
RA-QoS: a robust autoencoder-based QoS
predictor for highly accurate web service
QoS prediction
Shun Fu, Junnan Li and Lufeng Wang

Chongqing Industry Polytechnic College, Chongqing, China

ABSTRACT
Web services are fundamental for online service-oriented applications, where
accurately predicting quality of service (QoS) is critical for recommending optimal
services among multiple candidates. Since QoS data often contains noise—stemming
from factors like remote user or service locations—current deep neural network
(DNN)-based QoS predictors, which generally rely on L2-norm loss functions, face
limitations in robustness due to sensitivity to outliers. To address this issue, we
propose a novel robust autoencoder-based QoS predictor (RA-QoS) that leverages a
hybrid loss function combining bias, training bias, L1-norm and L2-norm to build a
robust Autoencoder. This hybrid approach allows RA-QoS to better handle noisy
data, minimizing the impact of outliers and biases on prediction accuracy. The
RA-QoS model further incorporates preprocessing and training biases, improving its
adaptability to real-world QoS data. To evaluate the proposed RA-QoS predictor,
extensive experiments are conducted on two real-world QoS datasets. The results
demonstrate that our RA-QoS predictor exhibits superior robustness to outliers and
higher accuracy in QoS prediction compared to the related state-of-the-art models.

Subjects Data Mining and Machine Learning, World Wide Web and Web Science, Neural
Networks
Keywords Web service quality, QoS predicting, Recommendation systems, Deep neural networks

INTRODUCTION
With the growing number of web services such as online video platforms, online meeting
apps, social media websites, and cloud computing applications, more and more web
services are providing similar functionality. Moreover, with the vastness of the world and
widespread internet adoption, web services may run on different client devices and
operating systems. Thus, selecting the most suitable services from numerous candidates for
clients is crucial in practical web services applications (Zheng et al., 2020; Jia et al., 2022).

Quality of service (QoS) is typically used to describe the non-functional attribute
features of services, including response time, throughput, etc. (Sathya et al., 2010). If all the
QoS data are obtained, service selection can be easy to implement. However, it is not
realistic and cost-effective to collect the QoS data for all services. Typically, QoS data are
assessed from the perspective of each user and vary from person to person. Each user
usually only invokes a small set of web services, implying that the majority of web services
remain uncalled. Consequently, the QoS data for most services are unknown. Therefore,

How to cite this article Fu S, Li J, Wang L. 2025. RA-QoS: a robust autoencoder-based QoS predictor for highly accurate web service QoS
prediction. PeerJ Comput. Sci. 11:e2928 DOI 10.7717/peerj-cs.2928

Submitted 28 June 2024
Accepted 8 May 2025
Published 2 June 2025

Corresponding author
Shun Fu, fushun@cqipc.edu.cn

Academic editor
Xiangjie Kong

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj-cs.2928

Copyright
2025 Fu et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.2928
mailto:fushun@�cqipc.�edu.�cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.2928
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

the problem of QoS Prediction becomes the primary challenge in web services
applications.

Problem definition: Given a set of users U ¼ u1; u2; . . . ; um and a set of services
S ¼ s1; s2; . . . ; sn, where each user ui can invoke certain services sj and obtain

corresponding QoS data, the known QoS data can be represented as a sparse matrix
Q 2 Rm�n, where qij denotes the QoS measurement (e.g., response time, throughput) of

user ui for service sj. The objective of the problem is to predict the unknown values in this
matrix, i.e., estimate qij where qij is missing in the original matrix.

Collaborative filtering (CF) is one of the most successful personalized prediction
techniques for recommender systems. Owing to its simple and easy-to-understand, strong
interpretability, and other advantages, it has been widely applied to QoS prediction in web
service (Zheng et al., 2020;Wu et al., 2017; Botangen et al., 2020). However, CF-based QoS
prediction methods also have the shortcoming that they cannot capture the
high-dimensional and nonlinear complex relationship between users and services.
Therefore, researchers begin to apply deep neural networks (DNNs) to QoS data
prediction (Liang et al., 2021; Yin et al., 2020; Ma, Geng & Wang, 2020).

QoS data typically gathered from a multitude of users across diverse scenarios, often
exhibit pervasive biases and outliers due to many reasons (Yang et al., 2018a). For instance,
some users/services are located in remote areas. Their response time of QoS is much larger
than the closer users/services. Another example is that biases originating from the service
side are also prevalent in collected QoS data because popular services tend to garner more
user attention, resulting in crowded user behaviors towards services. Therefore, biases and
outliers are commonly mixed with QoS data, which poses significant challenges for
DNNs-based QoS data prediction (Ma et al., 2020; Luo, Wang & Shang, 2019).

Recently, although application of DNNS-based models in QoS prediction has been
extensively explored (Liang et al., 2021; Yin et al., 2020), they only consider relatively
scattered biases while lacking comprehensive solutions. Moreover, their shared nature lies
in the L2-norm-oriented loss function, which limits their robustness to outliers because the
L2-norm is sensitive to noisy data (Li et al., 2017). Consequently, their ability to accurately
predict QoS data diminishes significantly in the presence of substantial noise.

Why Autoencoder for QoS prediction: To address these limitations, we employ an
autoencoder for QoS prediction due to its capacity to learn low-dimensional
representations that capture underlying data structures, even in the presence of sparse and
noisy data. Autoencoders excel at reconstructing missing information in incomplete
datasets, making them well-suited for predicting unknown QoS values. Additionally,
autoencoders offer flexibility in combining L1 and L2 norms in the loss function, providing
a mechanism for robustly handling outliers and various biases. This property enables our
model to maintain high prediction accuracy even when data are noisy or contain
substantial biases.

Main novelty: Based on these advantages, this article introduces a robust
autoencoder-based QoS predictor (RA-QoS) with two key innovations. Firstly, RA-QoS
incorporates a robust loss function specifically designed to handle both biases and outliers

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 2/26

http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

by combining preprocessing bias (PB), training bias (TB), and both L1-norm and L2-norm
elements. Secondly, RA-QoS applies a dual-norm structure to improve robustness and
reduce sensitivity to noise, enhancing prediction accuracy in noisy environments.
Experiments on two real-world QoS datasets validate that RA-QoS outperforms related
models in terms of both robustness and accuracy.

This article has the following main contributions:
(1) It proposes a novel RA-QoS predictor. The proposed RA-QoS predictor can achieve

robust and accurate QoS data prediction when QoS data are mixed with much noise data.
(2) It provides detailed theoretical analyses as well as algorithm designs for the proposed

RA-QoS predictor.
(3) It conducts multiple comparative experiments, including model adjustments,

hyperparameter tuning, and typical ablation studies, to validate that the proposed RA-QoS
predictor indeed enhances the accuracy of QoS prediction.

RELATED WORKS
Collaborative filtering-based QoS prediction
Collaborative filtering (CF) stands as a leading prediction method in recommendation
systems and is extensively utilized in Web service QoS prediction (Zheng et al., 2020). CF
leverages historical data on user behavior to detect similarities among users or items and
forecast user preferences for items, incorporating quality assessments from known services
to estimate for unseen users. Due to its effectiveness in capturing the dynamics of user and
service characteristics, CF-based methods have enabled personalized QoS predictions for
service users. Several influential models have emerged from this approach, including
kernel least-mean-square (KLMS) by Luo et al. (2016), embedding and factorization
methods by Wu et al. (2017), matrix factorization by Zheng & Lyu (2013), location-based
factorization by Yang et al. (2018b), and tensor techniques within a five-dimensional QoS
framework by Wang et al. (2016). These models demonstrate strengths in user-service
dynamics but often lack comprehensive solutions to handle complex, nonlinear
relationships and varying biases.

DNN-based QoS prediction
Deep neural networks (DNNs), with their strong nonlinear learning capabilities, have also
gained traction for QoS prediction. Notable models include recurrent networks for
classification and regression by Chen et al. (2019), a stacked denoising autoencoder for
long-tail services by Bai et al. (2017), and the hybrid NRR model by Li et al. (2017). More
recent work includes GNN-based CF models by Zhang & Chen (2019) and Ying et al.
(2018), which exploit user-item graph preferences. While these methods improve QoS
prediction accuracy, they fall short in addressing biases and outliers in QoS data
comprehensively.

DNN-based models incorporating partial debiasing (e.g., Schnabel et al., 2016; Saito,
2020; Yuan, Luo & Shang, 2018) or combining L1 and L2 norms (e.g., Zhu et al., 2018; Raza
& Ding, 2020; Wu et al., 2023; Huang et al., 2023) have been introduced, yet they lack
robustness to diverse biases and outliers. Existing L1 and L2 norm-based methods address

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 3/26

http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

specific biases but struggle with the instability and non-uniqueness issues associated with
the L1 norm.

In response to these limitations, this study proposes a novel RA-QoS predictor with a
robust loss function combining preprocessing bias (PB), training bias (TB), and both L1
and L2 norms within an autoencoder framework. This approach enables comprehensive
handling of biases and improved robustness against outliers, thereby enhancing prediction
accuracy.

The comparison of related QoS prediction methods are summerized in Table 1.

PRELIMINARIES AND PROBLEM DEFINITIONS
User-service interaction matrix. Given a user set U ¼ fu1; u2; . . . ; umg and service set
S ¼ fs1; s2; . . . ; sng, the matrix Q 2 Rm�n with m rows and n columns denotes the
relationship betweenU and S. Each element in matrixQ, i.e., qij, denotes the element at i-th
row and j-th column in matrix Q. The qij is the QoS value of user i calling service j. For
example, the q12 could be the response time for service s2 on user u1. As shown in Fig. 1, the
user-service interaction matrix consists of rows of users and columns of services. In
real-world data, a significant portion of the elements in the user-service matrix are blank.
This is because it is impractical to observe all service quality assessments for all the users.
Such that we define a binary matrix DjU j�jSj 2 f0; 1g differentiates between observed and
unobserved interactions in Q. For each element dmn in D, we have:

dmn ¼ 1; if qmn is observed:
0; otherwise

�
(1)

Problem of QoS prediction. The QoS prediction problem is defined to make predictions
for the unobserved ratings of Q by learning a parametric model f ð�Þ from the observed
ratings ofQ as follows:

f ðU ; S; hÞ 7! Q (2)

Table 1 Comparison of related QoS prediction methods.

Method Merits Demerits

Collaborative filtering (CF) (Zheng et al., 2020) Simple, interpretable, effective for capturing
user-service similarities

Struggles with high-dimensional, nonlinear
relationships; partial bias consideration

Kernel least-mean-square (KLMS) (Luo et al.,
2016)

Captures QoS relationships effectively Limited in robustness to outliers

Embedding + Factorization (Wu et al., 2017) Increases prediction accuracy using latent
factors

High sensitivity to noise due to L2-norm loss

DNN-based models (e.g., Chen et al., 2019; Bai
et al., 2017; Kim et al., 2024)

Strong nonlinear modeling capacity, suitable for
sparse data

Lacks comprehensive bias handling; sensitive to
outliers due to L2-norm reliance

Graph neural networks (GNNs) (Zhang & Chen,
2019; Ying et al., 2018; Kim et al., 2024)

Utilizes user-item graph preferences, effective
for user-item similarity

Limited in handling diverse biases; does not
address outlier issues comprehensively

Position-aware low-rank matrix factorization
(LLMF) (Zhu et al., 2018)

Robust to certain biases using L1-norm Instability and non-uniqueness issues with L1-
norm; limited scalability

Proposed RA-QoS Comprehensive bias handling, robust to outliers
with combined L1/L2 loss function

To be validated further in real-time
applications

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 4/26

http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

where h indicates the parameters of f ð�Þ. The objective function f ð�Þ indicates to minimize
the Empirical Risk as follows:

Lðf Þ ¼
X

ui2U;sj2S
eðf ðui; sj; hÞ; qijÞ: (3)

THE PROPOSED METHOD: RA-QoS MODEL
Autoencoder input and output
The RA-QoS model (shown in Fig. 2) utilizes an autoencoder architecture designed to
predict missing QoS values. The input to the autoencoder, denoted as yðqÞ, represents
observed QoS data from the user-service matrix, specifically response time or throughput
values for a given user-service pair. This input data may be sparse due to the incomplete
nature of user-service interactions.

The autoencoder’s objective is to learn a compressed representation of the input data
through its hidden layers, which is then used to reconstruct or predict the output. The
output of the autoencoder, denoted as ŷðqÞ, is the predicted QoS value corresponding to the
input. The model is trained to minimize the difference between the actual QoS value (from
the observed data) and the predicted value ŷðqÞ, allowing it to predict missing values
effectively.

The architecture of the RA-QoSmodel is shown in Fig. 3. In the model, the input layer is
on the left, denoted by yðqÞ. The input data then passes through a series of hidden layers
(l1; l2; . . . ; lk), where it undergoes transformations by applying a series of weights (wk) and
biases (bk), as well as nonlinear activation function such as Sigmoid function. The result of

Figure 1 User-service interaction matrix which displays the quality ratings given by users to various
services. Specifically, user u1 rated service s1 with a score of 1.72 and service s2 with a score of 0.56; user
u2 rated service s1 with a score of 1.87; and user u3 rated service s1 with a score of 0.81 and service s3 with
a score of 3.14. Empty element of that matrix indicate missing data.

Full-size DOI: 10.7717/peerj-cs.2928/fig-1

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 5/26

http://dx.doi.org/10.7717/peerj-cs.2928/fig-1
http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

each transformation is passed to the next layer until reaching the final layer (lk). From
there, outputs are generated to make predictions, denoted as ŷðqÞ. Note the parameters in
the fðTBÞ are trainable. We adopt the fðTBÞ and wðPBÞ to represent TB and PB
combinations.

Calculation of PB and TB
The preprocessing bias (PB) combinations denote to preprocess the observed user
behavior data before training. They comprises three components: Pa, PiðnÞ and PuðmÞ,
representing the global average rating, service bias, and user bias, respectively. These
combinations are varied using z1, z2 and z3 to adjust Pa, PiðnÞ and PuðmÞ independently.

Figure 2 The flowchart of RA-QoS method. Full-size DOI: 10.7717/peerj-cs.2928/fig-2

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 6/26

http://dx.doi.org/10.7717/peerj-cs.2928/fig-2
http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

The global average rating Pa 2 Nþ reflects the statistical properties of observed QoS
ratings in the user-service matrixQ. It can be obtained as follows:

Pa ¼ z1 �
P

mn2� qmnP
mn2� dmn

; (4)

where � 2 RjMj�jNj represents the training set that is a subset of the matrix Q. The
preference of all users for a service s can be estimated using PiðnÞ with the equation as
follows:

PiðnÞ ¼ z2 �
P

m2�ðnÞ dmn � qmn � Pað Þ
x1 þ

P
m2�ðnÞ dmn

; (5)

where �ðnÞ represents the n-th column of �, and x1 denotes the threshold constant
associated with the average rating of service s. The preference of a user for different services
Pu can be noted as:

PuðmÞ ¼ z3 �
P

n2�ðmÞ dmn � qmn � Pa� PiðnÞ
� �

x2 þ
P

n2�ðmÞ dmn
: (6)

Table 2 summarizes all the possible combinations of PB. Moreover, Pi and Pu denote
the PB vectors for all services and all users, respectively.

The training bias (TB) operates in conjunction with the training process, unlike PB. TB
consists of two components: TiðsÞ and TuðuÞ, which extract user u’s and service s’s
preferences, respectively, during training. Similarly, we employ z4 and z5 to modulate the
values of TiðsÞ and TuðsÞ to create various TB combinations, and Ti and Tu represent the
TB vectors for all services and all users, respectively. A summary of all possible TB
combinations is provided in Table 3.

Figure 3 The architecture of RA-QoS model. The y(q) on the left is the the input layer. The input data then passes through a series of hidden layers
(l1, l2, . . . , lk), where it undergoes transformations by applying a series of weights (wk) and biases (bk), as well as nonlinear activation function such as
Sigmoid function. The result of each transformation is passed to the next layer until reaching the final layer (lk). From there, outputs are generated to
make predictions, denoted as ŷðqÞ. Full-size DOI: 10.7717/peerj-cs.2928/fig-3

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 7/26

http://dx.doi.org/10.7717/peerj-cs.2928/fig-3
http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

The combinations of PB and TB
The RA-QoS model adjusts the combination of PB and TB to balance the influence of bias.
In this model, the lk is used to represent the k-th hidden layer of RA-QoS,
k 2 f1; 2; . . . ;Kg. The term wk represents the weighted term of lk, and the term bk
represents the weighted term of lk. Therefore, RA-QoS’s prediction function can be
expressed as follows:

y qð Þ0 ¼ y qð Þ � w

l1 ¼ g w1 � yðqÞ0 þ b1
� �

lk ¼ g wk � lk�1 þ bkð Þ; k ¼ 2; � � �;K � 1byðqÞ0 ¼ wK � lK�1 þ bK þ fbyðqÞ ¼ f yðqÞ ; h;f;w
� � ¼ h lK þ wð Þ

I-RA-QoS :
yðqÞ ¼ yðnÞ ¼ y1n; � � � ; yjMjn

n o
w¼ Paþ PiðnÞþPu
f ¼ TiðnÞþTu

8><>:
U-RA-QoS :

yðqÞ ¼ yðmÞ ¼ ym1; � � � ; ymjNj
n o

w ¼ Paþ Piþ PuðmÞ

f ¼ Tiþ TuðmÞ

8><>:

8>>>>>>>><>>>>>>>>:

: (7)

The model is optimized by minimizing the following objective function:

I-RA-QoS :
Lðf Þ ¼ P

yðnÞ2Y
dðnÞ¼D

yðnÞ � byðnÞ� �
� dðnÞ

� �2

þ k1
2 �

PK
k¼1 wkð Þ2� �þ k2

2 � TiðnÞ þ Tu
� �2

8><>:
U-RA-QoS :

Lðf Þ ¼ P
yðmÞ2Y
dðmÞ¼D

yðmÞ � byðmÞ
� �

� dðmÞ
� �2

þ k1
2 �

PK
k¼1 wkð Þ2� �þ k2

2 � Tiþ TuðmÞ� �2
8><>:

8>>>>>>>><>>>>>>>>:
(8)

where k1, k2 are the regularization rate hyper-parameters. To minimize the function Lðf Þ
and train the learnable parameters � ¼ fw1; b1; . . . ;wK ; dk;Tu;Tig above, we adopted
Adam (Kingma & Ba, 2014) to adapt the learning rate automatically to train �.

Table 2 All possible cobinations of PB.

PB.1 PB.2 PB.3 PB.4 PB.5 PB.6 PB.7 PB.8

Value of weights z1 = 0 z1 = 1 z1 = 0 z1 = 1 z1 = 1 z1 = 0 z1 = 0 z1 = 1

z2 = 0 z2 = 1 z2 = 1 z2 = 0 z2 = 1 z2 = 0 z2 = 1 z2 = 0

z3 = 0 z3 = 1 z3 = 1 z3 = 1 z3 = 0 z3 = 1 z3 = 0 z3 = 0

Table 3 All possible cobinations of TB.

TB.1 TB.2 TB.3 TB.4

Value of weights z4 = 0 z4 = 1 z4 = 1 z4 = 0

z5 = 0 z5 = 1 z5 = 0 z5 = 1

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 8/26

http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

Self loss function in RA-QoS
The L2-norm loss function is sensitive to outliers in QoS data for each user, while the L1-
norm loss function lacks stability during training. To address this, we combine them into a
self-adaptively weighted L1-and-L2-norm-oriented loss function in RA-QoS model. Thus,
the objective function with L1-and-L2norm-oriented loss function of RA-QoS becomes:

I-RA-QoS :
Lðf Þ ¼ P

yðnÞ2Y
dðnÞ¼D

c1 � yðnÞ � byðnÞ� �
� dðnÞ

��� ���þ c2 � yðnÞ � byðnÞ� �
� dðnÞ

� �2

þ k1
2 �

PK
k¼1 ðwkÞ2

� �þ k2
2 � TiðnÞ þ Tu

� �2
8><>:

U-RA-QoS :
Lðf Þ ¼ P

yðmÞ2Y
dðmÞ¼D

c1 � yðmÞ �byðmÞ
� �

� dðmÞ
��� ���þ c2 � yðmÞ �byðmÞ

� �
� dðmÞ

� �2

þ k1
2 �

PK
k¼1 ðwkÞ2

� �þ k2
2 � Tiþ TuðmÞ� �2

8><>:

8>>>>>>>><>>>>>>>>:
(9)

where c1 and c2 denote the aggregation weights. They self-adaptively regulate the influence
of L1-norm and L2-norm, respectively. Note that to maintain the magnitude of loss,
c1 þ c2 ¼ 1, and c1 � c2 � 0. The aggregation strategy has the following design strategy:
increasing c1 if the partial loss of L1-norm is lower than L2-norm, otherwise increasing c2.
In training process, let dt1 and d

t
2 denote the partial losses of L1-norm, L2-norm and let

dt1;2 ¼ dt1 þ dt2. Let A
t
1 ¼

Pt
j¼1 d

j
1, A

t
2 ¼

Pt
j¼1 d

j
2 and At

1;2 ¼
Pt

j¼1 d
j
1;2.

L1-L2 norm fusion mechanism and its contribution to robustness
The RA-QoS model incorporates a self-adaptive fusion mechanism between the L1-norm
and L2-norm, which significantly contributes to its robustness in the presence of noise and
irregular data. The aggregation weights c1 and c2 govern the influence of the L1-norm and
L2-norm, respectively, with the constraint c1 þ c2 ¼ 1 and c1 � c2 � 0. This mechanism
allows the model to dynamically adjust its focus between the two norms based on the
current training stage.

The design strategy of this fusion mechanism is as follows: when the partial loss of L1-
norm dt1 is lower than the L2-norm loss dt2, the model increases c1, favoring the L1-norm to
better handle sparse or noisy data. Conversely, if the L1-norm loss is larger, the model
increases c2, which places more emphasis on the L2-norm. This self-adaptive strategy
allows the model to dynamically adjust its sensitivity to noise and outliers throughout the
training process.

At each training iteration, the partial losses of the L1-norm (dt1) and L2-norm (dt2) are
computed, and their cumulative sums are updated as follows:

At
1 ¼

Xt

j¼1

dj1; At
2 ¼

Xt

j¼1

dj2; At
1;2 ¼

Xt

j¼1

ðdj1 þ dj2Þ:

This mechanism ensures that the model adapts its loss function dynamically during
training. The aggregation of the L1-norm and L2-norm helps to balance the model’s
sensitivity to sparse, noisy, or outlier data points while maintaining stability in learning.

As a result, this self-adaptive fusion mechanism makes the RA-QoS model particularly
robust when confronted with noisy, sparse, or imbalanced data. By giving more weight to

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 9/26

http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

the L1-norm when dealing with outliers and noise, and adjusting to the L2-norm when the
data is more consistent, the model improves its generalization and performance under
challenging conditions. This enhanced robustness ensures that the RA-QoS model
performs stably even when faced with imperfections in the data, making it an excellent
choice for real-world QoS prediction tasks.

The detailed algorithm is shown in Algorithm 1.

Time and space complexity
Providing |M| inputs to the hidden units of I-RA-QoS requires |M| multiplications and
jMj þ 1 additions to account for bias terms and activation functions. The computational
demand of these operations is linear, represented as OðjMjÞ. If I-RA-QoS has x hidden
units in its first layer, each receiving |M| inputs, the complexity for this layer is calculated as
x � OðjMjÞ. With two hidden layers, the total time complexity of I-RA-QoS is

x � OðjMjÞ þ OðjMjÞ � x � OðjMjÞ, simplifying to OðjMj2 � xÞ. Assuming x remains
constant, the complexity stabilizes at OðjMj2Þ. Similarly, the time complexity for U-RA-
QoS can be deduced to be OðjNj2 � xÞ and OðjNj2Þ, using the same computational
framework.

RA-QoS only needs to keep a version of the input matrix and additional record
information with similar dimensions. In contrast, I-RA-QoS requires OðjMj � KÞ space to
store its parameters. Consequently, the space complexity for I-RA-QoS is
OðjMj � jNj þ jMj þ KÞ. Given that N typically far exceeds K, the space complexity for
I-RA-QoS simplifies to OðjMj � jNjÞ, a simplification that also holds true for U-RA-QoS.

EXPERIMENTS
Quality criteria for services
In this study, we focus on two commonly used quality of service (QoS) metrics: response
time and throughput. Response time is defined as the time taken from when a user sends a
request until the service responds, and it reflects the promptness of service delivery.
Throughput is defined as the rate at which data is successfully processed by a service over a
specific period, indicating the capacity of the service to handle user demands. Both metrics
are obtained from theWS-Dream dataset (Zheng et al., 2010), where they were recorded by
users interacting with various web services. To evaluate and compare the prediction
accuracy of the proposed RA-QoS model, these metrics serve as target values in our
prediction model. Errors between the predicted and actual values of these metrics are
calculated using mean absolute error (MAE) and root mean squared error (RMSE), as
detailed below.

Platform and environment
The experiments were conducted on a computing platform equipped with Intel(R) Core
(TM) i7-10510U CPU @ 1.80 GHz 2.30 GHz, IVIDIA RTX3090 GPU and 16.0 GB RAM.
The RA-QoS model and baseline algorithms were implemented using Python and several
machine learning libraries, including tensorflow for deep learning functionality.
Experiments were executed with additional packages for data processing and evaluation,

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 10/26

http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

such as NumPy. The source code for experiment is available at this URL (https://gitee.com/
sonica/RA-QoS).

Datasets
In this work, the WS-Dream dataset (Zheng et al., 2010) was employed for model
experimentation. This dataset is a real-world web service dataset that has been frequently
utilized in prior studies. The experiment utilized two benchmark QoS datasets: Response
Time (RT) and Throughput (TP). The Response Time dataset contains 1,873,838 records,
while the Throughput dataset contains 1,831,253 records. Both datasets were generated by
339 users across 5,825 distinct services.

Algorithm 1 Training procedure for RA-QoS model.

Input: User-service matrix Q 2 RjMj�jNj, Preprocessing Bias (PB) combinations ψ, Training Bias (TB) combinations f, maximum iterations T,
learning rate µ, regularization factors k1; k2

Output: Trained model parameters θ

1 Initialize model parameters h ¼ fw1; . . . ;wK ; b1; . . . ; bKg;
2 Preprocess user behavior data to compute PB: Pa, Pi, Pu;

3 Initialize accumulative losses A1 ¼ 0, A2 ¼ 0, A1;2 ¼ 0;

4 for iteration t ¼ 1 to T do

5 for each observed entry (m, n) in Y do

6 Compute yðqÞ ¼ yðnÞ for I-RA-QoS and yðqÞ ¼ yðmÞ for U-RA-QoS;

7 Subtract PB from input data: y qð Þ0 ¼ y qð Þ � w;

8 Forward pass through the model to get intermediate layer outputs l1; . . . ; lK�1;

9 Compute pre-output: byðqÞ0 ¼ wK � lK�1 þ bK þ f;

10 Add PB to get final output: byðqÞ ¼ byðqÞ0 þ w;

11 Compute partial losses: dt1 ¼ c1 � jjðyðqÞ � byðqÞÞ � dðqÞjj1, dt2 ¼ c2 � jjðyðqÞ � byðqÞÞ � dðqÞjj22;
12 Update accumulative losses: A1 ¼ A1 þ dt1, A2 ¼ A2 þ dt2, A1;2 ¼ A1;2 þ dt1;2;

/* Compute gradients */

13 Compute gradient rhL based on the loss function;

/* Update model parameters using Adam optimizer */

14 for each parameter hi in θ do

15 mi ¼ b1 �mi þ ð1� b1Þ � rhi L;

16 vi ¼ b2 � vi þ ð1� b2Þ � ðrhi LÞ2;
17 m̂i ¼ mi=ð1� bt1Þ;
18 v̂i ¼ vi=ð1� bt2Þ;
19 hi ¼ hi � a � m̂i=ð

ffiffiffiffi
v̂i

p þ eÞ;
20 end

21 end

22 Update c1 and c2 based on accumulative losses.

23 end

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 11/26

https://gitee.com/sonica/RA-QoS
https://gitee.com/sonica/RA-QoS
http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

For each experiment, different ratios of training data were used, as indicated by the ID
in the table. Specifically, the RT in the ID column refers to the Response Time dataset, and
the TP in the ID column refers to the Throughput dataset. The number following the
underscore in the ID (e.g., RT_05) denotes the ratio of training data used in that particular
experiment set, where 05 corresponds to 5% of the dataset used for training.

Both datasets were partitioned into training and testing sets at four different ratios: 5%,
10%, 15%, and 20%. The exact number of samples used for training and testing at each
ratio is provided in Table 4.

Evaluation of experiments
The task of QoS prediction involves forecasting missing data in sparse QoS matrices.
Prediction, by its nature, cannot achieve 100% accuracy; thus, there always exists an error
between predicted and actual values. Therefore, we utilize this error to evaluate the
accuracy of QoS prediction on the test set. MAE and RMSE are usually used as the error
evaluation metrics. MAE addresses the issue of error cancellation, accurately reflecting the
magnitude of prediction errors. RMSE is sensitive to larger or smaller errors in the test set,
effectively reflecting the robustness of predictions. Hence, this study selects RMSE and
MAE as evaluation metrics for assessing predicted QoS values. The specific formulas are as
follows:

MAE ¼
P

u;s Qu;s � Q̂u;s

�� ��
N

(10)

RMSE ¼
ffiP

u;s ðQu;s � Q̂u;sÞ2
N

s
(11)

where Qu;s represents the actual values in the test set, and Q̂u;s represents the predicted
values given by the proposed RA-QoS model.

Baselines
To validate the performance of the RA-QoS model in web service quality prediction, this
study compares four mainstream QoS prediction methods:

Robust Sparse Non-negative Matrix Factorization (RSNMF) (Peng et al., 2018): RSNMF
is utilized for the decomposition of user-item rating matrices, facilitating personalized
recommendations. By learning feature representations of users and items, RSNMF
captures user interests and item attributes, thus achieving accurate recommendations.

Non-negative Alternating Matrix Factorization (NAMF) (Li et al., 2022): NAMF is also
a matrix factorization technique characterized by its alternating update optimization
process.

Data-Characteristic-Aware Latent Factor (DCALF) (Wu et al., 2022): DCALF is a latent
factor model used in recommendation systems, considering the influence of data
characteristics. The DCALF model enhances latent factor models by incorporating
additional data features, thus better capturing the relationships between users and items.

Autoencoders Meet Collaborative Filtering (AutoRec) (Sedhain et al., 2015): AutoRec is
a collaborative filtering model based on autoencoders, utilized for personalized

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 12/26

http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

recommendation tasks in recommendation systems. It employs autoencoders to learn the
hidden structure within user-item rating matrices, thereby facilitating the learning and
representation of user interests and item features.

Deep Learning-based Communication Adaptive Network (DLCANet) (Kim et al.,
2024): DLCANet is a deep learning-based model specifically designed for QoS prediction
in robotic communication networks. By integrating CNN, LSTM, GNN, and attention
mechanisms, DLCANet captures spatial, temporal, and topological features of
communication data, making it highly effective for dynamic and complex network
environments. Through meticulous data preprocessing and a custom loss function that
emphasizes critical QoS metrics like latency and bandwidth.

Results and discussion
In this work, we evaluated the performance of seven algorithms—RSNMF, NAMF,
GeoMF, DCALF, AutoRec, DLCANet, and RA-QoS—on two benchmark QoS datasets: RT
and TP. The experiments were conducted across varying training data ratios, and the
evaluation metrics used were MAE and RMSE. The detailed results are summarized in
Tables 5 and 6.

As introduced in “The Proposed Method: Ra-qos Model”, the RA-QoS framework
supports two input modes: I-RA-QoS (item-based) and U-RA-QoS (user-based), each
offering different perspectives of QoS matrix completion. To determine the most effective
variant for practical deployment, we conduct a comprehensive comparison of both I-RA-
QoS and U-RA-QoS across multiple datasets and under various combinations of
Preprocessing Bias (PB) and Training Bias (TB). Experimental results consistently
demonstrate that I-RA-QoS achieves better prediction accuracy, stronger robustness to
sparsity, and faster convergence than U-RA-QoS. Therefore, we adopt I-RA-QoS with
PB.2 and TB.2 as the default configuration of the final RA-QoS model, ensuring high
accuracy and effective debiasing while preserving architectural simplicity.

Table 5 shows the MAE results, where RA-QoS consistently demonstrates strong
performance, often achieving the lowest MAE values. For the RT dataset, RA-QoS
outperforms all models in most cases, with the lowest MAE of 0.3835 at RT_20,
demonstrating its ability to minimize errors. In the TP dataset, RA-QoS remains

Table 4 Partition of datasets.

ID Ratio of training data # Samples in trainging set # Samples in testing set

Response time RT_05 5% 93,692 1,780,146

RT_10 10% 187,384 1,686,454

RT_15 15% 281,076 1,592,762

RT_20 20% 374,768 1,499,070

Throughput TP_05 5% 91,563 1,739,690

TP_10 10% 183,125 1,648,128

TP_15 15% 274,689 1,556,564

TP_20 20% 366,251 1,465,002

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 13/26

http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

competitive, outperforming the other models except in a few instances, such as at TP_20
where DCALF slightly surpasses it (MAE = 13.5491 for DCALF vs. 14.5654 for RA-QoS).
The Win/Loss analysis highlights RA-QoS’s effectiveness, achieving 40 wins against only
eight losses, the second-best performance after DCALF (44 wins, four losses).

The RMSE results in Table 6 further validate the superiority of RA-QoS in both datasets.
For RT, RA-QoS achieves an RMSE of 1.1573 at RT_20, which is marginally higher than
GeoMF’s RMSE of 1.1528 but still ranks among the best-performing models. In the TP
dataset, RA-QoS consistently delivers competitive results, achieving RMSE values close to
DCALF, which leads in several scenarios (e.g., TP_20, RMSE = 41.2194 for DCALF vs.
42.5971 for RA-QoS). The overall win/loss analysis shows RA-QoS securing 33 wins and
15 losses, confirming its robustness compared to most other models.

The Friedman Rank analysis, presented in Tables 5 and 6, offers a comprehensive view
of the models’ performance. RA-QoS ranks second for MAE (rank = 2.286) and third for
RMSE (rank = 3.286), reflecting its consistent accuracy and reliability. In contrast, models
like RSNMF and NAMF generally exhibit weaker performance, with ranks of 5.000 and
5.571 for MAE and 6.429 and 4.571 for RMSE, respectively.

Table 5 Experimental results on metric of MAE.

Datasets Metric RSNMF NAMF GeoMF DCALF AutoRec DLCANet RA-QoS

RT_05 MAE 0.5438 0.5465 0.5305 0.5127 0.5467 0.5341 0.5126

RT_10 MAE 0.4868 0.4976 0.4827 0.4544 0.5055 0.4805 0.4355

RT_15 MAE 0.4492 0.4625 0.4495 0.4346 0.4598 0.4519 0.4061

RT_20 MAE 0.4371 0.4360 0.4366 0.4246 0.4482 0.4291 0.3835

TP_05 MAE 21.4302 20.2101 24.7465 18.6237 21.3118 20.3118 19.4392

TP_10 MAE 17.2305 17.0126 22.4728 15.3430 17.031 19.0131 16.2878

TP_15 MAE 14.6880 15.6547 17.7908 14.0664 15.0156 15.7456 15.1795

TP_20 MAE 14.3654 14.6482 16.2852 13.5491 14.2265 15.4263 14.5654

Win/Loss 21/27 17/31 12/36 44/4 15/33 19/29 40/8

Friedman rank 5.000 5.571 6.286 1.714 5.857 5.286 2.286

Table 6 Experimental results on metric of RMSE.

Datasets Metric RSNMF NAMF GeoMF DCALF AutoRec DLCANet RA-QoS

RT_05 RMSE 1.4032 1.3995 1.3152 1.3731 1.3730 1.3975 1.3704

RT_10 RMSE 1.2689 1.2694 1.2191 1.2450 1.2678 1.2718 1.2601

RT_15 RMSE 1.2067 1.2178 1.1742 1.2001 1.1923 1.1967 1.2040

RT_20 RMSE 1.1588 1.1592 1.1528 1.1759 1.1681 1.1691 1.1573

TP_05 RMSE 60.7994 53.9572 57.7842 51.4123 55.5352 54.7339 53.5613

TP_10 RMSE 50.5298 46.0215 49.2456 45.9013 48.4771 50.2944 47.3237

TP_15 RMSE 45.2647 43.6522 45.3255 42.6235 44.5246 45.8946 44.3028

TP_20 RMSE 43.5882 42.3523 43.9845 41.2194 43.0654 43.7362 42.5971

Win/Loss 11/37 24/24 28/20 35/13 25/23 12/36 33/15

Friedman rank 6.429 4.571 4.000 3.000 4.429 6.286 3.286

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 14/26

http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

The results highlight RA-QoS’s ability to achieve close-to-optimal predictions across
varying data sparsity levels. While DCALF occasionally outperforms RA-QoS, especially in
low-sparsity conditions, RA-QoS demonstrates competitive performance with minimal
differences in accuracy. For instance, at TP_20, the MAE and RMSE values for RA-QoS are
within a narrow margin of DCALF’s results, showcasing RA-QoS’s robustness.

Additionally, RA-QoS strikes a balance between accuracy and versatility, performing
well across both RT and TP datasets, regardless of the training data ratio. This versatility
makes it a strong candidate for real-world QoS prediction tasks, where data sparsity and
distribution vary significantly. While DCALF emerges as the top-performing model in
specific scenarios, RA-QoS delivers highly competitive results with a consistent edge over
most other models. Its strong performance across different metrics, combined with its
adaptability, positions RA-QoS as a reliable and effective model for QoS prediction tasks.

To provide a more intuitive comparison, Fig. 4 contrasts the experimental results of the
AutoRec model and the proposed RA-QoS model. It can be seen that RA-QoS consistently
exhibits lower RMSE and MAE compared to AutoRec across both datasets, indicating its
superior predictive performance. This highlights the advantage of the RA-QoS approach in
improving the prediction of web service quality, making it a valuable enhancement over
the original AutoRec methodology.

Conclusion. Overall, the experimental results on both RT and TP datasets validate the
effectiveness of RA-QoS. It consistently achieves lower MAE and RMSE than baseline
models under various data sparsity settings. Although DCALF slightly surpasses RA-QoS
in a few individual cases, RA-QoS offers more stable performance overall, especially in
highly sparse settings. This demonstrates its superior generalization and robustness, largely
attributed to the integration of bias correction and hybrid loss design.

Parameter sensitivity and convergence
In the experiment, achieving better results, i.e., lower RMSE and MAE, was not merely a
matter of using the model directly. Instead, it involved numerous rounds of
hyperparameter tuning, model adjustments, and comparisons with other factors affecting
the prediction results. Therefore, this chapter will delve into the impact of various factors
related to deep neural networks, including the network’s depth, the number of neurons in
each layer, and certain model hyperparameters, on the experimental outcomes.
Additionally, we will conduct an ablation study to validate the positive effects of the
improvements made to the model. The ablation study encompasses two aspects: one is the
combination of PB and TB, and the other is the fusion of L1 and L2 norms as part of the
loss function.

Number of hidden layers. Directly using the RA-QoS model to predict the two datasets
yielded unsatisfactory results. The obtained RMSE and MAE values were considerably
larger. Upon observing and analyzing the datasets used in the experiment, it was found
that they exhibited significant variance and high data sparsity. Consequently, this article
proposes increasing the number of hidden layers in the model, specifically adding layers to
both the encoder and decoder, to enhance the model’s learning capacity and enable it to
handle such datasets more effectively. The comparison of experimental results under

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 15/26

http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

different numbers of hidden layers is illustrated in Fig. 5. It can be observed that the
experimental results are optimal when the number of hidden layers is three, i.e., when an
additional layer is added to both the encoder and decoder. However, as the number of
hidden layers increases, both the efficiency and generalization ability of the model decline.
This is because an excessive number of hidden layers increases the risk of overfitting,
potentially leading to the model learning noise and details in the data excessively, thereby
reducing the prediction accuracy of the model. Interestingly, for the dataset related to

Figure 4 Comparison of results between AutoRec and RA-QoS. (A) RT-RMSE. (B) RT-MAE. (C) TP-RMSE. (D) TP-MAE.
Full-size DOI: 10.7717/peerj-cs.2928/fig-4

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 16/26

http://dx.doi.org/10.7717/peerj-cs.2928/fig-4
http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

response time, directly using three hidden layers did not yield satisfactory results. Instead,
achieving better results was observed by reducing one layer in the decoder. Therefore, in
subsequent comparative experiments and ablation studies, a three-layer hidden structure
was used, with slight variations in the decoder stage.

Number of iterations. The number of iterations (or training epochs) in deep neural
networks has a significant impact on prediction results. With more iterations, the degree of
fitting to the training data may increase, but this also raises the risk of overfitting and

Figure 5 Comparison of experimential results with respect to number of hidden layers. (A) RT-RMSE. (B) RT-MAE. (C) TP-RMSE. (D) TP-
MAE. Full-size DOI: 10.7717/peerj-cs.2928/fig-5

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 17/26

http://dx.doi.org/10.7717/peerj-cs.2928/fig-5
http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

requires more computational time. Selecting the appropriate number of iterations involves
balancing the trade-off between overfitting and underfitting, while also aiding in
improving model generalization. Figure 6 illustrates the comparison of the impact of
different numbers of iterations on experimental results. It can be noted that as the number
of iterations increases, the results become increasingly favorable. However, after 500
iterations, the reduction in RMSE and MAE diminishes, and there may even be negative
growth. Therefore, setting the number of iterations to 500 can yield a satisfactory
prediction performance for the model.

Figure 6 Comparison of experimential results with respect to number of iterations. (A) RT-RMSE. (B) RT-MAE. (C) TP-RMSE. (D) TP-MAE.
Full-size DOI: 10.7717/peerj-cs.2928/fig-6

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 18/26

http://dx.doi.org/10.7717/peerj-cs.2928/fig-6
http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

Ablation study
As this article described, the experiment in this study involved the RA-QoS model,
primarily manifested in two aspects: the incorporation of different combinations of PB and
TB, and the modification of the loss function. However, it is necessary to verify whether
these modifications have improved the accuracy of the prediction results. Therefore, this
article conducts an ablation study using the method of controlling variables.

This study includes four scenarios: not including PB and TB combinations without
modifying the loss function; including PB and TB combinations without modifying the
loss function; not including PB and TB combinations while modifying the loss function;
and including different combinations of PB and TB while modifying the loss function. For
the convenience of visualization, we represent these four scenarios as A1, A2, A3, and A4,
respectively. The details of configuration of A1, A2, A3, and A4 are shown in the Table 7.

The specific comparison results are illustrated in Fig. 7. It can be seen that the line
corresponding to A4 is located at the bottom of the graph overall. This indicates that the
prediction performance of scenario A4 is the best among the four scenarios, implying that
the proposed model’s improvement is effective.

Robustness test
To evaluate the robustness of the RA-QoS model when facing noise, we designed a series of
experiments that introduce different types and intensities of noise into the QoS data, and
observe the model’s performance under these noisy environments. The main goal of the
experiment is to verify whether the RA-QoS model can maintain prediction accuracy
stably in the presence of noise, and to compare its performance with baseline methods.

Noise data injection methods
In the experiments, we introduced noise into the QoS data using the following methods:

Gaussian noise. Gaussian noise was added to each data point by sampling from a
standard normal distribution. Specifically, each response time ru;s was modified as follows:

r0u;s ¼ ru;s þ eu;s

where eu;s � Nð0;r2Þ, and the noise standard deviation r was set to different values (0,
0.2, 1.0) to simulate different levels of noise intensity.

Experimental procedure
Dataset selection: We used the WS-Dream dataset containing multiple services and user
QoS metrics, including response time and throughput. The RA-QoS model was trained on

Table 7 The table of four scenarios in ablation study.

PBTB combination Loss function upgraded

A1 � �
A2

p �
A3 � p

A4
p p

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 19/26

http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

both the original and noisy data, and evaluated using metrics such as MAE and RMSE. To
evaluate the robustness of the RA-QoS model, we compared it with several baseline models
that used in the former mentioned experiments.

We evaluated the robustness of the RA-QoS model under various noise levels. The
RMSE values for different methods under different noise levels are shown in the table and
the corresponding trend is illustrated in Fig. 8.

Figure 7 Result of ablation experiment. (A) RT-RMSE. (B) RT-MAE. (C) TP-RMSE. (D) TP-MAE.
Full-size DOI: 10.7717/peerj-cs.2928/fig-7

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 20/26

http://dx.doi.org/10.7717/peerj-cs.2928/fig-7
http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

The results showed that as the noise intensity increased (e.g., from r ¼ 0 to r ¼ 1:0),
the MAE and RMSE for the RA-QoS model remained relatively stable, with only a slight
increase in error. Even under high noise levels (e.g., r ¼ 1:0), the RA-QoS model
maintained low error rates, demonstrating strong robustness.

Figure 8 Result of robustness test. (A) RT20-RMSE. (B) TP20-RMSE. (C) RT20-MAE. (D) TP20-MAE.
Full-size DOI: 10.7717/peerj-cs.2928/fig-8

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 21/26

http://dx.doi.org/10.7717/peerj-cs.2928/fig-8
http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

In contrast, the baseline methods, such as matrix factorization based RSNMF, NAMF
and Collaborative Filtering based AutoRec, showed more unstable performance under
high noise conditions. Specifically, with the introduction of missing data and high
Gaussian noise, their MAE and RMSE values increased significantly, and their
performance degraded faster. This indicates that the RA-QoS model is more stable when
facing noise compared to these baseline methods. Through experiments with varying noise
levels, we observed that the RA-QoS model remains stable and maintains low error rates
even in the presence of high noise and missing data. In comparison, the baseline methods
exhibited significant performance degradation under noisy conditions. This demonstrates
that the RA-QoS model is robust and performs stably when confronted with data noise,
making it a reliable choice for QoS prediction in real-world applications with imperfect
data.

As the noise intensity (i.e., the value of r) increases, the RMSE values for all baseline
methods increase, indicating a deterioration in performance as noise levels rise. Among the
baseline methods, including RSNMF, NAMF, GeoMF, DCALF, AutoRec and DLCANet,
RA-QoS exhibits the smallest increase in RMSE, demonstrating its superior robustness
against noise. This result highlights the effectiveness of the RA-QoS model in handling
noisy data, making it a more stable and reliable choice for real-world QoS prediction tasks.

RA-QoS consistently demonstrates the smallest increase in both RMSE and MAE as the
noise level increases, across both datasets (RT_20 and TP_20). This indicates that RA-QoS
is more robust to noise than other baseline methods. The model’s ability to maintain low
error rates, even under noisy conditions, makes it a reliable choice for QoS prediction in
real-world environments.

Methods like RSNMF, NAMF, and AutoRec show a higher sensitivity to noise, with
their error metrics increasing more significantly as the noise level rises. These methods
struggle to handle the noise and exhibit performance degradation that RA-QoS avoids.

The GeoMF and DCALF models perform reasonably well but still showmore sensitivity
to noise compared to RA-QoS. While these models demonstrate better robustness than
RSNMF and NAMF, they still experience a noticeable increase in RMSE and MAE values
as noise levels grow.

Conclusion. This section reveals that the performance of RA-QoS is highly sensitive to
bias configuration and network structure. The integration of PB.2 and TB.2 significantly
enhances prediction accuracy and training efficiency. Moreover, the L1-L2 hybrid loss
contributes to stronger robustness against noisy and outlier data. These findings confirm
that the design choices in RA-QoS are effective in addressing challenges such as data
sparsity, outliers, and convergence speed in deep QoS prediction.

CONCLUSION AND FUTURE WORKS
For the task of QoS prediction, issues arise from large data volume and sparsity. This
article addresses issues such as non-linear feature learning of data, and the inability to
simultaneously consider local and global features, by proposing an enhancement of the
AutoRec model used in recommendation systems, termed RA-QoS.

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 22/26

http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

Key findings: By combining PB and TB and utilizing L1 and L2 norms, the issues
caused by outliers and various biases are resolved. Experimental results demonstrate that,
with appropriate hyperparameter selection, the proposed model can achieve relatively high
accuracy in practical QoS prediction tasks. This article discusses the selection of relevant
hyperparameters. It is noteworthy that we also conducted ablation experiments to
demonstrate the effectiveness of the model.

Limitation: Despite its effectiveness, the RA-QoS model’s performance depends on
hyperparameter tuning. Additionally, the current model structure may benefit from
further refinement of the encoder-decoder architecture, as well as from integrating search
algorithms for more efficient hyperparameter optimization.

Future work: In the future, it is possible to design more optimal encoder and decoder
structures, such as replacing the decoder with Logistic Regression, thereby transforming
the recommendation problem into a classification problem. Additionally, in terms of
hyperparameter tuning, employing search algorithms could enhance the efficiency of
optimization. The proposed RA-QoS model offers a promising and practical approach for
accurate, robust QoS prediction, with future improvements focused on optimizing
encoder-decoder structures and hyperparameter tuning strategies.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work is supported by the Science and Technology Research Program of Chongqing
Municipal Education Commission (Grant Nos. KJQN202303203, KJZD-M202203201),
Natural Science Foundation of Chongqing, China CSTC (Grant No. CSTB2023NSCQ-
MSX0981), Doctoral Fund of Chongqing Industry Polytechnic College (No.
2023GZYBSZK3-03). There was no additional external funding received for this study.
The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Science and Technology Research Program of Chongqing Municipal Education
Commission: KJQN202303203, KJZD-M202203201.
Natural Science Foundation of Chongqing, China CSTC: CSTB2023NSCQ-MSX0981.
Chongqing Industry Polytechnic College: 2023GZYBSZK3-03.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
. Shun Fu conceived and designed the experiments, performed the experiments, analyzed
the data, performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.

. Junnan Li analyzed the data, prepared figures and/or tables, and approved the final draft.

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 23/26

http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

. Lufeng Wang analyzed the data, performed the computation work, prepared figures and/
or tables, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The WS-Dream dataset is available at https://wsdream.github.io.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.2928#supplemental-information.

REFERENCES
Bai B, Fan Y, Tan W, Zhang J. 2017. DLTSR: a deep learning framework for recommendations of

long-tail web services. IEEE Transactions on Services Computing 13(1):73–85
DOI 10.1109/tsc.2017.2681666.

Botangen KA, Yu J, Sheng QZ, Han Y, Yongchareon S. 2020. Geographic-aware collaborative
filtering for web service recommendation. Expert Systems with Applications 151(5):113347
DOI 10.1016/j.eswa.2020.113347.

Chen D, Gao M, Liu A, Chen M, Zhang Z, Feng Y. 2019. A recurrent neural network based
approach for web service QoS prediction. In: 2019 2nd International Conference on Artificial
Intelligence and Big Data (ICAIBD). Piscataway: IEEE, 350–357.

Huang T, Liang C, Wu D, He Y. 2023. A debiasing autoencoder for recommender system. IEEE
Transactions on Consumer Electronics 70(1):3603–3613 DOI 10.1109/tce.2023.3281521.

Jia Z, Jin L, Zhang Y, Liu C, Li K, Yang Y. 2022. Location-aware web service QoS prediction via
deep collaborative filtering. IEEE Transactions on Computational Social Systems 10(6):3524–
3535 DOI 10.1109/tcss.2022.3217277.

Kim TH, Lee JH, Lee JH, Kim MY. 2024. Deep learning-based QoS prediction for optimization of
robotic communication. In: 2024 International Conference on Artificial Intelligence in
Information and Communication (ICAIIC). Piscataway: IEEE, 301–306.

Kingma DP, Ba J. 2014. Adam: a method for stochastic optimization. ArXiv preprint
DOI 10.48550/arXiv.1412.6980.

Li Y, Wang R, Fang Y, Sun M, Luo Z. 2022. Alternating direction method of multipliers for
convolutive non-negative matrix factorization. IEEE Transactions on Cybernetics 53(12):7735–
7748 DOI 10.1109/tcyb.2022.3204723.

Li P, Wang Z, Ren Z, Bing L, Lam W. 2017. Neural rating regression with abstractive tips
generation for recommendation. In: Proceedings of the 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval, 345–354.

Liang W, Xie S, Cai J, Xu J, Hu Y, Xu Y, Qiu M. 2021. Deep neural network security collaborative
filtering scheme for service recommendation in intelligent cyber–physical systems. IEEE Internet
of Things Journal 9(22):22123–22132 DOI 10.1109/jiot.2021.3086845.

Luo X, Liu J, Zhang D, Chang X. 2016. A large-scale web QoS prediction scheme for the industrial
internet of things based on a kernel machine learning algorithm. Computer Networks 101:81–89
DOI 10.1016/j.comnet.2016.01.004.

Luo X, Wang Z, Shang M. 2019. An instance-frequency-weighted regularization scheme for
non-negative latent factor analysis on high-dimensional and sparse data. IEEE Transactions on
Systems, Man, and Cybernetics: Systems 51(6):3522–3532 DOI 10.1109/tsmc.2019.2930525.

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 24/26

https://wsdream.github.io
http://dx.doi.org/10.7717/peerj-cs.2928#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.2928#supplemental-information
http://dx.doi.org/10.1109/tsc.2017.2681666
http://dx.doi.org/10.1016/j.eswa.2020.113347
http://dx.doi.org/10.1109/tce.2023.3281521
http://dx.doi.org/10.1109/tcss.2022.3217277
http://dx.doi.org/10.48550/arXiv.1412.6980
http://dx.doi.org/10.1109/tcyb.2022.3204723
http://dx.doi.org/10.1109/jiot.2021.3086845
http://dx.doi.org/10.1016/j.comnet.2016.01.004
http://dx.doi.org/10.1109/tsmc.2019.2930525
http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

Ma Y, Geng X, Wang J. 2020. A deep neural network with multiplex interactions for cold-start
service recommendation. IEEE Transactions on Engineering Management 68(1):105–119
DOI 10.1109/tem.2019.2961376.

Ma W, Yu M, Li K, Wang G. 2020. Why layer-wise learning is hard to scale-up and a possible
solution via accelerated downsampling. In: 2020 IEEE 32nd International Conference on Tools
with Artificial Intelligence (ICTAI). Piscataway: IEEE, 238–243.

Peng S, Ser W, Lin Z, Chen B. 2018. Robust sparse nonnegative matrix factorization based on
maximum correntropy criterion. In: 2018 IEEE International Symposium on Circuits and
Systems (ISCAS). Piscataway: IEEE, 1–5.

Raza S, Ding C. 2020. A regularized model to trade-off between accuracy and diversity in a news
recommender system. In: 2020 IEEE International Conference on Big Data (Big Data).
Piscataway: IEEE, 551–560.

Saito Y. 2020. Asymmetric tri-training for debiasing missing-not-at-random explicit feedback. In:
Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval, 309–318.

Sathya M, Swarnamugi M, Dhavachelvan P, Sureshkumar G. 2010. Evaluation of QoS based
web-service selection techniques for service composition. International Journal of Software
Engineering 1(5):73–90.

Schnabel T, Swaminathan A, Singh A, Chandak N, Joachims T. 2016. Recommendations as
treatments: debiasing learning and evaluation. In: International Conference on Machine
Learning. PMLR, 1670–1679.

Sedhain S, Menon AK, Sanner S, Xie L. 2015. Autorec: autoencoders meet collaborative filtering.
In: Proceedings of the 24th International Conference on World Wide Web, 111–112.

Wang S, Ma Y, Cheng B, Yang F, Chang RN. 2016.Multi-dimensional QoS prediction for service
recommendations. IEEE Transactions on Services Computing 12(1):47–57
DOI 10.1109/tsc.2016.2584058.

Wu D, Luo X, Shang M, He Y, Wang G, Wu X. 2022. A data-characteristic-aware latent factor
model for web services QoS prediction. IEEE Transactions on Knowledge and Data Engineering
34(6):2525–2538 DOI 10.1007/978-3-030-16148-4_30.

Wu Y, Xie F, Chen L, Chen C, Zheng Z. 2017. An embedding based factorization machine
approach for web service QoS prediction. In: Service-Oriented Computing: 15th International
Conference, ICSOC 2017, Malaga, Spain, November 13–16, 2017, Proceedings. Cham: Springer,
272–286.

Wu D, Zhang P, He Y, Luo X. 2023. A double-space and double-norm ensembled latent factor
model for highly accurate web service QoS prediction. IEEE Transactions on Services Computing
16(2):802–814 DOI 10.1109/tsc.2022.3178543.

Yang L, Cui Y, Xuan Y, Wang C, Belongie S, Estrin D. 2018a. Unbiased offline recommender
evaluation for missing-not-at-random implicit feedback. In: Proceedings of the 12th ACM
Conference on Recommender Systems, 279–287.

Yang Y, Zheng Z, Niu X, Tang M, Lu Y, Liao X. 2018b. A location-based factorization machine
model for web service QoS prediction. IEEE Transactions on Services Computing 14(5):1264–
1277 DOI 10.1109/tsc.2018.2876532.

Yin Y, Chen L, Xu Y, Wan J, Zhang H, Mai Z. 2020. QoS prediction for service recommendation
with deep feature learning in edge computing environment. Mobile Networks and Applications
25(2):391–401 DOI 10.1007/s11036-019-01241-7.

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 25/26

http://dx.doi.org/10.1109/tem.2019.2961376
http://dx.doi.org/10.1109/tsc.2016.2584058
http://dx.doi.org/10.1007/978-3-030-16148-4_30
http://dx.doi.org/10.1109/tsc.2022.3178543
http://dx.doi.org/10.1109/tsc.2018.2876532
http://dx.doi.org/10.1007/s11036-019-01241-7
http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

Ying R, He R, Chen K, Eksombatchai P, Hamilton WL, Leskovec J. 2018. Graph convolutional
neural networks for web-scale recommender systems. In: Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, 974–983.

Yuan Y, Luo X, Shang M-S. 2018. Effects of preprocessing and training biases in latent factor
models for recommender systems. Neurocomputing 275(6):2019–2030
DOI 10.1016/j.neucom.2017.10.040.

Zhang M, Chen Y. 2019. Inductive matrix completion based on graph neural networks. ArXiv
preprint DOI 10.48550/arXiv.1904.12058.

Zheng Z, Li X, Tang M, Xie F, Lyu MR. 2020. Web service QoS prediction via collaborative
filtering: a survey. IEEE Transactions on Services Computing 15(4):2455–2472
DOI 10.1109/tsc.2020.2995571.

Zheng Z, Lyu MR. 2013. Personalized reliability prediction of web services. ACM Transactions on
Software Engineering and Methodology (TOSEM) 22(2):1–25 DOI 10.1145/2430545.2430548.

Zheng Z, Ma H, Lyu MR, King I. 2010. QoS-aware web service recommendation by collaborative
filtering. IEEE Transactions on Services Computing 4(2):140–152 DOI 10.1109/tsc.2010.52.

Zhu X, Jing X-Y, Wu D, He Z, Cao J, Yue D, Wang L. 2018. Similarity-maintaining privacy
preservation and location-aware low-rank matrix factorization for QoS prediction based web
service recommendation. IEEE Transactions on Services Computing 14(3):889–902
DOI 10.1109/tsc.2018.2839741.

Fu et al. (2025), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.2928 26/26

http://dx.doi.org/10.1016/j.neucom.2017.10.040
http://dx.doi.org/10.48550/arXiv.1904.12058
http://dx.doi.org/10.1109/tsc.2020.2995571
http://dx.doi.org/10.1145/2430545.2430548
http://dx.doi.org/10.1109/tsc.2010.52
http://dx.doi.org/10.1109/tsc.2018.2839741
http://dx.doi.org/10.7717/peerj-cs.2928
https://peerj.com/computer-science/

	RA-QoS: a robust autoencoder-based QoS predictor for highly accurate web service QoS prediction
	Introduction
	Related works
	Preliminaries and problem definitions
	The proposed method: ra-qos model
	Experiments
	Conclusion and future works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

