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ABSTRACT

Due to the increase in the volume and diversity of malware targeting Android
systems, research on detecting this harmful software is steadily growing. Traditional
malware detection studies require significant human intervention and resource
consumption to analyze all malware files. Moreover, malware developers have
developed polymorphism and code obfuscation techniques to evade traditional
signature-based detection approaches used by antivirus companies. Consequently,
traditional methods have become increasingly inadequate for malware detection. So
far, many machine learning methods have been successfully applied to address the
issue of malware detection. Recent efforts in this area have turned to deep learning
methods. Because these methods can automatically extract meaningful features from
data and efficiently learn complex relationships, they can achieve better performance
in malware detection as well as in solving many other problems. This article presents
BlockDroid, an approach that combines convolutional neural network (CNN)
models, ensemble learning, and blockchain technology to increase the accuracy and
efficiency of malware detection for mobile devices. By converting Android DEX files
into image data, BlockDroid leverages the superior image analysis capabilities of
CNN models to discern patterns indicative of malware. The CICMalDroid 2020
dataset, comprising 13,077 applications, was utilized to create a balanced dataset of
3,590 images, with an equal number of benign and malware instances. The proposed
detection system was developed using lightweight models, including EfficientNetB0,
MobileNetV2, and a custom model as CNN models. Experimental studies were
conducted by applying both individual models and the proposed BlockDroid system
to our dataset. The empirical results illustrate that BlockDroid surpasses the
performance of the individual models, demonstrating a substantial accuracy rate of
97.38%. Uniquely, BlockDroid integrates blockchain technology to record the
predictions made by the malware detection model, thereby eliminating the need for
re-analysis of previously evaluated applications and ensuring more efficient resource
utilization. Our approach offers a promising and innovative strategy for effective and
efficient Android malware detection.
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INTRODUCTION

Malicious software, or malware, is a malevolent code that harms computer devices and
networks, and steals sensitive information, often without user’s consent. Common variants
include spyware, ransomware, viruses, worms, trojans, adware, or any malicious code that
infiltrates a computer (Razgallah et al., 2021). Malware attacks are among the most
common threats identified for Android. Many researchers have provided various
definitions for malware based on the damage they cause. Malware can be defined as a
malicious application containing a piece of malicious code designed to gain unauthorized
access and violate the three main principles of security: confidentiality, integrity, and
availability (Senanayake, Kalutarage ¢ Al-Kadri, 2021). According to a market share
report on smartphone operating systems in 2022, Android’s market share has risen to
83.8%. This significant share has prompted the development of Android malware. The
Chianxin Threat Intelligence Center’s report on Android malware revealed that
approximately 2.3 million new malicious software were detected on mobile terminals, with
an average of about 6,301 new mobile phone malware blocked per day. Malicious activities
identified include malicious fee deductions at a rate of 34.9%. Malicious software has also
become a significant problem for Android devices, accounting for 24.2% of resource
consumption, 22.8% of fake behavior, 12.3% of privacy breaches, 4.3% of deception and
fraud, and only 1.5% of remote control (Shatnawi, Yassen ¢ Yateem, 2022). Therefore, to
combat this issue, Android malware detection efforts are increasing. These efforts are
generally divided into three categories: static, dynamic, and hybrid analysis. Static analysis
extracts features from Android Package (APK) files without executing them (Arslan,
Dogru & Barisci, 2019), proving effective in identifying malware through permissions,
APIs, and Android-related intents, methods, and components. However, it may struggle
when encountering complex code structures or Technologies (Sharma ¢ Arora, 2024).
Dynamic analysis involves monitoring the application in a protected environment, and
collecting and analyzing behavioral information, but can be time-consuming. Hybrid
analysis is an approach that combines both static and dynamic analysis methods (Elayan ¢
Mustafa, 2021). It has the advantages of both methods and can capture different
characteristics of malware, resulting in more accurate predictions of malware detection.
The long analysis time and high resource consumption are the main disadvantages of this
approach. Recent studies have shown that machine learning and deep learning can
effectively detect malware. In particular, deep learning methods, which have proven
effective in areas such as image recognition, natural language processing, signal processing,
and speech processing, natural language processing, signal processing, and speech
processing, have also achieved notable achievements in Android malware detection
(Giingor et al., 2022). In these studies, most deep learning methods have been applied to
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static or dynamic Android malware data with extracted features. Nevertheless, the number
of studies conducted on image-based data is relatively low compared to the current studies.
They generally focus on applying pure or hybrid deep learning methods to images
converted from Android source files and data sources.

Additionally, there are different approaches to detecting Android malware through QR
code-like images based on selected permission information (Kili¢, Dogru & Toklu, 2024).
Converting Android DEX files into images for analysis using deep learning techniques
enables the more effective and faster detection of malware that traditional methods may
miss. This approach aims to encode every piece of information within the DEX file as an
image, allowing for more accurate and efficient malware analysis, and potentially paving
the way for a new era in cybersecurity.

In this study, a CNN-based ensemble approach combined with blockchain was
developed as a cost-effective and secure malicious software detection system called
BlockDroid. In this structure, the ensemble approach was implemented to improve the
detection of malware in Android systems, while blockchain technology was utilized to
securely store the predictions. Since images converted from DEX files are used in Android
malware detection, CNN-based models known to yield successful results in image analysis
were employed in this approach. Lightweight methods, including EfficientNetBoO,
MobileNetV2, and a custom CNN, were preferred to ensure the system’s feasibility in
mobile device environments. The contributions of the proposed system to the literature
can be summarized in the following three points.

o The accuracy rate in Android malware detection has been increased by employing the
stacked ensemble learning method together with MobileNetV2, EfficientNetB0, and a
customized model.

e A custom model for detecting Android malware has been developed, utilizing
lightweight models in conjunction with ensemble learning to achieve high accuracy. The
decisions made by the malware detection model are securely stored using blockchain
technology, and the model is prevented from being rerun for the same application.
Additionally, the malware detection model is executed on nodes in the blockchain,
ensuring immutability and security.

* By integrating blockchain technology, it is ensured that model decisions are stored in an
immutable manner, adding a layer of trust and security to the decision-making process.

* By utilizing lightweight convolutional neural network (CNN) models, the malware
detection model is deployed on mobile devices, reducing computational costs and
enabling user control directly on the mobile device. Moreover, potential bottlenecks on
central servers due to an increase in the number of users are prevented.

The other sections of the study are organized as follows: The second section provides an
overview of current studies in the literature. The third section describes in detail the
materials and methods used in the study. The fourth section compares and discusses the
experimental results of the proposed method with the results of other methods used in the

Safak et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2918 3/29


http://dx.doi.org/10.7717/peerj-cs.2918
https://peerj.com/computer-science/

PeerJ Computer Science

study and those reported in the literature. In the final section, the results are evaluated
overall, and potential directions for future studies are presented.

LITERATURE REVIEW

A considerable number of studies have been conducted in malware detection. In this
section, a review study is presented regarding machine learning, deep learning, and hybrid
approaches related to the study provided here.

Since signature-based solutions for detecting malware on mobile devices cannot analyze
the entire application comprehensively, machine learning-based behavioral analysis
solutions have begun to be developed. Bose et al. (2008) proposed a new behavioral
detection framework to identify mobile worms, viruses, and trojans instead of relying on
signature-based methods. The malicious behaviors of malware were distinguished from
normal application behaviors using a classifier based on support vector machines (SVMs).
Evaluations on both simulated and real-world malware samples showed that behavioral
detection could identify existing mobile viruses and worms with over 96% accuracy (Bose
et al., 2008). Machine learning-based behavioral analysis solutions, which achieved
promising results on mobile devices, were later adapted for the widely used Android
operating system. One of the earliest studies applying machine learning for Android
malware detection was conducted by Salhs ¢» Han (2012). In their work, 2,081 benign and
91 malicious Android applications were analyzed using permissions and control flow
graphs for classification. Their experiments achieved an 85% accuracy rate using SVMs
(Sahs & Han, 2012). To improve upon the results of traditional machine learning, deep
learning algorithms—known for their strong performance in classification tasks—began to
be employed. One of the first studies using deep learning for Android malware detection
was conducted by Yuan et al. (2014). In this study, 200 features extracted from 500
Android applications (250 malicious and 250 benign) were used for classification,
achieving a 96.5% accuracy rate, outperforming traditional machine learning algorithms.

Research in the field of Android malware detection has significantly progressed with the
use of machine learning (ML), deep learning (DL), and hybrid approaches. These studies
have focused on static analysis of application information and converting application files
into images for malware detection. However, due to the high computational costs of the
developed methods, they are generally not suitable for use on mobile platforms.

This section reviews studies on Android malware detection that utilize application data
analysis, image-based techniques, and detection methods for mobile devices. The literature
review focuses on Android malware detection studies employing static and image-based
analysis. As inclusion criteria, peer-reviewed studies, research proposing concrete models,
and studies tested on publicly available datasets were determined. Among the exclusion
criteria are review articles only, non-peer-reviewed publications, studies not targeting
Android malware, and research not using machine learning or deep learning-based
classification approaches.

In studies involving static analysis of application information, features such as
permissions, APIs, and Android-related intents, methods, and components are used to
detect Android malware through machine learning and deep learning techniques. These
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studies typically require server-level computational power, which does not make them
suitable for direct deployment on mobile devices. There are also no developments aimed at
preventing repetitive operation of the model or ensuring model security. Sonmez, Salman
¢ Dener (2021) used the CICMalDroid2020 dataset to train and test machine learning
algorithms including K-nearest neighbors, naive Bayes, J48, and random tree with 470
features. The K-nearest neighbors algorithm achieved the highest accuracy at 91.45%
(Sonmez, Salman & Dener, 2021). However, the study focused solely on permissions and
API calls, limiting its ability to detect anomalies in code structure. While classical machine
learning methods were used, deep learning models were not evaluated. The accuracy rate
was also lower than similar studies using the same dataset. Azad et al. (2022) a particle
swarm optimization method and a neural network consisting of two hidden layers were
employed. The utilized CICAndMal2017 dataset includes network traffic, memory dumps,
logs, permissions, API related searches, and various phone statistics collected from various
Android applications. In the feature extraction process, spiral-based particle swarm
optimization (PSO), which employs a learning algorithm to assess the utility of a feature,
was employed. Among the methods used to observe the classification impact of feature
selection, the PSO method exhibited the best performance in the deep learning classifier
with an accuracy rate of 83.6% and an F-score of 82.5% when reducing the data size by 300.
The obtained results are limited when compared to other methods offering higher
accuracy rates (Azad et al., 2022). Azad et al. (2022) employed PSO and neural networks
but achieved only 83.6% accuracy, revealing the challenge of balancing feature reduction
and performance. Furthermore, no comparison has been made with studies conducted
using the CICAndMal2017 dataset. Faghihi, Zulkernine ¢ Ding (2023) ensured the
interpretability of the model’s decision for Android malware detection. They introduced a
novel approach named Android Interpretable Malware (AIM) for detecting malicious
software. AIM integrates hybrid analysis, neural networks, attention mechanism, and a
novel class modeling approach. Leveraging the attention mechanism, this method can
discern the predicted label of an application (benign or malicious), along with the classes
engaged in malicious activities, API calls, and permissions. The proposed AIM detector
attained an accuracy rate of 98.91% (Faghihi, Zulkernine ¢ Ding, 2023). The performance
of the proposed method was measured using the dataset prepared for the study. However,
its performance has not been validated using one of the commonly used datasets in the
literature. Kong et al. (2022) proposed a new method named Feature-Centric Siamese
Convolutional Neural Network (FCSCNN) for Android malware detection. Initially,
permissions and API calls were extracted from the Manifest.xml and smali files of both
benign and malicious applications within the dataset. In the research, features were
categorized into uncertain, malicious, and benign groups. Subsequently, Siamese CNNs
were employed to detect malicious applications. The proposed FCSCNN method achieved
a higher accuracy rate of 98.07% compared to previous studies Kong et al. (2022). While it
is claimed that the proposed method is more effective against new malware, this has not
been experimentally proven. Instead of using an existing dataset, a new dataset was
prepared; however, the performance of the proposed method has not been evaluated with
another dataset. In the study, a new method named WHGDroid (Weighted Heterogeneous
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Graph, WHG) was proposed for Android malware detection. WHGDroid consists of four
main components: feature extractor and weight assigner, WHG and metapath constructor,
node embedding, and malicious software detection. The proposed WHGDroid method
was tested against evolving (evolution) and never-before-seen (zero-day) malicious
software scenarios. WHGDroid outperformed baseline graph-based methods in evolution
(92.50%) and zero-day (97.83%) scenarios (Huang et al., 2023). Feature extraction is
performed manually and takes approximately 7.8 s. Therefore, the proposed method is
limited in use, as it will result in longer training times for large datasets. Zhu et al. (2023a)
proposed MSerNetDroid model consisting of three main components: multi-static feature
extraction, feature vector formation and reshaping, and feature learning-based
classification. Permissions and hardware features were extracted from the manifest file,
and API calls were extracted from the DEX files using Androguard. Based on prior
research, 145 permissions, 94 sensitive API calls, and 85 hardware features were employed
in the training process. Experimental results demonstrated that the proposed
MSerNetDroid framework achieved a higher accuracy rate of 96.48% compared to
previous studies (Zhu et al., 2023a). The dataset was prepared within the scope of the
study, and the performance of the proposed method on malicious software it has not
previously encountered, using a different dataset, has not been evaluated. Atacak, Kili¢ ¢
Dogru (2022) using the CICMalDroid2020 dataset, fuzzy logic has been applied together
with convolutional neural network architecture for feature extraction and decision-making
processes. Their approach reduced feature dimensionality by extracting features from
permission information using a small number of filters and convolutional layers. The
proposed method attained an accuracy of 94.6% and an F1-score of 94.6% on the
CICMalDroid2020 dataset (Atacak, Kili¢ & Dogru, 2022). In the proposed method,
analyzing only permission information may result in the inability to detect malware
applications caused by other features beyond permissions. Padmavathi, Shanmugapriya e
Roshni (2022) leveraging the CICMalDroid2020 dataset, conducted experiments with six
unsupervised machine learning models: K-means, K-nearest neighbors (KNN),
Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Ordering Points
To Identify the Clustering Structure (OPTICS), hierarchical, and spectral clustering, to
detect mobile malicious software. Through a comparative analysis of these models, it was
found that the K-means clustering algorithm achieved the highest accuracy of 88% for
detecting mobile malicious software (Padmavathi, Shanmugapriya ¢ Roshni, 2022).
Classical machine learning algorithms have been applied, but deep learning models have
not been explored. The accuracy achieved is lower compared to similar studies using the
same dataset. Kou et al. (2023) using the CICMalDroid2020 dataset, semi-supervised,
continuously learning malware detection model based on Transformer has been proposed.
The proposed model introduces a feature memory replay algorithm and a pseudo-labeling
algorithm. Multilayer Perceptron was employed for classifying malicious software. This
model attained an F1 score of 85.49% on the CICMalDroid2020 dataset (Kou et al., 2023).
The performance achieved has been lower compared to other studies in the literature that
use the same dataset. Gu, Hongyan ¢ Hou (2024) proposed a novel malware detection
framework called MFEMDroid, which combines multi-feature analysis and ensemble
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modeling. The framework incorporates a composite model based on SENet, ResNet, and
SEResNet architectures. To comprehensively model application behavior, the system
utilizes not only permissions but also provider features that manage inter-application data
sharing, with particular examination of dangerous feature combinations. The study
employed a specially curated dataset to thoroughly characterize both malicious and benign
application behaviors. In testing, MFEMDroid achieved 95.38% accuracy, demonstrating
its effectiveness in malware detection (Gu, Hongyan ¢ Hou, 2024). While the model
attained impressive accuracy, its performance hasn’t been validated against established
benchmark datasets in the literature. The exclusive reliance on permissions and provider
features may cause the model to overlook malware that manifests through API calls,
network traffic, or opcode patterns.

Android malware detection studies focusing on static feature analysis, the examination
remains limited as only specific predefined features can be analyzed, leaving other
potential indicators unchecked. To enable faster analysis of all application data, recent
research has begun exploring methods to convert application files into visual
representations. The remarkable success of deep learning algorithms in image processing
has yielded highly effective results in these studies. However, the developed models still
require servers with greater processing power than mobile devices to function effectively.
There are also no developments aimed at preventing repetitive operation of the model or
ensuring model security. Yadav et al. (2022) employed convolutional neural networks for
malicious software detection. In their study, a deep learning-based approach for Android
malware detection using RGB images is proposed. To perform malicious software
detection, the EfficientNet architecture developed in a previous study was utilized.
EfficientNet convolutional neural networks have relatively fewer parameters compared to
MobileNet and ResNet networks while achieving higher success rates on commonly used
transfer learning datasets. The proposed method based on EfficientNetB4 achieved a
higher performance in Android malware detection from images with a binary classification
accuracy of 95.7% compared to the mentioned models (Yadav et al., 2022). Although the
proposed method achieved an accuracy of 95.7% for binary classification, all the compared
models except MobileNetV2 are high-resource-demanding models. MobileNetV2, on the
other hand, achieved a lower accuracy of 85%. Zhu et al. (2023b) utilized support vector
machines and autoencoders. The study proposes an effective and automated method called
MEFDroid for Android malware detection. In the proposed MEFDroid method, three
different ensemble learning methods, namely Unsupervised Feature Transformation
(ESAES), Hybrid Deep Feature Learning (EDAES), and Feature Fusion (EDAES), were
experimented with to identify the method achieving the highest success rate. Experimental
results showed that the ESAES, EDAES, and EDAFS algorithms achieved accuracy rates of
93.93%, 95.06%, and 95.14%, respectively (Zhu et al., 2023b). The features used to classify
the applications in the dataset employed for training and testing the proposed method
have not been explained. Additionally, an analysis of performance differences among the
ensemble learning methods has not been conducted. This limits the interpretability and
applicability of the approach. In the study, a new malicious software framework called
MADREF-CNN was developed using DEX images from Android applications. Since the
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header and data sections of DEX files did not provide cost-effective information for
malicious software detection, they were removed. The filtered DEX files were transformed
into a file consisting of hexadecimal numbers. These hexadecimal characters were
converted into pixels to form a pixel matrix. Finally, the pixel matrices were written into a
JPEG file to complete the image transformation process. The proposed MADRF
framework achieved an accuracy rate of 96.9%, which is better than previous studies (Zhu
et al., 2023¢c). Although the results obtained are quite impressive, the diversity and
complexity of the dataset created for the study remain unclear. Additionally, the
performance of the proposed framework has not been validated on a different dataset,
leaving the evaluation of its performance on existing datasets incomplete. Wang, Yu &
Yuan (2024) converted DEX files, AndroidManifest.xml, and API calls extracted from
Android applications into grayscale images, which were further processed using
techniques such as Canny edge detection, histogram equalization, and adaptive
thresholding to generate RGB images. The CICMalDroid 2020 dataset was used for the
Android applications to be transformed into images. For Android malware detection from
the generated images, GoogleNet and ResNet models were employed. The best result was
achieved using the ResNet model, with an accuracy of 97.25% (Wang, Yu & Yuan, 2024).
Tang et al. (2024) proposed a novel malware classification method based on mixed
bytecode images and a deep learning attention mechanism. Fixed-width and height
grayscale images and Markov images were generated. These grayscale and Markov images
were combined using transition probabilities to form a new texture feature space, which
helped emphasize the distinguishing features of malware samples. The Drebin and
CICMalDroid 2020 datasets were jointly used for training and testing the model. When a
convolutional attention mechanism was integrated into the ResNet architecture, the
highest accuracy of 98.67% was achieved (Tang et al., 2024). Although both Wang, Yu &
Yuan (2024) and Tang et al. (2024) obtained promising results using image-based
approaches, the ResNet model employed in both studies is not suitable for deployment on
mobile devices.

In the studies examined in the literature, it has been observed that image-based
approaches enable the examination of a broader feature set of Android applications.
Therefore, this study performs Android malware detection using images. Dalvik
Executable (DEX) files have been converted into images to develop an Android malware
detection model capable of running on mobile devices. Existing studies demonstrate that
approaches using lightweight convolutional neural networks for mobile devices remain
insufficient. Furthermore, in no previous study have model predictions and the model
itself been stored in secure data storage systems such as blockchain. To address this, our
study develops a high-accuracy lightweight convolutional neural network model for
mobile devices and stores both the model and its predictions on the blockchain. By
enabling the model to run directly on mobile devices, the need for centralized servers is
eliminated. The model operates distributively across all devices while being secured via
blockchain. Consequently, any user can make predictions using the model, which is
sufficient for the proposed system to classify Android applications. Storing both the model
and its predictions on the blockchain prevents redundant model executions, ensures model

Safak et al. (2025), Peerd Comput. Sci., DOl 10.7717/peerj-cs.2918 8/29


http://dx.doi.org/10.7717/peerj-cs.2918
https://peerj.com/computer-science/

PeerJ Computer Science

security, enables efficient resource utilization, and prevents potential cyber attacks
targeting centralized server resources.

MATERIALS AND METHODS

Converting Android application DEX files into JPEG images is advantageous for effectively
utilizing CNN’s in malware detection. Therefore, in the dataset used for malicious software
detection, DEX files of Android applications were converted into JPEG images for the
training and testing of the CNN model. EfficientNetB0, MobileNetV2, and customized
convolutional neural networks CNN capable of running on mobile devices were preferred
for training. After training and testing each model separately, a new model was developed
by combining the three models using ensemble learning methods. The operations
conducted for developing the final model are illustrated in Fig. 1.

As seen in Fig. 1, a mobile application has been developed to utilize the developed
ensemble model. The functionality of the developed mobile application is depicted in
Fig. 2.

As depicted in Fig. 2, for the classification of Android applications, the first step involves
the user uploading the application’s APK file to the application. Subsequently, the hash
information of the APK file is obtained to check whether the application has been
previously analyzed by the model. If the application has been previously analyzed, the user
is shown the predicted model result from the blockchain without running the model again.
For this purpose, a smart contract has been developed to enable interaction with the
blockchain. The developed smart contract includes functions for registering, querying,
updating, and deleting records. The register function records the applications analyzed by
the malicious software model on the blockchain. Applications are stored in the blockchain
with hash, name, SDK, size, and model information. The query function allows querying of
the applications analyzed by the malicious software model from the blockchain. Since
records cannot be modified in the blockchain, the update function enables the use of the
latest record instead of the previous one by creating a new record. Since records cannot be
deleted from the blockchain, the delete function allows the data to be treated as if it were
not registered in the network during programming. If the application is not registered in
the blockchain, the APK file is disassembled, and the DEX file is converted into an image
for analysis by the malicious software detection model. After the analysis is completed, the
prediction information made by the model is recorded in the blockchain. If the same
application is queried again, the prediction information made by the model previously will
be used.

The Android malicious software detection model was trained and tested using
applications from the CICMalDroid2020 dataset (Mahdavifar et al., 2020). The dataset
comprises applications from five different categories: adware, banking malware, SMS
malware, riskware, and benign software. The choice of the CICMalDroid 2020 dataset is
really suitable for the goals of this study, and there are a few key reasons for preferring this
dataset. First off, the CICMalDroid 2020 dataset stands out because it has a large number
of samples and a high level of diversity. This allows the model to effectively learn and
detect different types of malware. The dataset has been meticulously classified using static,
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dynamic, and network traffic analyses during its preparation. Throughout this process,
samples from four distinct malware categories—SMS, adware, banking, and riskware—
have been collected. This variety aids the model in differentiating between malware
applications across various categories. Otherwise, a malware application from an unknown
category could have been inaccurately classified. Furthermore, to prevent the model from
exhibiting biased decisions towards any specific malware category, efforts have been made
to maintain a balanced number of applications across all categories. Likewise, to ensure
that the model does not lean towards either malware or benign categories, a balance has
been established between the total counts of malicious and benign applications. This
approach has significantly enhanced the transparency and reproducibility of the research.
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The elucidation of these details plays a crucial role in bolstering the study’s reliability and
validity. A total of 13,077 applications were analyzed and classified out of 17,341 Android
applications in the dataset. Hence, there are a total of 13,077 available applications in the
dataset. Among these applications, 1,795 are benign. To balance the dataset, an equal
number of 1,795 applications were selected from each of the four categories of malware
(449-SMS, 449-adware, 448-banking, and 449-riskware). The DEX files of a total of 3,590
applications in this dataset were converted into images. Among these applications, 1,795
are malicious, and 1,795 are benign applications. The dataset, which comprises APK files,
was preprocessed by converting the DEX files within the APKs into JPEG format images.
Before being fed into the models for training, these images were standardized to a size of
224 x 224 pixels. Additionally, no data preprocessing has been applied in the conducted
study. Eighty percent of the dataset was used for training, while the remaining 20% was
used for testing purposes. The split ratio of 0.8 (80%/20% training/test data), known to
produce more accurate results in model evaluation (Rdcz, Bajusz ¢» Héberger, 2021), has
been taken into account. This ratio typically provides a robust balance between training
model complexity and evaluating performance.

LeCun introduced CNNs in 1989 specifically for image recognition tasks, and since
then, CNNs have found extensive applications across diverse domains including image
analysis, speech recognition, natural language processing, object or face recognition, and
disease detection. Renowned for their efficacy in tasks like image recognition and
classification, a typical CNN comprises five layers: input, convolutional, pooling (or
subsampling), fully connected, and dropout layers (Khan et al., 2020). The input layer,
serving as the initial layer, accepts raw data into the CNN. The size of data within this layer
significantly impacts model performance. Opting for a larger input image size can elevate
memory demands, training time, and test time per image, thus enhancing network
performance. Conversely, opting for a smaller input image size reduces memory
requirements and training time but may compromise network depth and performance.
Hence, selecting an appropriate input image size is pivotal for image analysis, considering
both network depth and computational cost (Safak et al., 2022). The primary function of
the convolutional layer is feature extraction from the input image. This layer learns image
features using small portions of input data, preserving spatial relationships between pixels.
The input image undergoes convolution using learnable filters or kernel sets, with each
filter generating a feature map in the output image. These feature maps proceed to the
subsequent convolutional layer. This convolution process entails applying specific filters
across the entire image, making filters indispensable components of the layered
architecture. Filters can vary in size, such as 2 x 2, 3 x 3, and 5 x 5, and apply convolution
to the input from the preceding layer to produce the output of the convolutional layer,
resulting in an activation map (Feature map) where specific features are detected for each
filter. During training with a CNN, the coefficients of these filters evolve with each learning
iteration on the training set, enabling the network to discern crucial data regions for
feature determination (Li ef al., 2022). The pooling layer primarily aims to reduce
computational costs by downsizing the feature map. This involves reducing connections
between layers, allowing each feature map to operate independently. Various pooling
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operations exist, including maximum pooling, average pooling, and total pooling.
Typically bridging the convolutional layer and the fully connected layer, the pooling layer
facilitates computational efficiency (Elmas, 2021). The fully connected layer, positioned
before the output layer, comprises neurons with associated weights and biases, establishing
connections between neurons across different layers. Flattening the input image from
previous layers, it feeds into the fully connected layer (Khan et al., 2020), where
mathematical function operations usually occur, initiating the classification process. To
prevent overfitting, a dropout layer is employed during the training process, randomly
dropping a percentage of neurons in the neural network, thereby reducing model size.
Activation functions play a crucial role in CNN models, enabling them to learn and predict
complex relationships between network variables, adding non-linearity to the network.
Commonly used activation functions include ReLU, Softmax, tanH, and Sigmoid functions
(Safak & Barisci, 2023). When selecting models for training, lightweight models such as
EfficientNetBO and MobileNetV2, which have low parameter counts and can run on
mobile devices, were preferred. The custom-developed model was also designed to ensure
that the number of parameters would not prevent it from running on mobile devices.
Lightweight CNN models used to ensure the feasibility of running the model on mobile
devices. Achieving high performance with lightweight CNN models requires fine-tuning
hyperparameters. However, improvements through hyperparameter tuning can only
enhance model performance to a limited extent. In the experiments conducted, the
feasibility of the developed models was validated using the developed mobile application.
The choice of blockchain technology was driven by the need for a permissioned and
high-performance infrastructure. We selected Hyperledger Fabric due to its superior
performance compared to other blockchain platforms. However, its setup and integration
can be challenging. We encountered issues related to version compatibility and smart
contract code during development.

The MobileNetV2 is a convolutional neural network designed to efficiently operate on
mobile and embedded devices while aiming for better performance. It consists of 53 layers
and 3.4 million parameters. The MobileNetV2 architecture includes a first fully
convolutional layer with 32 filters, followed by 19 residual bottleneck layers. Additional
residual connections and bottleneck layers have been added to the basic MobileNet
architecture. The bottleneck residual block is inserted between the layers of the network.
Instead of depthwise separable convolution used in the MobileNet architecture, the
bottleneck residual block in MobileNetV2 has been developed. The bottleneck residual
block enables the network to compute activations more efficiently and preserve more
information after activation. Unlike the pointwise convolutions in the MobileNet
architecture, the bottleneck residual blocks in MobileNetV2 reduce the number of
channels. Moreover, because the bottleneck residual layers have a linear structure, they
prevent excessive information loss from non-linear layers (Sandler et al., 2018). The
general architecture of MobileNetV2 is outlined in Fig. 3.

EfficientNet introduces a novel scaling approach employing compound coefficients
within the architecture of convolutional neural networks. Unlike traditional scaling
methods that arbitrarily scale network dimensions such as width, depth, and resolution,
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2242 x 3 conv2d - 32 [1]2
1122 x 32 bottleneck | 1 | 16 | 1 |1
1122 x 16 bottleneck | 6 | 24 |2 |2
562 x 24 bottleneck | 6 32 312
282 x 32 bottleneck | 6 | 64 | 4 |2
142 x 64 bottleneck | 6 | 96 | 3 |1
142 x 96 bottleneck | 6 | 160 | 3 | 2
72 x 160 bottleneck | 6 | 320 | 1 | 1
7% % 320 conv2d 1x1 | - | 1280 | 1 | 1
72 x 1280 avgpool 7x7 | - - 1| -

1 x1x1280 | conv2d Ixl1 - k -
Figure 3 General architecture of MobileNetV2. Full-size K&l DOT: 10.7717/peerj-cs.2918/fig-3

the compound scaling method uniformly scales each network dimension using a fixed
scaling coefficient. This approach has demonstrated enhanced model accuracy and
efficiency compared to conventional scaling methods. With compound scaling, it is
established that larger input images necessitate more channels to detect additional layers
and finer details within the larger image. The EfficientNet architecture predominantly
employs mobile inverted bottleneck convolution (MBConv). EfficientNetBO represents an
adapted version of the EfficientNet network optimized for mobile and embedded devices,
comprising 5.3 million parameters. Alongside squeeze-and-excitation blocks,
EfficientNetB0 integrates mobile inverted bottleneck residual blocks akin to those utilized
in the MobileNetV2 network (Tan ¢ Le, 2019). The architecture of EfficientNetBO is
outlined in Fig. 4.

* The following configuration was applied for training MobileNetV2 and EfficientNetB.
MobileNetV2 has enhanced its effectiveness by adding a flatten layer and a dense layer
with a sigmoid activation function. The flatten layer transforms feature maps into a
one-dimensional vector, making it suitable for the dense layer. The dense layer computes
weight values, and the sigmoid function facilitates classification by adjusting the model’s
output to the [0, 1] range, classifying images as malware or benign.

e Similarly, for EfficientNetBO0, the same enhancements are applied: a flatten layer and a
dense layer with a sigmoid activation function. This setup ensures consistency in
processing and classification across different models.

For Android malware detection, a medium-density model consisting of a total of 10
layers, including three convolutional layers, three max-pooling layers, one flattening layer,
two fully connected layers, and one dropout layer, was obtained through experiments. The
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Figure 4 Architecture of EfficientNetBO0.
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model was designed to keep the number of parameters minimum while maximizing the
success rate. The architecture of the model is shown in Fig. 5.

Ensemble learning is a machine learning technique that harnesses the amalgamation of
multiple models to enhance performance. Among the most prominent ensemble learning
methods are Bagging, Boosting, and Stacking. Bagging involves training multiple models on
various samples of the same training dataset. Boosting, on the other hand, entails multiple
models making sequential predictions for each example during training, with the weighted
average of predictions from all models being computed after each model’s prediction is
utilized by the subsequent model (Wen ¢» Hughes, 2020). Stacking, the focus of this study,
involves training multiple models separately on the same dataset, and during the prediction
phase, the predictions of these models are amalgamated. The efficacy of ensemble learning
lies in the diversity of operation among individual machine learning models. While one
model may excel on certain data, others may exhibit less effectiveness. By amalgamating
diverse models, ensemble learning mitigates the weaknesses of individual models (Cui et al.,
2021). In this study stacking ensemble learning method using a logistic regression algorithm
as the meta-model. The predictions from the ensemble models are input into logistic
regression, which learns the final classification. Logistic regression is effective for binary
classification tasks, leveraging mathematical techniques to model relationships between a
dependent variable and a set of independent variables. It is particularly chosen for its
efficiency in terms of computational resources like memory and processing power.

TensorFlow, an open-source software library for machine learning, was developed by
Google and unveiled in 2015. It functions as a symbolic mathematics library grounded in
data flow and differentiable programming principles. With its second version, launched in
2017, TensorFlow introduced support for CPU and GPU processing. Versatile in
application, TensorFlow operates seamlessly across various computing platforms,
including 64-bit Linux, macOS, Windows, Android, and iOS. Its adaptable architecture
facilitates the efficient distribution of computation across diverse platforms, spanning from
desktops to server clusters and from mobile to edge devices (Tensorflow, 2024). The term
“TensorFlow” derives from the tensor operations performed by neural networks, where
tensors represent multi-dimensional data arrays. Tensors generalize vectors and matrices
to potentially higher dimensions. Data arrays of varying dimensions and sequences fed
into neural networks are termed tensors. Given the intricacies of deep learning, especially
during training, TensorFlow’s computations are conceptualized as data flow graphs
incorporating state information (Janardhanan, 2020). TensorFlow consists of three main
components: the TensorFlow Framework, which provides functions for defining models
and developing data models with a user-friendly Python interface; TensorBoard, a tool for
analyzing, visualizing, and debugging TensorFlow graphs; and TensorFlow Serving, a
flexible, high-performance service system for deploying trained deep learning models in
production. Predominantly written in C++ with a Python interface, TensorFlow is widely
used in both academic research and industrial applications, making it the preferred library
for this study (Seker, Diri ¢ Balik, 2017).

Blockchain is a decentralized distributed ledger technology. In a blockchain, data is
added linearly in blocks after being validated. Each block consists of two main parts: a
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Layer (type) Output Shape Param #
_;;;;;a_(ConVZD) —?;:Ee, 148, 148, 32) 896
max_pooling2d (MaxPooling2 (None, 74, 74, 32) 0

D)

conv2d_1 (Conv2D) (None, 72, 72, 64) 18496
max_pooling2d 1 (MaxPoolin (None, 36, 36, 64) 0

g20)

conv2d_2 (Conv2D) (None, 34, 34, 128) 73856
max_pooling2d 2 (MaxPoolin (None, 17, 17, 128) 0

g20)

flatten (Flatten) (None, 36992) 2

dense (Dense) (None, 512) 18940416
dropout (Dropout) (None, 512) 0
dense_1 (Dense) (None, 1) 513

Total params: 19034177 (72.61 MB)
Trainable params: 19034177 (72.61 MB)
Non-trainable params: © (0.00 Byte)

Figure 5 Customized model architecture. Full-size K&l DOT: 10.7717/peerj-cs.2918/fig-5

header and data. Every block contains the hash of the previous block, ensuring the integrity
of the chain. Validators add legitimate transactions to the blockchain network using
consensus algorithms. Validations are performed in the order of transactions, but adding
data to the network depends on the completion time of validation. A copy of the
blockchain network is maintained by all relevant participants. Data in the blockchain
cannot be altered by any participant. Blockchain has fundamental properties, such as
immutability, privacy, security, trustlessness, and decentralization (Safak, Arslan &
Goziitok, 2020). Immutability ensures that data added to the blockchain network cannot be
altered. Immutability is achieved by applying a hash function to the blocks within the
blockchain, timestamping the blocks, and chaining them together. Security ensures that
data within the blockchain cannot be viewed by unauthorized individuals. Data within the
blockchain network is stored encrypted, and no participant can modify blockchain
records. Trustlessness enables participants to transact with each other without the need for
a central authority. Transactions within the blockchain network are executed through
consensus algorithms. Privacy ensures that the party performing a transaction in the
blockchain network cannot be identified. Blockchain transactions are stored anonymously,
thus preserving the privacy of users. Distributed Architecture refers to the blockchain
network’s copy being maintained by multiple participants. In public blockchain networks,
the database is present in all participants, while in permissioned blockchain networks, the
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database is present only in relevant participants (Cagigas et al., 2021). With the increasing
adoption of blockchain technology, smart contracts have emerged. Smart contracts enable
transactions to be executed autonomously, quickly, and securely within the blockchain
network. Smart contracts allow blockchain technology to be utilized in various sectors and
complex transactions. By minimizing manual operations, smart contracts reduce errors
and lower costs. In blockchain technology, data is stored across validating participants
instead of centralized servers,which reduces the burden on centralized servers. Participants
can transact with each other without intermediaries. While traditional blockchain
applications are typically designed to be open to everyone, there are also private blockchain
approaches where participation is permission-based (Safak, Mendi ¢ Erol, 2019).

Hyperledger Fabric is a permissioned private blockchain platform used in various
enterprise-level scenarios. It is developed and supported by the Linux community. Thanks to
its modular architecture, it finds applications in diverse fields, such as banking, finance,
insurance, healthcare, supply chain, auctions, defense, and more. It supports smart contracts
in Java, Go, and Node.js programming languages. With the addition of the Byzantine Fault
Tolerant (BFT) protocol in Hyperledger Fabric v3, the blockchain network is strengthened
against potential attacks in case the orderer node is compromised. Attacks that can occur
when the orderer node is compromised include not sending transactions to the network,
sending desired blocks to desired nodes, and sending different blocks to different nodes
(Antwi et al., 2021). Currently, Hyperledger Fabric supports the Raft consensus protocol.
Raft is a consensus algorithm where transactions are confirmed by the leader node selected
among the nodes and distributed to other nodes. Although Hyperledger Fabric 2.5 does not
support Byzantine fault tolerance, it supports crash fault tolerance (CFT), which prevents
possible repeated transactions before the network is updated. Significant improvements have
been made in terms of performance in Hyperledger Fabric 2.5. In a test conducted with two
peers and one orderer node, it reached a TPS value of 2,946 in simple asset creation.
Hyperledger Fabric v3 roadmap includes improvements for performance and protection
against quantum attacks (Al-Sumaidaee et al., 2023). Due to these features distinguishing it
from other blockchain infrastructures, Hyperledger Fabric was used in the conducted study.
Hyperledger Fabric version 2.5.6 was used. Hyperledger Fabric network was set up with a
configuration consisting of two peers and one orderer node across two separate
organizations. CouchDB was used as the state database. Hyperledger Fabric blockchain
network was deployed with its default network configuration, which includes two
organizations and one orderer node. Organization nodes receive requests from users and
send them to the orderer node, which then adds transactions to blocks and records them on
the blockchain. Transactions were conducted with a user connected to Organization 1 to
record the checked applications on the blockchain. A smart contract was developed using
the Go language to facilitate these transactions, including functions such as Save, Query,
Update, Delete, and Check. Applications identified as malicious are recorded using the Save
function with details like hash, name, SDK, size, and model information. In the Android
malware detection application, before running the deep learning model, it checks whether
the application is already recorded on the blockchain using the Check function with the
application’s hash information.
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The performance of CNNs is significantly influenced by several hyperparameters,
including the number of filters, filter size, number of layers, dropout rate, and learning rate.
The values in Table 1 indicate that the proposed model achieved maximum success rates.
The epoch value represents how many times the dataset was trained on the proposed CNN.
In this study, the dataset reached its maximum value after being trained 250 times on the
proposed CNN, achieved using early stopping in Python. Early stopping halts training
when improvements in model performance cease. The learning rate, which determines the
rate at which learned weights are updated, was set to 0.001. To calculate the loss between
the model’s predictions and actual values, the binary cross-entropy function was used. This
loss function is proven effective in preventing errors caused by noisy data in large datasets
(Zhang & Sabuncu, 2017). The Adam optimization algorithm was chosen for its
computational efficiency, low memory requirements, and suitability for problems with
large datasets, allowing the learning rate to be updated based on different parameters
(Kingma ¢ Ba, 2017). The hyperparameters listed in Table 1 are used for training the
models.

Evaluation of model performance is vital to understand how the model performs on
real-world data. Therefore, the following evaluation metrics are used in the study.

Accuracy represents the ratio of correct predictions to the total number of observations.
This metric is essential for assessing the overall success of our malware detection model. It
indicates the proportion of correct predictions (both true positives and true negatives) out
of all predictions made. Although useful, accuracy alone can be misleading in imbalanced
datasets, which is why additional metrics are considered.

Accuracy = (Number of correct predictions)/(Total number of predictions). (1)

Recall, represents the ratio of true positives to the total number of positive examples,
signifies the proportion of true positives among all positives. It holds significance in
scenarios where false negatives carry significant weight. Also known as sensitivity, recall
reflects the model’s ability to detect all actual malware applications. A high recall ensures
that the model does not miss potential threats, which is vital in a security context to
minimize undetected malware.

Recall = (True Positive) /(True Positive + False Negative). (2)

Precision, alternatively referred to as positive predictive value, signifies the ratio of true
positives to the total predicted positives. It denotes the proportion of true positives among
all positive predictions. Precision holds importance in scenarios where false positives are of
utmost concern. Precision measures the ratio of correctly identified malware applications
to all applications predicted as malware. A high precision indicates a low false positive rate,
meaning the system is reliable and unlikely to trigger false alarms, which is crucial for
maintaining user trust and system efficiency.

Precision = (True Positive)/(True Positive + False Positive). (3)

F1 score, defined as the harmonic mean of precision and recall, equally emphasizes both
precision and recall, rendering it beneficial in instances of imbalanced class distributions.
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Table 1 Hyperparameters used in training.

Hyperparameter Value

Epoch 250

Activation function ReLU

Learning rate 0.001

Loss_function Binary_crossentropy
Optimizer Adam

Threshold 0.5

F1 score is a harmonic mean of precision and recall, providing a balance between them. It
is particularly valuable when the class distribution is uneven, as it helps to ensure that both
false positives and false negatives are minimized. A high F1 score indicates that the model
effectively identifies malware without compromising on either precision or recall.

F1 score = 2 x (Precision x Recall)/(Precision + Recall). (4)

RESULTS AND DISCUSSION

In this study, Python 3.8 and the TensorFlow library were used. The experiments were
conducted using a computer equipped with an Intel(R) Core(TM) i7-12700H CPU,
NVIDIA® GeForce® RTX4060 GPU, and 16GB RAM hardware, running the Ubuntu
22.04 operating system. For the training process, 2,872 images were used, while 718 images
were used for the testing process. Initially, lightweight models capable of running on
mobile devices, namely MobileNetV2 and EfficientNetB0, were trained and tested.
Subsequently, a customized model was developed to achieve higher accuracy. The
developed customized model consists of 10 layers, including three convolutional layers,
three maximum pooling layers, one flattening layer, one dropout layer, and two fully
connected layers. While developing the model for high performance on mobile devices,
attention was paid to keeping the number of parameters to a minimum. Finally, the
developed MobileNetV2, EfficientNetB0, and customized models were used together with
the stacking ensemble learning method. The performance metrics obtained from the
experiments are presented in Table 2.

As seen in Table 2, the highest accuracy rate of 93.14% was achieved using the
customized model among the models tested. Subsequently, by training the MobileNetV2,
EfficientNetB0, and customized model together with the stacking ensemble learning
method, the malware detection model with the highest accuracy rate of 96.17% was
obtained. To further validate the model’s performance, we employed k-fold cross-
validation, which involves dividing the dataset into k” equal parts. This technique allows
the model to be trained and tested across multiple iterations, thereby improving its ability
to generalize to unseen data. Although there is no definitive rule for selecting the value of
I, values of 5 and 10 are commonly used. The model’s performance was measured using
k = 5 and k = 10, with results indicating consistent performance across both settings, as
shown in Table 3.
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Table 2 Performance metrics of malware detection models.

Accuracy (%) Precision (%) Recall (%) F1 score (%)
MobileNetV2 80.07 75.45 79.57 77.45
EfficientNetBO 84.82 76.13 82.92 79.38
Customized model 93.14 84.76 90.70 87.62
MobileNetV2 + EfficientNetB0 + Customized model 96.17 92.50 95.43 93.94

The performance metrics seen in Table 3 demonstrate robust precision, recall, and F1
score for the MobileNetV2 + EfficientNetB0 + Customized Model stacking ensemble
approach, affirming the model’s effectiveness in malware detection. The comparison of the
study with the one conducted using the CICMalDroid2020 dataset can be seen in Table 4.

As seen in Table 4, the proposed model achieved a higher accuracy rate compared to
previous studies. The comparison of the proposed model with the latest state-of-the-art
models from 2023 and 2024 is presented in Table 5.

As seen in Table 5, the proposed model has achieved competitive performance
compared to the latest models. The comparison of Android malware detection studies
using images with the proposed model is shown in Fig. 6.

As seen in Fig. 6 the proposed model has achieved a higher accuracy compared to the
using image studies. Following the development of the malware detection model, an
application was developed using Flask to enable the inspection of Android applications
and the recording of model predictions to the blockchain. The Android application control
screen is shown in Fig. 7.

As seen in Fig. 7, the APK file of the Android application can be uploaded through the
application to check whether the application is secure or malicious. When the Install
Application button is used to install the application, the hash information is first obtained,
and it is queried from the blockchain network whether it has been previously checked by
the model. If the application has not been previously checked by the model, its DEX file is
parsed and converted into an image for analysis by the model. The analysis result of the
application being checked for the first time is shown in Fig. 8.

In Fig. 8, the APK file of the WhatsApp application has been uploaded as an example.
Upon uploading, the model has predicted it as benign (safe). Since the application is being
checked for the first time, it is observed that it is not recorded in the blockchain. The model
prediction has been recorded in the blockchain, and the application has been saved.
Additionally, information such as the application name, SDK version, and file size is
displayed. The result of rechecking the WhatsApp application in the last attempt is shown
in Fig. 9.

As seen in Fig. 9, since the same application was reanalyzed, the application was not
re-run as it was already registered in the blockchain, and the analysis result was retrieved
from the blockchain network. This prevented computational resources from being
occupied for the same application.
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Table 3 The performance metrics of the proposed model obtained through k-fold cross-validation.

Accuracy (%) Precision (%) Recall (%) F1 score (%)
80-20% 96.17 92.50 95.43 93.94
K=5 97.38 95.64 96.55 96.09
K =10 96.85 95.12 96.26 95.68
Table 4 Comparison of the proposed model with the previous study.
Accuracy (%) Precision (%) Recall (%) F1 score (%)
Proposed model 97.38 95.64 96.55 96.09
Atacak, Kilig & Dogru (2022) 92 92.15 92 92.01
Sonmez, Salman & Dener (2021) 91.4 91.6 91.1 914
Padmavathi, Shanmugapriya & Roshni (2022) 88 - - -
Kou et al. (2023) - - - 85.49
Wang, Yu & Yuan (2024) 97.25 95.66 95.77 95.71

Table 5 The comparison of the proposed model with the latest state-of-the-art models from 2023.

Accuracy (%) Precision (%) Recall (%) F1 score (%)

Proposed model 97.38 95.64 96.55 96.09
Zhu et al. (2023b) 95.14 97.29 96.94 97.12
Zhu et al. (2023c) 96.9 97.1 98.9 95.9

Faghihi, Zulkernine & Ding (2023) 98.8 98.9 98 99.3

Huang et al. (2023) 92.50 93.10 91.80 92.45
Zhu et al. (2023a) 96.48 97.62 97.05 96.07
Gu, Hongyan ¢ Hou (2024) 95.38 95.78 94.47 95.12
Wang, Yu & Yuan (2024) 97.25 95.66 95.77 95.71
Tang et al. (2024) 98.67 98.62 98.67 98.64

Proposed Model Yadavetal. Zhuetal.

W Accuracy

Figure 6 Comparison of Android malware detection studies using images with the proposed model.
Full-size &) DOTI: 10.7717/peerj-cs.2918/fig-6
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Figure 7 BlockDroid mobile application screen. Full-size K&] DOT: 10.7717/peerj-cs.2918/fig-7
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BLOCKDROID Classifier

Result
Prediction: Benign

Blockchain Record: No

Application Information
App name: WhalsApp
SDK Version: 33

File Size: 86.25 MB

Figure 8 The result of the first time analyzed application.
Full-size K&l DOT: 10.7717/peerj-cs.2918/fig-8
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Figure 9 The result of the application reanalyzed. Full-size K&] DOT: 10.7717/peerj-cs.2918/fig-9
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CONCLUSIONS

Android, being the most prevalent mobile operating system, is a prime target for attackers,
given its widespread adoption on mobile devices. Consequently, research into Android
malware detection has become imperative due to the escalating quantity and sophistication
of Android malware. In recent investigations, there has been a growing trend towards
employing machine learning and deep learning techniques for malware detection.
Particularly noteworthy is the increasing success of deep learning across domains such as
image recognition/classification, natural language processing, signal processing, and
speech processing, which has further bolstered its application in malware detection.
Therefore, in this study, deep learning was utilized to detect malware from images.
Lightweight models such as MobileNetV2, EfficientNetB0, and a customized model were
used to ensure the developed model’s compatibility with mobile devices. When the
ensemble learning method was applied to these three models together, the highest accuracy
rate of 97.38% was achieved. Subsequently, blockchain technology, a secure storage
technology that allows the recording of predictions, was employed to prevent the repeated
operation of the malicious detection model. Hyperledger Fabric was chosen as the
underlying blockchain infrastructure. If an application previously analyzed by the model is
rechecked, the analysis result of the application is retrieved from the blockchain without
running the model again. This prevents the repetitive operation of the malicious software
detection model and ensures efficient resource utilization. This study also serves as an
important indicator for the combined use of blockchain and artificial intelligence
technologies. Our results are based on static analysis and the conversion of DEX files into
images, which are areas open for improvement. Static analysis alone cannot detect
real-time behaviors of malicious applications, as some malware exhibits dynamic
behaviors that can only be identified during execution. Since the malware detection
process from images is a static analysis method, it does not take into account the dynamic
behavior of the application during execution. Additionally, the model’s predictions may
vary depending on the quality of the images produced from the DEX files. The quality of
images significantly impacts detection accuracy. The better and more diverse the images in
the dataset, the higher the model’s ability to make accurate predictions and generalize. In
the future, the continuous improvement of the malware detection model can be achieved
by entering application analysis results from trusted nodes into the blockchain, allowing
the model to learn from the data in the blockchain. Future work could involve dynamic
analysis to establish a hybrid framework, combining both static and dynamic analysis to
improve detection capabilities. Enhancing the image quality by converting DEX files into
higher resolution images could potentially increase the model’s accuracy. Additionally, the
malware detection model can be enhanced to consider different parameters, such as
permissions, APIs, intents, and transaction codes alongside images, when making
decisions.
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