Creation of mutants by using centrality
criteria in social network analysis

Savag Takan

Department of Computer Engineering, Faculty of Engineering, Izmir Institute of Technology, Izmir, Turkey

ABSTRACT

Mutation testing is a method widely used to evaluate the effectiveness of the test suite
in hardware and software tests or to design new software tests. In mutation testing,

the original model is systematically mutated using certain error assumptions. Mutation
testing is based on well-defined mutation operators that imitate typical programming
errors or which form highly successful test suites. The success of test suites is determined
by the rate of killing mutants created through mutation operators. Because of the high
number of mutants in mutation testing, the calculation cost increases in the testing
of finite state machines (FSM). Under the assumption that each mutant is of equal

value, random selection can be a practical method of mutant reduction. However,

in this study, it was assumed that each mutant did not have an equal value. Starting
from this point of view, a new mutant reduction method was proposed by using the
centrality criteria in social network analysis. It was assumed that the central regions

selected within this frame were the regions from where test cases pass the most. To

evaluate the proposed method, besides the feature of detecting all failures related to

the model, the widely-used W method was chosen. Random and proposed mutant

reduction methods were compared with respect to their success by using test suites.

As a result of the evaluations, it was discovered that mutants selected via the proposed
reduction technique revealed a higher performance. Furthermore, it was observed that
the proposed method reduced the cost of mutation testing.

Subjects Network Science and Online Social Networks, Theory and Formal Methods, Software
Engineering
Keywords Mutation analysis, Finite state machine, Social network analysis, W method, Centrality

Submitted 14 May 2020
Accepted 11 August 2020
Published 14 September 2020

Corresponding author INTRODUCTION

Savag Takan, savastakan@iyte.edu.tr

Academic editor Testing provides the means to check whether the pre-specified requirements have been met,

Xiangjie Kong and the correct outputs have been produced. We benefit from software testing to eliminate
Additional Information and potential faults and to ensure error-free operation of the software (Mathur, 2013). To this
Declarations can be found on end, because there are a number of text strategies, a large number of test cases need to be
page 18 generated.

DOI 10.7717/ j-cs.293
peetyes In computer science and particularly in software and hardware engineering, in order to

©@ Copyright develop and verify the software and hardware systems, formal methods are used to convert
2020 Takan these complex systems into mathematical models. With the use of formal methods, it is

Distributed under possible to verify the reliability of a mathematically modelable design with empirical tests
Creative Commons CC-BY 4.0

OPEN ACCESS

in a more comprehensive way (Mathur, 2013).

How to cite this article Takan S,. 2020. Creation of mutants by using centrality criteria in social network analysis. Peer] Comput. Sci.
6:€293 http://doi.org/10.7717/peerj-cs.293

https://peerj.com/computer-science
mailto:savastakan@iyte.edu.tr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.293
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.293

PeerJ Computer Science

In software testing, formal method-based testing constitutes a popular research
topic (Lee ¢ Yannakakis, 1996; Endo ¢ Simao, 2013). Because formal methods provide
the opportunity to detect whether the model meets the requirements or not. Finite State
Machines (FSM), Petri Nets, and UML are some of the formal methods. FSM, which is
mainly used to model hardware and software systems, is a mathematical model which has
discrete inputs and outputs. Various methods are proposed in the literature to form test
suites in FSMs, the most widely used of which are Transition Tour (Naito, 1981), W (Chow,
1978), Wp (Fujiwara et al., 1991), UIO (Sabnani ¢ Dahbura, 1988), UIOv (Vuong, 1989),
DS (Gonenc, 1970), HSI (Petrenko ¢ Yevtushenko, 2005; Petrenko et al., 1993; Yevtushenko
& Petrenko, 1990) and H (Dorofeeva ¢» Koufareva, 2002). In this study, to evaluate the
proposed method, in addition to the feature of detecting all the errors in the model, the W
method, was chosen because it is widely used.

Mutation testing is generally used to measure the effectiveness of tests or to design new
software tests in the formal methods (FSM, Petri Net, and UML). In the mutation test,
the original model is systematically mutated using certain error assumptions. The purpose
here is to represent a potential programmer error. In this line, a small change (mutation)
is made in the source code. These changes are based on well-defined mutation operators
which imitate typical programming failures or which enable for highly successful tests to
be established.

An example mutation process is given below:

if(a<b){...} ~ if(a>b){..}

Each modified version of a program, as in the equation above, is called a mutant. If a
test case can detect a certain mutant, it is accepted that the mutant is killed by this test case.
The Performance of a test suite is determined as per the killing rate of mutants by means
of the mutation operators. Mutation analysis generally has many advantages; however,
doing the analysis for huge models require too much time and space because of the high
number of mutants. To avoid this situation, mutant reduction methods are used. Mutant
reduction enables the analysis to be completed in a reasonable time and space by limiting
the number of mutants.

Among the various mutant reduction methods, the most widely used one is random
selection method which is based on a random sub-set selection of mutants. The random
selection method is based on the assumption that mutants are identical in terms of their
probability of occurrence. Within the frame of this assumption, the random selection
method is a very practical mutant reduction method. However, this assumption is
inaccurate since the situations where mutants are killed by the test suite is often not
identical.

Although there are numerous studies in the literature related to mutant reduction, there
are few related to FSM-based mutant reduction (Fabbri, Maldonado ¢~ Delamaro, 1999;
Maldonado et al., 2001; Fabbri et al., 1994; da Silva Simao et al., 2008; Li, Dai ¢ Li, 2009;
Petrenko, Timo ¢ Ramesh, 2016; Timo, Petrenko ¢» Ramesh, 2017). Existing studies are
generally focused on the mutation operators being required for mutant generation (Pizzoleto
et al., 2019). In this study a different situation with a new FSM-based mutant reduction
method was proposed.

Takan (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.293 2/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.293

PeerJ Computer Science

In the study, it was first assumed that each mutant does not have equal value. Starting
from this point of view, a new mutant reduction method was proposed by using the
centrality criteria in social network analysis. It was assumed that the central regions
selected in this frame are the regions from where the test suite passed the most. To evaluate
the proposed method, in addition to the feature of detecting all errors relating with the
model, W method was chosen because it is widely used. Random and proposed mutant
reduction methods were compared with respect to their performances by using the test
suite.

Social network analysis defines analysis of all types of structures as being correlated with
one another. Social network analysis examines the social structure as a network of actors
(nodes) and sets of relationships that connect actor pairs and examine the social structure
and its effects. In short, social network analysis is a set of methods developed to analyze
social networks. Social network analysis, originating from sociology and mathematics, is a
method used by various disciplines nowadays. Beginning with the wide dissemination of
computer usage by the end of the 1980s, social network analysis has become widespread
for various reasons such as having easier access to big data sets, managing big data sets
easier, and visualizing data related to social networks in different forms.

In social network analysis, to determine the most important actors and groups, some
centrality criteria are used, the most common of which are degree centrality, eigenvector
centrality, closeness centrality, and betweenness centrality. In addition to these, it is also
possible to obtain information about centrality by using a clustering coefficient.

In the study, the regions from where the test cases pass the most were determined by
using centrality criteria, a social network analysis method. The mutants were then generated
using mutation operators including missing of transition (MOT), change of input (COI),
change of output (COO), and change of next state (CONS). Afterwards, mutants created
as per centrality criteria and randomly reduced mutants were evaluated by using test suite
that had been created with the W method. The results were presented with graphical
comparisons and with the ANOVA test. It was shown that the proposed mutant reduction
methods could enable an important increase in performance.

Chapter 2 contains the literature on the subject. In the following section, Finite State
Machine Testing. Then the W Method is examined. In the ‘Mutation Texting’ section,
Mutation Analysis is mentioned in the study. Subsequently the main subject of the article
is the creation of mutants using centrality criteria in social network analysis. Finally, the
obtained data are tested and evaluated.

LITERATURE REVIEW

In the last twenty years, there has significant increase in the number of studies related to
mutant reduction (Jia ¢ Harman, 2010; Silva, de Souza ¢ de Souza, 2017; Ferrari, Pizzoleto
& Offutt, 2018; Papadakis et al., 2019; Pizzoleto et al., 2019). In this section, pioneering
works in the literature related to this subject are briefly explained.

Acree et al. (1979) proposed a random mutant reduction method based on formation of
mutants as per a probability distribution which had been previously determined. Another

Takan (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.293 3/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.293

PeerJ Computer Science

method proposed by Acree et al. (1979) was a higher order mutant reduction method a
technique combining two or more number of simple mutants in order to create a single
complex mutant.

Later, Howden (1982) worked on the weak mutation technique which controls whether
a mutant is infected or not. If the mutant is infected, the mutant is promptly killed. On the
other hand, Woodward ¢ Halewood (1988) proposed a firm mutation technique, a form of
the weak mutation technique.

Krauser, Mathur ¢ Rego (1991) proposed the parallel execution technique which
executes mutants with parallel processors and which reduces total period required to
make mutation testing. Marshall et al. (1990) proposed data flow analysis as a mutant
reduction method. In data-flow analysis, a program uses information related to data flow
to decide which mutants will be produced.

Sahinoglu & Spafford (1990) proposed a technique that analyzes a test suite in order to
score test cases as per their effectiveness in killing mutants and that eliminated the ineffective
test cases. DeMillo, Krauser ¢» Mathur (1991) used techniques related to a compiler in order
to reduce mutants. Mathur (1991), on the other hand, proposed the constrained mutation
technique which selected a sub-set of mutation operators to be used.

Untch (1992) proposed a method that produces and executes mutants by embedding
all mutants in a parameter program called meta-mutant. Accordingly, the meta-mutant is
then compiled for quick execution. When it is operated, the meta-mutant takes a parameter
that informs which mutant will be operated.

DeMillo & Offutt (1993) proposed a technique using information related to the program
control flow focusing on executive features to define the branches and commands helping
to determine which structures are related to the production and execution of mutants.
Offutt, Rothermel ¢ Zapf (1993) also conducted studies related to the selective mutation
technique.

Weiss & Fleyshgakker (1993) reduced the number of mutants to be executed by
determining the mutant classes that act in a similar way. Barbosa, Maldonado ¢ Vincenzi
(2001) tried to determine a fundamental set of mutation operators by applying privatized
procedures.

Adamopoulos, Harman ¢ Hierons (2004) used evolutionary algorithms to reduce the
number of mutants, to reduce the number of test cases, or to define equivalent mutants.
Untch (2009) proposed a single mutation operator which covered the program the most
and which produced the least number of mutants. On the other hand, Fraser ¢» Zeller
(2012) used the execution traces of the original program and some mutants to decide
which of the remaining mutants should be executed.

Aichernig, Jobstl & Kegele (2013) recommended the model-based mutant reduction
method. This technique changes models of the program. Afterwards, test suites are created
from these mutants, and these test suites are used to kill the mutants.

Gligoric, Jagannath & Marinov (2010) proposed a state-based analysis technique. This
technique compares different mutants, and when two mutants cause the same mutation,
meaning that when same execution path is observed, only one of them needs to be executed
and the other one can be eliminated.

Takan (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.293 4/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.293

PeerJ Computer Science

Ammann, Delamaro & Offutt (2014) proposed a technique eliminating unnecessary
mutants by applying mutant subsumption and dominator mutant concepts.

Mutation analysis studies related to FSM are limited, and those that exist mainly
examine the mutation operators that are used to produce mutants (Fabbri et al., 1994; da
Silva Simao et al., 2008; Li, Dai & Li, 2009; Petrenko, Timo ¢ Ramesh, 2016; Timo, Petrenko
& Ramesh, 2017). Mutant reduction has been evaluated in many studies (Jia ¢ Harman,
20105 Silva, de Souza & de Souza, 2017; Ferrari, Pizzoleto & Offutt, 2018; Papadakis et al.,
2019; Pizzoleto et al., 2019), but, to our knowledge, there are no studies regarding mutant
reduction in relation to FSMs. The purpose of this study is to reduce mutants and to
make mutation analysis more practical and effective for FSMs. The method we propose
uses social network analysis centrality criteria. This study is based on the assumption that
the states and transitions detected with the help of centrality criteria are the parts that
are most likely to cause errors. When a mutant is created with the states and transitions
being selected with social network analysis centrality criteria, while the number of mutants
decrease, the failure detection rate per mutant increases. The proposed mutant reduction
methods revealed important performance increases in comparison to a random mutant
reduction method.

FINITE STATE MACHINE TEST

Finite State Machine (FSM) is a mathematical model with discrete inputs and outputs
used for the modeling of software and hardware systems. It is possible to consider FSM an
abstract machine that can be present in one of a finite number of states. Many structures
such as text editors, compilers, and synchronous sequential circuits can be modeled by
FSMs. Digital computers can also be considered as systems that comply with this model.
For this reason, FSM is a very widely used model in computer science and engineering (Belli
et al., 2015; Fragal et al., 2019; Damasceno, 2016).

A finite state machine is usually expressed with the tuple M =(I,0,S,f,g,s), where I
is a finite set of input symbols, O is a finite set of output symbols, S is a set of finite states,
f :Sx I — Sis the transition function which determines the next state, g : Sx I — O is the
output function and s is the initial state of the machine.

Figure 1 shows a two-input and a one-output FSM with four states and seven transitions.
We will use it as the running example in the rest of the article.

FSMs are widely used in software testing, and one of the most important issues in software
testing is related to the formation of test suites. In the literature, there are many test suite
generation methods such as W, Wp, UIO, UIOv, DS, HSI, and H. Before introducing
techniques for FSM-based testing, two definitions should be differentiated:

Test Cases: A set of input values developed for a specific purpose or test conditions such
as running a specific program path or verifying compatibility with a requirement, with a set
of prerequisites to be executed before the test, or with the expected results and conditions
as a whole.

Test Suite: A set of test cases being created to test a system or a component.

Another important point is related to the increase in the varieties and dimensions of
software which necessitates better testing tools within the framework of various success

Takan (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.293 5/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.293

PeerJ Computer Science

1/0

— N
\

0/1
0/1 5/1 ‘]0/1

/
Ty /
1/1 -

Figure 1 Example Finite State Machine (FSM).

Full-size tal DOI: 10.7717/peerjcs.293/fig-1

criteria such as failure detection rate, failure detection capability, test suite size, test case
lengths, and time spent in testing, with regards to the tests.

As mentioned above, in the study regarding the testing of finite state machines, W
method is preferred because the W method can produce a test set that can detect all
potential failures, meaning that it can detection in order to kill all potential mutants. Thus,
the W method has a structure that can catch all mutants which can be formed. In the
study, mutants randomly created and mutants reduced by using centrality criteria in social
network analysis were compared with respect to the context of the test set being formed by
the W method.

W METHOD

W is one of the most common methods for generating test cases for FSMs and is able
to detect all the potential faults (Mathur, 2013; Konig, 2012). Therefore, we use W to
demonstrate the effectiveness of the proposed mutant selection method. Table 1 compares
the fault detection capabilities of the common test generation methods. Figure 2 is the
comparison of the same methods in terms of the fault detection and test suite lengths.

W method consists of two parts. These are the W-set section for testing the next state
and the transition coverage set (TCS) for testing the transition (output) between the two
states. The transition coverage set is created to visit all transitions. To do this, the tree is
obtained from the graph. paths leading to all ends of this tree are found. The set of input
values for these paths creates the transition coverage set. Refer to Chows’s study (Chow,
1978) for detailed information.

The W method consists of two parts, the W-set section for testing the next state and
the transition coverage set (TCS) for testing the transition between the two states. TCS
is created to visit all transitions. To do this, the tree is obtained from the graph. Paths

Takan (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.293 6/22

https://peerj.com
https://doi.org/10.7717/peerjcs.293/fig-1
http://dx.doi.org/10.7717/peerj-cs.293

PeerJ Computer Science

Table 1 Fault detection capability of the presented methods (Konig, 2012).

- Output faults Transition faults Extra state faults Missing state faults
Transition Tour always - - -
DS-Method always always - always
W-Method always always always always
UIO-Method always almost almost almost
TT UIO UIOv A
DS Wp

| =

0 Fault detection capability

| =

0 Test suite length

Figure 2 Fault detection capability versus test suite length of the presented methods.
Full-size Gal DOI: 10.7717/peerjcs.293/fig-2

leading to all ends of this tree are found. The set of input values for these paths creates the
transition coverage set. Refer to Chows’s study (Chow, 1978) for detailed information.
In this study, the TCS created from the sample FSM shown in Fig. 1 is as follows:

{1,0,10,11,00,01,011,010}

The W-set created from this FSM is

{11,1}.

By the W method, the test suite is the product of TCS and W-set:

W TestSuite = TCS x W set = {1,0,10,11,00,01,011,010} x {11,1} =
{11,1,111,11,011,01,1011,101,1111,111,
0011,001,0111,011,01111,0111,01011,0101}

MUTATION TESTING

Starting point of mutation testing is based on the idea of using artificial errors (Papadakis
¢ Just, 2017). Mutation testing assumes that small changes in programs are sufficient to
reveal complex errors. In the mutation test, the original model is systematically mutated
using certain error assumptions. The purpose here is to represent a potential programmer
error. Thus, a small change (mutation) is made on the source code. This type of change is
based on well-defined mutation operators which can imitate typical programming errors
or which can enable generation of highly successful tests.

The most common usage areas of mutation are related to the evaluation of the adequacy
of the test suites which provides guidance for test cases (Zhang et al., 2019). Mutation
analysis is also used in design models, system properties, and system interfaces.

Takan (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.293 7122

https://peerj.com
https://doi.org/10.7717/peerjcs.293/fig-2
http://dx.doi.org/10.7717/peerj-cs.293

PeerJ Computer Science

When its principle is examined, it may be seen that the mutation operator replaces
an arithmetical operator in the original program with another operator. If a test set can
separate a mutant from the original program, it is stated that the mutant is killed. Otherwise,
the mutant is called a live mutant. A mutant can remain alive because it is equivalent to
the original program, or the test set is insufficient to kill the mutant. If a test suite is not
sufficient, test cases can be added to kill the live mutant. The adequacy of a test suite by
mutation testing is determined by the ratio of the number of mutants killed to the number

of non-equivalent mutants. This rate is also called the mutation score.

if(a<b){...} ~ if(a>b)..}

Each modified version of a program, as in the equation above, is called a mutant. If a
test case can detect a certain mutant, it is stated that mutant is killed by this test case.
The performance of test suites is determined as per the killing rate of mutants being
created by means of mutation operators. Mutation testing generally has many advantages,
but completing analysis for huge models require a significant amount of time and space
because of the large number of mutants present. To avoid this situation, mutant reduction
methods are used which limit the number of mutants and enable the analysis to be
completed within a reasonable time and space.

There are various mutant reduction methods. Among these, the most commonly used
is the random mutant reduction method, a method based on the random selection of
sub-sets related to mutants. It is based on the assumption that mutants are identical with
respect to the probability of their occurrence. Within frame of this assumption, it is a very
practical mutant reduction method. However, this assumption generally does not reflect
the truth because the killing of mutants by a test suite is mostly not identical.

When FSMs (Finite State Machine) are tested, the mutation testing technique is
frequently preferred. However, while there are many studies related to mutant reduction
in the literature, there are few studies related to FSM-based mutant reduction. Existing
studies are generally focused on mutation operators being required for mutant generation.
In contrast, in this study, a new FSM-based mutation reduction method was proposed
because, in huge FSMs, the number of mutants being produced is too great, and this
problem is eliminated by reducing mutants. In this study, it was aimed to analyze the
regions having the highest probability of fault. Social network analysis centrality criteria
were used to identify regions with the highest probability of fault. Hence, with reduced
numbers of mutants, the application of mutation testing will be made practical.

As stated by Fabbri et al. (1994), potential mutation operators for FSMs are as follows:
Arc-missing, Wrong-starting-state (default state), Event-missing, Event-exchanged, Event-
extra, State-extra, Output-exchanged, Output-missing, and Output-extra. According to
another article in 2009 (Li, Dai ¢ Li, 2009), mutation operators are: Reverse of Transition
(ROT), Missing of Transition (MOT), Redundant of Transition (DOT), Change of Input
(COI), Missing of Input (MOI), Change of Output (COO), Missing of Output (MOO),
End State Changed (ESC), End State Redundant (ESR), Start State Changed (SSC), and
Start State Redundant (SSR). To the best of our knowledge, there is no study on prioritizing
mutants for reduction.

Takan (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.293 8/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.293

PeerJ Computer Science

CREATION OF MUTANTS BY USING CENTRALITY
CRITERIA IN SOCIAL NETWORK ANALYSIS

In the study, a method that can increase efficiency by reducing time and space complexity
was proposed. To make the mutation analysis more efficient, instead of creating mutants
from the whole model, mutants were created from the major assumed regions; thus,
mutation analysis became more effective with a relatively small set of mutants.

To achieve this, the centrality criteria in social network analysis were used. Using
centrality criteria, firstly, the central states and transitions in the model were determined.
Mutants were created from the determined states and transitions. The centrality criteria
used were degree centrality, eigenvector centrality, closeness centrality, and betweenness
centrality. In addition, a clustering coefficient was used.

In the mutation analysis, six mutant clusters were created. In the first set, random
mutants were generated from the entire model. In other clusters, mutants were created
using degree centrality, eigenvector centrality, closeness centrality, betweenness centrality,
and clustering coefficient. Finally, these six methods were analyzed with test sets created
with the W method.

As a result of the evaluations, it was determined that the proposed mutant reduction
method had a higher performance in terms of error capture. It was been observed that the
proposed method reduced the cost of mutation analysis.

Centrality criteria in social network analysis

Social network analysis can be considered as the measurement, display, and analysis

of relationships and currents between individuals, organizations, and groups. In such
networks, nodes are individuals and groups, and edges refer to the relationship or
current between nodes. Social network analysis—which includes such topics as sociology,
mathematics, computer science, and statistics—emerges as an interdisciplinary field. Social
network analysis, which is based on sociology and mathematics, is a method used by many
disciplines today.

Social Network Analysis has become an interesting subject in mathematics and
engineering in recent years. As far as we know, there no study in the literature on FSM-based
mutant reduction using social network analysis.

Social network analysis can easily identify the most important actors and groups of
a structure. In social network analysis, centrality criteria are used to identify the most
important actors or groups in a structure. In this context, there are various centrality
criteria, and the most often used of these are degree, closeness, betweenness, and eigenvector
centrality.

Degree Centrality: With the simplest measure, if one node has many connections with
other nodes, this node is centrally located in the network. To calculate the degree centering
of the x node in a network, the following formula is used:

ci(x)
n—1"

Cy(x) = (1)

In the above formula, the ¢;(x) as node degree and n as the number of nodes is used.

Takan (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.293 9/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.293

PeerJ Computer Science

Closeness Centrality (Freeman, 1978; Wasserman & Faust, 1994): This refers to the
closeness degree of a node, directly or indirectly, to the other nodes in the network.
Closeness reflects the node’s ability to access information and how fast a node can connect
to other nodes in the network.

Cluy=—""1 (2)
> o1d(v,u)

In the equation, d (v, u) represents the shortest path between v and u and 7 is the number
of nodes that can reach u.

Betweenness Centrality (Brandes, 2001): This is the degree of a node being among
other nodes in the network and indicates to what extent a node is in direct connection with
nodes that are not directly linked to each other. In other words, it refers to the extent to

which a node takes on the role of a bridge.

cg(v) = Z M. (3)

s,teV U(S’t)

Here, V represents the set of nodes, o (s,) is the sum of the shortest paths between s, ,
and o (s, t|v) is the sum of the shortest paths between s, ¢, which inherit the v node.

Eigenvector Centrality (Bonacich, 1987): This assumes that all connections are not
equal and that effective nodes are also transmitting effects to less effective nodes with
whom they are linked. If a node has few high-quality connections, this node is more
effective in terms of eigenvector centrality than a node with a large number of average

connections.
Ax = Ax. (4)

If a scalar A has a nonzero vector x such as Ax = Ax, it is called the eigenvalue of A. Such
a vector X is called an eigenvector corresponding to A.

Apart from these, it is also possible to obtain information about centrality by using the
cluster coefficient.

Clustering Coefficient (Saramidiki et al., 2007; Onnela et al., 2005; Fagiolo, 2007): The
clustering coefficient is a measure of the probability of two different nodes having a bond
with a common node.

N deg'' (u)(deg'* (u) — 1) — 2deg <> (u)

In the formula above, T'(u) represents the number of actual connections between the

(u). (5)

Cy

neighbors of u and deg™’ (u) is the sum of the internal and external rating of the node ,
and deg = (u) expresses the number of those which have mutual degree.

In this study, mutants created using the above-mentioned centrality criteria were
compared with randomly generated mutants. First, the regions where the test sets pass
the most were determined by using the centrality criteria of the social network analysis
method. The mutants were then generated using mutation operators such as missing
of transition (MOT), change of input (COI), change of output (COO), and change of
next state (CONS). Then, mutants created according to the centrality criteria and the

Takan (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.293 10/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.293

PeerJ Computer Science

ones randomly generated were evaluated with test sets created with the W Method. The
results, presented with graphical comparisons as well as the ANOVA Test, showed that the
proposed mutant reduction method could provide a significant increase in performance.

Proposal algorithm

First, the FSM was converted to a directional graph. Since the normal graph structure
cannot provide transition between states relative to the input, a data structure expressing
the graph was also used.

In the algorithm, the centralities were calculated using social network analysis.
Centralities were applied both on state and transition. For transitions, betweenness
centrality was applied, but, for states, betweenness, degree, eigenvector and closeness
centralities were applied as well as the clustering coefficient.

Each centrality used in the study was calculated separately. The values obtained as a
result of the calculation are listed for each centrality specifically. A coefficient was given to
the program to determine which conditions would be selected among the values obtained.
Based on the given coefficient, the highest value cases were selected.

Example how to calculate degree centrality with FSM is shown in Table 2.

The shortest paths between the states and transitions were first determined to calculate
the betweenness and closeness centrality. In Table 3, the shortest paths that exist in the
FSM are given.

Using the shortest paths given in Table 3, the calculation of edge betweenness centrality
to reduce the transitions is shown in Table 4. Here, the number of shortest paths passing
through the selected transitions are formed by dividing the total number of shortest paths
available in Table 3.

Using the shortest paths given in Table 3, the calculation of betweenness centrality to
reduce the states is shown in Table 5. Here, the number of shortest paths passing through
the selected states are formed by dividing the total number of shortest paths available in
Table 3.

The calculation of the closeness centrality is shown in Table 6. Here, again using Table 3,
the shortest paths from one node to other nodes are found, and the found shortest paths
are summed. Then the number of edges entering that node is divided by the totals.

The calculation of eigenvector centrality is explained in Eq. (6). For detailed information,
see (Newman, 2018).

01 10 START START START 0.31622776601683794
1 01 0 statel _ statel statel | 0.6324555320336759
010 1 state2 | | state2 | T | stare2 | T | 0.6324555320336759
01 10 state3 state3 state3 0.31622776601683794
(6)

Clustering coefficient was calculated as in Formula (5). These operations are shown in
Table 7.

Within the scope of social network analysis, fewer mutants are created with the states
and transitions selected by calculating the centrality values.

The complexity analysis values of the proposed algorithms are given in Table 8.

Takan (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.293 11/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.293

PeerJ Computer Science

Table 2 Degree centrality calculation.

States Degree Degree centrality
START 3 3/3=1

statel 5 5/3=1.666
state2 3 5/3=1.666
state3 5 3/3=1

Table 3 Shortest path in FSM.

The shortest paths

START - statel
START - state2

START - state2 - state3

statel - START
statel - state2

statel - state2 - state3

state2 - statel

state2 - statel - START

state2 - state3
state3 - statel
state3 - state2

state3 - statel - START

Table 4 Edge betweenness centrality calculation.

Transitions Edge betweenness Edge betweenness centrality
START - statel 1 1/12 =0.083

START - state2 2 2/12 = 0.166

statel - START 3 3/12 =0.25

statel - state2 2 2/12 = 0.166

state2 - statel 2 2/12 =0.166

state2 - state3 3 3/12=0.25

state3 - statel 2 2/12 =0.166

state3 - state2 1 1/12 = 0.083

EVALUATIONS

In this section, the outputs obtained as a result of comparing the mutant reduction

technique proposed in the study and the mutant reduction technique in the literature with

the W method are presented. The reason for using the W method here was because of the

ability of the W method to catch all potential errors, as mentioned earlier. According to the

data obtained as a result of the comparison, the success of the proposed mutant reduction

methods was observed.

The transition and states in FSM, which are determined by using social network

analysis centrality criteria, were mutated. Only the betweenness centrality was used for the

Takan (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.293

12/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.293

PeerJ Computer Science

Table 5 Betweenness centrality calculation.

States Betweenness Betweenness centrality
START 0 0

statel 2 2/12=0.16

state2 2 2/12=0.16

state3 0 0

Table 6 Closeness centrality calculation.

START statel state2 state3 Total Closeness centrality
START 0 1 1 2 4 (1-1)/4=0
statel 1 0 1 2 4 (3-1)/4=0.5
state2 2 1 0 1 4 (3-1)/4=05
state3 2 1 1 0 4 (1-1)/4=0

Table 7 Calculation of clustering coefficient.

States Clustering coefficient
8 _
START (=Tt
16 _
statel Gx(G-1)—2x2)x2 0.5
16 _
state2 Gx(-1)—2x2)x2 0.5
state3 ; =1

(3x(3—1)—2x1)x2

transitions. As for the states, since there are many centrality criteria in the literature, each
one was tried separately. The centrality criteria we used in the proposed reduction methods
are shown in Table 9.

In comparing the mutant reduced with the method available in the literature and the
mutant reduced with the method proposed in the study, the following mutation operators
were used: Missing of transition (MOT), change of input (COI), change of output (COO),
and change of next state (CONS).

Test cases are checked against the mutants whether they are killed or not. Mutation
analysis is generally beneficial in assessing the effectiveness of test cases. The mutant kill
ratio, that is, the number of killed mutants over the entire mutant set, is a common
performance metric. Since the W method provides the most comprehensive test suite for a
given FSM, the expected mutant kill ratio is 100%. In fact, our mutant reduction method
aimed to select the most influential mutants. Those mutants are more likely to be killed by
a test suite, and they demonstrate a better performance in revealing the faults. Therefore,
we define a mutant importance metric as given in Definition 7.1.

Definition 7.1 (Mutant Importance Metric): Let M = {m,m;, m3...m,} be a set of
mutants. The performance metric of mutant iis,

Z(m;) = Number of test cases killing m;

Takan (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.293 13/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.293

PeerJ Computer Science

Table 8 Complexity analysis of centrality algorithms.

Algorithm Complexity Reference

Degree centrality o) -

Eigenvector centrality O(V+E) (Bonacich, 1987; Newman, 2018)

Closeness centrality O(V¥(V+E)) (Freeman, 1978; Wasserman ¢ Faust, 1994)
Betweenness centrality o(V?) (Brandes, 2001; Brandes, 2008)

Edge betweenness centrality o(V?) (Brandes, 2001; Brandes, 2008)

Clustering coefficient o(V3) (Saramiiki et al., 2007; Onnela et al., 2005; Fagiolo, 2007)

Table 9 Centrality criteria used in proposed reduction methods.

Proposed algorithm Transitions States

Closeness Reduction Edge Betweenness Centrality Closeness Centrality
Betweenness Reduction Edge Betweenness Centrality Betweenness Centrality
Eigenvector Reduction Edge Betweenness Centrality Eigenvector Centrality
Degree Reduction Edge Betweenness Centrality Degree Centrality
Clustering Reduction Edge Betweenness Centrality Clustering Coefficient

The performance of the entire mutant set can be expressed as the average importance as
defined in Definition 7.2.
Definition 7.2 (Total Importance Metric): Let M = {m;, m,, ms...m,} be a set of mutants.
The performance of the mutant set M is,

(M) =E{[Z(mi)] = 31, Z(mi)

FSMs are randomly generated by the KISS Generator v0.8 software tool, changing the
state, output, and input values separately. Each FSM is produced five times, and the mean
values of outcomes are calculated. This procedure is repeated 300 times, which results in
1,500 FSMs in total. According to the existing similar studies, this amount seems sufficient
and cannot be considered a serious threat to validity. Similarly, random generation of
values eliminates another validation threat. FSMs are reduced, deterministic, fully correlated,
and fully specified, as required by the W method.

In the evaluations, Z(M) is measured against three different FSM parameters: (i)
Number of states, (ii) Number of inputs and (iii) Number of outputs. We compare the
original set of mutants and its subset selected by the proposed methods.

In Fig. 3, the mutants created according to the social network analysis centrality criteria
were compared with randomly generated mutants. While the values increased linearly in
the first graph, the values remained flat in the second and third graphs. On the other hand,
there was a significant difference between mutants created according to the social network
analysis centrality criteria and the randomly generated mutants. The ANOVA test also
confirmed this difference. Based on this difference, it is possible to say that the proposed
method had a higher performance in the MOT operator. Furthermore, according to the
ANOVA test, there was no significant difference between the methods created with the
social network analysis centrality criteria.

Takan (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.293 14/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.293

PeerJ Computer Science

A B c
200 R W00 200
| X " 2
£ o etoR | E E 1
£ 150 . E]) . E P -
2 L El g 15 "
= " be f U® '.: < 30 Lo] . = - u
S Pv] / Z \
= ® 3
o |i[me? /J ” . 2z « »
& | % ° [
nale L] 3
g d X A ¢ ® . S 20 ? °
£ v P o
5 50 e
g el 4%a Peed T w® o
L [e
: 5 =g.. ©e 10 . 3 eg00 . . oo
0 [34 o - —e S 0,00,000%000%000,0,0,
0 5 10 15 20 25 30 0 200 300 400 500 0 5 10 15 20 25 30
States Inputs Outputs

o Random —m Betweenness

s

Degree
loseness -

Eigenvector
Clustering

Closeness - ®

e Random = Betweenness

Degree — Eigenvector

Clustering

o~ Random = Betweenness
~— Eigenvector
Closeness - ® - Clustering

o Degree

Figure 3 Comparisons for missing of transition (MOT) operator. (A) State, (B) Input, (C) Output.

Full-size Gl DOI: 10.7717/peerjcs.293/fig-3

20

|
§ mees_se 8 _ssssssed -q'nn.

A% *e os? LI b
l" b ."'o' "'." oot 10 . . o e
.....u‘O . . . - . * JSeesteces 00000, %0% 00 g0
0
5 10 15 20 25 30 3 2 4 6 8 0 5 10 15 20 25 30
States Inputs Outputs
e Random = Betweenness Random —® - Betweenness #— Random = Betweenness
e Degree — Eigenvector e Degree - Eigenvector o Degree Eigenvector
Closeness - #-- Clustering Closeness --o-- Clustering Closeness - o~ Clustering

Figure 4 Comparisons for change of output (COO) operator. (A) State, (B) Input, (C) Output.
Full-size Gal DOI: 10.7717/peerjcs.293/fig-4

Figure 4 showed similarities to Fig. 3. However, a more distinct difference was observed
in the inputs. At the same time, it can be said that the centrality-based reductions showed
more similar results in the graph created according to the output. Also, according to
the ANOVA test, there was a significant difference between the centrality-based mutant
reduction methods and the randomly selected mutant reduction method. Based on this
difference, it is possible to say that the proposed method showed a higher performance in
the COO operator. Furthermore, according to the ANOVA test, there was no significant
difference between the methods created with the social network analysis centrality criteria.

Figure 5 showed similarities with Figs. 3 and 4. However, in comparison with the output
graph, the difference between the random mutant reduction method and the proposed
method in the state and the input graph had relatively decreased. However, according to
the ANOVA test, it was possible to say that the mutant reduction methods created with
centrality criteria differed significantly from the randomly generated mutant reduction
method. Based on this difference, it is possible to say that the proposed method shows a
higher performance in the COI operator. On the other hand, according to the ANOVA

Takan (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.293

15/22

https://peerj.com
https://doi.org/10.7717/peerjcs.293/fig-3
https://doi.org/10.7717/peerjcs.293/fig-4
http://dx.doi.org/10.7717/peerj-cs.293

PeerJ Computer Science

300 P 15 *

{‘i‘w‘pn/\”o ® i me [)

ce of set of mutants
.

. ‘llvud’n.ﬂnl ATAY N W2 VAN
¥ e e

Performance of set of mutants

. - /
. [} '}
. - . °
. 3 d Py .
5 - 1'o...'...'.. veteooe
0 5 10 15 20 25 30 2 4 6 8 0 5 10 15 20 25 30
States Inputs Outputs
o Random = Betweenness e~ Random = Betweenness o~ Random = Betweenness
®— Degree —— Eigenvector ®— Degree —+— Eigenvector ®— Degree —— Eigenvector
Closeness - Closeness - @ - Clustering Closeness - @ - Clustering

Figure 5 Comparisons for change of input (COI) operator. (A) State, (B) Input, (C) Output.
Full-size) DOTI: 10.7717/peerjcs.293/fig-5

A B c
200 . " 30
. R] .

. 25 \
g o |
g o * |
3 20 Ll \ |
3 — '

L i
K 15 4
o 15 \
3 \
g \
E LHI.I"IIODIH namen mEEpen
£ 10 o WOWHGS mewmy VEVgHY Cew
5 . .
& P . o . y '] *

5 . p. 0000,00,%000000000 000000,
0
0 5 10 15 20 25 30 2 4 6 8 0 5 10 15 20 25 30
States Inputs Outputs
—e— Random = Betweenness *— Random = Betweenness o Random = Betweenness
e Degree —~— Eigenvector e Degree —+ Eigenvector e Degree —~ Eigenvector

Closeness - ® - Clustering Closeness - - Clustering Closeness - - Clustering

Figure 6 Comparisons for change of next state (CONS) operator. (A) State, (B) Input, (C) Output.
Full-size G4l DOL: 10.7717/peerjcs.293/fig-6

test, there was no significant difference between the methods created with social network
analysis centrality criteria.

The values in Fig. 6 showed similarities with the values in the previous figures. In other
words, there was a difference between the centrality-based mutant reduction methods
and the random mutant reduction methods. The ANOVA values also supported this
situation. Based on this difference, it is possible to say that the proposed method showed a
higher performance in the CONS operator. On the other hand, according to the ANOVA
test, there was no significant difference between the methods created with social network
analysis centrality criteria.

In Fig. 7, the performance of mutants is shown collectively according to the change of
input, output, and subsequent state with a lack of transition. Accordingly, the total values
showed similarities with the values in the figures given separately above. The ANOVA
values also supported these indicators. Based on this difference, it is possible to say that the
proposed method showed a higher performance in all of the MOT, COI, COO and CONS
operators. On the other hand, according to the ANOVA test, there was no significant
difference between the methods created with social network analysis centrality criteria.

Takan (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.293 16/22

https://peerj.com
https://doi.org/10.7717/peerjcs.293/fig-5
https://doi.org/10.7717/peerjcs.293/fig-6
http://dx.doi.org/10.7717/peerj-cs.293

PeerJ Computer Science

A B C
30
250 0 R f
. . y
£ 200 E . \o < i
& £ SN, - . |
S 150 Z 30 » * I
E] 2 |
5 5 [M
S 100 g 4 e BE e amm /et
5 g, | T3+ IOI()I.\”/IOIUIICOHi L
£ £ 200 e 0 /\enWen o Y ¥ i ol
T 50 5
& & S R
v e ¢ . 00 000e% 0 e0% 00 e .'.Oo
0 10 5
0 5 10 15 20 25 30 2 4 6 8 0 5 10 15 20 25 30
States Inputs Outputs

o Random = Betweenness o Random = Betweenness o Random = Betweenness

®— Degree —+— Eigenvector o Degree Eigenvector o Degree Eigenvector

Closeness - ® - Clustering Closeness - ® - Clustering Closeness - ® - Clustering

Figure 7 Comparisons for all mutation operators, CONS, MOT, COI and COO. (A) State, (B) Input,
(C) Output.
Full-size & DOTI: 10.7717/peerjcs.293/fig-7

When looking at the graphs in general, it can be said that the main reason for the difference
between the random mutant reduction method and the proposed mutant reduction
methods was “betweenness centrality applied for transitions.”

DISCUSSION

For evaluation purpose, large amounts of FSMs have been produced in order to make
the results become more consistent. According to the literature, it is possible to state that
number of mutants created from FSM is sufficient for such a study, and that it is possible to
generalize the study. The success of proposed mutant reduction methods have been verified
by being compared with the random mutant reduction method. To measure meaningful
success performance in the study, ANOVA and a graphical method were chosen. According
to the evaluation results, it is possible to state that the proposed mutant reduction method
plays an active role in reducing number of mutants that are produced from FSM without
having an important reduction in the capacity to catch faults in FSM.

In this study, two major parameters, transition and state reduction ratios, were used
for mutant reduction by using social network analysis centrality criteria. These parameters
were selected intuitively. By investigating these parameters further in following studies, it
would also possible to find more appropriate values.

The scarcity of research in the literature on mutant reduction in FSMs allows this matter
to be developed with different approaches. In this study, social network analysis was used
in the mutant reduction method, the first such experiment, as far we know. From this
point of view, social network analysis could also be used in different types of research on
software.

CONCLUSION

In our study, a method was developed for the reduction of the mutant set for mutation
analysis, which is an analysis technique widely used in circuit and software tests.

Takan (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.293 17/22

https://peerj.com
https://doi.org/10.7717/peerjcs.293/fig-7
http://dx.doi.org/10.7717/peerj-cs.293

PeerJ Computer Science

In this context, first, important states and transitions in FSM were determined by using
the social network analysis centrality criteria. Thus, instead of an entire model, mutants
were created based on the detected regions, and the number of mutants was reduced.
In the study, clustering coefficient criteria along with degree, eigenvector, closeness, and
betweenness centrality were used to determine the states and transitions.

Mutation operators such as missing of transition (MOT), change of input (COI), change
of output (COO), and change of next state (CONS) were used to produce the mutants.
Then, mutants randomly reduced and mutants reduced according to the centrality criteria
were evaluated with test sets created with the W method. The results were presented with
graphical comparisons and the ANOVA Test.

Looking at the averages of the study data, it can be seen that the closeness reduction
yielded slightly better results than other proposed mutant reduction methods. When
looking at the ANOVA results and graphics in general, it can be said that the main reason
for the difference between the random mutant reduction method and the proposed
mutant reduction methods is betweenness centrality applied for transitions. As a result, it
was observed that the mutants selected with the proposed reduction technique performed
better, and the proposed method reduced the cost of the mutation analysis.

In this article, the method developed provided alternative suggestions on how social
network analysis could be applied to software testing and related issues. In addition, it was
thought that social network analysis could provide many advantages in software tests since
its implementation is practical.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The author received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Savag Takan conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:
Code is available at GitHub: https://github.com/savastakan/sna_mut/.

REFERENCES

Acree AT, Budd TA, DeMillo RA, Lipton RJ, Sayward FG. 1979. Mutation analysis.
Technical report. Atlanta: School of Information and Computer Science, Georgia
Institute of Technology.

Takan (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.293 18/22

https://peerj.com
https://github.com/savastakan/sna_mut/
http://dx.doi.org/10.7717/peerj-cs.293

PeerJ Computer Science

Adamopoulos K, Harman M, Hierons RM. 2004. How to overcome the equivalent
mutant problem and achieve tailored selective mutation using co-evolution. In:
Genetic and evolutionary computation conference. Berlin: Springer, 1338—1349.

Aichernig BK, Jobstl E, Kegele M. 2013. Incremental refinement checking for test case
generation. In: International conference on tests and proofs. Berlin: Springer, 1-19.

Ammann P, Delamaro ME, Offutt J. 2014. Establishing theoretical minimal sets of
mutants. In: 2014 IEEE seventh international conference on software testing, verification
and validation. Piscataway: IEEE, 21-30.

Barbosa EF, Maldonado JC, Vincenzi AMR. 2001. Toward the determination of
sufficient mutant operators for c. Software Testing, Verification and Reliability
11(2):113-136 DOI 10.1002/stvr.226.

Belli F, Beyazit M, Endo AT, Mathur A, Simao A. 2015. Fault domain-based testing in
imperfect situations: a heuristic approach and case studies. Software Quality Journal
23(3):423-452.

Bonacich P. 1987. Power and centrality: a family of measures. American Journal of
Sociology 92(5):1170-1182 DOI 10.1086/228631.

Brandes U. 2001. A faster algorithm for betweenness centrality. Journal of Mathematical
Sociology 25(2):163-177 DOI 10.1080/0022250X.2001.9990249.

Brandes U. 2008. On variants of shortest-path betweenness centrality and their generic
computation. Social Networks 30(2):136—145 DOI 10.1016/j.socnet.2007.11.001.

Chow TS. 1978. Testing software design modeled by finite-state machines. IEEE Transac-
tions on Software Engineering SE-4(3):178-187 DOI 10.1109/TSE.1978.231496.

da Silva Simao A, Ambrésio AM, Fabbri S, do Amaral A, Martins E, Maldonado JC.
2008. Plavis/FSM: an environment to integrate FSM-based testing tools. In: Tool
Session of XIX Brazilian symposium on software engineering. 1-6.

Damasceno CDN. 2016. Evaluating test characteristics and effectiveness of FSM-based
testing methods on RBAC systems. In: Proceedings of the 30th Brazilian symposium on
software engineering - SBES ’16. Piscataway: IEEE.

DeMillo RA, Krauser EW, Mathur AP. 1991. Compiler-integrated program mutation.
In: Proceedings the fifteenth annual international computer software & applications
conference. 351-356.

DeMillo RA, Offutt AJ. 1993. Experimental results from an automatic test case gener-
ator. ACM Transactions on Software Engineering and Methodology 2(2):109-127
DOI10.1145/151257.151258.

Dorofeeva M, Koufareva I. 2002. Novel modification of the W-method. In: Bulletin of
the Novosibirsk Computing Center. Series: Computer Science. 69—80.

Endo AT, Simao A. 2013. Evaluating test suite characteristics, cost, and effectiveness of
FSM-based testing methods. Information and Software Technology 55(6):1045-1062
DOI 10.1016/j.infsof.2013.01.001.

Fabbri SCPF, Maldonado JC, Delamaro M. 1999. Proteum/FSM: a tool to support finite
state machine validation based on mutation testing. In: Proceedings. SCCC’99 XIX
international conference of the Chilean Computer Science Society. Piscataway: IEEE,
96-104.

Takan (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.293 19/22

https://peerj.com
http://dx.doi.org/10.1002/stvr.226
http://dx.doi.org/10.1086/228631
http://dx.doi.org/10.1080/0022250X.2001.9990249
http://dx.doi.org/10.1016/j.socnet.2007.11.001
http://dx.doi.org/10.1109/TSE.1978.231496
http://dx.doi.org/10.1145/151257.151258
http://dx.doi.org/10.1016/j.infsof.2013.01.001
http://dx.doi.org/10.7717/peerj-cs.293

PeerJ Computer Science

Fabbri SPF, Delamaro ME, Maldonado JC, Masiero PC. 1994. Mutation analysis testing
for finite state machines. In: Proceedings of 1994 IEEE international symposium on
software reliability engineering. Piscataway: IEEE, 220-229.

Fagiolo G. 2007. Clustering in complex directed networks. Physical Review E
76(2):026107 DOT 10.1103/PhysRevE.76.026107.

Ferrari FC, Pizzoleto AV, Offutt J. 2018. A systematic review of cost reduction tech-
niques for mutation testing: preliminary results. In: 2018 IEEE international confer-
ence on software testing, verification and validation workshops (ICSTW). Piscataway:
IEEE, 1-10.

Fragal VH, Simao A, Mousavi MR, Turker UC. 2019. Extending HSI test generation
method for software product lines. The Computer Journal 62(1):109-129.

Fraser G, Zeller A. 2012. Mutation-driven generation of oracles and unit tests. IEEE
Transactions on Software Engineering 38(2):278—292 DOI 10.1109/TSE.2011.93.

Freeman LC. 1978. Centrality in social networks conceptual clarification. Social Networks
1(3):215-239 DOI 10.1016/0378-8733(78)90021-7.

Fujiwara S, Bochmann GV, Khendek F, Amalou M, Ghedamsi A. 1991. Test se-
lection based on finite state models. IEEE Transactions on Software Engineering
17(6):591-603 DOI 10.1109/32.87284.

Gligoric M, Jagannath V, Marinov D. 2010. Mutmut: efficient exploration for mutation
testing of multithreaded code. In: 2010 third international conference on software
testing, verification and validation. Piscataway: IEEE, 55—64.

Gonenc G. 1970. A method for the design of fault detection experiments. IEEE Transac-
tions on Computers 100(6):551-558.

Howden WE. 1982. Weak mutation testing and completeness of test sets. [EEE Transac-
tions on Software Engineering 1(4):371-379.

Jia Y, Harman M. 2010. An analysis and survey of the development of mutation testing.
IEEE Transactions on Software Engineering 37(5):649—-678.

Konig H. 2012. Protocol engineering. Computer science. Berlin, Heidelberg: Springer.

Krauser EW, Mathur AP, Rego VJ. 1991. High performance software testing on
SIMD machines. IEEE Transactions on Software Engineering 17(5):403—423
DOI10.1109/32.90444.

Lee D, Yannakakis M. 1996. Principles and methods of testing finite state machines-a
survey. Proceedings of the IEEE 84(8):1090-1123.

Li JH, Dai GX, Li HH. 2009. Mutation analysis for testing finite state machines. 2nd In-
ternational Symposium on Electronic Commerce and Security, ISECS 2009 1:620—624
DOI 10.1109/ISECS.2009.158.

Maldonado JC, Delamaro ME, Fabbri SC, da Silva Simao A, Sugeta T, Vincenzi AMR,
Masiero PC. 2001. Proteum: s family of tools to support specification and program
testing based on mutation. In: Mutation testing for the new century. Berlin: Springer,
113-116.

Marshall A, Hedley D, Riddell I, Hennell M. 1990. Static dataflow-aided weak mu-
tation analysis (sdawm). Information and Software Technology 32(1):99-104
DOI10.1016/0950-5849(90)90053-T.

Takan (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.293 20/22

https://peerj.com
http://dx.doi.org/10.1103/PhysRevE.76.026107
http://dx.doi.org/10.1109/TSE.2011.93
http://dx.doi.org/10.1016/0378-8733(78)90021-7
http://dx.doi.org/10.1109/32.87284
http://dx.doi.org/10.1109/32.90444
http://dx.doi.org/10.1109/ISECS.2009.158
http://dx.doi.org/10.1016/0950-5849(90)90053-T
http://dx.doi.org/10.7717/peerj-cs.293

PeerJ Computer Science

Mathur AP. 1991. Performance, effectiveness, and reliability issues in software testing.
In: Proceedings the fifteenth annual international computer software & applications
conference. Piscataway: IEEE, 604—605.

Mathur AP. 2013. Foundations of software testing, 2/e. Chennai: Pearson Education India.

Naito S. 1981. Fault detection for sequential machines by transition-tour. In: Proceedings
of IEEE computing conference. Piscataway: IEEE, 238-243.

Newman M. 2018. Networks. Oxford: Oxford University Press.

Offutt AJ, Rothermel G, Zapf C. 1993. An experimental evaluation of selective mutation.
In: Proceedings of 1993 15th international conference on software engineering. Piscat-
away: IEEE, 100-107.

Onnela J-P, Saramaiki J, Kertész J, Kaski K. 2005. Intensity and coherence of motifs in
weighted complex networks. Physical Review E 71(6):065103
DOI 10.1103/PhysRevE.71.065103.

Papadakis M, Just R. 2017. Special issue on mutation testing. Information and Software
Technology 81:1-2 DOI 10.1016/j.infsof.2016.08.003.

Papadakis M, Kintis M, ZhangJ, Jia Y, Traon YL, Harman M. 2019. Mutation
testing advances: an analysis and survey. Advances in Computers 112:275-378
DOI 10.1016/bs.adcom.2018.03.015.

Petrenko A, Yevtushenko N, Lebedev A, Das A. 1993. Nondeterministic state machine
in protocol conformance testing. In: Proceedings of the IFIP TC6/WG6.1 Sixth
International Workshop on Protocol Test Systems VI. North-Holland Publishing Co.,
363-378.

Petrenko A, Timo ON, Ramesh S. 2016. Multiple mutation testing from FSM. In:
International conference on formal techniques for distributed objects, components, and
systems. Berlin: Springer, 222-238.

Petrenko A, Yevtushenko N. 2005. Testing from partial deterministic FSM specifications.
IEEE Transactions on Computers 54(9):1154-1165 DOI 10.1109/TC.2005.152.

Pizzoleto AV, Ferrari FC, Offutt J, Fernandes L, Ribeiro M. 2019. A systematic literature
review of techniques and metrics to reduce the cost of mutation testing. Journal of
Systems and Software 157:110388.

Sabnani K, Dahbura A. 1988. A protocol test generation procedure. Computer Networks
and ISDN Systems 15(4):285-297 DOT 10.1016/0169-7552(88)90064-5.

Sahinoglu M, Spafford EH. 1990. A bayes sequential statistical procedure for approving
software products. In: Proceedings of the IFIP conference on approving software
products (ASP’90). 43-56.

Saramaiki J, Kiveld M, Onnela J-P, Kaski K, Kertesz J. 2007. Generalizations of the
clustering coefficient to weighted complex networks. Physical Review E 75(2):027105
DOI 10.1103/PhysRevE.75.027105.

Silva RA, de Souza SdRS, de Souza PSL. 2017. A systematic review on search based
mutation testing. Information and Software Technology 81:19-35
DOI10.1016/j.infs0£.2016.01.017.

Takan (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.293 21/22

https://peerj.com
http://dx.doi.org/10.1103/PhysRevE.71.065103
http://dx.doi.org/10.1016/j.infsof.2016.08.003
http://dx.doi.org/10.1016/bs.adcom.2018.03.015
http://dx.doi.org/10.1109/TC.2005.152
http://dx.doi.org/10.1016/0169-7552(88)90064-5
http://dx.doi.org/10.1103/PhysRevE.75.027105
http://dx.doi.org/10.1016/j.infsof.2016.01.017
http://dx.doi.org/10.7717/peerj-cs.293

PeerJ Computer Science

Timo ON, Petrenko A, Ramesh S. 2017. Multiple mutation testing from finite state
machines with symbolic inputs. In: IFIP international conference on testing software
and systems. Berlin: Springer, 108—-125.

Untch RH. 1992. Mutation-based software testing using program schemata. In: Proceed-
ings of the 30th annual Southeast regional conference. 285-291.

Untch RH. 2009. On reduced neighborhood mutation analysis using a single mutagenic
operator. In: Proceedings of the 47th annual southeast regional conference. 1-4.

Vuong ST. 1989. The UIOV-method for protocol test sequence generation. In: Proc. 2nd
IFIP International Workshop on Protocol Test Systems (IWPTS’89). 161-175.

Wasserman S, Faust K. 1994. Social network analysis: methods and applications. vol. 8.
Cambridge: Cambridge University Press.

Weiss SN, Fleyshgakker VN. 1993. Improved serial algorithms for mutation analysis. In:
Proceedings of the 1993 ACM SIGSOFT international symposium on Software testing
and analysis. New York: ACM, 149-158.

Woodward M, Halewood K. 1988. From weak to strong, dead or alive? an analysis of
some mutation testing issues. In: Workshop on software testing, verification, and
analysis. 152—153.

Yevtushenko N, Petrenko A. 1990. Test derivation method for an arbitrary deterministic
automaton, automatic control and computer sciences. New York: Allerton Press Inc.

ZhangJ, Zhang L, Harman M, Hao D, Jia Y, Zhang L. 2019. Predictive mutation testing.
IEEE Transactions on Software Engineering 45(9):898-918 DOI 10.1109/TSE.2018.2809496.

Takan (2020), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.293 22/22

https://peerj.com
http://dx.doi.org/10.1109/TSE.2018.2809496
http://dx.doi.org/10.7717/peerj-cs.293

