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ABSTRACT
One of the biggest hazards to cancer-related mortality globally is colorectal cancer,
and improved patient outcomes are greatly influenced by early identification.
Colonoscopy is a highly effective screening method, yet segmentation and detection
remain challenging aspects due to the heterogeneity and variability of readers’
interpretations of polyps. In this work, we introduce a novel deep learning
architecture for gastrointestinal polyp segmentation in the Kvasir-SEG dataset. Our
method employs an encoder-decoder structure with a pre-trained ConvNeXt model
as the encoder to learn multi-scale feature representations. The feature maps are
passed through a ConvNeXt Block and then through a decoder network consisting of
three decoder blocks. Our key contribution is the employment of a cross-attention
mechanism that creates shortcut connections between the decoder and encoder to
maximize feature retention and reduce information loss. In addition, we introduce a
Residual Transformer Block in the decoder that learns long-term dependency by
using self-attention mechanisms and enhance feature representations. We evaluate
our model on the Kvasir-SEG dataset, achieving a Dice coefficient of 0.8715 and
mean intersection over union (mIoU) of 0.8021. Our methodology demonstrates
state-of-the-art performance in gastrointestinal polyp segmentation and its feasibility
of being used as part of clinical pipelines to assist with automated detection and
diagnosis of polyps.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning, Data
Science, Neural Networks
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INTRODUCTION
Colorectal cancer is a significant worldwide health concern with a high mortality rate and a
complex course of development which typically starts in benign polyps. Polyps can become
precancerous lesions, for which reason there is the utmost need for early discovery and
intervention. Effective screening and early polyp removal through colonoscopy are able to
mitigate the severity of colorectal cancer, ultimately decreasing its incidence and mortality
rates (Torre et al., 2015; Song et al., 2020). The American Cancer Society emphasizes the
fact that normal screening can be able to pick up polyps before they turn into cancer,
emphasizing the relevance of preventive intervention in the case of colorectal health
management (Torre et al., 2015).

Risk factors associated with colorectal cancer be broadly divided into modifiable and
non-modifiable factors. Obesity, physical inactivity, poor dietary habits, and excessive
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alcohol consumption are modifiable risk factors, each of which is linked to a higher risk of
the development of colorectal polyps and cancer (Um et al., 2020). Age, cancer or polyp
family or personal history, and genetic syndromes are non-modifiable risk factors, all of
which put an individual at risk of colorectal neoplasms. Identifying these risk factors is
central to the design of targeted screening methods and public health interventions
towards alleviating the burden of colorectal cancer.

Despite improvements in screening technology, detection of polyps remains difficult
during colonoscopy examinations. Existence of blind spots and human mistake can
significantly impact the adenoma detection rate, which is an important measure of
colonoscopy efficacy (Li et al., 2023). According to reports in this study, the rate of missed
polyps ranges from 22% to 28%, which makes it necessary to improve the detection
processes. Polyp segmentation is very important. It has a direct influence on the clinical
management of colorectal cancer. Precise segmentation allows for better polyp parameter
and morphology evaluation, which are very significant during the planning of resection
methods and follow-up treatment (Su et al., 2021).

In this regard, artificial intelligence (AI) is appearing as a feasible solution to enhance
polyp detection and segmentation. AI-driven systems are capable of analyzing
colonoscopic images with higher accuracy and speed and therefore minimize the number
of false negatives along with enhanced overall diagnostic outcomes (Kang & Gwak, 2019;
Singstad & Tzavara, 2021). In addition, advances in segmentation techniques, such as the
utilization of modified U-Net architectures and the use of attention mechanisms, have
achieved greater performance in identifying polyp edges and thereby improving diagnostic
accuracy (Yang & Cui, 2024; Fu et al., 2022). With the ever-growing sophistication of
medical imaging, utilizing AI and machine learning for polyp segmentation is a basic step
toward more effective approaches to the prevention of colorectal cancer.

Endoscopy AI-based decision support systems have played very important roles in
augmenting the ability of doctors to identify and segment polyps. The systems leverage
sophisticated image processing and segmentation techniques, which are important to
ensure that colonoscopy-based polyp detection is effective and efficient. Their central aim
is to help clinicians decide evidence-based for the segmentation of polyps, thereby
addressing the problem of the polyp miss rate at the highest of 26% for small adenomas
(Yeung et al., 2021). With assisted deep learning architectures like U-Net and its variants,
these systems are able to carry out real-time polyp detection and segmentation, offering a
solid tool to gastroenterologists (Ahmad et al., 2019; Chen, Urban & Baldi, 2022). For
example, a study by Kang & Gwak (2019) has proven the application of ensemble models
to polyp segmentation using methods such as fuzzy clustering and machine learning
classifiers to optimize detection capability. Moreover, advances in convolutional neural
networks (CNNs) have shown promise for automating segmentation to facilitate faster and
more accurate detection of polyps throughout a colonoscopy (Hossain et al., 2023; Guo
et al., 2019). These innovations aim not only to raise detection rates but also reduce the
time spent on endoscopic procedures, eventually contributing to improved patient care
(Kang & Gwak, 2019; Li et al., 2023).
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Recent studies have established that AI-assisted colonoscopy not only enhances the rate
of polyp detection of colorectal polyps but also enhances endoscopic procedure overall
diagnostic accuracy. For example, applying deep learning algorithms has demonstrated
spectacular success in segmenting and detecting polyps from static images and video
streams recorded during colonoscopy (Kavitha et al., 2022; Lee et al., 2020). These
improvements are particularly beneficial, given the difficult-to-view visual characteristics
of polyps in conventional methods are more likely to fail and miss during inspection
(Wang et al., 2024b; Ramzan et al., 2022). AI algorithms are configured to operate
independently of the clinician’s knowledge, which is a reproducible and standard method
of identifying the polyps easily missed (Yamada et al., 2019; Khalaf, Rizkala & Repici,
2024).

Further, AI-driven decision support systems provide more than just detection to offer
classification and characterization of polyps, which is crucial in suggesting the right clinical
management plans. For instance, CNN-based systems have accurately classified polyps
into various categories to facilitate the decision on resecting or not resecting, or following
the lesions (Ozawa et al., 2020; García-Rodríguez et al., 2022). This capability is key to the
application of techniques such as “resect and discard” that depend on successful in vivo
differentiation of polyps for optimal outcomes in patients (Rao et al., 2022; Ahmad et al.,
2019). Thus, the integration of AI into endoscopic practice is a paradigm shift toward more
precise and personalized patient management in the prevention and treatment of
colorectal cancer.

Motivation: AI-based endoscopy decision support systems utilize sophisticated
image processing and segmentation techniques to enhance polyp detection and
support clinicians in making important decisions regarding polyp management. The
systems are aimed at reducing the rate of missing polyps while collaborating to
increase the overall quality of colonoscopy, eventually translating to better patient
outcomes in the screening and prevention of colorectal cancer (Mehta et al., 2023;
Taghiakbari, Mori & von Renteln, 2021). With this technology still developing, its potential
to transform endoscopic procedures and enhance clinical decision-making remains
substantial, calling for continued research and development in this field (Peng et al., 2024;
Tham et al., 2023).

In this study, we present a novel deep learning framework for gastrointestinal polyp
segmentation that draws upon recent advances in computer vision and transformer-based
neural networks. Our proposed model, based on a ConvNeXt (Liu et al., 2022) encoder and
residual transformer blocks for the decoder, is designed to overcome the limitations of
existing approaches by improving feature extraction, maintaining spatial information, and
maximizing computational efficiency. With the addition of cross-attention mechanisms
and multi-scale feature fusion, our strategy is designed to yield enhanced segmentation
accuracy. The purpose of this study is to bridge the gap between clinical usefulness and
research advancements, providing a robust and generalizable solution to automated polyp
segmentation in endoscopic imaging.
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RELATED WORK
Segmentation and localisation of polyps in medical images, particularly colonoscopy, is
one area that holds extreme significance in research due to its ability for early detection and
treatment of colorectal cancer. This field has seen tremendous advancements in recent
years with the help of various methodologies ranging from basic image processing
methods to sophisticated deep learning approaches.

In 2020, Mandal & Chaudhuri (2020) introduced a polyp segmentation method based
on fuzzy clustering that achieved a high accuracy of 98.80%. The method demonstrated the
effectiveness of fuzzy clustering in distinguishing polyps from other tissues, showing the
capability of traditional algorithms to achieve high performance in medical image
segmentation. The effectiveness of fuzzy clustering in this case agrees with other studies on
the subject that show its accuracy in handling uncertainties that are typical in medical
images (Kembaren, Sitompul & Sawaluddin, 2022). However, even though classical
methods like fuzzy clustering are promising, they have poor performance under the
advanced variability in polyp appearances, and hence the need to explore more advanced
techniques. The following year, Jha et al. (2021) employed deep learning architectures in
the form of ResUNet++ to enhance polyp segmentation accuracy using data augmentation
and Conditional Random Field techniques. Their study emphasized the importance of
integrating machine learning with traditional image processing methods to improve
segmentation outcomes. The pairing of CRF with deep learning models has been
demonstrated to improve boundary delineation, the ability to accurately separate polyps
from the surrounding mucosa is one of the most significant issues in polyp segmentation.
This merging of methods is part of a larger trend in the literature, as hybrid models are
becoming more popular due to their better performance on difficult segmentation tasks.
Banik et al. (2021) also advanced the field by introducing Polyp-Net, a fusion-based
network for segmentation that improved on previous methods in accuracy. Their research
illustrated the effectiveness of combining various feature extraction approaches to
optimize segmentation accuracy. This was with the work of Zhou & Li (2023), who
introduced a hybrid spatial-channel attention and global-regional context aggregation
feature to improve segmentation, whose mean Dice score was 0.915. The emphasis on
multi-scale integration of features is particularly relevant because polyps tend to be quite
variable in shape and size and thus need models that can process these variations with ease.
In 2022, Tran et al. (2022) introduced the MRR-UNet model, which achieved minimal
model size while obtaining an average Dice score of 93.54%. This model is a case of the
ongoing effort to balance performance with computational efficiency, a crucial factor in
healthcare contexts where real-time processing usually necessary. The trend of optimizing
model structures for accuracy and efficiency is seen in the literature, where scientists are
increasingly interested in developing lightweight models with high performance levels (Jha
et al., 2021). Besides, Mohapatra et al. (2022) proposed U-PolySeg, which effectively
combined features to achieve high accuracy in polyp segmentation.

Despite these advancements, their reliable and precise segmentation is difficult to
provide on a consistent basis across large data sets and disease states. Heterogeneity of
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polyp texture, variability of size and shape, contribute to this process (Zhou & Li, 2023).
Moreover, in colonoscopy images, presence of artifact as well as noise makes precise
segmentation even more challenging to attain (Zhang et al., 2024). As pointed out by Ji
et al. (2024), nearly a quarter of polyps in the tumor go unseen during colonoscopy
examinations, which underlines the need for robust segmentation techniques that can
assist clinicians in real-time. In order to address these challenges, integrating multi-task
learning paradigms, as suggested by Xu et al. (2024), might enable models to learn from
similar tasks simultaneously, thereby becoming more capable of generalizing across a wide
range of polyp appearances and imaging conditions. The study of transfer learning
techniques, as observed by Singstad & Tzavara (2021), can provide a way of improving
segmentation performance, particularly where there is not much labeled data. By
employing pre-trained models on large data, researchers are able to fine-tune the models
for specific polyp segmentation tasks, which could lead to improved accuracy and
efficiency.

MEDICAL IMAGE SEGMENTATION
In computer-aided diagnosis, medical image segmentation is a crucial technique that
allows for accurate anatomical structure boundary delineation. The purpose of
segmentation is to separate a medical image into various regions corresponding to
different tissue types, organs, or pathologic regions, upon which one can perform more
accurate medical imaging analysis and decision-making. An example is shown in Fig. 1.

Mathematically, a common method to formulate medical image segmentation is as a
pixel-wise classification task. Each pixel ðx; yÞ in the image domain � is given a label
Lðx; yÞ via segmentation given an input medical image I, such that:

L : � ! f0; 1; . . . ;K � 1g; (1)

where K is the number of classes, and Lðx; yÞ denotes the assigned class label.
Segmentation methods can be broadly categorized into two main approaches.

Image processing-based segmentation
Traditional methods rely on thresholding, edge detection, and region growing techniques
to partition the image. For example, Otsu’s thresholding method (Otsu, 1979) selects an
optimal threshold T by minimizing intra-class variance:

T ¼ argmin
T

r21ðTÞ þ r22ðTÞ
� �

; (2)

where r21 and r22 are the variances of pixel intensities for background and foreground
regions, respectively.

Machine learning-based segmentation
Machine learning-based medical image segmentation has long relied on classical
approaches that leverage handcrafted features and statistical learning techniques to
delineate anatomical structures or pathological regions. Traditional methods such as
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support vector machines, k-nearest neighbours, random forests, and clustering algorithms
(Cai et al., 2015) have been widely used due to their interpretability and relatively low
computational requirements. These methods typically operate on extracted features–such
as texture, intensity, or shape descriptors–from pixel or superpixel regions to classify each
region into predefined categories. More advanced approaches incorporate kernel methods
to capture non-linear patterns in the feature space, improving segmentation performance
in complex imaging scenarios. In particular, kernel sparse representation (KSR) has shown
promise by mapping image data into high-dimensional feature spaces, where sparse coding
techniques can better capture the underlying structure and discriminative information.
KSR-based segmentation methods provide a flexible framework that balances sparsity and
kernel-induced nonlinearity (Chen et al., 2017a), making them suitable for challenging
tasks such as tumor boundary delineation or tissue classification in modalities like MRI
and CT (Chen et al., 2017b).

While classical machine learning methods have provided valuable insights and
reasonable performance in medical image segmentation, they often depend heavily on
handcrafted features and may struggle with complex or high-dimensional data. To
overcome these limitations, deep learning-based approaches, particularly CNNs, have
emerged as a powerful alternative. CNNs are capable of automatically learning hierarchical
and spatially invariant features directly from raw image data, enabling more accurate and
robust segmentation across a wide range of medical imaging modalities. CNN-based image
segmentation is essential for many medical applications (Nguyen et al., 2022), such as
disease classification, lesion detection, and prognosis prediction, as it enables precise
localisation and delineation of relevant anatomical and pathological structures. One of the
notable CNN-based image segmentation approaches is the U-Net (Ronneberger, Fischer &
Brox, 2015) architecture, which uses employs a skip-connection encoder-decoder scheme.
Given an input image I, the CNN learns a mapping function F from the image to a
segmented output L̂:

L̂ ¼ FðI; hÞ; (3)

where h represents the network parameters learned during training.

Original image Ground Truth

Figure 1 An example of segmentation task. Full-size DOI: 10.7717/peerj-cs.2924/fig-1
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Loss functions in deep learning segmentation models often combine Dice loss and
cross-entropy loss, defined as:

LDice ¼ 1� 2
P

i pigiP
i p

2
i þ

P
i g

2
i
; (4)

where pi and gi represent predicted and ground truth segmentation masks, respectively.

MATERIALS AND METHOD
The Kvasir-SEG dataset
In this article, we utilize the Kvasir-SEG dataset (Jha et al., 2019a), a publicly available
gastrointestinal polyp segmentation dataset. The dataset consists of 1,000 high-quality
polyp images from real colonoscopy procedures and their corresponding pixel-wise
ground truth masks. The images are all annotated by experienced medical physicians to
ensure accuracy in segmentation tasks. The dataset consists of a diverse range of polyp
shapes, sizes, and textures, making it extremely well-suited as a training and test set for
deep learning networks in analysis of medical images. Kvasir-SEG is a valuable benchmark
for building robust and generalizable polyp segmentation techniques and opens the door
for computer-aided diagnosis of gastrointestinal disorders.

Data processing
We used image augmentation techniques such as random cropping, flipping, scaling,
rotation, cutoff, brightness, and random erasing to increase our training dataset in order to
improve the durability and accuracy of deep learning models for polyp segmentation.
These augmentation techniques facilitate the enhancement of the diversity of the polyp
samples in the Kvasir-SEG dataset, ultimately leading to improved segmentation accuracy
and generalization in real-world settings. Additionally, intensity transformations like
contrast adjustments and Gaussian noise addition were employed to improve image
diversity. Finally, scale augmentation techniques, such as rescaling images to different
resolutions, further increased the robustness of the trained models. After all preprocessing
was completed, images were resized to 320 � 320 pixels. Preprocessing augmentation
(applied before training) has been leveraged to enhance model robustness and reduce
overfitting, ultimately leading to improved segmentation accuracy and generalization in
real-world scenarios. In terms of model training and testing, 80% of the dataset was used
for training, 10% for validation and 10% for testing.

Proposed method
In this study, we present our architecture in Fig. 2. This model operates as an
encoder-decoder network, commencing with a pre-trained ConvNeXt model serving as
the encoder. This pre-trained encoder receives the input image to extract three distinct
intermediate feature maps. These feature maps undergo processing through a ConvNeXt
Block, which is shown in the next sections.

The subsequent component is the decoder network, consisting of three decoder blocks.
The first decoder block receives the reduced feature map, which first passes through an
upsampling layer that increases the spatial dimensions. The upsampled feature map is then
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combined with another reduced feature map of matching spatial dimensions, establishing
a cross attention block to create a shortcut connection between the encoder and the
decoder. This connection facilitates improved information flow, mitigating potential
feature loss due to the network’s depth. Furthermore, the combination of feature maps
through an attention layer helps the model learn important characteristics between the
features, thereby improving their performance.

The combined feature maps are processed through our proposed residual transformer
block. In this block, the feature maps are reshaped into patches before being input into the
transformer layers (Vaswani et al., 2017), which include multi-head self-attention
mechanisms for enhanced feature representation learning. Notably, in the final decoder
block, the residual transformer block is substituted with a simpler residual block to
minimize trainable parameters; the architecture of the residual transformer block is
described in the next section. The output from the final decoder goes through an

Upsample

Cross Attention

Residual Transformer
Block

Upsample

Cross Attention

Residual Transformer
Block

Upsample

Cross Attention

Residual Transformer
Block

Upsample

Predict Mask

ConvNeXt Block

ConvNeXt Block

ConvNeXt Block

Image

Conv2D (k=4)

ConvNeXt

Depthwise
Conv2D (k=7)

Conv2D (k=1)

Conv2D (k=1)

GELU

LN

Conv2D (k=1)

Conv2D (k=1)
ReLU

Transformer
Encoder

BatchNorm

Conv2D (k=1)

ReLU

ConvNeXt Block

Residual Transformer
Block

Figure 2 Overview of our architecture. Full-size DOI: 10.7717/peerj-cs.2924/fig-2
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upsampling layer, before being processed by a convolution layer with kernel 1� 1
(Conv2D with k ¼ 1) and a sigmoid activation function to predict the mask.

ConvNeXt block
The ConvNeXt Block starts with a depthwise 7� 7 convolution, expanding the receptive
field while preserving spatial structures. This is followed by layer normalization (LN)
instead of batch normalization, improving stability and efficiency. The normalized features
are then processed through a pointwise Conv2D (k ¼ 1), which expands the channel
dimension similarly to the inverted bottleneck structure in MobileNetV2 (Sandler et al.,
2018). A GELU activation function is applied before another Conv2D (k ¼ 1), which
restores the original channel dimension. To enhance expressiveness, a stochastic depth
mechanism may be employed. Finally, the processed feature map is added back to the
input via a residual connection, maintaining gradient flow and improving convergence.
This streamlined design, inspired by modern transformer architectures, improves
performance and efficiency while retaining the hierarchical nature of convolutional
networks.

Residual transformer block
A convolution layer with kernel 1� 1 (Conv2D with k ¼ 1) is used to start the residual
transformer block. Batch normalization and a ReLU activation function come next. The
feature maps are then flattened, maintaining a constant patch size of four. These flattened
maps are directed into the transformer block, which comprises four heads and two layers.
The transformer block performs self-attention on the feature maps, enhancing the
network’s robustness. The output of the transformer block is reshaped back to the original
input dimensions. Following this, the feature map undergoes another Conv2D (k ¼ 1),
and is then added to the input feature maps before being processed through the ReLU
activation function.

Cross attention

Cross-attention (Chen, Fan & Panda, 2021) is a mechanism where there are two input
sequences: a query sequence Q and a key-value sequence ðK;VÞ, where K and V typically
come from a different source than Q. As shown in Fig. 3, input 1 corresponds to the
features obtained from the residual transformer block, and input 2 corresponds to the
features of the ConvNeXt Block. Dot-product attention is computed between the query Q
and the key K:

Attention scores ¼QKTffiffiffiffiffi
dk

p ; (5)

where:

. Q is the query matrix of shape ðnq; dkÞ, where nq is the number of queries and dk is the
dimensionality of the key.

. K is the key matrix of shape ðnk; dkÞ, where nk is the number of keys.

. The dot product is scaled by
ffiffiffiffiffi
dk

p
to prevent large values when dk is large.
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Softmax normalization is applied to the attention scores to obtain the attention weights:

Attention weights ¼ Softmax
QKTffiffiffiffiffi
dk

p
� �

: (6)

The softmax ensures that the attention weights are between 0 and 1, and sum to 1.
Weighted sum of the values V is computed using the attention weights:

Output ¼ Attention Weights� V; (7)

where V is the value matrix of shape ðnk; dvÞ, with dv being the dimensionality of the value.

Evaluation metrics
The performance of various architectures for medical image segmentation tasks can be
evaluated and compared using multiple metrics. In this study, to assess segmentation
performance, we calculate the Dice coefficient, mean IoU, recall, and precision based on
this classification.

Dice coefficient is a widely used metric for measuring the similarity between ground
truth and anticipated segmentation at the pixel level. It is defined as:

DiceðA;BÞ ¼ 2� jA \ Bj
jAj þ jBj ¼ 2� TP

2� TP þ FP þ FN
; (8)

where:

. A represents the set of predicted pixels,

. B represents the ground truth pixels,

. TP (true positive) denotes correctly predicted polyp pixels,

. FP (false positive) refers to incorrectly predicted polyp pixels,

. FN (false negative) represents polyp pixels that were not correctly detected.

Input 1

Input 2

Softmax

Attention Weight

Figure 3 Cross attention visualization. Full-size DOI: 10.7717/peerj-cs.2924/fig-3
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Intersection over union (IoU) is another common measure for assessing segmentation
accuracy is the Jaccard index. The overlap between the ground truth (B) and the
anticipated segmentation (A) is measured as follows:

IoUðA;BÞ ¼ jA \ Bj
jA [ Bj ¼

TP
TP þ FP þ FN

(9)

Recall and precision are defined as follows:

Recall ¼ TP
TP þ FN

(10)

Precision ¼ TP
TP þ FP

(11)

EXPERIMENTAL RESULTS AND DISCUSSION
Setup
In our experiments, we implemented methods using the PyTorch and conducted training
on a single NVIDIA RTX 3060 GPU with 12 GB RAM. The AdamW optimizer (Loshchilov
& Hutter, 2017) was used for 50 epochs of training with a batch size of 16, a learning rate of
0:0001 and a weight decay of 1e−4. CUDA 14.2 and Windows 11 were installed in the
software environment.

Comparing with benchmarking models
To conduct a comprehensive performance analysis, we compared our model with several
advanced deep learning models for gastrointestinal polyp segmentation. These models
include:

. U-Net (Ronneberger, Fischer & Brox, 2015): An encoder-decoder network with skip
connections is utilized by U-Net in biomedical image segmentation to enhance feature
extraction and reconstruct polyp shapes more effectively.

. U-Net++ (Zhou et al., 2018): An extension of U-Net, the model incorporates a nested
and dense skip connection design to yield a more refined feature representation and
improved segmentation accuracy.

. ResU-Net++ (Jha et al., 2019b): The network consists of residual links and squeeze-and-
excitation units to facilitate feature propagation and obtain valuable contextual
information but is poorer on lower segmentation precision.

. UACANet (Kim, Lee & Kim, 2021): A state-of-the-art attention-based model with
uncertainty-aware learning to enhance segmentation results and yield higher Dice
similarity coefficients (DSC).

. UNeXt (Valanarasu & Patel, 2022): This architecture employs a transformer-based
approach towards medical image segmentation, employing axial attention mechanisms
in order to better represent features.

. HarDNet-MSEG (Huang, Wu & Lin, 2021): Based on the HarDNet backbone, this
model optimizes computational efficiency while maintaining competitive performance
in polyp segmentation tasks.
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. ColonSegNet (Jha et al., 2021): A domain-specific model specially developed for the task
of colon polyp segmentation, employing the use of multi-scale attention so as to perform
better detection.

. SegFormer (Xie et al., 2021): SegFormer is a lightweight yet powerful semantic
segmentation framework that combines a hierarchical Transformer encoder with a
simple, MLP-based decoder, eliminating the need for complex post-processing. Its
strong generalization ability and efficient architecture make it well-suited for medical
image segmentation, where both accuracy and computational efficiency are critical.

. Swin Transformer (Liu et al., 2021): introduces a hierarchical vision architecture with
shifted windows, enabling efficient modeling of both local and global context, an
essential capability for medical image segmentation where subtle anatomical structures
must be captured with high precision.

The results in Table 1 demonstrate the superior performance of our proposed model on
the Kvasir-SEG test dataset across all key evaluation metrics. Our method achieves the
highest mIoU of 0.8021 and DSC of 0.8659, outperforming recent state-of-the-art models
such as SegFormer (mIoU = 0.7872, DSC = 0.8567) and Swin Transformer (mIoU =
0.7754, DSC = 0.8502).

Notably, our model also achieves the highest precision (0.9023) and recall (0.8796),
indicating a strong balance between detecting true polyp regions and minimizing false
positives. This is particularly significant in the medical domain, where both missed
detections and over-segmentation can have critical clinical implications.

Compared to earlier CNN-based methods such as U-Net and U-Net++, our approach
shows a marked improvement, reflecting the benefit of incorporating advanced
components like the ConvNeXt encoder, cross-attention mechanisms, and Residual
Transformer Blocks. Even against transformer-based architectures like SegFormer and
Swin Transformer, our model achieves a better trade-off between segmentation accuracy
and boundary refinement, making it a compelling choice for automated polyp detection
systems in clinical endoscopy workflows.

Ablation study
To assess the contributions of key architectural components in our proposed polyp
segmentation model, we conducted a comprehensive ablation study. This study evaluates
the effects of different backbone networks and the effectiveness of the cross attention
mechanism in enhancing segmentation performance. By systematically varying these
components, we aim to quantify their influence on key metrics such as mIoU, DSC, recall,
and precision. The following sections present our findings, highlighting the advantages of
ConvNeXt as the feature extractor and the role of cross attention in refining segmentation
accuracy.

Impact of the ConvNeXt backbone on segmentation performance
To assess the efficacy of the ConvNeXt backbone in our proposed polyp segmentation
model, we conducted an ablation study comparing it against various pretrained feature
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extractors, including VGG16 (Simonyan & Zisserman, 2014), ResNet50 (He et al., 2015),
ViT (Dosovitskiy et al., 2020), InceptionV3 (Szegedy et al., 2015), and EfficientNet (Tan &
Le, 2019). We integrated each of these models into our segmentation framework and
assessed their performance on the Kvasir-SEG validation dataset.

The results in Table 2 provide compelling evidence for the superior performance of the
ConvNeXt backbone in the context of gastrointestinal polyp segmentation. ConvNeXt
consistently outperformed all other evaluated backbones—including well-established
CNN architectures such as VGG16 and ResNet50, as well as more recent models like ViT
and EfficientNet, across all key metrics: mIoU, DSC, recall, and precision.

Most notably, ConvNeXt achieved a mIoU of 0.8120 and a DSC of 0.8802, significantly
higher than the best-performing alternative (EfficientNet: mIoU = 0.7635, DSC = 0.8385).
This substantial improvement highlights ConvNeXt’s ability to retain spatial details while
capturing deep semantic features, which is crucial for accurate boundary delineation in
segmentation tasks.

Additionally, ConvNeXt achieved the highest recall (0.8950) and precision (0.9100),
indicating its robustness in correctly identifying polyps without over-segmenting non-
polyp areas. This balance is particularly important in clinical settings, where both false
negatives (missed polyps) and false positives (unnecessary interventions) carry significant
risks.

The strong performance of ConvNeXt can be attributed to its hybrid design, which
modernizes convolutional structures with transformer-inspired training strategies. Unlike
VGG16 and ResNet50, which rely on deeper but relatively rigid convolutional layers,
ConvNeXt incorporates design principles such as depthwise convolutions, layer scaling,
and expanded kernel sizes that enhance its representational power while maintaining
computational efficiency.

In contrast, while ViT brings strong global attention capabilities, its reliance on
large-scale pretraining and less inductive bias may hinder performance on limited-
medical-data domains like Kvasir-SEG. Similarly, InceptionV3 and EfficientNet, though
strong contenders, fall short in balancing fine-grained localization with semantic richness.

Table 1 Performance results on the Kvasir-SEG test dataset.

Method mIoU DSC Recall Precision

U-Net (Ronneberger, Fischer & Brox, 2015) 0.7423 0.8215 0.8467 0.8654

U-Net++ (Zhou et al., 2018) 0.7352 0.8160 0.8374 0.8558

ResU-Net++ (Jha et al., 2019a) 0.5258 0.6354 0.6879 0.7041

UACANet (Kim, Lee & Kim, 2021) 0.7648 0.8462 0.8743 0.8657

HarDNet-MSEG (Huang, Wu & Lin, 2021) 0.7410 0.8206 0.8438 0.8579

ColonSegNet (Jha et al., 2021) 0.6897 0.7852 0.8123 0.8370

UNeXt (Valanarasu & Patel, 2022) 0.6238 0.7281 0.7792 0.7583

SegFormer (Xie et al., 2021) 0.7872 0.8567 0.8728 0.8910

Swin Transformer (Liu et al., 2021) 0.7754 0.8502 0.8701 0.8845

Ours 0.8021 0.8659 0.8796 0.9023
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Overall, these findings strongly justify our choice of ConvNeXt as the feature extractor
in our model. Its ability to combine precision, recall, and contextual understanding makes
it particularly well-suited for the complex visual patterns present in endoscopic polyp
images.

Impact of attention mechanisms on segmentation performance
To evaluate the effectiveness of the cross attention block in our proposed architecture, we
carried out an ablation study by comparing different model variants with and without the
cross attention mechanism.

The results presented in Table 3 clearly demonstrate the progressive improvements
brought by each architectural enhancement, culminating in the superior performance of
the full model incorporating the cross-attention mechanism.

Starting with the baseline model that uses a ConvNeXt encoder with standard skip
connections, we observe a respectable performance (mIoU = 0.7708, DSC = 0.8478),
highlighting the strength of ConvNeXt as a feature extractor. However, replacing the
standard decoder with a Transformer-based decoder improves both mIoU and DSC (to
0.7829 and 0.8563, respectively), suggesting that self-attention layers better capture
long-range dependencies and contextual information.

The inclusion of a residual transformer block without cross-attention yields further
gains (mIoU = 0.7879, DSC = 0.8590), indicating the benefit of deeper and more expressive
decoder structures. Introducing dot-product attention (Luong, Pham & Manning, 2015)
into this architecture enhances the model’s ability to fuse encoder and decoder features
more effectively, resulting in slightly improved metrics (mIoU = 0.7895, DSC = 0.8611). A
more refined variant using scaled dot-product (Vaswani et al., 2017) attention shows
continued progress (mIoU = 0.7987, DSC = 0.8689), likely due to its improved gradient
stability and better attention scaling.

Finally, the full model, which integrates the ConvNeXt encoder, residual transformer
blocks, and a tailored cross-attention mechanism, achieves the best performance across all
metrics (mIoU = 0.8120, DSC = 0.8802, recall = 0.8950, precision = 0.9100). These results
confirm that cross-attention significantly improves the fusion of encoder-decoder features,
enabling the model to more accurately delineate polyp boundaries and reduce both false
positives and false negatives.

Table 2 Performance comparison of different backbone networks on the Kvasir-SEG validation
dataset.

Backbone mIoU DSC Recall Precision

VGG16 0.7298 0.8124 0.8340 0.8475

ResNet50 0.7567 0.8332 0.8578 0.8689

ViT 0.7463 0.8248 0.8441 0.8612

InceptionV3 0.7420 0.8215 0.8406 0.8570

EfficientNet 0.7635 0.8385 0.8615 0.8710

Ours 0.8120 0.8802 0.8950 0.9100
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Visualization
To better understand the model’s segmentation performance, we visualize both the
predicted segmentation masks and the corresponding heatmaps of feature activations.
Figure 4 presents sample predictions alongside ground truth masks, highlighting the
model’s precision in defining polyp boundaries. The visualization results indicate that the
model performs well in segmenting polyps with clear boundaries and sufficient contrast
against the background. However, we observe occasional misclassifications in cases where
polyps exhibit low contrast or are partially occluded. Moreover, flat and smaller polyps
possess less clear segmentation masks, meaning that they require more refinement for
being more attentive to these challenging cases. Based on the inspection of these
predictions, we can identify where improvement can be made, like incorporating
segmentation attention mechanisms that are more attentive to finer details or merging
more context information from surrounding tissues.

LIMITATIONS AND FUTURE WORK
While our deep learning model demonstrates strong performance in gastrointestinal polyp
segmentation, several limitations remain, pointing toward valuable directions for future
research and clinical translation.

First, the generalizability of our model is inherently limited by the Kvasir-SEG dataset’s
size and diversity. Despite being a well-curated resource, it does not encompass the full
variability of polyp shapes, textures, lighting conditions, and endoscopic device outputs
seen in real-world clinical environments. Similar concerns about domain adaptability have
been noted in related segmentation challenges, such as dental plaque recognition in
unconstrained imaging scenarios (Song et al., 2024) and retinal fundus enhancement tasks
(Jia, Chen & Chi, 2024). Future work should prioritize the inclusion of more diverse and
cross-device datasets and explore data harmonization strategies to improve model
robustness across clinical settings.

Secondly, our model shows reduced performance for small or flat polyps that exhibit
minimal contrast with adjacent mucosal tissues. This limitation is consistent with
challenges observed in other low-contrast medical segmentation tasks, such as skin lesion
detection (Wang et al., 2025) and bacterial infection targeting in constrained anatomical
regions (Wang et al., 2024a). To address this, future research could incorporate specialized

Table 3 Impact of the cross-attention mechanism on segmentation performance evaluated on the Kvasir-SEG validation dataset.

Method mIoU DSC Recall Precision

Baseline (ConvNeXt encoder + Standard skip connections) 0.7708 0.8478 0.8640 0.8869

ConvNeXt encoder + Transformer decoder (No cross attention) 0.7829 0.8563 0.8700 0.8982

ConvNeXt encoder + Residual transformer (No cross attention) 0.7879 0.8590 0.8732 0.9008

ConvNeXt encoder + Residual transformer (Dot-product attention) 0.7895 0.8611 0.8748 0.9025

ConvNeXt encoder + Residual transformer (Scaled dot-product attention) 0.7987 0.8689 0.8812 0.9051

Full model (Ours) 0.8120 0.8802 0.8950 0.9100
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enhancement techniques—such as contrast-aware modules, domain-specific priors, or
generative augmentation—tailored to better distinguish such ambiguous structures.

Additionally, computational complexity remains a barrier to deployment in
resource-constrained clinical environments. Although our use of a ConvNeXt encoder and
Residual Transformer Blocks significantly improves segmentation accuracy, it also
increases inference latency and hardware demands. Insights from fast medical imaging
tasks, such as super-resolution ultrasound (Luan et al., 2023) and denoising in localization
microscopy (Yu et al., 2023), highlight the potential of lightweight architectures and
real-time optimization. Future work could explore model pruning, quantization, or hybrid
encoder-decoder setups that retain accuracy while reducing overhead.

By addressing these limitations through dataset expansion, architectural refinements,
and computational efficiency enhancements, future research can bridge the gap between
experimental performance and clinical practicality, enabling broader deployment of
AI-driven polyp segmentation systems.

Image Ground Truth Predition Heatmap

Figure 4 Visualization of model’s prediction for polyp segmentation.
Full-size DOI: 10.7717/peerj-cs.2924/fig-4
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CONCLUSIONS
Utilizing our proposed deep learning model for the segmentation of gastrointestinal
polyps, we have established that the use of contemporary techniques such as the ConvNeXt
encoder, residual transformer blocks, and cross-attention greatly improves segmentation
accuracy. Our method outperforms traditional approaches as evidenced by the achieved
Dice score of 0.8715 and mIoU of 0.8021 on the Kvasir-SEG dataset. This success proves
the strength of deep learning in overcoming the challenges of polyp detection and
segmentation in real-world clinical practice, where efficiency and accuracy are paramount.
Moreover, the combining methods of attention with multi-scale feature fusion enables the
model to learn more complex patterns in endoscopic images, improving feature extraction
and spatial information retention. This work bridges the gap between cutting-edge
computer vision research and actual needs of clinical workflows, and it proposes a
promising approach to automatic polyp detection and diagnosis in gastrointestinal
endoscopy. Our approach provides a strong and efficient tool for assisting medical
professionals in the early detection of colorectal cancer, eventually resulting in better
patient outcomes and better cancer-related mortality rates worldwide. Future research will
concentrate on enhancing the model for application in real-world clinical environments
and applying it to other medical imaging tasks.
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