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ABSTRACT
The ability to predict the popularity of online contents has important implications in
a wide range of areas. The challenge of this problem comes from the inequality of the
popularity of content and the numerous complex factors. Existing works fall into
three main paradigms: feature-driven approaches, generative models, and methods
based on deep learning, each with known strengths and limitations. In this article, we
propose an end-to-end deep learning framework, called CST-Net, to combat the
defects of existing methods. We first learn a low-dimensional embedding for each
user based on historic interactions. Then, users are clustered into communities based
on the learned user embeddings, and information cascades are represented as a series
of episodes in the form of community interaction matrix. Afterwards, a
convolutional architecture is applied to learn the representation of the entire
information cascade. Finally, the extracted structural and temporal features are
further combined to predict the incremental popularity. We validate the effectiveness
of the proposed CST-Net by applying it on two different types of population-scale
datasets, i.e., a microblogging dataset and an academic citation dataset. Experimental
results demonstrate that the proposed CST-Net model consistently outperforms the
existing competitive popularity prediction methods.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Network Science and Online
Social Networks, Social Computing, Neural Networks
Keywords Information diffusion, Popularity prediction, Social network, Neural networks

INTRODUCTION
The emergence of Web 2.0 applications brings the explosive growth of user generated
contents (UGC). It is significantly important to predict the future popularity of UGC
items, such as microblogs, academic articles, and videos. Popularity prediction has
important implications in many domains, including viral marketing (Leskovec, Adamic &
Huberman, 2007), public opinion monitoring (Watts & Dodds, 2007), etc. However,
popularity prediction is challenging since numerous factors can affect the asymmetric and
broadly-distributed popularity of online content.

Recently, great efforts have been made to study the popularity prediction on social
networks. In general, current models fall into three main paradigms, each with known
strengths and limitations. Some methods focus on exploring relevant features and
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generally making predictions in a supervised framework with machine learning algorithms
(Szabo & Huberman, 2010; Bao et al., 2013; Shulman, Sharma & Cosley, 2016; Hong, Dan
& Davison, 2011). These feature-driven approaches devote to verifying the effectiveness of
a bag of pre-defined interpretable features. However, they heavily rely on hand-craft
features based on prior knowledge. Meanwhile, there are still numerous factors to be
investigated and it is not flexible to apply them to a broad spectrum of data domains.
Afterwards, some researchers treat the popularity dynamics as time series, making
predictions by modeling the process through which individual items gain their attentions
(Rodriguez, Leskovec & Schölkopf, 2013; Shen et al., 2014; Zhao et al., 2015; Bao et al., 2015).
Despite their initial success in leveraging fine-grained timing information in the event
series, a major limitation of these existing studies is that they often draw various
parametric assumptions about the latent dynamics governing the generation of the
observed temporal point process. In recent years, there has been heightened research
interest regarding the end-to-end deep learning framework for popularity prediction based
on deep learning (Bourigault et al., 2014; Du et al., 2016; Li et al., 2017; Cao et al., 2017;
Xiao et al., 2017; Dou et al., 2018). This line of works can automatically learn the valuable
information from raw data. However, existing works mainly focus on sampling sequences
from cascade graphs and then feeding these sequences into neural networks, which have
paied heavy attention on the microscopic level of information cascades. The way of
learning the representation of the entire information cascade directly still remains
unresolved.

Inspired by Zhang, Zheng & Qi (2017) which focus on employing a deep residual neural
network framework for citywide crowd flows prediction, we aim to model the information
diffusion from the mesoscopic perspective of communities. More specifically, information
diffusion is treated as the inflow and outflow among different communities. According to
the empirical findings in Bao et al. (2013), the structural characteristics of diffusion cascade
at an earlier time can help predict its final popularity. For example, if a tweet has been
spread to different communities of the network, it is more likely to become known by a
greater population in the future.

In this article, we propose community-guided structural-temporal convolutional
networks, called CST-Net, to combat the defects of existing methods, leveraging an
end-to-end deep learning framework for popularity prediction. Firstly, we learn a
low-dimensional embedding for users based on their historic interactions. With the
learned user embeddings, users are clustered into communities, and information cascades
are represented as a series of episodes in the form of community interaction matrix. Then,
a convolutional architecture is applied to learn the representation of the entire information
cascade. Finally, the extracted structural and temporal features are further combined to
predict the incremental popularity. We validate the effectiveness of CST-Net by applying it
on two different types of population-scale datasets, i.e., SinaWeibo and APS. Experimental
results demonstrate that the proposed CST-Net model consistently outperforms the
existing competitive popularity prediction methods.
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The main contributions of this article are three-fold:

. We employ convolution-based residual networks to simultaneously model local and
global structural dependencies among users in information diffusion processes from the
mesoscopic perspective of communities.

. We represent information cascade as a series of episodes in the form of community
interaction matrix, leveraging the temporal properties of recent time, near history and
distant history during the dynamic process.

. We evaluate our proposed model on two different types of population-scale datasets. The
experimental results demonstrate the advantages of our model compared with four
baselines.

The rest of this article is organized as follows. The literature review for popularity
prediction is detailed in “Related Works”. “Preliminaries” introduces the definition of
popularity prediction problem and background about the convolutional neural networks.
“Model” describes the three components of our proposed model, followed by
comprehensive experiments using two population-scale datasets to evaluate the
performance of our proposed model in “Experiments”. Conclusion and future directions
are given in the end.

RELATED WORKS
Existing approaches for popularity prediction can be classified into three categories:
feature-driven approaches, generative models, and methods based on deep learning.

Feature-driven approaches
Great efforts have been made to investigate an extensive set of hand-crafted features for
predicting the popularity of online contents, including tweets (Hong, Dan & Davison,
2011; Zhao et al., 2015), microblogs (Bao et al., 2013; Bian, Yang & Chua, 2014), videos
(Pinto, Almeida & Goncalves, 2013; Chang et al., 2014; Ding et al., 2015), academic articles
(Shen et al., 2014;Wang, Song & Barabási, 2012), to name a few. Most of the studies devote
to identifying temporal properties (Szabo & Huberman, 2010; Pinto, Almeida & Goncalves,
2013), structural features of the cascade at the early stage (Bao et al., 2013; Cheng et al.,
2014), and the content features (Hong, Dan & Davison, 2011;Ma, Sun & Cong, 2013) as the
most predictive factors. A classic approach is to making predictions by applying regression
models (Szabo & Huberman, 2010; Pinto, Almeida & Goncalves, 2013;Martin et al., 2016)
or classification models (Shulman, Sharma & Cosley, 2016; Cheng et al., 2014). Szabo &
Huberman (2010) found that the final popularity is reflected by the popularity in early
period by investigating Digg and YouTube. A direct extrapolation method is then
employed to predict the long-term popularity. Later, Cheng et al. (2014) discovered that
temporal features are most predictive of a cascade’s final popularity. Besides, user features,
particularly user’s influence in past are shown to be informative predictors (Bakshy et al.,
2011; Feng et al., 2018). Recently, Martin et al. (2016) explored the limits of predictability
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in complex social systems, suggesting that even with unlimited data predictive
performance would be bounded well below deterministic accuracy. Li et al. (2020) explored
group-level features to predict the popularity of new Meetup groups. In general, these
feature-driven approaches devote to verifying the effectiveness of a bag of hand-crafting
features in order to learn a better prediction model. However, there are still numerous
factors to be investigated and it is not flexible to apply them to a broad spectrum of data
domains. Moreover, feature-driven approaches heavily rely on the quality of artificially
designed features, which are hand-crafted based on human prior domain knowledge.

Generative models
The other line of enquiry, in contrast, treats the popularity dynamics as time series, making
predictions by modeling the process through which individual items gain their attentions
(Shen et al., 2014; Gao, Ma & Chen, 2015; Crane & Sornette, 2008; Lerman & Hogg, 2010).
Crane & Sornette (2008) studied the relaxation response of a social system after
endogenous and exogenous bursts of activity using the time series of daily views on
YouTube, finding that most activity can be described accurately as a Poisson process.
Subsequently, Shen et al. (2014) employed reinforced Poisson process to model the arriving
process of article citations. Recently, Hawkes self-exciting process was employed to
captures the triggering effect of each attention (Zhao et al., 2015; Bao et al., 2015; Mishra,
Rizoiu & Xie, 2016; Bao & Zhang, 2017). Despite their initial success in leveraging
fine-grained timing information in the event series, however they make stronger
assumptions about the diffusion process. Mishra, Rizoiu & Xie (2016) proposed a marked
Hawkes self-exciting point process, which intuitively aligns with the social factors
responsible for diffusion of cascades: social influence of users, social memory and inherent
content quality. Furthermore, Rizoiu et al. (2017, 2018) investigated the correlation
between the endogenous response and the exogenous stimuli of a social system, and
explored the connection between Hawkes point processes and SIR epidemic models. Xu
et al. (2023) enabled integration of structural and temporal information in a diffusion
process. Generative approaches learn the inherent characteristics of online content and
propagation mechanism on different communication platforms, which achieve good
interpretability. However, most generative approaches generally depend on specific
assumptions that are unknown in reality so that their representation ability are relatively
limited.

Deep learning methods
In order to deal with such complex popularity dynamics and automatically leverage
predictive information from raw data, in recent year, there has been heightened research
interest regarding the popularity prediction methods based on deep learning (Bourigault
et al., 2014; Du et al., 2016; Li et al., 2017; Cao et al., 2017; Xiao et al., 2017; Zhao, Zhang &
Feng, 2022; Bao, Yan & Yang, 2024). Du et al. (2016) viewed the intensity function of a
temporal point process as a nonlinear function of the history, and employed a recurrent
neural network (RNN) to automatically learn a representation of influences from the event
history. Later, Xiao et al. (2017)modeled both background and history effect by two RNN,
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respectively. The recent successes of deep learning in a wide range of areas also inspires
some end-to-end deep learning framework for popularity prediction. Li et al. (2017)
presented DeepCas model that learn the representation of cascade graphs in an end-to-end
manner, which significantly improve the performance of popularity prediction over strong
baselines. Subsequently, Cao et al. (2017) proposed DeepHawkes model, which inherits the
high interpretability of Hawkes process and possesses the high predictive power of deep
learning methods, bridging the gap between prediction and understanding of information
cascades. This line of works can automatically learn the valuable information from raw
data. More recently, Zhao, Zhang & Feng (2022) utilized the temporal and structural
information of cascade networks as input to predict the future growth of information
cascades. Bao, Yan & Yang (2024) proposed a learning framework for popularity
prediction via modeling both the temporal evolution in a separate snapshot and the
inherent temporal dependencies among different snapshots based on the dynamic
evolution process. However, existing works mainly focus on sampling sequences from
cascade graphs and then feeding the sequences into recurrent neural networks. In this
article, we take advantage of both the effective information demonstrated by traditional
methods and the power of end-to-end deep learning framework for popularity prediction.
Existing methods mostly utilize the order relationship between forwarding users to model
the sequential information, while ignoring the impact of temporal features that mainly
dominates the future popularity.

PRELIMINARIES
In this section, we first formally formulate the popularity prediction problem, and then
briefly introduce the convolutional neural networks before presenting the proposed model.

Problem definition
Let M denote a set of items, e.g., microblogs or academic articles. Suppose the set M
contains M items, it is denoted by M ¼ mif gð1 � i � MÞ.
Definition 1 (cascade) For each item mi, a cascade is characterized by Ci ¼ ðuik; vik; tikÞ

� �
,

where the tuple ðuik; vik; tikÞ corresponds to the k-th forwarding, meaning that user vik
forwards the item mi from user uik at time tik.

Definition 2 (popularity prediction) Given the cascades in the observation time window

½0;TÞ, we aim to predict the incremental popularity DNi
T between observed popularity Ni

T

and final popularity Ni
1 of each cascade Ci, where DNi

T is denoted as DNi
T ¼ Ni

1 � Ni
T .

In the definition, T indicates the earliness of the prediction and refers to the length of
training period. It is worth noting that we predict the incremental popularity instead of the
final popularity to avoid the intrinsic correlation between the observed popularity and the
final popularity, which forms a more challenging scenario for popularity prediction.

Convolutional neural networks
Convolutional neural networks (CNNs) have proven to be effective models for tackling a
variety of visual tasks. For each convolutional layer, a set of filters are learned to express
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local spatial connectivity patterns along input channels. By stacking a series of
convolutional layers interleaved with non-linearities and downsampling, CNNs are
capable of capturing hierarchical patterns with global receptive fields as powerful image
descriptions. Recently, residual learning allows such networks to have a deeper structure
(He et al., 2016a), which gains state-of-the-art results on multiple challenging recognition
tasks.

Formally, a residual unit with an identity mapping is defined as:

Xlþ1 ¼ Xl þFðXl;WlÞ; (1)

where in the Eq. (1) Xl and Xlþ1 are the input and output of the l-th residual unit
respectively; F is a residual function, e.g., a stack of two 3 � 3 convolution layers; Wl is a
set of weights (and biases) associated with the l-th residual unit (He et al., 2016b).

To improve the ability of representation of a network by explicitly modeling the
interdependencies between the channels of its convolutional features, Hu, Shen & Sun
(2018) introduce a new architectural unit, which is termed as the “Squeeze-and-Excitation”
(SE) block.

MODEL
This section introduces the proposed deep Community-guided Structural-Temporal
convolutional Networks for popularity prediction, called CST-Net. Figure 1 presents the
main architecture of the proposed CST-Net, which takes the observed diffusion episodes of
each cascade as input and outputs the final incremental popularity. Note that a diffusion
episode is a set of users who adopt action in chronological order and it is a subset of the
entire cascade graph. Therefore, it corresponds to a sequence of users who forwards a
specific microblog or cites an academic article.

The main part of the proposed CST-Net model consists of three components: (1) user
embedding, learning a low-dimensional embedding for each user based on historical
interactions; (2) community interaction matrix construction, clustering users into
communities based on the learned representations and constructing the community
interaction matrix; and (3) convolutional architecture, feeding the community interaction
matrix into convolutional neural networks to learn the representation of the observed
cascade graph. Finally, we combine the learned representation of cascade graph with the
extracted structural and temporal features to predict the incremental popularity. Detailed
descriptions are given in the following sections.

User embedding
Feature-based approaches have demonstrated that user features, such as, number of fans
and past success, are effective for popularity prediction (Shulman, Sharma & Cosley, 2016;
Cheng et al., 2014). However, it is still unclear which features is the best important for us to
represent and distinguish users or users’ influence. Recently, with the development of node
embedding technology, learning users’ low-dimensional representations directly from
history data has been widely adopted. Therefore, in this article, we propose to learn users’
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representations by using their historic interactions, which are regarded as the input feature
vectors for the following community detection algorithm.

Generally, the static social graph among users are treated as input to learn their
representations. However, it is usually intractable to obtain the entire social graph
structure. Moreover, previous works have proved that historic interactions among users
are more effective for measuring the influence and susceptibility among them (Aral &
Walker, 2012). Hence, instead of social graph, we construct the interaction graph
G ¼ V ;Eð Þ directly from historic interactions, where V is the set of users and E is the set of
edges. Note that each edge in E represents a retweet in microblogging network or a citation
in academic network respectively.

Specifically, we employ Node2Vec (Grover & Leskovec, 2016) to characterize each user,
which is a framework with outstanding performance for the continuous feature
representation of nodes in large scale networks. The learned user embeddings are regared
as input vectors for constructing community interaction matrix.

Community interaction matrix construction
In this article, we aim to model information diffusion from the mesoscopic perspective of
communities. We suppose that information propagation between users corresponds to the

Figure 1 Architectural overview of the proposed CST-Net.
Full-size DOI: 10.7717/peerj-cs.2931/fig-1
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diffusion among different communities. As shown in Fig. 2, the observed episode of each
cascade is transformed to the form of community interaction matrix. Specifically,
information diffusion is regarded as the inflow and outflow among different
communities. Therefore, it is significantly important for us to firstly detect the
communities among users. In previous section, we obtain the learned user embeddings
from user interaction graph. Here, we exploit the mini-batch k-means++ proposed by
Arthur & Vassilvitskii (2007) to cluster users into s communities. The community list is
represented as L and s is the number of communities. The approach can handle large-scale
networks with low computational complexity and has superior performance in community
detection.

Given a cascade, it can be represented as the form of community interaction matrix
W 2 Rs�s, where the (j; k)-th value denotes the number of forwardings from community j
to community k within the observation time window. Therefore, the problem of predicting
the incremental popularity can be transformed into forecasting the information flow
among different communities.

Now, we have obtained the s detected communities among users based on their historic
interactions. It is important and challenging for the downstream task to organize the
community interaction matrix W. When communities are arranged randomly in the
matrix, the similarity between adjacent communities is uncertain and neglected obviously
in the community interaction matrixW. To extract deep features from user interactions, it
is necessary to acquire the local proximity of the input community interaction matrix W.
Therefore, it is significantly important to assemble the community interaction matrix
appropriately, which makes these communities with more interactions to get closer in the
matrix W. In this article, we propose an algorithm to assemble communities,
preserving the proximity among them. Details are shown in Algorithm 1. Firstly, based
on the obtained detected communities, the largest community is chosen and denoted by

Lm, where m ¼ s
2

� e. According to some similarity measurement for communities, we

obtain two other communities which are most similar with Lm, denoted by Lm�1 and Lmþ1

respectively. Then, we continue to choose the most similar community in the rest and
add it to the list denoted by Lm�2. Similarly, we add another one to the list
denoted by Lmþ2. The process continues until all communities are added to the list
L. Finally, we reassemble the community interaction matrix W according to the order
in the list L.

Figure 2 Transformation of diffusion cascades to community interaction matrix. Full-size DOI: 10.7717/peerj-cs.2931/fig-2
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For simplicity, in this article, the similarity between two communities i and j is
defined as:

sði; jÞ ¼ Uij=D
out
i þ Uji=D

out
j þ Uij=D

in
j þ Uji=D

in
i ; (2)

where in the Eq. (2) Uij represents the historic interaction from community i to
community j, such as, the number of retweets or citations from community i to
community j. Dout

i and Din
i represent the outdegree and indegree of community i,

respectively. Note that other similarity measurements can also be adopted. Here we treat
investigating the effect of different similarity measurements as a future work.

Convolutional architecture
Once we have obtained the community interaction matrix W, an effective convolution
neural network can be applied to extract the deep features of a specific cascade within the
observation time window. In the proposed CST-Net, we utilize the convolutional neural
network framework ResNet (He et al., 2016a) to predict the future incremental popularity.
The “Squeeze-and-Excitation” block proposed by Hu, Shen & Sun (2018) is adopted to
improve the performance of our model as a new architectural unit.

To capture the temporal features of a cascade, we divide the observation time window
into three fragments, denoting recent time, near history and distant history. Then, they are
fed into three channels of the convolution neural network. Moreover, we build multiple
labels for each cascade which denotes the incremental popularity during the observation
time window. Afterwards, we can obtain the learned representation for each cascade.

In addition, we extract some predictive structural and temporal features for each
cascade. More specifically, we extract the structural features of the observed cascade as a
measure of centrality and density, such as the number of leaf nodes, the number of first

Algorithm 1 Constructing community interaction matrix.

Input: The detected community set S

Output: The community interaction matrix W

1: Initialize an ordered community list L

2: Choose the largest community, add it to list L, denoted by Lm, where m ¼ s
2

� e, and remove it from S

3: Choose two communities most similar to Lm, add them to list L, denoted by Lm�1 and Lmþ1, and remove
them from S

4: for k ¼ 0 to m� 1 do

5: Choose the most similar community with Lm�k and Lm�k�1

6: Add it to list L, denoted by Lm�k�2 and remove it from S

7: Choose the most similar community with Lmþk and Lmþkþ1

8: Add it to list L, denoted by Lmþkþ2 and remove it from S

9: end for

10: Reassemble the community interaction matrix W according to the order in the List L

11: return the community interaction matrix W
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layer nodes, average and max length of retweet or citation path. To capture the temporal
dynamics of each cascade, we extract the mean time interval between each retweet or
citation, the time latency of the first retweet or citation, the cumulative popularity,
incremental popularity every 10 min for Sina Weibo and every 1 year for APS.

Finally, we feed the learned representation of each cascade graph and the
aforementioned extracted features, denoted by hi, into a fully-connected layer (Eq. (3)) to
predict the incremental popularity:

DNi
T ¼ FC hi

� �
: (3)

EXPERIMENTS
In this section, we present comprehensive experiments using two population-scale datasets
to evaluate the prediction performance of the proposed CST-Net model. And an ablation
study is also conducted to investigate the effectiveness of the components of CST-Net.

Datasets
In order to demonstrate the effectiveness and generalizability of the proposed CST-Net, we
evaluate it on two scenarios of popularity prediction. One of the scenario is forecasting the
incremental popularity of retweet cascades in a social network and the other is predicting
the incremental size of article citation cascades. In this article, the data were collected as
previously described in DeepHawkes (Cao et al., 2017), where retweets and citations were
considered as cascades, respectively.

Sina Weibo dataset: This data is collected from the most popular micro-blogging service
in China, namely Sina Weibo, which has more than 500 million registered users and
generates about 100 million messages per day. It consists of all the original microblogs that
were submitted on June 1, 2016, and for each microblog, we collect its retweets within the
next 24 h. In Sina Weibo, a cascade is generated by an original tweet and all of its retweets,
and its popularity is the number of retweets. Figure 3A shows that the retweet cascade
popularity exhibits a power-law distribution.

Generally, the life cycle of a microblog is relatively short. In Fig. 4A, we can see that the
retweet number within 24 h N24hours after publication have a good approximation to the
final popularity N1 for each microblog. In our experiment, we set T, the observation time
window of a cascade since the original microblog was released, from a range of 1, 2 and 3 h.
For each T, we only consider the cascades with no less than 10 retweets and no more than
1,000 retweets in the observation window. Figure 5 shows that due to the diurnal rhythm of
users, microblogs released in different period may have different popularity dynamic
patterns. Therefore, we only consider microblogs published between 8:00 and 18:00. We
split the remaining cascades into training set, validation set and test set by the first 70%, the
middle 15% and the last 15% according to the publication time. Detailed statistics of the
preprocessed dataset are shown in Table 1.

APS dataset: It comprises the articles published in all journals in American Physical
Society from 1893 to 2009, consisting of 245,365 authors, 463,344 articles, and 4,692,026
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Figure 4 Normalized popularity. Full-size DOI: 10.7717/peerj-cs.2931/fig-4

Figure 5 Diurnal rhythm of activities in Sina Weibo. Full-size DOI: 10.7717/peerj-cs.2931/fig-5

Figure 3 Distribution of popularity. Full-size DOI: 10.7717/peerj-cs.2931/fig-3
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citations. For each article, the dataset includes title, DOI, PACS code, date of publication,
names and affiliations of authors, a list of the articles cited, and so on. Similar with the
preprocessing in DeepHawkes (Cao et al., 2017), we consider all coauthors of a article as an
author group, which is analogy to a distinct person in the scenario of Sina Weibo. In APS,
the cascade can represent the citation relationship of a article. In Fig. 3B, the citation
cascade popularity also follows a power-law distribution.

Similar to Sina Weibo, as shown in Fig. 4B, for each article, we utilize the citation count
within 20 years N20years to represent the final popularity N1 for each article. Accordingly,
we only use articles published between 1893 and 1989. In APS dataset, we choose the
observation time window from a range of 3, 6 and 9 years. For each observation time T,
only those articles with more than 10 citations is retained. Finally, on the basis of the
publication time, we take the first 70% as training set, the middle 15% as validation set and
the last 15% as test set. Table 1 shows the statistics of the processed dataset.

Baselines
To evaluate the accuracy of our predictive model, we compare the proposed CST-Net
model with state-of-the-art approaches. Specifically, the comparison methods in our
experiments are listed as follows:

Features: Based on recent studies of popularity prediction, structural and temporal
features provide strong evidence for the final popularity increment. Therefore, we extract
all predictive features that could be generalized across datasets. These features include:

. Structural features. While it is often impossible to obtain the entire social network
structure, we only extract the structural features of the observed cascade. We use the
number of leaf nodes, the number of first layer nodes, average and max length of retweet
or citation path as a measure of centrality and density.

. Temporal features: To capture the temporal dynamics of a cascade, We extract the mean
time interval between each retweet or citation, the time latency of the first retweet or
citation, the cumulative popularity, incremental popularity every 10 min for Sina Weibo
and every 1 year for APS.

Table 1 Statistics of the datasets.

Sina Weibo APS

T 1 h 2 h 3 h 3 y 6 y 9 y

Cascades Train 28,597 33,886 36,496 15,160 30,497 35,795

Val 6,110 7,254 7,828 3,281 6,736 8,020

Test 6,125 7,283 7,840 3,288 6,751 7,983

Avg.Ni
T Train 62.92 69.15 71.95 23.36 32.15 39.55

Val 66.83 73.54 76.63 24.22 37.54 48.63

Test 61.84 67.65 71.94 26.66 40.61 52.20

Note:
Avg.Ni

T scales the actual popularity of the cascade size.
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Once all the above predictive features are collected, we feed these feature vectors into a
linear regression model with L2 regularization and a multi-layer perceptron (MLP),
denoted as Feature-linear and Feature-deep, respectively.

DeepCas (Li et al., 2017) is state-of-the-art deep learning method for popularity
prediction, which automatically learns the representation of individual cascade graph as a
whole in an end-to-end manner and predicts the future incremental popularity.

DeepHawkes (Cao et al., 2017) leverages end-to-end deep learning to make an analogy
to interpretable factors of Hawkes process, which inherits the high interpretability of
Hawkes process and possesses the high predictive power of deep learning methods.

CasCN (Chen et al., 2019) conceptualizes the cascade graph as a discrete sequence of
subgraphs, which introduces a graph convolutional network designed to capture local
structural information within each snapshot, while recurrent neural networks are used to
learn sequential information.

GTGCN (Yang et al., 2022) utilizes a temporal encoder to process timestamp
information and applies an improved graph convolutional network to capture both
structural and temporal information, combining temporal encoding with a gated recurrent
unit to capture temporal dependencies across multiple snapshots.

Evaluation metric
In order to validate the prediction performance of the CST-Net model, we compare it with
the existing prediction models, in terms of two metrics: mean square log-transformed error
(MSLE) and mean relative log-transformed error (MRLE), following the practice in
previous work of popularity prediction (Li et al., 2017; Cao et al., 2017). Let DN̂i

T be the
predicted incremental popularity for item i up to time T, and DNi

T be the observed
incremental popularity. The MSLE (Eq. (4)) measures the average deviation between the
predicted and observed incremental popularity over all items. For a dataset ofM items, the
MSLE is defined as:

MSLE ¼ 1
M

XM

i¼1

logDN̂i
T � logDNi

T

� �2
: (4)

TheMRLE (Eq. (5)) expresses how large the absolute error is compared with the ground
truth, which is defined as:

MRLE ¼ 1
M

XM

i¼1

logDN̂i
T � logDNi

T

� �
= logDNi

T

� �
: (5)

Running environment and parameter settings
All experiments were done on a Ubuntu 20.04 server with Intel� CoreTM i9-10850K CPU
@ 2.60 GHz and a RAM of size 128 Gb. Besides, We use an NVIDIA 3080Ti GPU.

For hyper parameters, the mini-batch size of the stochastic gradient descent is set as 32
and 128 in Sina Weibo and APS dataset respectively. We select the initial learning rate
from f0:1; 0:05; 0:001; . . . ; 10�5g and weight decay from f0; 0:01; 0:005; . . . ; 10�4g. For
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Node2Vec (Grover & Leskovec, 2016), p, q are chosen from {0.25, 0.5, 1, 2, 4}, the length of
walk is chosen from {10, 25, 50, 80, 100}, and the candidate embedding size from {32, 64,
128}. For mini-batch k-means++ (Arthur & Vassilvitskii, 2007), batch size is selected from
{1,000, 5,000, 10,000, 50,000} and the number of clusters from {32, 64, 128, 256}.

Prediction performance
As shown in Table 2, the overall prediction performance of all competing methods across
two datasets is displayed. Except for the prediction based on 3 year observation on APS
dataset, which our model performs on par with the state-of-the-art method, the proposed
CST-Net outperforms all four baseline methods on both scenarios. Because of the richer
information within a longer observation time window, we can find that the longer the
observation time, the better the prediction performance.

We noticed that the model of Feature-linear and Feature-deep perform not well in
popularity prediction since it is difficult to extract all of the effective hand-crafted features
of a cascade. Within the short observation time, the experimental result of DeepCas is
better than Feature-linear and Feature-deep. Nevertheless, when the observation time
being longer, Feature-linear and Feature-deep outperform DeepCas significantly. One
possible explanation is that DeepCas focuses on sampling sequences via random walks
while ignores the rich structural and temporal information of a cascade.

On Sina Weibo dataset, our model outperforms all of the four baseline methods within
any observation window. However, we can see that CST-Net is slightly worse than
DeepHawkes when the observation time window is set to 3 years on APS dataset. One
possible explanation is that the community interaction matrix would be sparse because the
life cycle of articles is significantly longer than that of microblogs. Therefore, it is difficult
for CST-Net to capture the dynamics of citations. We leave exploring the sparsity problem
to our future work.

It is worth mentioning that we have also investigated some poor prediction cases.
Surprisingly, we found that there is an interesting number of cascades which do not get
much retweets/citations for a period of time after being published, but then suddenly start
getting popular heavily. This phenomenon is called “sleeping beauties” which has raise

Table 2 MSLE and MRLE of CST-Net and baseline methods. Bold Entries represent the best performance among all the methods.

Sina Weibo APS

T 1 h 2 h 3 h 3 y 6 y 9 y

Evaluation metric MSLE MRLE MSLE MRLE MSLE MRLE MSLE MRLE MSLE MRLE MSLE MRLE

Feature-linear 3.633 � 1.1 0.336 � 0.13 2.834 � 0.9 0.337 � 0.14 2.305 � 0.8 0.325 � 0.13 3.776 � 1.2 0.247 � 0.09 3.136 � 1.0 0.341 � 0.13 2.745 � 0.8 0.434 � 0.15

Feature-deep 3.360 � 0.8 0.338 � 0.12 2.561 � 0.7 0.347 � 0.12 2.185 � 0.6 0.356 � 0.14 3.024 � 0.8 0.223 � 0.08 2.797 � 0.7 0.328 � 0.12 2.703 � 0.8 0.433 � 0.14

DeepCas 2.887 � 0.7 0.364 � 0.14 2.637 � 0.8 0.394 � 0.13 2.522 � 0.8 0.417 � 0.15 2.980 � 0.8 0.286 � 1.02 2.949 � 0.8 0.435 � 0.15 2.914 � 0.9 0.546 � 0.16

DeepHawkes 2.316 � 0.6 0.293 � 0.09 2.130 � 0.7 0.312 � 0.11 2.043 � 0.6 0.342 � 0.12 2.631 � 0.7 0.227 � 0.07 2.407 � 0.6 0.326 � 0.12 2.342 � 0.6 0.425 � 0.13

CasCN 2.273 � 0.6 0.285 � 0.09 2.122 � 0.9 0.308 � 0.12 2.112 � 0.7 0.331 � 0.13 2.893 � 0.8 0.275 � 0.09 2.627 � 0.7 0.413 � 0.13 2.831 � 0.7 0.519 � 0.14

GTGCN 2.265 � 0.7 0.279 � 0.08 2.117 � 0.7 0.301 � 0.11 2.011 � 0.6 0.326 � 0.11 2.811 � 0.7 0.262 � 0.09 2.594 � 0.7 0.402 � 0.12 2.721 � 0.7 0.512 � 0.15

CST-Net 2.071 � 0.5 0.254 � 0.08 2.016 � 0.6 0.296 � 0.09 1.907 � 0.5 0.297 � 0.09 2.700 � 0.6 0.228 � 0.06 2.295 � 0.6 0.313 � 0.11 2.243 � 0.5 0.413 � 0.12
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much attention in other fields such as social computational science. However, how to
effectively model and predict this kind of cascades is another line of research, which is
beyond the focus of this manuscript and we will try to solve them in our future work.

In addition, comparing the experimental results in two scenarios, we can find that the
CST-Net exhibits a better performance in Sina Weibo than in APS. We show in Fig. 6 the
number of articles published in each year in the APS dataset. The inset of Fig. 6 gives a
cumulative view, i.e., total number of articles published up to a certain year, on a log-linear
scale. Figure 6 is in good agreement with previous findings (Wang, Song & Barabási, 2012)
that the number of articles published each year increases exponentially, indicating that the
cascading pattern of articles is quite different from that of microblogs. Therefore, the
model trained in the early stage would be inappropriate for the prediction in 20 years,
leading to the slightly poor performance in APS dataset.

Ablation study
In order to demonstrated the effectiveness of the components in the proposed CST-Net, a
detailed analysis is given in this section. For comparison, three simplified variants of CST-
Net, denoted as CST-basic, CST-feature and CST-community are represented, where one
or two components are removed from the complete CST-Net model.

CST-basic model randomly arrange communities in the interaction matrix, in which
the similarity between adjacent communities is uncertain and neglected. The hand-crafted
temporal and structural features are also discarded. This version is constructed to offer a
basic model for comparison.

CST-feature model includes the hand-crafted features which implicate the
structural and temporal characteristics of a cascade on the basis of CST-basic. This

Figure 6 The number of articles published each in APS. Inset: accumulative number of articles
published up to year t. Full-size DOI: 10.7717/peerj-cs.2931/fig-6

Zheng et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2931 15/21

http://dx.doi.org/10.7717/peerj-cs.2931/fig-6
http://dx.doi.org/10.7717/peerj-cs.2931
https://peerj.com/computer-science/


version is used to evaluate whether extracted features are effective for popularity
prediction.

CST-community model uses Algorithm 1 to construct community interaction matrix
on the basis of CST-basic. We use this version to verify the effectiveness of community
interaction matrix construction.

The prediction results of these simplified versions of CST-Net are shown in Table 3.
Comparing to the complete version of CST-Net model, all these three variants lead to
certain degradation of performance in different extent. Firstly, we can observe that
CST-basic and CST-feature have similar prediction performance, and CST-feature is
slightly better than CST-basic. Accordingly, these hand-crafted features play a positive role
on popularity prediction. Secondly, the version of CST-community outperforms both
CST-basic and CST-feature with a significant reduction of prediction error, especially
within short observation time window. Since the detected communities in CST-basic and
CST-feature are arranged randomly, the local similarity between adjacent communities is
uncertain and neglected. However, in order to feed into convolutional neural networks, the
local similarity in the input matrix is required. Thus, the community interaction matrix
construction contributes to learn the deep features of cascade among communities. For
simplicity, in this article, we utilize the historic interactions among users to compute the
community similarity and then assemble them orderly in the community interaction
matrix. In addtion, we also extended our ablation study to more precisely isolate the
impact of each key component of CST-Net. Specifically, we conducted additional
experiments where we remove the convolutional architecture (CST-Net w/o Conv) and
residual units (CST-Net w/o SE-ResUnit) from CST-Net, respectively. The extended
ablation study results are also summarized in Table 3. These results further demonstrate
the effectiveness of each component to the model’s performance. Besides, we can also
observe that the convolutional architecture performs more importance than the residual
units in the model.

Moreover, in order to investigate the ability of the proposed CST-Net to predict
popularity dynamics, we set the training period, i.e., T, as 2 h and 6 years for Sina Weibo
and APS dataset respectively, and then predict the incremental popularity every 3 h or

Table 3 Prediction performance of variants of CST-Net.

Sina Weibo APS

T 1 h 2 h 3 h 3 y 6 y 9 y
Evaluation metric MSLE MSLE MSLE MSLE MSLE MSLE

CST-basic 2.842 2.394 2.060 3.318 2.512 2.369

CST-feature 2.827 2.198 2.033 3.241 2.485 2.333

CST-community 2.399 2.083 1.969 2.964 2.361 2.263

CST-Net 2.071 2.016 1.907 2.700 2.295 2.243

CST-Net w/o Conv 2.216 2.064 1.955 2.811 2.342 2.258

CST-Net w/o SE-ResUnit 2.107 2.032 1.931 2.793 2.313 2.249
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2 years on both scenarios. As shown in Fig. 7, we can observe that with the increase of
prediction time, the performance of all four versions of CST-Net decreases.

CONCLUSION
In this article, we propose an end-to-end deep learning framework for popularity
prediction, called CST-Net, to combat the defects of existing methods. Firstly, we learn a
low-dimensional embedding for users based on their historic interactions. Then, users are
clustered into communities based on the learned user embeddings. Information cascades
are represented as a series of episodes in the form of community interaction matrix.
Afterwards, a convolutional architecture is applied to learn the representation of the entire
cascade graph. Finally, the extracted structural and temporal features are further combined
to predict the incremental popularity. We validate the effectiveness of CST-Net by
applying it on two different types of population-scale datasets, i.e., Sina Weibo and APS.
Experimental results demonstrate that the proposed CST-Net model consistently
outperforms the existing competitive popularity prediction methods. More importantly, it
provides us great insights in understanding the fundamental mechanism of information
diffusion and sheds light on the collective attention on online social networks.

There are a few limitations for the proposed method. Although the overall performance
is pretty well, it does not hold for some abnormal dynamic processes with specific patterns
or malicious behaviors. In addition, more flexible way of community interaction matrix
construction can be investigated. Both of these are very interesting and we will try to solve
them in our future work.

A long list of future work can be conducted for the follow-up researchers in this field.
Examples include thorough investigation of the various roles played by individuals, deep
exploration on the interplay between the dynamics of collective attention, and the
structural and temporal characteristics of the networks spanned by early adopters.
Specifically, how to effectively model the influence of users could provide us great insights
in understanding the fundamental mechanism of information diffusion and shed light on

Figure 7 Prediction performance of popularity dynamics.
Full-size DOI: 10.7717/peerj-cs.2931/fig-7
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the collective attention on online social networks. It is also an interesting research topic to
design an effective and efficient graph neural network to dynamically learn the concrete
representation of the evolving cascade graph from different perspectives. In addition, one
is also encouraged to investigate more implicit factors and devote to improve the
robustness of our proposed framework through generative adversarial networks or
contrastive learning. Moreover, researcher could also dive deeper into the time-decaying
effect modeling, as well as the model interpretability.
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