters

Wang et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2932 3/27


http://dx.doi.org/10.7717/peerj-cs.2932
https://peerj.com/computer-science/

PeerJ Computer Science

and substantial training resource requirements hinder practical deployment. The YOLO
series has been widely adopted in industrial applications due to its real-time detection
capabilities. Among them, YOLOVS (Terven, Cordova-Esparza ¢» Romero-Gonzilez, 2023)
is recognized as one of the most advanced versions in the YOLO family. Through
continuous iterations, recent versions including YOLOV9 (Wang, Yeh ¢ Liao, 2024),
YOLOV10 (Wang et al., 2024), YOLOv11 (Khanam & Hussain, 2024), and YOLOv12
(Tian, Ye ¢» Doermann, 2025) have achieved significant improvements in both detection
accuracy and efficiency while preserving real-time performance.

Although the YOLO series performs well on large-scale datasets, it may not achieve high
precision in specific scenarios, often requiring increased computational resources to
enhance accuracy. For the specific task of vehicle body markers detection, we propose the
VBM-YOLO model to achieve a balance between accuracy and computational efficiency,
maintaining high detection accuracy while using fewer computational resources than
similar models.

Attention mechanisms

In human perception, attention mechanisms involve selectively focusing on relevant
information, allowing individuals to disregard irrelevant stimuli. This process helps the
brain capture crucial information and grasp essential details. In recent years, various
research methods have effectively integrated this attention mechanism into the
architecture of deep CNNs to enhance the performance of large-scale visual tasks.

Early work, such as SENet (Hu, Shen & Sun, 2018), focused on modeling channel
relationships in feature maps by learning weights for each channel. Subsequently, the
convolutional block attention module (CBAM) (Woo et al., 2018) was proposed. It
enriches attention maps by extracting channel and spatial features through max-pooling
and average-pooling. To establish connections within the dimensions, DANet (Fu et al.,
2019) modeled global dependencies of channels and spatial dimensions through
self-attention mechanisms. The convolutional triplet attention module (CTAM) (Misra
et al., 2021) models cross-dimensional dependencies between spatial and channels,
highlighting the importance of capturing cross-dimensional dependencies. The coordinate
attention (CA) (Hou, Zhou ¢ Feng, 2021) addressed the issue of positional information
loss in 2D pooling by decomposing channel attention into two 1D encoding processes.
Recently, the expectation-maximization attention (EMA) (Ouyang et al., 2023) further
enhanced the CA module by improving the sequential processing method, avoiding the
side effects of channel dimension reduction modeling, and achieving channel reshaping
and cross-dimensional fusion.

However, most of the methods mentioned above have significant drawbacks. The
majority of attention modules consider only variations within a single dimension.
Although modules like CBAM and DANet account for both dimensions, they fail to
leverage the interaction between the two dimensions to facilitate better fusion. Similarly,
while CTAM considers cross-dimensional information, it does not establish a global
dependency within the spatial and channel dimensions, leading to the loss of some critical
information. In contrast, our CSCA attention module not only employs self-attention to
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model local and global semantic dependencies between spatial and channel dimensions but
also achieves information interaction between the two dimensions.

Pyramid networks

In object detection, researchers have extensively studied the fusion of multi-level features.
These approaches aim to enhance detection performance by integrating high-level and
low-level information. The well-known feature pyramid network (FPN) (Lin et al., 2017) is
a classic feature fusion method in deep learning-based computer vision. It utilizes a
top-down pathway to merge features at each level, thereby improving the detection
performance of objects of varying sizes.

Given the exceptional performance of FPN, several variants have been proposed for
different scenarios, such as Path Aggregation Network (PANet) (Liu et al., 2018), Bi-
directional Feature Pyramid Network (BiFPN) (Tan, Pang ¢» Le, 2020), Asymptotic
Feature Pyramid Network (AFPN) (Yang et al., 2023), Info-FPN (Chen et al., 2023), and
Attentional Bidirectional Feature Pyramid Network (ABFPN) (Zeng et al., 2022). Each
variant optimizes the fusion pathways of FPN in distinct ways. However, pyramid
networks with up-and-down varying structures, like those mentioned above, require
high-level or low-level features to pass through multiple intermediate-scale
transformations. This process gradually degrades feature information. Moreover, mixing
multiple target features within the network makes extracting information for each target
layer challenging. To this end, we propose MSSFPN, a pyramid network with a clear
hierarchy that directly integrates low-level and high-level information in a progressive
manner, reducing the loss caused by intermediate transformations.

Deep supervision

Deep supervision has been widely applied to enhance the performance of deep CNNs.
These techniques (Wang et al., 2015; Szegedy et al., 2015; Wu, Hong ¢ Chanussot, 2022)
typically involve adding auxiliary prediction layers to certain intermediate hidden layers of
deep neural networks, thereby supervising the main network branches. This approach
helps addresses issues such as gradient vanishing and slow convergence during the training
of deep neural networks. Recent studies in segmentation networks (Qin et al., 2020; Qi, Wu
¢ Chan, 2023) and object detection Wang, Yeh ¢ Liao (2024) have also demonstrated that
deep supervision mechanisms significantly improve network performance. However, in
traditional deep supervision, if shallow layer supervision fails to retain critical information
during training, it may lead to error accumulation can occur, hindering subsequent layers
from retrieving necessary information. Furthermore, most deep supervision methods
require participation throughout the training and inference phases, which may result in
additional network overhead. To address these issues, we propose the AGB method, which
enables each target layer to mitigate the problem of gradient information vanishing while
avoiding extra inference overhead.
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Figure 1 The inference architecture of VBM-YOLO. The model includes the proposed CSCA and MSSFPN (Neck). In the Neck, green dashed
arrows represent the process of spatial upsampling and channel dimensionality reduction, while red dashed arrows indicate spatial downsampling
and channel dimensionality expansion. In the C2f-Rep, the RepViT Block is abbreviated as RepBlock. The Detect modules in the Head use decoupled
heads. Full-size K&l DOT: 10.7717/peerj-cs.2932/fig-1

PROPOSED METHODOLOGY

Overall architecture
To address the issues mentioned above, we propose a novel VBM-YOLO model for vehicle
body markers detection. The inference architecture of VBM-YOLO is shown in Fig. 1. We
introduced the CSCA mechanism, which employs self-attention to establish cross-spatial-
channel attention within the backbone network. The MSSFPN replaces the original neck
network. Furthermore, within the MSSFPN network, we utilized the improved C2f-Rep
module to enhance the extraction of channel and spatial information. The designed AGB is
incorporated during training to monitor and guide information flow during training,
ensuring more effective supervision, as detailed in the “Auxiliary Gradient Branch”
section.

The main modules utilized in the VBM-YOLO backbone network, including CBS, C2f,
and SPPF. Moreover, like YOLOvV8, VBM-YOLO employs decoupled heads. The CBS
module comprises three submodules: convolution, batch normalization, and the SiLU
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Figure 3 Images under strong lighting conditions and at varying distances.

Full-size K&l DOT: 10.7717/peerj-cs.2932/fig-3

activation function. The C2f module evenly splits the extracted features along the channel
direction using a slicing operation. These split features undergo processing through
concatenated Bottleneck modules, followed by cross-layer connections. The SPPF module
is an efficient pooling module designed to extract and fuse high-level features. This module
utilizes repeated max-pooling to extract as many high-level semantic features as possible
during the fusion process. Each detection head has two branches: a regression branch and a
classification branch, which perform regression and classification tasks, respectively. Each
branch consists of two 3 x 3 CBS and a 1 x 1 2D convolution. The detection head
module employs an anchor-free approach and a dynamic TaskAlignedAssigner for
positive and negative sample allocation. The primary structures of these modules are
illustrated in Fig. 2.

Cross-spatial-channel attention

Vehicles may not always be detected from the optimal angle. Especially in scenarios like
those shown in Fig. 3, strong lighting and long distances can make vehicle body markers
inconspicuous in the entire image. Additionally, convolution operations produce local
receptive fields, which can cause features of targets with the same pixels to differ.
Therefore, we establish global dependencies between features through the cross-spatial-
channel attention (CSCA) mechanism, adaptively aggregating remote context
information, highlighting inconspicuous object features, and addressing feature
discrepancy issues.
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As shown in Fig. 1, CSCA includes a spatial attention module, a channel attention
module, a cross-dimensional module, and a gated fusion unit. CSCA first reduces the
dimensionality of features and inputs them into the spatial attention module. The spatial
attention module selectively aggregates features at each position through a weighted sum
of features at all positions. This ensures that similar features are correlated regardless of
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their distance. Meanwhile, the channel attention module selectively emphasizes
interdependent channel maps by integrating related features across all channel maps.

Specifically, as shown in Fig. 4, the spatial attention module first generates a spatial
attention matrix that models the spatial relationships between any two pixels of the
features. Next, matrix multiplication is performed between the attention matrix and the
original features. Finally, element-wise summation is conducted between the resulting
matrix and the original features to obtain the final representation reflecting remote
context. The process of the channel attention module is similar to the spatial attention
module, except that the first step is to calculate the channel attention matrix along the
channel dimension. We use the gated fusion unit to reallocate the global feature
information extracted by the spatial and channel attention modules, obtaining the critical
global information that is most beneficial for each target layer. To achieve better feature
representation across the spatial and channel dimensions, we fuse the interactive feature
information generated by the cross-dimensional module with the gated fusion unit’s
output through addition and convolution operations. We introduce a CSCA before each
target layer to enhance its feature information.

Spatial attention module

In the YOLO backbone, the features generated due to the limitations of convolution can
lead to deviations in object classification and localization. To address this, we introduce a
positional attention module, which captures rich contextual relationships within the local
features and enhances the model’s representational capability.

As shown in Fig. 4A, given a local feature X € R“*H*W

, the feature is first passed
through three convolutional layers and reshaped to generate the feature maps Q, K, and V,
where {Q,K,V} € R and N = H x W. Then, the transpose of Q is multiplied by K,
and a softmax function is applied to compute the spatial attention map P € RNV,
Simultaneously, V is multiplied by P, and the result is reshaped back to R“*#*W_ This

output is then summed element-wise with the original feature X to obtain the final output

K e RCXHX W:
exp(Q; - K)
P, — (1)
! Zfil eXP(Qi ) KJ)
N
K= (Pi-Vi) +X (2)

i=1
where P; measures the influence of the i position on the j position. The greater the
similarity of the feature representations, the higher the correlation. Kj represents the
weighted sum of the features from all other positions and the original feature at the j
position.

Channel attention module
Each channel map in the high-level features can be viewed as a response to a specific
category. The semantic information generated within these maps is interrelated. By
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modeling the relationships among these channel feature maps, we can highlight relevant
feature maps and strengthen the connections between related semantics.

Unlike spatial attention modules, as illustrated in Fig. 4B, the channel attention module
directly reshapes the original features X € RE**W to generate three feature maps Q, K,
and V, all of which are of size R“*¥. Subsequently, Q is multiplied by the transpose of K,
followed by a softmax operation to compute the channel attention map T € R¢*€. Then, a
matrix multiplication is performed between T and V, reshaping the resultant to RS*>W,

which is summed element-wise with X to yield the final output F € R©H*W;
exp(Qi - K))
Tji = C (3)
> exp(Qi - K))
c
F= (Ti- Vi) +X (4)

i=1
where T} quantifies the influence of the i channel on the j# channel, and F; represents the

weighted sum of the features from all other channels and the original feature at the j
channel.

Gated fusion unit

As illustrated in Fig. 4C, a gated fusion unit is designed to selectively filter and capture
essential spatial and channel information of the current target layer. Specifically, the spatial
features K and channel features F are reshaped to R7*W*C The reshaped features are then
processed through linear layers and summed. Subsequently, a sigmoid function is applied
to the summed features to generate a weight representation Z € R7*W*€_ The weight
representation Z and its complement 1 — Z are then used to scale the reshaped K and F,
respectively. The scaled features are summed and reshaped to produce the fused features
Y € ROH*W The calculations are as follows:

e(KW1+FW))
Z= e(KWi+FW2) 4 1 (5)
Y=Z-K+(1—-2)-F (6)

where W, and W, are parameter matrices used for generating the weights. This process
ensures the effective fusion of spatial and channel features, thereby obtaining a more
precise feature representation.

Cross-dimensional module

Since the spatial and channel modules are separated when establishing contextual
information, a simple addition fusion operation without additional information cannot
fully represent the contextual information. Therefore, the interactive information between
the two dimensions is necessary. To this end, we introduce a cross-dimensional module
designed to capture the interaction between spatial and channel dimensions. First, we
enable interaction between the channel and the spatial dimensions H and W. Next, the
generated information is multiplied by the original feature information and then added
together. The final result represents the interactive information between the channel and
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spatial dimensions. As illustrated in the upper part of Fig. 4D, the feature X € RC*H*W j

s
first reshaped, then subjected to max pooling and average pooling along the H spatial
dimension, resulting in two effective features of size RIXCXW These features are
concatenated along the H spatial dimension and then passed through a 1 x 1 convolutional
layer to obtain the weight information S1 € R'**W related to the channel and the H
spatial dimension. The weight information is multiplied with the original features after
passing through a sigmoid function, resulting in features that, after reshaping, become
M € ROHW M ¢ REHXW represents the interaction between the channel and the H
spatial dimension.

As shown in the lower part of Fig. 4D, a similar process is performed along the W spatial
dimension to obtain the feature N € R“H*W representing the interaction between the
channel and the W spatial dimension. Finally, the two features M and N are added together

to obtain the complete interaction feature E € RC*H*W.

S1 = f1 (max (X);, mean(X) ) (7)

$2 = f,(max (X),, mean(X),, ) (8)
¢Sl

M=Xm ©
52

E=M-+N (11)

where max (X),; represents the max pooling of the feature X along the H dimension,
mean (X)), represents the average pooling along the H dimension, and f denotes the series
of concatenation and convolution operations.

Multi-scale selective feature pyramid network

To address the confusion and degradation of feature information caused by the previous
pyramid structure, we propose the multi-scale selective FPN, as illustrated in the neck
section of Fig. 1. MSSFPN employs a clear hierarchical structure for each target layer to
avoid confusion. Specifically, it first fuses the low-level information from two target layers
and then progressively integrates the higher-level information from deeper layers. This
approach prevents information loss associated with top-down operations and mitigates
conflicts from directly fusing low-level and high-level information with significant
semantic gaps. Direct summation during feature fusion inevitably leads to information
loss. Therefore, we introduce the ASFF (Liu, Huang ¢ Wang, 2019) module to learn
feature information from different target layers adaptively. Although ASFF handles the
fusion of features at different scales, preserving the crucial feature information of the
current layer is also essential. Thus, we propose the feature selective fusion (FSF) module,
which selectively integrates original and multi-scale information better to capture the
crucial information of the current target layer. In the FSF module, we first perform global
average pooling on both the original and fused features to obtain two sets of pooled feature
information. These sets are then concatenated along the channel dimension and processed
using softmax and sigmoid, respectively, to generate two sets of weights representing the
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utilized to supervise the gradient backpropagation of the VBM-YOLO during training.
Full-size k4] DOT: 10.7717/peerj-cs.2932/fig-5

importance levels for the current target layer. These weights are multiplied with the
original features, and the resulting features are fused to produce information beneficial for
the current layer.

Additionally, our research finds that the BottleNeck module in the original C2f structure
of YOLOVS, which uses two consecutive 3 x 3 convolutions, leads to the loss of some
channel fusion information. Consequently, within the MSSFPN, we replace the BottleNeck
module with the RepViT Block module from RepViT (Wang et al., 2023) in C2f. The
RepViT Block module, with its multi-branch structure and 1 X 1 and 3 x 3 depthwise
convolutions, retains channel information and enhances spatial information while having
fewer parameters than the original BottleNeck module. Furthermore, we utilize the
reparameterization technique from the RepViT Block to reduce GFLOPs by 1.3 during
inference.

Auxiliary gradient branch

In object detection algorithms, information from each target layer is transmitted from the
preceding layer to the current one, often resulting in information loss. This issue becomes
more pronounced as the network depth increases. Therefore, it is crucial to maintain the
integrity of each target layer’s information, which requires the complete transmission of
information from the previous layer to the current one, both in forward and backward
propagation. Given our improvements to the network structure, we aim to preserve the
gradient information of each target layer from the perspective of backward propagation. As
illustrated in Fig. 5, to ensure consistency in information during forward and backward
propagation, the backbone structure in the AGB is kept consistent with the backbone in
VBM-YOLO. Each target layer in VBM-YOLO is connected to all corresponding
preceding target layers in the AGB, enabling it to receive gradient information from the
previous layer and thus maintain its information integrity. For instance, during training, to
ensure the completeness of gradient information in the third target layer of VBM-YOLO,
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the third target layer is sequentially connected to the first to third target layers of the AGB
branch. During backpropagation, the gradient information from the first to third layers in
the AGB is sequentially propagated to the third target layer of VBM-YOLO, thus ensuring
the integrity of the third target layer’s information.

When employing the AGB, an additional branch is added behind each CBS module in
VBM-YOLO to connect a Link module. The Link module, composed of 1 x 1
convolutions, sequentially converts the input feature maps to match the channel number
of the target layers in the AGB. These converted feature maps are then sequentially
assigned to the Fuse module in the AGB for merging. The Fuse module upsamples the
features from different target layers and sums them to obtain fusion information on
different layers. Moreover, the AGB is used only during training and removed during
inference to reduce computational overhead.

EXPERIMENTS AND ANALYSIS

Datasets

This study employs portable mobile devices to collect vehicle images requiring body
marking detection. From an extensive image pool, we curated a representative dataset
containing 7,164 images-comprising 3,582 right-rear 45° vehicle views and 3,582 left-front
45° vehicle views. As shown in Fig. 3, to better simulate real-world detection environments
and enhance model robustness, the dataset intentionally includes 122 images with
significant overexposure and 132 images captured from substantially long distances. As
shown in Fig. 6, this dataset contains six detection targets: rear reflective signs, side
reflective signs, rear guards, side guards, rear signs, and triangle signs. Specifically, the rear
right side images contain rear reflective signs, side reflective signs, rear guards, side guards,
rear signs, and triangle signs. The front left side images contain side reflective signs and
side guards.

Ground truth annotations were generated using the Labellmg software. The dataset was
divided into a training set of 6,164 images and a validation set of 1,000 images, with an
equal 1:1 distribution of right rear and left front images in both sets. Figure 7 illustrates the
distribution of labels in the vehicle body markers dataset used in this study. To further
verify the generalization of our model across different tasks, we conducted tests on two
public datasets: the PASCAL VOC (Everingham et al., 2010) dataset and the D-Fire
(de Venancio, Lisboa & Barbosa, 2022) dataset, as shown in Fig. 7 for label distribution.
The PASCAL VOC dataset, including the 2007 and 2012 versions, contains 20 categories
of detection objects. In our experiments, we used 16,551 images from the training and
validation sets of VOC2007 and VOC2012 for training and 4,952 images from the
VOC2007 test set for validation. The D-Fire dataset, which consists of images of fire and
smoke events, has two categories: smoke and fire, with 21,527 images. We used the official
split of 17,221 images for training and 4,306 images for validation.

Experimental setup
The experiments were conducted on an NVIDIA GeForce RTX 4090 (24 GB) GPU,
utilizing the environmental dependencies of PyTorch 2.0.1, Python 3.9.17, and CUDA
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Figure 6 Different types of vehicle body markers are framed in the figures. As shown in the figure, (A) rear reflective signs, (B) side reflective

signs, (C) side guards, (D) rear guards, (E) rear signs, and (F) triangle signs. Full-size 4] DO 10.7717/peerj-cs.2932/fig-6
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Figure 7 Label distribution across different datasets. As shown in the figure, (A) represents the vehicle body markers dataset, (B) represents the
VOC dataset, and (C) represents the D-Fire dataset. Full-size K&l DOT: 10.7717/peerj-cs.2932/fig-7
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Figure 8 Evolution of evaluation indexes of YOLOv8s model during training based on the vehicle body markers dataset.

Full-size K&] DOT: 10.7717/peerj-cs.2932/fig-8

11.7. During training, we used the SGD optimizer with a batch size of 16. The
hyperparameters for SGD were set as follows: momentum at 0.937, initial learning rate at
0.01, and weight decay at 0.0005. All input images were uniformly scaled to 640 x 640
pixels. As depicted in Fig. 8, the training process of the YOLOv8s model for our collected
vehicle body markers dataset exhibited stability in all evaluation metrics after 125 to 200
epochs. Therefore, the maximum epoch count was set to 200 for models trained using our
collected dataset. For the PASCAL VOC dataset and the D-Fire dataset, the maximum
epoch count was set to 300 to ensure adequate training and optimal performance on these
datasets. In this study, all models were trained from scratch without using pre-trained
weights.

Data augmentation
To enhance the model’s generalization capability, we systematically applied a range of data
augmentation techniques. We introduced the Mosaic augmentation method, which
generated composite training samples by randomly selecting, stitching, and cropping four
images. This approach not only effectively improved the detector’s adaptability to various
backgrounds through multi-background fusion but also allowed the Batch Normalization
(BN) layers to learn the feature distributions of four images simultaneously within a single
batch, thereby significantly enhancing the model’s feature extraction performance.
Regarding the fundamental augmentation strategies, we employed a variety of
multi-dimensional geometric transformations: (1) mirror flipping, which produced
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mirrored samples via horizontal and vertical flips to increase the diversity of the training
data; (2) orthogonal rotation, which applied rotations in multiples of 90° to enhance the
model’s resilience to changes in object orientation; (3) random cropping, which involved
sampling local regions to force the model to focus on the most salient features of the
targets; and (4) angle rotation, which performed rotations at arbitrary angles in
combination with a dynamic bounding box coordinates correction algorithm, ensuring
precise spatial alignment of the detection boxes with the rotated images. The integration of
these methods significantly improved the model’s robustness against variations in target
scale, orientation, and background.

Evaluation metrics

In this study, the model size is evaluated based on its number of parameters. Precision (P),
recall (R), and mean average precision (mAP) were employed to evaluate the detection
performance of the proposed model. P indicates the probability that a detected object is
correctly identified among all detected objects. R denotes the probability of correctly
identifying positive samples among all positive samples. Average precision (AP) measures
the accuracy for a specific category and is determined by the area under the precision-recall
(P-R) curve. mAP is the mean of the (AP) values for all categories, indicating the overall
accuracy of the model. A higher mAP indicates more accurate detection outcomes. The
following equations provide detailed explanations of these metrics:

TP
P=— (12)
TP + FP
TP 13)
TP+ EN (
1
AP = / P(R)dR (14)
0
N
mAP:M (15)

N

where TP denotes the number of true positive samples, FP denotes the number of false
positive samples, and FN denotes the number of false negative samples. N represents the
number of classes in the dataset.

Furthermore, mAP@QQ.5 refers to the mean average precision when the Intersection over
Union (IoU) threshold is set to 0.5, while mAP@O0.5 : 0.95 indicates the mean average
precision across IoU thresholds ranging from 0.5 to 0.95 with increments of 0.05.

Comparison experiments
In this section, we conduct experiments on three datasets and compare VBM-YOLO with
mainstream one-stage and two-stage object detection models to evaluate its effectiveness.
Table 1 presents the performance comparison between current mainstream models and
our proposed VBM-YOLO model on the vehicle body markers dataset. The proposed
VBM-YOLO model exhibits superior performance compared to other models. Compared
with two-stage models such as Faster R-CNN and SSD, VBM-YOLO shows significant
advantages in model size and mAP. Although our VBM-YOLO model is larger than the
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Table 1 Comparison of different object detection models on the vehicle body markers dataset.

Model mAP®@0.5 mAP@0.5:0.95 Params (M) GFLOPs FPS
SSD 0.618 0.325 24.1 30.6 132
Faster-RCNN 0.681 0.396 136.8 370.2 17
YOLOvV5m 0.726 0.434 25.1 48.3 112
YOLOV5s 0.721 0411 7.0 15.8 140
YOLOv6s 0.723 0.431 16.3 45.3 162
YOLOv7 0.734 0.423 37.2 103.2 118
YOLOvV7-tiny 0.719 0.404 6.0 13.1 165
YOLOVS8s 0.721 0.428 11.1 284 145
YOLOvV8m 0.731 0.449 259 78.9 122
RT-DETR-R18 0.725 0.437 20.0 60.0 85
YOLOV9-C 0.73 0.447 254 102.1 101
Gelan-C 0.729 0.446 25.4 102.1 101
YOLOv10-M 0.707 0.42 16.4 59.1 110
YOLOv11-M 0.723 0.421 20.1 68.0 95
YOLOvI12-M 0.728 0.435 20.2 67.5 76
VBM-YOLO 0.744 0471 18.2 449 135

original YOLOVSs, it achieves a notable improvement in mAP, with increases of 2.3% in
mAP@0.5 and 4.3% in mAP@0.5:0.9. Moreover, in comparison with the larger YOLOv8m
model, VBM-YOLO not only maintains a smaller size but also attains higher mAP@0.5
and mAP@0.5:0.9, with gains of 1.3% and 2.2%, respectively. The table shows that, while
YOLOvV7-tiny has the smallest number of parameters, its accuracy is substantially lower
compared to the VBM-YOLO model. We also compared our model with some of the latest
object detection models of similar sizes, including RT-DETR based on the ResNet18
backbone network, YOLOV9-C, and GELAN-C. It should be noted that GELAN-C is an
efficient layer aggregation network proposed in YOLOV9. However, compared to
YOLOV9-C, which has the highest accuracy and the largest size among the three, our
VBM-YOLO model reduces the number of parameters by 28% while still improving
mAP@0.5 and mAP@0.5:0.9 by 1.4% and 2.4%, respectively. Comparative evaluations with
recently released YOLOvV10, YOLOv11, and YOLOv12 demonstrate VBM-YOLO’s
mAP@0.5 improvements of 3.7%, 2.1%, and 1.6%, and mAP@0.5:0.9 gains of 5.1%, 5.0%,
and 3.6% respectively, while maintaining substantially lower computational costs and
higher FPS. These results in the table indicate that our model achieves the best balance
between accuracy and resource consumption compared to other models. The PR curve in
Fig. 9 further illustrates the improved detection performance of VBM-YOLO compared to
YOLOVSs across various datasets. Despite the challenges posed by intense lighting and
varying distances, which reduce detection accuracy for side reflective signs, our model still
outperforms YOLOV8s by 1.4% in detecting these markers. The results from the other two
datasets also clearly demonstrate that VBM-YOLO outperforms YOLOvV8s in most
detection categories. Under high-intensity illumination conditions, distant pixels are
frequently surrounded by saturated light regions, resulting in diminished contrast
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Figure 9 The precision-recall (P-R) curves of YOLOv8s and VBM-YOLO across different datasets. The upper section shows YOLOvS8s, while the
lower section corresponds to VBM-YOLO. As shown in the figure, (A-C) display the P-R curves for the Vehicle Body Marker dataset, the PASCAL
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(ref), side reflective markers (sideRef), rear guard devices (gua), side guard devices (sideGua), rear markers (rear), and triangular markers (triangle).

Full-size K&l DOT: 10.7717/peerj-cs.2932/fig-9

Figure 10 A comparison of the detection performance between VBM-YOLO and YOLOVS8s. As shown in the figure, (A) and (B) represent the
tests conducted under strong lighting conditions and at varying distances, respectively.

Full-size K&] DOT: 10.7717/peerj-cs.2932/fig-10

differentiation between adjacent pixels. This photometric interference may cause detection
models to overlook subtle variations between pixels during feature extraction or even
completely ignore the feature information from these light-affected regions. To address
this limitation, our detection framework incorporated CSCA module that explicitly
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Table 2 Comparison of different object detection models on the PASCAL VOC dataset.

Model mAP®@0.5 mAP@0.5:0.95 Params (M) GFLOPs FPS
YOLOV5s 0.786 0.532 7.0 15.8 143
YOLOvV6s 0.837 0.645 16.3 45.3 163
YOLOv7-tiny 0.79 0.533 6.0 13.1 165
YOLOVS8s 0.835 0.637 11.1 28.4 147
RT-DETR-R18 0.837 0.612 20.1 60.0 86

YOLOV9-C 0.884 0.709 254 102.1 103
YOLOv10-M 0.858 0.674 16.4 59.1 112
YOLOv11-S 0.793 0.591 9.4 21.5 110
YOLOvVI12-S 0.81 0.61 9.3 214 80

VBM-YOLO 0.84 0.648 18.3 449 138

Table 3 Comparison of different object detection models on the D-Fire dataset.

Model mAP@0.5 mAP@0.5:0.95 Params (M) GFLOPs FPS
YOLOV5s 0.78 0.414 7.0 15.8 143
YOLOvV6s 0.778 0.46 16.2 45.3 165
YOLOvV7-tiny 0.776 0.494 6.0 13.1 168
YOLOVS8s 0.79 0.474 11.1 28.4 145
RT-DETR-R18 0.586 0.324 20.0 60.0 88

YOLOV9-C 0.802 0.491 254 102.1 105
YOLOv10-M 0.785 0.468 16.4 59.1 112
YOLOvV11-S 0.791 0.472 9.4 21.5 110
YOLOvVI12-S 0.794 0.476 9.3 214 82

VBM-YOLO 0.796 0.494 18.2 449 139

preserves illumination-aware feature distinctions between proximal and distant pixels
throughout the feature hierarchy. As illustrated in Fig. 10, this mechanism achieved
significant enhancement in the model’s detection performance.

To further validate VBM-YOLQO’s generalization performance, we conducted
comparison experiments on the public PASCAL VOC and D-Fire datasets. As shown in
Tables 2 and 3, comparison experiments were conducted on the publicly available
PASCAL VOC and D-fire datasets to evaluate the generalization capabilities of our
proposed model against other mainstream object detection models.

For results in the PASCAL VOC dataset, though our VBM-YOLO model is specifically
designed for detecting vehicle body markers, it also demonstrated superior performance,
surpassing the baseline YOLOv8s model and other earlier YOLO versions. VBM-YOLO
achieved higher accuracy than RT-DETR, which is based on the ResNet18 backbone,
despite having fewer parameters. While YOLOvV9-C showed higher accuracy than VBM-
YOLO, it required 7.1 million additional parameters.
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Figure 11 Demonstration of detection performance across different models. As shown in the figure, (A) represents the original image, while
(B-E) illustrate the different detection results of the VBM-YOLO model, YOLOv8s, YOLOV9-C, and YOLOV10-M, respectively. Different vehicle
body markers are labeled in the images as follows: rear reflective sign (ref), side reflective sign (sideRef), rear guard (gua), side guard (sideGua), rear
sign (rear), and triangle sign (triangle). Full-size K&] DOT: 10.7717/peerj-cs.2932/fig-11

For results in the D-fire dataset, while YOLOv10-M achieved higher accuracy than
VBM-YOLO on the PASCAL VOC dataset, its accuracy on the D-fire dataset was
significantly lower than that of VBM-YOLO. Furthermore, while YOLOv9-C had a higher
mAP@0.5, VBM-YOLO achieved a higher mAP@50:95 with fewer parameters. Excluding
YOLOV9-C, which has substantially more parameters than VBM-YOLO, our model
achieved the highest accuracy on both metrics in the D-fire dataset compared to other
models.

The above analysis indicates that the proposed VBM-YOLO model not only excels in
vehicle body markers detection but also exhibits strong generalization capabilities across
other detection tasks. To visually demonstrate the performance advantages of our
VBM-YOLO algorithm, Fig. 11 compares the detection capabilities of VBM-YOLO,
YOLOV8, YOLOV9, and YOLOV10. Although there are significant differences in the
number of model parameters between YOLOv8 and YOLOVY, their final detection
performances do not exhibit notable distinctions. The recently released YOLOvV10 has
made substantial progress in mitigating latency issues. However, its specific optimizations
for the COCO dataset and lightweight design may somewhat limit its efficacy in vehicle
body markers detection. Notably, all three models exhibit a certain degree of missed
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Table 4 Ablation study of main components of the VBM-YOLO on the vehicle body markers dataset.

CSCA MSSFPN ASFF-softmax ASFF-sigmoid C2f C2f-Rep AGB mAP@0.5 mAP@0.5:0.95
0.721 0.428
v 0.731 0.432
v v v 0.741 0.461
v v v 0.742 0.462
v v v 0.741 0.465
v v v v 0.745 0.467
v v v v 0.744 0.471

detections. VBM-YOLO, benefiting from techniques designed to address information loss,
demonstrates a significant advantage in reducing missed detections compared to the other
algorithms.

Ablation experiments

The ablation experiments were conducted to verify the effectiveness of each improvement
module in the VBM-YOLO model on the vehicle body markers dataset. The results are
shown in Table 4. Initially, the CSCA module was added individually before the SPPF
module in the baseline model. It was observed that mAP@0.5 and mAP@0.5:0.95 increased
by 1% and 0.4%, respectively, compared to the baseline model. Subsequently, a separate
ablation experiment was conducted on the MSSFPN, replacing the original baseline
model’s neck network. This led to significant improvements, with mAP@0.5 and
mAP@0.5:0.95 increasing by 2% and 3.3%, respectively. These results demonstrate the
effectiveness of the proposed MSSFPN feature pyramid architecture for feature fusion and
extraction.

Additionally, we found that employing the ASFF module with a sigmoid function in
MSSFPN produced better results than using the ASFF module with a softmax function.
Both mAP@0.5 and mAP@0.5:0.95 increased by 0.1%. An ablation experiment was also
conducted on the C2f module within the MSSFPN. It was found that using the C2f-Rep
model, which incorporates channel fusion feature information, resulted in a 0.1% decrease
in mAP@0.5 but a 0.3% increase in mAP@0.5:0.95. Therefore, the MSSFPN was
implemented with the ASSF module using the sigmoid activation function and the
C2f-Rep module.

To explore the effect of using the CSCA module and MSSFPN simultaneously, the
CSCA attention mechanism was added before each target layer in the VBM-YOLO
model’s backbone, and the MSSFPN was used in the neck network. A significant
improvement in accuracy was observed compared to using the CSCA and MSSFPN
individually. Compared to the initial baseline model, mAP@0.5 and mAP@0.5:0.95
increased by 2.4% and 3.9%, respectively. Furthermore, to alleviate the loss of gradient
information for each target layer during backpropagation, the AGB branch was used to
supervise training and removed during inference. It was observed that although mAP@0.5
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Table 5 Performance of different attention mechanisms in the VBM-YOLO model on the vehicle
body markers dataset.

Attention mechanism mAP@0.5 mAP@0.5:0.95 GFLOPs
CSCA 0.745 0.467 45.2
iRMB (Zhang et al., 2023) 0.739 0.465 75.9
Biformer (Zhu et al., 2023) 0.738 0.464 89.1
EMA 0.722 0.434 34.8
DilateFormer (Jiao et al., 2023) 0.719 0.432 37.3

Figure 12 Performance comparison of different attention modules. As shown in the figure, (A) and (B) represent the heatmaps of CSCA, iRMB,
Biformer, EMA, and DilateFormer on two different images. Full-size k&l DOL: 10.7717/peerj-cs.2932/fig-12

decreased by 0.1% compared to not using AGB supervision, mAP@0.5:0.95 increased by
0.4%. Therefore, we decided to use the AGB branch to assist in training our model.

In addition, to further validate the superiority of the proposed CSCA attention
mechanism over other widely used attention mechanisms in vehicle body markers
detection, we replaced CSCA in the VBM-YOLO with attention mechanisms employing
similar approaches, such as iRMB (Zhang et al., 2023), Biformer (Zhu et al., 2023), EMA
(Ouyang et al., 2023), and DilateFormer (Jiao et al., 2023). It is important to note that the
AGB branch was not used during these experiments. The results, as shown in Table 5,
clearly demonstrate that our attention mechanism achieves the best balance between
accuracy and computational resources when incorporated into the model, compared to
other attention modules.

We used heatmaps, as illustrated in Fig. 12, to visually observe the performance of each
attention mechanism. Compared to our CSCA attention mechanism, the heatmaps for
other attention mechanisms exhibit missing or lighter thermal information in the regions
requiring detection. In contrast, the CSCA heatmap shows significantly darker color
distribution in the areas that need to be detected. These results indicate that the CSCA
attention module captures key information in the features more effectively than other
attention modules.
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CONCLUSION

In this study, we propose an improved vehicle body markers detection algorithm, VBM-
YOLO, based on YOLOVS8s, which addresses the limitations of current mainstream object
detection models in this specific application. In the VBM-YOLO model, we utilized the
proposed CSCA, MSSFPN, and AGB to reduce information loss. Experimental results
demonstrate that our algorithm achieves superior performance on the vehicle body
markers dataset with an mAP@50:95 of 47.1%, outperforming YOLOVS by 4.3%,
YOLOV9-C by 2.4%, YOLOV10-M by 5.1%, YOLOvV11-M by 5%, and YOLOv12-M by
3.6%, while maintaining an effective balance between accuracy and computational
resource consumption. Additional evaluations on PASCAL VOC and D-Fire datasets
confirm enhanced detection performance compared to the baseline model, demonstrating
improved generalization capabilities. As our model is specifically designed for vehicle body
markers detection rather than general object detection, its performance relative to
universal detection models remains suboptimal. Future research will employ knowledge
distillation and incremental learning techniques to enhance generalization capabilities.
Under high-intensity illumination conditions, although our model enhances performance
by computing differences between distant and proximal pixels, subtle variations might be
overlooked when the computed values are uniformly low across the entire distribution.
Future work will explore adaptive amplification of proximal light-source gradients through
enhanced histogram equalization techniques, including contrast-limited adaptive
histogram equalization (CLAHE) and learnable attention-based enhancement operators.
Additionally, we aim to develop compact network variants optimized for small-scale
training scenarios without compromising detection accuracy. Pending successful
optimization, we intend to deploy the model in vehicle inspection stations to automate
compliance checks of vehicle markings, thereby enhancing road safety regulations
enforcement.
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